1
|
Sanal MG, Jindal A. Lentiviral Gene Therapy with CD34+ Hematopoietic Cells for Hemophilia A. N Engl J Med 2025; 392:1765. [PMID: 40305727 DOI: 10.1056/nejmc2502741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Affiliation(s)
| | - Ankur Jindal
- Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
2
|
Sarenac Vulovic T, Cupic K, Petrovic N, Srejovic J, Vulovic T, Todorovic Z, Rakic J, Todorovic D. Routine Blood Examination Predicts the Course of Disease in Patients with Pseudoexfoliation. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:652. [PMID: 40282943 PMCID: PMC12028588 DOI: 10.3390/medicina61040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Is it possible to predict the course of disease in patients with pseudoexfoliation based on blood examination? Materials and Methods: This retrospective study included 800 patients recruited for cataract surgery in the Clinic of Ophthalmology, University Clinical Centre Kragujevac, Serbia. The patients were divided into four groups: pseudoexfoliation syndrome early stage group (n = 200 patients), pseudoexfoliation syndrome late stage group (n = 200 patients), pseudoexfoliation glaucoma group (n = 200 patients) and the control group (n = 200 patients). During the preoperative process, some blood examination must be performed. We retrospectively used the results for the blood cell counts that we obtained from the patients. We recorded the neutrophil, lymphocyte, platelet, monocyte and leucocyte numbers, as well as the lipid profile, and simply calculated the ratio of their values, which we considered through different stages of the disease. Results: Our results indicated that there were no significant differences between all the groups examined in terms of leucocyte, neutrophil and lymphocyte count, but we recorded significant differences in the monocyte and platelet count. It was interesting that the monocyte count increased in the late stage of pseudoexfoliation syndrome and pseudoexfoliation glaucoma, in comparison with the control group and patients with early stage pseudoexfoliation syndrome. The lipid profile analysis indicated only increased values of LDL in patients with pseudoexfoliation (syndrome/glaucoma) in comparison with the control group. Conclusions: Monocytes are the main source of various cytokines, so our results support the proinflammatory theory of pseudoexfoliation development. Monocytes are the main cells in chronic inflammation, which leads to pseudoexfoliation syndrome. Platelets play an important role in the differentiation and activation of monocytes, as well as in the process of chronic inflammation and fibrosis, which are significant for pseudoexfoliation material production. A disturbed lipid profile in patients with pseudoexfoliation is expected, as they are at higher risk for cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Tatjana Sarenac Vulovic
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (T.S.V.); (N.P.); (J.S.); (D.T.)
- Clinic of Ophthalmology, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
| | - Katarina Cupic
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (T.S.V.); (N.P.); (J.S.); (D.T.)
- Clinic of Ophthalmology, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Petrovic
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (T.S.V.); (N.P.); (J.S.); (D.T.)
- Clinic of Ophthalmology, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Srejovic
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (T.S.V.); (N.P.); (J.S.); (D.T.)
- Clinic of Ophthalmology, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
| | - Tatjana Vulovic
- Department of Anesthesiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Clinic of Anesthesiology, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragjevac, Serbia;
- Clinic of Hematology, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
| | - Jovan Rakic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Dusan Todorovic
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (T.S.V.); (N.P.); (J.S.); (D.T.)
- Clinic of Ophthalmology, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
3
|
Manero-Higuera S, Garcés-Rimón M, Iglesias-López MT, López-Moreno M. Orthorexia Nervosa: Prevalence Among Spanish University Students and Its Effects on Cardiometabolic Health. Nutrients 2025; 17:629. [PMID: 40004958 PMCID: PMC11858399 DOI: 10.3390/nu17040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: This study aims to determine the prevalence of orthorexia nervosa (ON) among university students and to evaluate the relationship between stress and ON, as well as the effects that ON may have on the health of these individuals. Methods: In this cross-sectional study, a total of 205 participants (66.7% women) were recruited through informational posters on the university campus during the 2022-2023 academic year. They answered different questionnaires to yield socio-demographic data and completed specific tests for the evaluation of ON (Düsseldorf Orthorexia Scale (DOS-ES), Eating Habits Questionnaire (EHQ-ES)) and stress (Perceived Stress Scale (PSS-ES)). The analytical determination of blood biomarkers was also carried out. Results: The prevalence of ON obtained from the DOS-ES questionnaire was 1.5%, while 7.5% of the individuals showed a risk of ON. In addition, a positive correlation was observed between DOS-ES and EHQ-ES scores (rs = 0.674). A weak correlation (rs = 0.138) was reported between stress and ON. Individuals with underweight BMI (OR: 1.11, 95% CI: 1.01-1.22) and elevated monocyte levels (OR: 1.15, 95% CI: 1.05-1.26) were more likely to have higher DOS-ES scores compared to those with normal weight and normal monocyte levels. Conclusions: Our study demonstrated a lower rate (1.5%) than previous studies, and differences by sex or age were not observed in ON diagnosis, nor was a link between underweight BMI and an increased risk of ON. Additionally, a higher monocyte count was associated with ON, suggesting potential immune and cardiometabolic implications, but further research with larger populations is needed to confirm these findings.
Collapse
Affiliation(s)
- Sara Manero-Higuera
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
| | - Marta Garcés-Rimón
- Instituto de Investigación en Ciencias de Alimentación, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Food Biotechnology, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain
| | | | - Miguel López-Moreno
- Diet, Planetary Health and Performance, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
- Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain
| |
Collapse
|
4
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2025; 480:785-797. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
5
|
Tokalioglu EO, Tanacan A, Agaoglu MO, Özbebek ÜG, Okutucu G, Kayaalp H, Uzuner P, Sahin D. Aggregate index of systemic inflammation: A novel systemic inflammatory index for prediction of neonatal outcomes and chorioamnionitis in women with preterm premature rupture of membranes. Int J Gynaecol Obstet 2025; 168:640-649. [PMID: 39157934 DOI: 10.1002/ijgo.15868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE To determine the value of the Aggregate index of systemic inflammation (AISI) in predicting admission to neonatal intensive care unit (NICU) and chorioamnionitis. METHODS The present retrospective cohort study with pregnant women who were diagnosed with preterm premature rupture of membranes (PPROM) in the Department of Perinatology, Ministry of Health Ankara City Hospital between January 1, 2021, and June 1, 2023 (n = 357). The patients were categorized into subgroups: (1) cases with (n = 27) or without (n = 330) chorioamnionitis, (2) admission (n = 182) or no admission (n = 175) to NICU; (3) gestational age at birth <28 weeks or 28 weeks or longer; and (4) gestational age at birth <34 weeks or 34 weeks or longer. AISI values were compared between the subgroups, and cut-off values for AISI were determined to predict adverse outcomes. RESULTS AISI values were significantly higher in the admission to NICU group compared with the no admission to NICU group (707.0 vs 551.2) (P < 0.05). AISI values were also significantly higher in the chorioamnionitis group compared with those without chorioamnionitis (850.3 vs 609.4) (P < 0.05). AISI levels were significantly higher in cases delivered before 28 weeks of gestation compared with the cases delivered at 28 weeks of gestation or later (945.6 vs 604.9) (P < 0.05), and were also significantly higher in cases delivered before 34 weeks of gestation compared with the cases delivered at 34 weeks of gestation or later (715.5 vs 550.1) (P < 0.05). Optimal cut-off values of AISI were found to be 626.19 (74.1% sensitivity, 52.8% specificity), 506.09 (68.9% sensitivity and, 47.7% specificity), and 555.1 (69.8% sensitivity, 48.1% specificity) in predicting NICU admission, chorioamnionitis, and delivery before 28 weeks, respectively. CONCLUSION The novel inflammatory marker AISI may be used in the prediction of chorioamnionitis and NICU admission in PPROM cases. SYNOPSIS Aggregate index of systemic inflammation may be used as a novel marker in predicting high-risk for chorioamnionitis and neonatal intensive care unit admission in women with preterm premature rupture of membranes.
Collapse
Affiliation(s)
- Eda Ozden Tokalioglu
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Atakan Tanacan
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Merve Ozturk Agaoglu
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Ülkü Gürbüz Özbebek
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Gülcan Okutucu
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Hüseyin Kayaalp
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Petek Uzuner
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Dilek Sahin
- Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Lee Y, Tassey J, Sarkar A, Levi JN, Lee S, Liu NQ, Drake AC, Nguyen F, Magallanes J, Stevic U, Lu J, Ge D, Tang H, Mkaratigwa T, Yang J, Bian F, Shkhyan R, Bonaguidi MA, Evseenko D. Pharmacological inactivation of a non-canonical gp130 signaling arm attenuates chronic systemic inflammation and multimorbidity induced by a high-fat diet. Sci Rep 2024; 14:31151. [PMID: 39732741 PMCID: PMC11682372 DOI: 10.1038/s41598-024-82414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions. Our recent studies identified a novel non-canonical signaling pathway that involves prolonged activation of SRC family of kinases (SFKs) by IL-6/gp130, where genetic or pharmacological inhibition of this pathway was protective in several acute injury models. This study was designed to assess the effect of a small molecule (R159) that inhibits the non-canonical signaling in a mouse model of multimorbidity induced by chronic inflammation. Aged mice were fed a high-fat diet (HFD) to exacerbate chronic inflammation and inflammaging-related conditions, and R159 significantly decreased systemic inflammatory responses in adipose tissue and liver. R159 was protective against trabecular bone and articular cartilage loss and markedly prevented neurogenesis decline. Moreover, R159 reduced weight gain induced by HFD and increased physical activity levels. These findings suggest that selective pharmacological inhibition of SFK signaling downstream of IL6/gp130 offers a promising strategy to alleviate systemic chronic inflammation and relevant multimorbidity.
Collapse
Affiliation(s)
- Youngjoo Lee
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan N Levi
- Department of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew C Drake
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Falisha Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jenny Magallanes
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Una Stevic
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jinxiu Lu
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dawei Ge
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopedics Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hanhan Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tadiwanashe Mkaratigwa
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jichen Yang
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fangzhou Bian
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
- Department of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Tang M, Chang X, Zheng H, Zeng F, Zhang G, He M, Fang Q, Yin S. Association of dietary inflammatory index and systemic inflammatory markers with mortality risk in depressed adults: a mediation analysis of NHANES data. Front Nutr 2024; 11:1472616. [PMID: 39723161 PMCID: PMC11669309 DOI: 10.3389/fnut.2024.1472616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Previous research has linked systemic inflammatory markers and the Dietary Inflammatory Index (DII) with depression. However, the relationship between DII and these markers, and their impact on mortality risk among depressed adults, remains underexplored. This study aims to explore the association between DII and systemic inflammatory markers and their mediating effect on mortality risk in adults with depression. Methods This study analyzed data from 4,981 adults with depression in the National Health and Nutrition Examination Survey (NHANES). This study quantified dietary inflammatory potential with the DII and systemic inflammation with the Systemic Immune-Inflammation Index (SII) and Systemic Inflammation Response Index (SIRI). Cox proportional hazards regression and inverse probability weighting evaluated the impact of DII, SII, and SIRI on mortality risk in depressed adults, as well as their mediating effects. Multiple linear regression analyzed the associations between DII and SII/SIRI. Restricted cubic spline analysis explored the non-linear relationship between DII and mortality risk. Results In adjusted regression models, DII, SII, and SIRI were significantly associated with all-cause mortality risk in depressed adults, with hazard ratios (HRs) (95% CIs) from 1.333 to 1.497 (1.051-1.233, 1.689-1.832). DII was linearly related to SII, with βs (95% CIs) from 0.001 to 0.121 (0.001-0.017, 0.001-0.224). SII significantly mediated the DII-mortality risk link, especially in males (8.07%). The DII-mortality relationship was linear (P non-linear = 0.174), with a beneficial threshold at 1.62. Conclusion DII and SII are associated with increased all-cause mortality risk in depressed adults. The DII-related mortality risk in depression can be partially mediated by SII, with a more pronounced effect in males.
Collapse
Affiliation(s)
- Ming Tang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
- The Fifth Clinical College of Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xindong Chang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Haiyan Zheng
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fanyi Zeng
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Guangdong Zhang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Mingfei He
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Qingqing Fang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Shiwu Yin
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
- The Fifth Clinical College of Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Özer Ö, Doğan L, Baysal Z, Basir H, Çıftçı AT, Eröz P, Güçlü ES. Evaluation of peripheral blood inflammatory biomarkers in sickle cell disease with and without retinopathy. Graefes Arch Clin Exp Ophthalmol 2024; 262:3787-3796. [PMID: 38976013 PMCID: PMC11608169 DOI: 10.1007/s00417-024-06569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate the clinical significance of blood-cell associated inflammation markers in patients with sickle cell disease (SCD) and sickle cell retinopathy (SCR). METHODS Neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), monocyte to lymphocyte ratio (MLR), systemic immune inflammation index (SIII), systemic inflammation response index (SIRI), systemic inflammation modulation index (SIMI) and aggregate systemic inflammation index (AISI) were calculated. This study included 45 healthy controls (Group 1) and 100 SCD (Group 2). Patients in Group 2 were then divided into two groups: without SCR (Group 3) and with SCR (Group 4), and patients with SCR (Group 4) were further divided into two groups: non-proliferative sickle cell retinopathy (NPSCR) (Group 5) and proliferative sickle cell retinopathy (PSCR) (Group 6). RESULTS The mean values for NLR, PLR, SIII, SIRI, AISI, and SIMI were significantly higher in Group 2 compared to Group 1 (p = 0.011 for NLR, p = 0.004 for SIII, and p < 0.001 for others). Furthermore, AISI and SIMI parameters demonstrated statistically significant discriminatory power to distinguish Group 5 from Group 6 (p = 0.0016 and p = 0.0006, respectively). CONCLUSION Given the critical role of inflammatory mechanisms in the pathogenesis of SCD and its related complications, the assessment of blood-cell-associated inflammatory markers may present a pragmatic and advantageous approach to the clinical oversight and therapeutic intervention of SCD.
Collapse
Affiliation(s)
- Ömer Özer
- Department of Ophthalmology, Niğde Ömer Halisdemir University, Niğde, 51240, Turkey.
| | - Levent Doğan
- Department of Ophthalmology, Niğde Ömer Halisdemir University, Niğde, 51240, Turkey
| | - Zeki Baysal
- Department of Ophthalmology, Niğde Ömer Halisdemir University, Niğde, 51240, Turkey
| | - Hakan Basir
- Clinic of Internal Medicine, Gülnar State Hospital, Mersin, Turkey
| | - Ali Türker Çıftçı
- Department of Biostatistics and Medical Informatics, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Pınar Eröz
- Clinic of Ophthalmology, Tarsus State Hospital, Mersin, Turkey
| | | |
Collapse
|
9
|
Dalpati N, Rai SK, Dash SP, Kumar P, Singh D, Sarangi PP. Integrins α5β1 and αvβ3 Differentially Participate in the Recruitment and Reprogramming of Tumor-associated Macrophages in the In Vitro and In Vivo Models of Breast Tumor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1553-1568. [PMID: 39330703 DOI: 10.4049/jimmunol.2400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Tumor-associated macrophages (TAMs) drive the protumorigenic responses and facilitate tumor progression via matrix remodeling, angiogenesis, and immunosuppression by interacting with extracellular matrix proteins via integrins. However, the expression dynamics of integrin and its correlation with TAM functional programming in the tumors remain unexplored. In this study, we examined surface integrins' role in TAM recruitment and phenotypic programming in a 4T1-induced murine breast tumor model. Our findings show that integrin α5β1 is upregulated in CD11b+Ly6Chi monocytes in the bone marrow and blood by day 10 after tumor induction. Subsequent analysis revealed elevated integrin α5β1 expression on tumor-infiltrating monocytes (Ly6ChiMHC class II [MHCII]low) and M1 TAMs (F4/80+Ly6ClowMHCIIhi), whereas integrin αvβ3 was predominantly expressed on M2 TAMs (F4/80+Ly6ClowMHCIIlow), correlating with higher CD206 and MERTK expression. Gene profiling of cells sorted from murine tumors showed that CD11b+Ly6G-F4/80+α5+ TAMs had elevated inflammatory genes (IL-6, TNF-α, and STAT1/2), whereas CD11b+Ly6G-F4/80+αv+ TAMs exhibited a protumorigenic phenotype (IL-10, Arg1, TGF-β, and STAT3/6). In vitro studies demonstrated that blocking integrin α5 and αv during macrophage differentiation from human peripheral blood monocytes reduced cell spreading and expression of CD206 and CD163 in the presence of specific matrix proteins, fibronectin, and vitronectin. Furthermore, RNA sequencing data analysis (GEO dataset: GSE195857) from bone marrow-derived monocytes and TAMs in 4T1 mammary tumors revealed differential integrin α5 and αv expression and their association with FAK and SRC kinase. In line with this, FAK inhibition during TAM polarization reduced SRC, STAT1, and STAT6 phosphorylation. In conclusion, these findings underscore the crucial role of integrins in TAM recruitment, polarization, and reprogramming in tumors.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Puneet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
10
|
Pham K, Vargas A, Frost S, Shah S, Heinrich EC. Changes in immune cell populations during acclimatization to high altitude. Physiol Rep 2024; 12:e70024. [PMID: 39551933 PMCID: PMC11570420 DOI: 10.14814/phy2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 11/19/2024] Open
Abstract
The immune response to acute hypoxemia may play a critical role in high-altitude acclimatization and adaptation. However, if not properly controlled, hypoxemia-induced inflammation may exacerbate high-altitude pathologies, such as acute mountain sickness (AMS), or other hypoxia-related clinical conditions. Several studies report changes in immune cell subsets at high altitude. However, the mechanisms underlying these changes, and if these alterations are beneficial or maladaptive, remains unknown. To address this, we performed multiparameter flow cytometry on peripheral blood mononuclear cells (PBMCs) collected throughout 3 days of high-altitude acclimatization in healthy sea-level residents (n = 20). Additionally, we conducted in vitro stimulation assays to test if high-altitude hypoxia exposure influences responses of immune cells to subsequent inflammatory stimuli. We found several immune populations were altered at high altitude, including monocytes, T cells, and B cells. Some changes in immune cell populations are potentially correlated with AMS incidence and severity. In vitro high-altitude PBMC cultures stimulated with lipopolysaccharide (LPS) showed no changes in pro-inflammatory cytokine production after 1 day at high-altitude. However, by day three pro-inflammatory cytokine production in response to LPS decreased significantly. These results indicate that high-altitude exposure may initiate an inflammatory response that encompasses innate immune sensitization, with adaptive immune suppression following acclimatization.
Collapse
Affiliation(s)
- Kathy Pham
- Division of Biomedical Sciences, School of MedicineUniversity of California RiversideRiversideCaliforniaUSA
| | - Abel Vargas
- Division of Biomedical Sciences, School of MedicineUniversity of California RiversideRiversideCaliforniaUSA
| | - Shyleen Frost
- Division of Biomedical Sciences, School of MedicineUniversity of California RiversideRiversideCaliforniaUSA
| | - Saheli Shah
- Division of Biomedical Sciences, School of MedicineUniversity of California RiversideRiversideCaliforniaUSA
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of MedicineUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
11
|
Ainun SS, Santoso MIB, Yessa EY, Gunanti, Nasution AK, Saidin S, Ulum MF. A Novel Intravaginal Contraceptive Plug for Cats: A Preliminary Biocompatibility Assessment on Haematology and Vaginal Swab. Reprod Domest Anim 2024; 59:e14736. [PMID: 39460698 DOI: 10.1111/rda.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
This preliminary study evaluated the biocompatibility of a novel degradable intravaginal plug contraceptive composed of PEG 4000 and chitosan in cats using haematological profiling and vaginal cytology. Five healthy, non-pregnant female cats were fully anaesthetised and fitted with an intravaginal plug (10 × 0.3 mm) using an applicator, following oestrogen administration 3 h prior. Blood samples were collected from the cephalic vein on days 0 (pre-insertion) and 3 and 7 (post-insertion). Vaginal cytology examinations were conducted on day 0 (pre- and post-oestrogen injection) and days 1, 3 and 7 post-insertion. Haematological parameters, including red blood cell count, haemoglobin levels, haematocrit values, total white blood cell count and differentiation, showed no significant changes after contraceptive insertion (p > 0.05). Vaginal cytology indicated an acute inflammatory response in one out of five subjects on day three post-insertion. The distribution of vaginal epithelial cells (parabasal, intermediate and superficial) remained unaffected by contraception. Oestrogen injection resulted in the dominance of superficial cells up to day 7 of observation (p < 0.05). Overall, PEG 4000 and chitosan-based intravaginal plug contraceptives demonstrated sufficient biocompatibility, indicating their potential as viable contraceptive options for feline use.
Collapse
Affiliation(s)
- Sella Sofia Ainun
- Program of Veterinary Medicine, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jalan Agathis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
| | - Muhammad Irham Bagus Santoso
- Program of Veterinary Medicine, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jalan Agathis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
| | - Elma Yuliani Yessa
- Postgraduate Program of Biology Reproduction, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jalan Agathis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
| | - Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jalan Agathis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
| | - Ahmad Kafrawi Nasution
- Biomaterials Technology Laboratory (BTL), Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Riau, Pekanbaru, Riau, Indonesia
| | - Syafiqah Saidin
- Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Mokhamad Fakhrul Ulum
- Division of Reproduction, Obstetrics and Gynaecology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jalan Agathis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
| |
Collapse
|
12
|
Wang P, Yang S, Li C, Ma B, Yi M, Chen X, Yu M. Sulfotransferase homolog 2 receptors blockade on monocyte subsets along with their inflammatory cytokines for septic lung injury. Exp Lung Res 2024; 50:146-159. [PMID: 39243130 DOI: 10.1080/01902148.2024.2398989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE OF THE STUDY To observe the dynamic changes in monocyte subsets during septic lung injury and to assess the anti-inflammatory role of the sulfotransferase homolog 2 (ST2) receptor. MATERIALS AND METHODS Dynamic changes of monocyte subsets from patients with septic lung injury and mice post-cecal ligation and puncture (CLP) were monitored. ST2 receptors on mice monocytes and concentrations of IL-33, IL-1β, IL-12, and IL-27 from peripheral blood or culture supernatant were detected. RESULTS CD14lowCD16- (Mo0) and CD14++CD16+ (Mo2) monocyte subsets were significantly expanded in patients with sepsis-related acute respiratory distress syndrome. In sepsis model mice, monocyte counts, particularly of Ly6Cint and CDLy6Cint+hi monocytes, were significantly increased. The mean optical density value of TNF-α after CLP mainly increased after 24 h, whereas that of IL-6 was significantly increased at all time points assessed after CLP. The levels of IL-1β, IL-12, IL-27, and IL-33 increased to variable degrees at 6, 12, 24, and 48h after CLP, and ST2+ monocytes were significantly expanded in sepsis model mice compared to sham-operated mice. ST2 receptor blockade suppressed IL-1β and IL-12 production in cell culture. CONCLUSIONS Changes in monocyte subsets expressing the ST2 receptor play an important role in septic lung injury by modulating inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Peng Wang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Shuqi Yang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Changcheng Li
- Department of Geratology, The Second People's Hospital of Yichang, Yichang, Hubei, China
| | - Baohua Ma
- Department of Medical Record, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Mengqiu Yi
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Xiaobo Chen
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Min Yu
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| |
Collapse
|
13
|
Jiménez-Cortegana C, Gutiérrez-García C, Sánchez-Jiménez F, Vilariño-García T, Flores-Campos R, Pérez-Pérez A, Garnacho C, Sánchez-León ML, García-Domínguez DJ, Hontecillas-Prieto L, Palazón-Carrión N, De La Cruz-Merino L, Sánchez-Margalet V. Impact of obesity‑associated myeloid‑derived suppressor cells on cancer risk and progression (Review). Int J Oncol 2024; 65:79. [PMID: 38940351 PMCID: PMC11251741 DOI: 10.3892/ijo.2024.5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Obesity is a chronic disease caused by the accumulation of excessive adipose tissue. This disorder is characterized by chronic low‑grade inflammation, which promotes the release of proinflammatory mediators, including cytokines, chemokines and leptin. Simultaneously, chronic inflammation can predispose to cancer development, progression and metastasis. Proinflammatory molecules are involved in the recruitment of specific cell populations in the tumor microenvironment. These cell populations include myeloid‑derived suppressor cells (MDSCs), a heterogeneous, immature myeloid population with immunosuppressive abilities. Obesity‑associated MDSCs have been linked with tumor dissemination, progression and poor clinical outcomes. A comprehensive literature review was conducted to assess the impact of obesity‑associated MDSCs on cancer in both preclinical models and oncological patients with obesity. A secondary objective was to examine the key role that leptin, the most important proinflammatory mediator released by adipocytes, plays in MDSC‑driven immunosuppression Finally, an overview is provided of the different therapeutic approaches available to target MDSCs in the context of obesity‑related cancer.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Cristian Gutiérrez-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Rocio Flores-Campos
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Histology and Cytology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Maria L. Sánchez-León
- Oncology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Natalia Palazón-Carrión
- Oncology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville 41013, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville 41013, Spain
| |
Collapse
|
14
|
Liu YC, Chuang SH, Chen YP, Shih YH. Associations of novel complete blood count-derived inflammatory markers with psoriasis: a systematic review and meta-analysis. Arch Dermatol Res 2024; 316:228. [PMID: 38787437 DOI: 10.1007/s00403-024-02994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Psoriasis is an immune-mediated disorder which primarily affects skin and has systemic inflammatory involvement. Neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and monocyte-to-lymphocyte ratio (MLR) are novel complete blood count (CBC)-derived markers which can reflect systemic inflammation. This study aimed to systematically investigate the associations of NLR, PLR, SII, and MLR with psoriasis. This study was performed in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. A comprehensive search of Pubmed, Embase, Scopus, and Google Scholar was conducted for relevant studies. Observational studies evaluating the correlations of NLR, PLR, SII, or MLR with psoriasis were included. The primary outcomes were the associations of these inflammatory markers with the presence and severity of psoriasis. The random-effect model was applied for meta-analysis. 36 studies comprising 4794 psoriasis patients and 55,121 individuals in total were included in the meta-analysis. All inflammatory markers were significantly increased in psoriasis groups compared to healthy controls (NLR: MD = 0.59, 95% CI: 0.47-0.7; PLR: MD = 15.53, 95% CI: 8.48-22.58; SII: MD = 111.58, 95% CI: 61.49-161.68; MLR: MD = 0.034, 95% CI: 0.021-0.048; all p < 0.001). Between-group mean differences in NLR and PLR were positively correlated with the mean scores of Psoriasis Area Severity Index (NLR: p = 0.041; PLR: p = 0.021). NLR, PLR, SII, and MLR are associated with the presence of psoriasis. NLR and PLR serve as significant indicators of psoriasis severity. These novel CBC-derived markers constitute potential targets in the screening and monitoring of psoriasis.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Department of General Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei, 23561, Taiwan
| | - Shu-Han Chuang
- Division of General Practice, Department of Medical Education, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedics, Taipei Municipal Wan Fang Hospital, Taipei, 11696, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Hsien Shih
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
| |
Collapse
|
15
|
Huang Z, Li X, Yu D, Wang H, Chun C, Zhao Y. Efferocytosis-Inspired Biomimetic Nanoplatform for Targeted Acute Lung Injury Therapy. Adv Healthc Mater 2024; 13:e2304304. [PMID: 38306647 DOI: 10.1002/adhm.202304304] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Acute lung injury (ALI) is a serious inflammatory disease that causes impairment of pulmonary function. Phenotypic modulation of macrophage in the lung using fibroblast growth factor 21 (FGF21) may be a potential strategy to alleviate lung inflammation. Consequently, achieving specific delivery of FGF21 to the inflamed lung and subsequent efficient FGF21 internalization by macrophages within the lung becomes critical for effective ALI treatment. Here, an apoptotic cell membrane-coated zirconium-based metal-organic framework UiO-66 is reported for precise pulmonary delivery of FGF21 (ACM@U-FGF21) whose design is inspired by the process of efferocytosis. ACM@U-FGF21 with apoptotic signals is recognized and internalized by phagocytes in the blood and macrophages in the lung, and then the intracellular ACM@U-FGF21 can inhibit the excessive secretion of pro-inflammatory cytokines by these cells to relieve the inflammation. Utilizing the homologous targeting properties inherited from the source cells and the spontaneous recruitment of immune cells to inflammatory sites, ACM@U-FGF21 can accumulate preferentially in the lung after injection. The results prove that ACM@U-FGF21 effectively reduces inflammatory damage to the lung by modulating lung macrophage polarization and suppressing the excessive secretion of pro-inflammatory cytokines by activated immune cells. This study demonstrates the usefulness of efferocytosis-inspired ACM@U-FGF21 in the treatment of ALI.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Xinze Li
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Dedong Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hengcai Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| |
Collapse
|
16
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
17
|
Camargo CP, Alapan Y, Muhuri AK, Lucas SN, Thomas SN. Single-cell adhesive profiling in an optofluidic device elucidates CD8 + T lymphocyte phenotypes in inflamed vasculature-like microenvironments. CELL REPORTS METHODS 2024; 4:100743. [PMID: 38554703 PMCID: PMC11046032 DOI: 10.1016/j.crmeth.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/28/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Tissue infiltration by circulating leukocytes occurs via adhesive interactions with the local vasculature, but how the adhesive quality of circulating cells guides the homing of specific phenotypes to different vascular microenvironments remains undefined. We developed an optofluidic system enabling fluorescent labeling of photoactivatable cells based on their adhesive rolling velocity in an inflamed vasculature-mimicking microfluidic device under physiological fluid flow. In so doing, single-cell level multidimensional profiling of cellular characteristics could be characterized and related to the associated adhesive phenotype. When applied to CD8+ T cells, ligand/receptor expression profiles and subtypes associated with adhesion were revealed, providing insight into inflamed tissue infiltration capabilities of specific CD8+ T lymphocyte subsets and how local vascular microenvironmental features may regulate the quality of cellular infiltration. This methodology facilitates rapid screening of cell populations for enhanced homing capabilities under defined biochemical and biophysical microenvironments, relevant to leukocyte homing modulation in multiple pathologies.
Collapse
Affiliation(s)
- Camila P Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Abir K Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Samuel N Lucas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta 30332, GA, USA
| | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta 30332, GA, USA; Winship Cancer Institute, Emory University, Atlanta 30322, GA, USA.
| |
Collapse
|
18
|
Zhao Y, Lv X, Chen Y, Zhang C, Zhou D, Deng Y. Neuroinflammatory response on a newly combinatorial cell-cell interaction chip. Biomater Sci 2024; 12:2096-2107. [PMID: 38441146 DOI: 10.1039/d4bm00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Neuroinflammation is a common feature in various neurological disorders. Understanding neuroinflammation and neuro-immune interactions is of significant importance. However, the intercellular interactions in the inflammatory model are intricate. Microfluidic chips, with their complex micrometer-scale structures and real-time observation capabilities, offer unique advantages in tackling these complexities compared to other techniques. In this study, microfluidic chip technology was used to construct a microarray physical barrier structure with 15 μm spacing, providing well-defined cell growth areas and clearly delineated interaction channels. Moreover, an innovative hydrophilic treatment process on the glass surface facilitated long-term co-culture of cells. The developed neuroinflammation model on the chip revealed that SH-SY5Y cytotoxicity was predominantly influenced by co-cultured THP-1 cells. The co-culture model fostered complex interactions that may exacerbate cytotoxicity, including irregular morphological changes of cells, cell viability reduction, THP-1 cell migration, and the release of inflammatory factors. The integration of the combinatorial cell-cell interaction chip not only offers a clear imaging detection platform but also provides diverse data on cell migration distance, migration direction, and migration angle. Furthermore, the designed ample space for cell culture, along with microscale channels with fluid characteristics, allow for the study of inflammatory factor distribution patterns on the chip, offering vital theoretical data on biological relevance that conventional experiments cannot achieve. The fabricated user-friendly, reusable, and durable co-culture chip serves as a valuable in vitro tool, providing an intuitive platform for gaining insights into the complex mechanisms underlying neuroinflammation and other interacting models.
Collapse
Affiliation(s)
- Yimeng Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yu Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Chen Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Di Zhou
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
19
|
Lee Y, Sarkar A, Tassey J, Levi JN, Lee S, Liu NQ, Drake AC, Magallanes J, Stevic U, Lu J, Ge D, Tang H, Mkaratigwa T, Bian F, Shkhyan R, Bonaguidi M, Evseenko D. Inactivation of a non-canonical gp130 signaling arm attenuates chronic systemic inflammation and multimorbidity induced by a high-fat diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588362. [PMID: 38645030 PMCID: PMC11030339 DOI: 10.1101/2024.04.08.588362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine for which the levels in plasma demonstrate a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes, primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions. Recently, we discovered that a non-canonical signaling pathway downstream of tyrosine (Y) 814 within the intracellular domain of gp130, the IL-6 co-receptor, is responsible for the recruitment and activation of SRC family of kinases (SFK). Mice with constitutive genetic inactivation of gp130 Y814 (F814 mice) show accelerated resolution of inflammatory response and superior regenerative outcomes in skin wound healing and posttraumatic models of osteoarthritis. The current study was designed to explore if selective genetic or pharmacological inhibition of the non-canonical gp130-Y814/SFK signaling reduces systemic chronic inflammation and multimorbidity in a high-fat diet (HFD)-induced model of accelerated aging. F814 mice showed significantly reduced inflammatory response to HFD in adipose and liver tissue, with significantly reduced levels of systemic inflammation compared to wild type mice. F814 mice were also protected from HFD-induced bone loss and cartilage degeneration. Pharmacological inhibition of gp130-Y814/SFK in mice on HFD mirrored the effects observed in F814 mice on HFD; furthermore, this pharmacological treatment also demonstrated a marked increase in physical activity levels and protective effects against inflammation-associated suppression of neurogenesis in the brain tissue compared to the control group. These findings suggest that selective inhibition of SFK signaling downstream of gp130 receptor represents a promising strategy to alleviate systemic chronic inflammation. Increased degenerative changes and tissue senescence are inevitable in obese and aged organisms, but we demonstrated that the systemic response and inflammation-associated multi-morbidity can be therapeutically mitigated.
Collapse
|
20
|
Fujikawa Y, Sendo S, del Peral Fanjul A, Yamada H, Uto K, Yamamoto Y, Nagamoto T, Morinobu A, Saegusa J. Myeloid-derived suppressor cell-derived osteoclasts with bone resorption capacity in the joints of arthritic SKG mice. Front Immunol 2024; 15:1168323. [PMID: 38566990 PMCID: PMC10985135 DOI: 10.3389/fimmu.2024.1168323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells with immunosuppressive functions. It is known that MDSCs are expanded at inflammatory sites after migrating from bone marrow (BM) or spleen (Sp). In chronic inflammatory diseases such as rheumatoid arthritis (RA), previous reports indicate that MDSCs are increased in BM and Sp, but detailed analysis of MDSCs in inflamed joints is very limited. Objective The purpose of this study is to characterize the MDSCs in the joints of mice with autoimmune arthritis. Methods We sorted CD11b+Gr1+ cells from joints (Jo), bone marrow (BM) and spleen (Sp) of SKG mice with zymosan (Zym)-induced arthritis and investigated differentially expressed genes (DEGs) by microarray analysis. Based on the identified DEGs, we assessed the suppressive function of CD11b+Gr1+ cells from each organ and their ability to differentiate into osteoclasts. Results We identified MDSCs as CD11b+Gr1+ cells by flow cytometry and morphological analysis. Microarray analysis revealed that Jo-CD11b+Gr1+ cells had different characteristics compared with BM-CD11b+Gr1+ cells or Sp-CD11b+Gr1+ cells. Microarray and qPCR analysis showed that Jo-CD11b+Gr1+ cells strongly expressed immunosuppressive DEGs (Pdl1, Arg1, Egr2 and Egr3). Jo-CD11b+Gr1+ cells significantly suppressed CD4+ T cell proliferation and differentiation in vitro, which confirmed Jo-CD11b+Gr1+ cells as MDSCs. Microarray analysis also revealed that Jo-MDSCs strongly expressed DEGs of the NF-κB non-canonical pathway (Nfkb2 and Relb), which is relevant for osteoclast differentiation. In fact, Jo-MDSCs differentiated into osteoclasts in vitro and they had bone resorptive function. In addition, intra-articular injection of Jo-MDSCs promoted bone destruction. Conclusions Jo-MDSCs possess a potential to differentiate into osteoclasts which promote bone resorption in inflamed joints, while they are immunosuppressive in vitro.
Collapse
Affiliation(s)
- Yoshikazu Fujikawa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Alfonso del Peral Fanjul
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirotaka Yamada
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Uto
- Department of Clinical Laboratory, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzuru Yamamoto
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Nagamoto
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
21
|
Han C, Zhai Y, Wang Y, Peng X, Zhang X, Dai B, Leng Y, Zhang Z, Qi S. Intravital imaging of splenic classical monocytes modifying the hepatic CX3CR1 + cells motility to exacerbate liver fibrosis via spleen-liver axis. Theranostics 2024; 14:2210-2231. [PMID: 38505603 PMCID: PMC10945343 DOI: 10.7150/thno.87791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
CX3CR1+ cells play a crucial role in liver fibrosis progression. However, changes in the migratory behavior and spatial distribution of spleen-derived and hepatic CX3CR1+ cells in the fibrotic liver as well as their influence on the liver fibrosis remain unclear. METHODS The CX3CR1GFP/+ transgenic mice and CX3CR1-KikGR transgenic mice were used to establish the CCl4-induced liver fibrosis model. Splenectomy, adoptive transfusion of splenocytes, in vivo photoconversion of splenic CX3CR1+ cells and intravital imaging were performed to study the spatial distribution, migration and movement behavior, and regulatory function of CX3CR1+ cells in liver fibrosis. RESULTS Intravital imaging revealed that the CX3CR1GFP cells accumulated into the fibrotic liver and tended to accumulate towards the central vein (CV) in the hepatic lobules. Two subtypes of hepatic CX3CR1+ cells existed in the fibrotic liver. The first subtype was the interacting CX3CR1GFP cells, most of which were observed to distribute in the liver parenchyma and had a higher process velocity; the second subtype was mobile CX3CR1GFP cells, most of which were present in the hepatic vessels with a faster moving speed. Splenectomy ameliorated liver fibrosis and decreased the number of CX3CR1+ cells in the fibrotic liver. Moreover, splenectomy rearranged CX3CR1GFP cells to the boundary of the hepatic lobule, reduced the process velocity of interacting CX3CR1GFP cells and decreased the number and mobility of mobile CX3CR1GFP cells in the fibrotic liver. Transfusion of spleen-derived classical monocytes increased the process velocity and mobility of hepatic endogenous CX3CR1GFP cells and facilitated liver fibrosis progression via the production of proinflammatory and profibrotic cytokines. The photoconverted splenic CX3CR1+ KikRed+ cells were observed to leave the spleen, accumulate into the fibrotic liver and contact with hepatic CX3CR1+ KikGreen+ cells during hepatic fibrosis. CONCLUSION The splenic CX3CR1+ monocytes with classical phenotype migrated from the spleen to the fibrotic liver, modifying the migratory behavior of hepatic endogenous CX3CR1GFP cells and exacerbating liver fibrosis via the secretion of cytokines. This study reveals that splenic CX3CR1+ classical monocytes are a key driver of liver fibrosis via the spleen-liver axis and may be potential candidate targets for the treatment of chronic liver fibrosis.
Collapse
Affiliation(s)
- Chenlu Han
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Zhai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuke Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuwen Peng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xian Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bolei Dai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuehong Leng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Shuhong Qi
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
22
|
Miyagawa F, Ozato K, Tagaya Y, Asada H. Type I IFN Derived from Ly6C hi Monocytes Suppresses Type 2 Inflammation in a Murine Model of Atopic Dermatitis. J Invest Dermatol 2024; 144:520-530.e2. [PMID: 37739337 DOI: 10.1016/j.jid.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
The roles of innate immune cells, including eosinophils, basophils, and group 2 innate lymphoid cells, in atopic dermatitis (AD) have been well-documented, whereas that of monocytes, another component of the innate immunity, remains rather poorly understood, thus necessitating the topic of this study. In addition, cytokines and cellular pathways needed for the resolution of type 2 inflammation in AD need further investigation. Using a murine AD model, we report here that (i) Ly6Chi monocytes were rapidly recruited to the AD lesion in a CCR2-dependent manner, blockade of which exacerbated AD; (ii) type I IFN production is profoundly involved in this suppression because the blockade of it by genetic depletion or antibody neutralization exacerbated AD; and (iii) Ly6Chi monocytes operate through the production of type I IFN because Ly6Chi monocytes from Irf7-null mice, which lack type I IFN production, failed to rescue Ccr2-/- mice from severe AD upon adoptive transfer. In addition, in vitro studies demonstrated type I IFN suppressed basophil expansion from bone marrow progenitor cells and survival of mature basophils. Collectively, our work suggests that Ly6Chi monocytes are the first and dominant inflammatory cells reaching AD lesions that negatively regulate type 2 inflammation through the production of type I IFN.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan.
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yutaka Tagaya
- Cell Biology Lab, Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
23
|
Tan S, Pan S, Wei L, Chen W, Pan B, Kong G, Chen J, Xie Y. Association of peripheral B cells and delirium: combined single-cell sequencing and Mendelian randomization analysis. Front Neurol 2024; 15:1343726. [PMID: 38379709 PMCID: PMC10876872 DOI: 10.3389/fneur.2024.1343726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Background Delirium seriously affects the prognosis of patients and greatly reduces the ability to work and live. Peripheral inflammatory events may contribute to the development of delirium, the mechanism of which is still unclear. There is a lack of effective diagnostic and treatments for delirium in clinical practice. The study aims to investigate alterations in peripheral immune cell subsets under inflammatory stress and to explore causal associations with delirium. Methods Single-cell transcriptional sequencing data of human peripheral blood mononuclear cells (PBMC) before and after lipopolysaccharide (LPS) intervention were processed by the Seurat package in R software. PBMC subsets and cellular markers were defined after downscaling and clustering by the Harmony algorithm to identify characteristic subsets in the context of inflammatory stress. Subsequently, a two-sample Mendelian randomization (MR) study was used to explore the causal associations of these inflammation-related PBMC subsets and their molecular phenotypes with delirium. Based on publicly available genetic data, the study incorporated 70 PBMC-associated immune traits, including 8 types of circulating immune cells, 33 B cell subsets and molecular phenotypes, 13 T cell subsets, and 16 B cell-associated cytokines. The results were also validated for robustness, heterogeneity, and horizontal pleiotropy. Results Under LPS-induced inflammatory stress, B cells, T cells, monocytes, and dendritic cells in human PBMC showed significant activation and quantitative changes. Of these, only lymphocyte and B cell counts were causally associated with delirium risk. This risk link is also seen in the TNF pathway. Further studies of B cells and their subsets revealed that this association may be related to unswitched memory B cells and CD27 expressed on memory B cells. Annotation of the screened SNPs revealed significant polymorphisms in CD27 and CD40 annotated by rs25680 and rs9883798, respectively. The functions of the key annotated genes may be related to the regulation of immune responses, cell differentiation, proliferation, and intercellular interactions. Conclusion The present study revealed the potential possibility that B cell, memory B cell subset, and TNF-related molecules may be involved in the development of delirium due to peripheral inflammation, which can provide clues for further investigation of delirium prevention and treatment strategies.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sining Pan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bingbing Pan
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Guo X, Shen R, Lu P, Ma L. Predictive values of novel high‑density lipoprotein‑related inflammatory indices in in‑stent restenosis among patients undergoing elective percutaneous coronary intervention. Exp Ther Med 2024; 27:62. [PMID: 38234621 PMCID: PMC10790166 DOI: 10.3892/etm.2023.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/19/2023] [Indexed: 01/19/2024] Open
Abstract
Inflammation and disorders in lipid metabolism play pivotal roles in the development and progression of in-stent restenosis (ISR). The present study aimed to investigate the association between the high-density lipoprotein (HDL)-related inflammatory indices and the risk of developing ISR among patients undergoing elective percutaneous coronary intervention (PCI). A sum of 1,471 patients undergoing elective PCI were retrospectively included and classified by tertiles of HDL-related inflammatory indices. The study endpoint was ISR. The multivariable Cox proportional hazards regression analysis with restricted cubic splines (RCS) was used to assess the associations. During a median follow-up of 62.27 months, 251 (17.06%) patients experienced ISR. The incidence of ISR increased with the increasing white blood cell-to-HDL ratio (WHR) tertiles (log-rank test, overall P=0.0082). After full adjustment, the highest tertile of WHR was significantly associated with a 1.603-fold risk of ISR (hazard ratio, 1.603; 95% confidence interval, 1.152-2.231; P=0.005) in contrast to the lowest tertile of the WHR. Results of RCS further indicated that the association between WHR and ISR was in a non-linear and dose-dependent manner (non-linear P=0.034; P overall=0.019). The lymphocyte-to-HDL ratio (LHR) and neutrophil-to-HDL ratio (NHR) were also significantly and positively associated with the risk of ISR, of which the third tertiles were at increased risk of 41.2 and 44.7% after full adjustment, respectively. Overall, lipid metabolism disorders and inflammation were interconnected in the development of ISR; therefore, HDL-related inflammatory indices, including WHR, LHR and NHR, might be potential predictors in the prognosis of elective PCI.
Collapse
Affiliation(s)
- Xuantong Guo
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Ruihuan Shen
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Peipei Lu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Lihong Ma
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| |
Collapse
|
25
|
Ma J, Liu D, Mao X, Huang L, Ren Y, Xu X, Huang X, Deng C, Shi F, Sun P. Enhanced Diagnostic Efficiency of Endometrial Carcinogenesis and Progression in Women with Abnormal Uterine Bleeding through Peripheral Blood Cytokine Testing: A Multicenter Retrospective Cohort Study. Int J Med Sci 2024; 21:601-611. [PMID: 38464838 PMCID: PMC10920852 DOI: 10.7150/ijms.91506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024] Open
Abstract
Objective: This study aimed to evaluate the role of plasma cytokine detection in endometrial cancer screening and tumor progression assessment in patients with abnormal uterine bleeding. Methods: In this multicenter retrospective cohort study of 287 patients with abnormal uterine bleeding, comprehensive clinical information and laboratory assessments, including cytokines, routine blood tests, and tumor markers, were performed. Associations between the clinical indicators and endometrial carcinogenesis/progression were evaluated. The independent risk factors for endometrial cancer and endometrial cancer with deep myometrial invasion were analyzed using multivariate binary logistic regression. Additionally, a diagnostic model was used to evaluate the predictive efficacy of these identified risk factors. Results: In patients with abnormal uterine bleeding, low IL-4 and high IL-8 levels were independent risk factors for endometrial cancer (p < 0.05). Combining IL-4, IL-8, CA125, and menopausal status improved the accuracy of assessing endometrial cancer risk. The area under curve of the model is 0.816. High IL-6 and IL-8 levels were independent risk factors for deep myometrial invasion in patients with endometrial cancer (p < 0.05). Similarly, combining IL-6, IL-8, and Monocyte counts enhanced the accuracy of assessing endometrial cancer risk with deep myometrial invasion. The area under curve of the model is 0.753. Conclusions: Cytokines such as IL-4, IL-8, and IL-6 can serve as markers for monitoring endometrial cancer and its progression in women with abnormal uterine bleeding.
Collapse
Affiliation(s)
- Jincheng Ma
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Dabin Liu
- Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Leyi Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Yuan Ren
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Xiaozhen Xu
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Xiaoli Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China
- Department of Obstetrics and Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Caiping Deng
- The Second Hospital of Nanping City, Nanping 354200, Fujian, China
| | - Feifeng Shi
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
- Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
| |
Collapse
|
26
|
Lu H, Yu X, Hou L, Zhang Y, Li L, Qiao X, Cheng H, Du L, Chen J, Zheng Q, Hou J. Analysis of CVC1302-Mediated Enhancement of Monocyte Recruitment in Inducing Immune Responses. Vaccines (Basel) 2024; 12:86. [PMID: 38250899 PMCID: PMC10820601 DOI: 10.3390/vaccines12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Monocytes (Mos) are believed to play important roles during the generation of immune response. In our previous study, CVC1302, a complex of PRRs agonists, was demonstrated to recruit Mo into lymph nodes (LNs) in order to present antigen and secret chemokines (CXCL9 and CXCL10), which attracted antigen-specific CD4+ T cells. As it is known that Mos in mice are divided into two main Mo subsets (Ly6C+ Mo and Ly6C- Mo), we aimed to clarify the CVC1302-recruiting Mo subset and functions in the establishment of immunity. In this study, we found that CVC1302 attracted both Ly6C+ Mo and Ly6C- Mo into draining LNs, which infiltrated from different origins, injection muscles and high endothelial venule (HEV), respectively. We also found that the numbers of OVA+ Ly6C+ Mo in the draining LNs were significantly higher compared with OVA+ Ly6C- Mo. However, the levels of CXCL9 and CXCL10 produced by Ly6C- Mo were significantly higher than Ly6C+ Mo, which plays important roles in attracting antigen-specific CD4+ T cells. Under the analysis of their functions in initiating immune responses, we found that the ability of the Ly6C+ monocyte was mainly capturing and presenting antigens, otherwise; the ability of the Ly6C- monocyte was mainly secreting CXCL9 and CXCL10, which attracted antigen-specific CD4+ T cells through CXCR3. These results will provide new insights into the development of new immunopotentiators and vaccines.
Collapse
Affiliation(s)
- Haiyan Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Liting Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Lan Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Haiwei Cheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| |
Collapse
|
27
|
Wegner A, Palmisano R, Uderhardt S. Functional In Vivo Imaging of Macrophages. Methods Mol Biol 2024; 2713:323-335. [PMID: 37639133 DOI: 10.1007/978-1-0716-3437-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Resident tissue macrophages (RTMs) are specialized phagocytes that are widely distributed throughout the body and are responsible for maintaining homeostasis. Recent advances in experimental techniques have enabled us to gain a greater insight into the actual in vivo biology of RTMs by observing their spatiotemporal dynamics directly in their native environment. Here, we detail a method for live tracking macrophages in a prototypical stromal tissue with high spatial and temporal resolution and great experimental versatility. Our approach builds on a custom intravital imaging platform and straightforward surgical preparation to gain access to an intact stromal compartment in order to analyze the morphological and behavioral dynamics of RTMs at single-cell resolution before and after experimental intervention. Furthermore, our versatile approach can also be utilized for live visualization of intracellular signaling and even for tracking cell organelles at subcellular resolution, and can be combined with downstream analyses such as multiplex confocal imaging, providing a unique insight into macrophage biology in vivo.
Collapse
Affiliation(s)
- Anja Wegner
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg und Universitätsklinikum Erlangen, Erlangen, Germany
- Optical Imaging Competence Center (OICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralph Palmisano
- Optical Imaging Competence Center (OICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Uderhardt
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg und Universitätsklinikum Erlangen, Erlangen, Germany.
- Optical Imaging Competence Center (OICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
28
|
Alam A, Ali M, Zainab, Latif A, Ur Rehman N, Jabbar Shah A, Amir Khan I, Ayaz M, Ur Rahman S, Al-Harrasi A, Ahmad M. Discovery of (S)-flurbiprofen-based novel azine derivatives as prostaglandin endoperoxide synthase-II inhibitors: Synthesis, in-vivo analgesic, anti-inflammatory activities, and their molecular docking. Bioorg Chem 2023; 141:106847. [PMID: 37722268 DOI: 10.1016/j.bioorg.2023.106847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
The anti-inflammatory and analgesic drugs currently used are associated with several adverse effects and found to be highly unsafe for long-term use. Currently, nineteen novel bis-Schiff base derivatives (1-19) of flurbiprofen have been designed, prepared and assessed for in-vivo analgesic, anti-inflammatory and in vivo acute toxicity evaluation. The structures of the acquired compounds were deduced through modern spectroscopic techniques including HR-ESI-MS, 13C-, and 1H NMR. Amongst the series, compounds 7, 9, and 10 attributed potent activities with 93.89, 92.50, and 90.47% decreased edema, respectively compared to flurbiprofen (90.01%), however, compounds 11 and 15 exhibited significant activity of 90.00% decrease. Out of them, fourteen compounds (1-6, 8, 12-14, and 16-19) displayed good activity in the range of 68.96-86.95%. In case of an analgesic study, all the derivatives significantly (p 0.001) increased the pain threshold time particularly compound 7 had the best analgesic effect (24 ± 2.08 s) in comparison with flurbiprofen (21.66 ± 2.02 s) using hot plate test. Similarly, in the acetic acid-induced writhing test, compound 7 determined a potent inhibitory effect (60.47 %) close to flurbiprofen (59.28%). All the synthesized derivatives were found safe up to the dose of 30 mg/kg, in acute toxicity study. On a molecular scale, the synthesized compounds were modeled through a ligand-based pharmacophore study and molecular docking to have insight into the different possible interactions leading to high inhibition levels against the COX-2 enzyme.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Jabbar Shah
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus-22060, Khyber Pakhtunkhwa, Pakistan
| | - Irfan Amir Khan
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus-22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ayaz
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ur Rahman
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
29
|
Lin J, Moradi E, Salenius K, Lehtipuro S, Häkkinen T, Laiho JE, Oikarinen S, Randelin S, Parikh HM, Krischer JP, Toppari J, Lernmark Å, Petrosino JF, Ajami NJ, She JX, Hagopian WA, Rewers MJ, Lloyd RE, Rautajoki KJ, Hyöty H, Nykter M. Distinct transcriptomic profiles in children prior to the appearance of type 1 diabetes-linked islet autoantibodies and following enterovirus infection. Nat Commun 2023; 14:7630. [PMID: 37993433 PMCID: PMC10665402 DOI: 10.1038/s41467-023-42763-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/17/2023] [Indexed: 11/24/2023] Open
Abstract
Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.
Collapse
Grants
- U01 DK063821 NIDDK NIH HHS
- UC4 DK063863 NIDDK NIH HHS
- UL1 TR002535 NCATS NIH HHS
- U01 DK128847 NIDDK NIH HHS
- U01 DK063790 NIDDK NIH HHS
- UL1 TR000064 NCATS NIH HHS
- HHSN267200700014C NLM NIH HHS
- U01 DK063836 NIDDK NIH HHS
- U01 DK063829 NIDDK NIH HHS
- U01 DK063865 NIDDK NIH HHS
- UC4 DK095300 NIDDK NIH HHS
- UC4 DK063861 NIDDK NIH HHS
- UC4 DK063829 NIDDK NIH HHS
- UC4 DK063821 NIDDK NIH HHS
- UC4 DK117483 NIDDK NIH HHS
- UC4 DK063836 NIDDK NIH HHS
- UC4 DK112243 NIDDK NIH HHS
- U01 DK124166 NIDDK NIH HHS
- U01 DK063861 NIDDK NIH HHS
- UC4 DK063865 NIDDK NIH HHS
- U01 DK063863 NIDDK NIH HHS
- UC4 DK106955 NIDDK NIH HHS
- UC4 DK100238 NIDDK NIH HHS
- Academy of Finland (Suomen Akatemia)
- Sigrid Juséliuksen Säätiö (Sigrid Jusélius Foundation)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- The TEDDY Study is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, U01 DK124166, U01 DK128847, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work is supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR002535).
- Päivikki and Sakari Sohlberg's Foundation
Collapse
Affiliation(s)
- Jake Lin
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
- Biostatistics, Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Finnish Institute of Molecular Medicine, FIMM, University of Helsinki, 00290, Helsinki, Finland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Elaheh Moradi
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70150, Finland
| | - Karoliina Salenius
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Suvi Lehtipuro
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Tomi Häkkinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Jutta E Laiho
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sofia Randelin
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™ Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Xiong She
- Jinfiniti Precision Medicine, Inc., Augusta, GA, USA
| | - William A Hagopian
- Pacific Northwest Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Richard E Lloyd
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland.
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
30
|
Morita K, Mizuno T, Azuma I, Suzuki Y, Kusuhara H. Rat Deconvolution as Knowledge Miner for Immune Cell Trafficking from Toxicogenomics Databases. Toxicol Sci 2023; 197:kfad117. [PMID: 37941435 PMCID: PMC10823770 DOI: 10.1093/toxsci/kfad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Toxicogenomics databases are useful for understanding biological responses in individuals because they include a diverse spectrum of biological responses. Although these databases contain no information regarding immune cells in the liver, which are important in the progression of liver injury, deconvolution that estimates cell-type proportions from bulk transcriptome could extend immune information. However, deconvolution has been mainly applied to humans and mice and less often to rats, which are the main target of toxicogenomics databases. Here, we developed a deconvolution method for rats to retrieve information regarding immune cells from toxicogenomics databases. The rat-specific deconvolution showed high correlations for several types of immune cells between spleen and blood, and between liver treated with toxicants compared with those based on human and mouse data. Additionally, we found 4 clusters of compounds in Open TG-GATEs database based on estimated immune cell trafficking, which are different from those based on transcriptome data itself. The contributions of this work are three-fold. First, we obtained the gene expression profiles of 6 rat immune cells necessary for deconvolution. Second, we clarified the importance of species differences on deconvolution. Third, we retrieved immune cell trafficking from toxicogenomics databases. Accumulated and comparable immune cell profiles of massive data of immune cell trafficking in rats could deepen our understanding of enable us to clarify the relationship between the order and the contribution rate of immune cells, chemokines and cytokines, and pathologies. Ultimately, these findings will lead to the evaluation of organ responses in Adverse Outcome Pathway.
Collapse
Affiliation(s)
- Katsuhisa Morita
- Department of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Department of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Iori Azuma
- Department of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroyuki Kusuhara
- Department of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
31
|
Shin HA, Park M, Lee HJ, Duong VA, Kim HM, Hwang DY, Lee H, Lew H. Unveiling Neuroprotection and Regeneration Mechanisms in Optic Nerve Injury: Insight from Neural Progenitor Cell Therapy with Focus on Vps35 and Syntaxin12. Cells 2023; 12:2412. [PMID: 37830626 PMCID: PMC10572010 DOI: 10.3390/cells12192412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Axonal degeneration resulting from optic nerve damage can lead to the progressive death of retinal ganglion cells (RGCs), culminating in irreversible vision loss. We contrasted two methods for inducing optic nerve damage: optic nerve compression (ONCo) and optic nerve crush (ONCr). These were assessed for their respective merits in simulating traumatic optic neuropathies and neurodegeneration. We also administered neural progenitor cells (NPCs) into the subtenon space to validate their potential in mitigating optic nerve damage. Our findings indicate that both ONCo and ONCr successfully induced optic nerve damage, as shown by increases in ischemia and expression of genes linked to neuronal regeneration. Post NPC injection, recovery in the expression of neuronal regeneration-related genes was more pronounced in the ONCo model than in the ONCr model, while inflammation-related gene expression saw a better recovery in ONCr. In addition, the proteomic analysis of R28 cells in hypoxic conditions identified Vps35 and Syntaxin12 genes. Vps35 preserved the mitochondrial function in ONCo, while Syntaxin12 appeared to restrain inflammation via the Wnt/β-catenin signaling pathway in ONCr. NPCs managed to restore damaged RGCs by elevating neuroprotection factors and controlling inflammation through mitochondrial homeostasis and Wnt/β-catenin signaling in hypoxia-injured R28 cells and in both animal models. Our results suggest that ischemic injury and crush injury cause optic nerve damage via different mechanisms, which can be effectively simulated using ONCo and ONCr, respectively. Moreover, cell-based therapies such as NPCs may offer promising avenues for treating various optic neuropathies, including ischemic and crush injuries.
Collapse
Affiliation(s)
- Hyun-Ah Shin
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Mira Park
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Hey Jin Lee
- CHA Advanced Research Institute, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Van-An Duong
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
- Department of Microbiology, School of Medicine, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Helen Lew
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| |
Collapse
|
32
|
Wang C, Cheng Y, Li B, Qiu X, Hu H, Zhang X, Lu Z, Zheng F. Transcriptional characteristics and functional validation of three monocyte subsets during aging. Immun Ageing 2023; 20:50. [PMID: 37759225 PMCID: PMC10523626 DOI: 10.1186/s12979-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Age-associated changes in immunity are inextricably linked to chronic inflammation and age-related diseases, the impact of aging on monocyte subsets is poorly understood. METHODS Flow cytometry was applied to distinguish three monocyte subsets between 120 young and 103 aged individuals. We then analyzed the expression profiles of three monocyte subsets from 9 young and 9 older donors and CD14+ monocytes from 1202 individuals between 44 and 83 years old. Flow cytometry was used to measure β-galactosidase activities, ROS levels, mitochondrial contents, mitochondrial membrane potentials (MMPs) and intracellular IL-6 levels in three monocyte subsets of young and elderly individuals, and plasma IL-6 levels were detected by electrochemiluminescence immunoassay. Mitochondrial stress and glycolytic rate of CD14+ monocytes from young and aged individuals were measured by Seahorse XFe24 Analyzer. RESULTS Compared with young individuals, the percentage of classical subset in aged persons significantly decreased, while the proportion of nonclassical subset increased. Age-related differential genes were obviously enriched in cellular senescence, ROS, oxidative phosphorylation, mitochondrial respiratory chain, IL-6 and ribosome-related pathways. Compared with young individuals, the β-galactosidase activities, ROS contents, intracellular IL-6 levels of three monocyte subsets, and plasma IL-6 levels in aged individuals were significantly elevated, while the MMPs apparently declined with age and the mitochondrial contents were only increased in intermediate and nonclassical subsets. CD14+ monocytes from elderly adults had conspicuously lower basal and spare respiratory capacity and higher basal glycolysis than those from young individuals. CONCLUSIONS During aging, monocytes exhibited senescence-associated secretory phenotype, mitochondrial dysfunction, decreased oxidative phosphorylation and increased glycolysis and the nonclassical subset displayed the clearest features of aging. Our study comprehensively investigated age-related transcriptional alterations of three monocyte subsets and identified the pivotal pathways of monocyte senescence, which may have significant implications for tactics to alleviate age-related conditions.
Collapse
Affiliation(s)
- Chen Wang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yating Cheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xueping Qiu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Hu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
33
|
Taniguchi M, Yasukochi S, Yamakawa W, Tsurudome Y, Tsuruta A, Horiguchi M, Ushijima K, Yamashita T, Shindo N, Ojida A, Matsunaga N, Koyanagi S, Ohdo S. Inhibition of Tumor-Derived C-C Motif Chemokine Ligand 2 Expression Attenuates Tactile Allodynia in NCTC 2472 Fibrosarcoma-Inoculated Mice. Mol Pharmacol 2023; 104:73-79. [PMID: 37316349 DOI: 10.1124/molpharm.123.000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Neuropathic pain associated with cancers is caused by tumor growth compressing and damaging nerves, which would also be enhanced by inflammatory factors through sensitizing nociceptor neurons. A troublesome hallmark symptom of neuropathic pain is hypersensitivity to innocuous stimuli, a condition known as "tactile allodynia", which is often refractory to NSAIDs and opioids. The involvement of chemokine CCL2 (monocyte chemoattractant protein-1) in cancer-evoked neuropathic pain is well established, but opinions remain divided as to whether CCL2 is involved in the production of tactile allodynia with tumor growth. In this study, we constructed Ccl2 knockout NCTC 2472 (Ccl2-KO NCTC) fibrosarcoma cells and conducted pain behavioral test using Ccl2-KO NCTC-implanted mice. Implantation of naïve NCTC cells around the sciatic nerves of mice produced tactile allodynia in the inoculated paw. Although the growth of Ccl2 KO NCTC-formed tumors was comparable to that of naïve NCTC-formed tumors, Ccl2-KO NCTC-bearing mice failed to show tactile pain hypersensitivity, suggesting the involvement of CCL2 in cancer-induced allodynia. Subcutaneous administration of controlled-release nanoparticles containing the CCL2 expression inhibitor NS-3-008 (1-benzyl-3-hexylguanidine) significantly attenuated tactile allodynia in naïve NCTC-bearing mice accompanied by a reduction of CCL2 content in tumor masses. Our present findings suggest that inhibition of CCL2 expression in cancer cells is a useful strategy to attenuate tactile allodynia induced by tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for the treatment of cancer-evoked neuropathic pain. SIGNIFICANCE STATEMENT: The blockade of chemokine/receptor signaling, particularly for C-C motif chemokine ligand 2 (CCL2) and its high-affinity receptor C-C chemokine receptor type 2 (CCR2), has been implicated to attenuate cancer-induced inflammatory and nociceptive pain. This study demonstrated that continuous inhibition of CCL2 production from cancer cells also prevents the development of tactile allodynia associated with tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for management of cancer-evoked tactile allodynia.
Collapse
Affiliation(s)
- Marie Taniguchi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Sai Yasukochi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Wakaba Yamakawa
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Yuya Tsurudome
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Akito Tsuruta
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Michiko Horiguchi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Kentaro Ushijima
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Tomohiro Yamashita
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Naoya Shindo
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Akio Ojida
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Naoya Matsunaga
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Satoru Koyanagi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Shigehiro Ohdo
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| |
Collapse
|
34
|
Chang S, Zhang G, Li L, Li H, Jin X, Wang Y, Li B. Sirt4 deficiency promotes the development of atherosclerosis by activating the NF-κB/IκB/CXCL2/3 pathway. Atherosclerosis 2023; 373:29-37. [PMID: 37121164 DOI: 10.1016/j.atherosclerosis.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS As a member of mitochondrial sirtuins, Sirt4 plays a vital role in cellular metabolism and intracellular signal transduction; however, its effect on atherosclerosis is unclear. This study aimed to explore the effect of Sirt4 on atherosclerosis and its underlying mechanism. METHODS In vivo, Apoe-/- and Apoe-/-/Sirt4-/- mice were fed a high-fat diet to induce atherosclerosis. In vitro, peritoneal macrophages from two mouse types were extracted and treated with oxidized low-density lipoprotein to establish a cell model, THP-1 cells were used to observe the effect of Sirt4 on the adhesion ability of monocytes. The growth and composition of aortic plaques in two mouse types were analyzed by H&E staining, Oil Red O staining, Dil oxidized low-density lipoprotein, immunohistochemistry, real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Transcriptome analysis and Western blotting were performed to explore the specific mechanism. RESULTS Sirt4 deficiency aggravated atherosclerosis in mice. In vivo, aortic plaque size, lipid content, and expression of related inflammatory factors in Apoe-/-/Sirt4-/- mice were higher than those in the control group, whereas the content of collagen Ⅰ and smooth muscle actin-α was significantly lower. Sirt4-deficient macrophages exhibited stronger lipid phagocytosis in vitro, and the adhesion ability of monocytes increased when Sirt4 expression decreased. Transcriptome analysis showed that the expression of CXCL2 and CXCL3 in Sirt4-deficient peritoneal macrophages increased significantly, which may play a role by activating the NF-κB pathway. In further analysis, the results in vitro and in vivo showed that the expression of VCAM-1 and pro-inflammatory factors, such as IL-6, TNF-α and IL-1β, increased, whereas the expression of anti-inflammatory factor IL-37 decreased in Sirt4-deficient peritoneal macrophages and tissues. After blocking the effect with NK-κB inhibitor BAY11-7082, the inflammatory reaction in sirt4 deficient macrophages was also significantly decreased. CONCLUSIONS This study demonstrates that Sirt4 deficiency promotes the development of atherosclerosis by activating the NF-κB/IκB/CXCL2/3 pathway, suggesting that Sirt4 may exhibit a protective effect in atherosclerosis, which provides a new strategy for clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuting Chang
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China; Weifang Medical University, No.7166, Baotong West Street, Weifang, PR China
| | - Guanzhao Zhang
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China
| | - Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Haiying Li
- Medical Department, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Xiaodong Jin
- Department of Geriatrics, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China.
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China.
| |
Collapse
|
35
|
Ishimwe JA, Ferguson JF, Kirabo A. Sex Differences in Fatty Acid Metabolism and Blood Pressure Response to Dietary Salt in Humans. CARDIOGENETICS 2023; 13:33-46. [PMID: 38605973 PMCID: PMC11008634 DOI: 10.3390/cardiogenetics13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Salt sensitivity is a trait in which high dietary sodium (Na+) intake causes an increase in blood pressure (BP). We previously demonstrated that in the gut, elevated dietary Na+ causes dysbiosis. The mechanistic interplay between excess dietary Na+-induced alteration in the gut microbiome and sex differences is less understood. The goal of this study was to identify novel metabolites in sex differences and blood pressure in response to a high dietary Na+ intake. We performed stool and plasma metabolomics analysis and measured the BP of human volunteers with salt intake above or below the American Heart Association recommendations. We also performed RNA sequencing on human monocytes treated with high salt in vitro. The relationship between BP and dietary Na+ intake was different in women and men. Network analysis revealed that fatty acids as top subnetworks differentially changed with salt intake. We found that women with high dietary Na+ intake have high levels of arachidonic acid related metabolism, suggesting a role in sex differences of the blood pressure response to Na+. The exposure of monocytes to high salt in vitro upregulates the transcription of fatty acid receptors and arachidonic acid-related genes. These findings provide potentially novel insights into metabolic changes underlying gut dysbiosis and inflammation in salt sensitivity of BP.
Collapse
Affiliation(s)
- Jeanne A. Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN 37235, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Medical Center, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
36
|
Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. Sci Rep 2023; 13:2092. [PMID: 36746990 PMCID: PMC9902560 DOI: 10.1038/s41598-023-29369-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of Takayasu arteritis (TAK) is poorly understood and no previous studies have analyzed monocytes in TAK. This study evaluated monocyte subsets and monocyte-related chemokines in the peripheral blood of TAK patients and healthy controls (HC). Monocyte subsets were identified as classical (CD14+CD16-), intermediate (CD14+CD16dim), and non-classical (CD14dimCD16high) in the peripheral blood. The chemokines CCL (C-C chemokine ligand)2, CCL3, CCL4, CCL5, CCL7, CXCL (C-X-C motif ligand)10, and CX3CL (C-X3-C motif ligand)1 were measured in the sera. Thirty-two TAK patients and 30 HC were evaluated. Intermediate monocytes were higher in TAK than HC [25.0 cells ×106/L (16.7-52.0) vs. 17.2 cells ×106/L (9.2-25.3); p = 0.014]. Active disease was associated with monocytosis (p = 0.004), increased classical (p = 0.003), and intermediate (p < 0.001) subsets than HC. Prednisone reduced the percentage of non-classical monocytes (p = 0.011). TAK patients had lower CCL3 (p = 0.033) and CCL4 (p = 0.023) levels than HC, whereas CCL22 levels were higher in active TAK compared to the remission state (p = 0.008). Glucocorticoids were associated with lower CXCL10 levels (p = 0.012). In TAK, CCL4 correlated with total (Rho = 0.489; p = 0.005), classical and intermediate monocytes (Rho = 0.448; p = 0.010 and Rho = 0.412; p = 0.019). In conclusion, TAK is associated with altered counts of monocyte subsets in the peripheral blood compared to HC and CCL22 is the chemokine with the strongest association with active disease in TAK.
Collapse
|
37
|
Mohapatra A, Park IK. Recent Advances in ROS-Scavenging Metallic Nanozymes for Anti-Inflammatory Diseases: A Review. Chonnam Med J 2023; 59:13-23. [PMID: 36794252 PMCID: PMC9900225 DOI: 10.4068/cmj.2023.59.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress and dysregulated inflammatory responses are the hallmarks of inflammatory disorders, which are key contributors to high mortality rates and impose a substantial economic burden on society. Reactive oxygen species (ROS) are vital signaling molecules that promote the development of inflammatory disorders. The existing mainstream therapeutic approaches, including steroid and non-steroidal anti-inflammatory drugs, and proinflammatory cytokine inhibitors with anti-leucocyte inhibitors, are not efficient at curing the adverse effects of severe inflammation. Moreover, they have serious side effects. Metallic nanozymes (MNZs) mimic the endogenous enzymatic process and are promising candidates for the treatment of ROS-associated inflammatory disorders. Owing to the existing level of development of these metallic nanozymes, they are efficient at scavenging excess ROS and can resolve the drawbacks of traditional therapies. This review summarizes the context of ROS during inflammation and provides an overview of recent advances in metallic nanozymes as therapeutic agents. Furthermore, the challenges associated with MNZs and an outline for future to promote the clinical translation of MNZs are discussed. Our review of this expanding multidisciplinary field will benefit the current research and clinical application of metallic-nanozyme-based ROS scavenging in inflammatory disease treatment.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
38
|
Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C, Hao X, Han D, Li G, Wang Z, Song C, Han J, Zeng H. Phenotypic and functional alterations of monocyte subsets with aging. Immun Ageing 2022; 19:63. [PMID: 36514074 PMCID: PMC9745938 DOI: 10.1186/s12979-022-00321-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND It has been widely accepted that monocytes are one of the central mediators contributing to inflammaging. However, it remains unclear whether aged monocytes, similar to aged T cells, have characteristics of hyperactivation and increased expression of co-inhibitory molecules. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from young (21-40 years old), middle-aged (41-60 years old), and older human subjects (> 60 years old). Flow cytometry was used to monitor changes in the expression of surface molecules of monocyte subsets and cytokine-producing capacity. RESULTS We observed increased tumor necrosis factor-α: TNF-α and decreased interleukin-6 (IL-6) production in monocytes from older adults compared with young and middle-aged adults. Older adults had a greater percentage of intermediate and non-classical monocyte subsets, along with increased levels of the immune activation markers human leukocyte antigen-DR (HLA-DR), and adhesion molecules cluster of differentiation molecule 11b (CD11b) and L-selectin (CD62L). Furthermore, we observed increased C-C motif chemokine receptor 2 (CCR2) expression on classical monocytes and decreased C-X3-C motif chemokine receptor 1 (CX3CR1) expression on non-classical monocytes in older adult subjects. The expression of co-inhibitory receptors was reduced on monocyte subsets in older adults. CONCLUSIONS Circulating monocytes in older adults exhibit increased expression of activation, adhesion, and migration markers, but decreased expression of co-inhibitory molecules.
Collapse
Affiliation(s)
- Yu Cao
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Yang Fan
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Fangyuan Li
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yu Hao
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yaxian Kong
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Chen Chen
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Xing Hao
- grid.411606.40000 0004 1761 5917Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Dannuo Han
- grid.411606.40000 0004 1761 5917Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Guoli Li
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Zengtao Wang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Chuan Song
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Junyan Han
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Hui Zeng
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
39
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
40
|
Mulens-Arias V, Nicolás-Boluda A, Carn F, Gazeau F. Cationic Polyethyleneimine (PEI)–Gold Nanocomposites Modulate Macrophage Activation and Reprogram Mouse Breast Triple-Negative MET-1 Tumor Immunological Microenvironment. Pharmaceutics 2022; 14:pharmaceutics14102234. [PMID: 36297669 PMCID: PMC9607133 DOI: 10.3390/pharmaceutics14102234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nanomedicines based on inorganic nanoparticles have grown in the last decades due to the nanosystems’ versatility in the coating, tuneability, and physical and chemical properties. Nonetheless, concerns have been raised regarding the immunotropic profile of nanoparticles and how metallic nanoparticles affect the immune system. Cationic polymer nanoparticles are widely used for cell transfection and proved to exert an adjuvant immunomodulatory effect that improves the efficiency of conventional vaccines against infection or cancer. Likewise, gold nanoparticles (AuNPs) also exhibit diverse effects on immune response depending on size or coatings. Photothermal or photodynamic therapy, radiosensitization, and drug or gene delivery systems take advantage of the unique properties of AuNPs to deeply modify the tumoral ecosystem. However, the collective effects that AuNPs combined with cationic polymers might exert on their own in the tumor immunological microenvironment remain elusive. The purpose of this study was to analyze the triple-negative breast tumor immunological microenvironment upon intratumoral injection of polyethyleneimine (PEI)–AuNP nanocomposites (named AuPEI) and elucidate how it might affect future immunotherapeutic approaches based on this nanosystem. AuPEI nanocomposites were synthesized through a one-pot synthesis method with PEI as both a reducing and capping agent, resulting in fractal assemblies of about 10 nm AuNPs. AuPEI induced an inflammatory profile in vitro in the mouse macrophage-like cells RAW264.7 as determined by the secretion of TNF-α and CCL5 while the immunosuppressor IL-10 was not increased. However, in vivo in the mouse breast MET-1 tumor model, AuPEI nanocomposites shifted the immunological tumor microenvironment toward an M2 phenotype with an immunosuppressive profile as determined by the infiltration of PD-1-positive lymphocytes. This dichotomy in AuPEI nanocomposites in vitro and in vivo might be attributed to the highly complex tumor microenvironment and highlights the importance of testing the immunogenicity of nanomaterials in vitro and more importantly in vivo in relevant immunocompetent mouse tumor models to better elucidate any adverse or unexpected effect.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Matière et Systèmes Complexes (MSC), Université Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University, PRBB, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Alba Nicolás-Boluda
- Matière et Systèmes Complexes (MSC), Université Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Florent Carn
- Matière et Systèmes Complexes (MSC), Université Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC), Université Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France
- Correspondence:
| |
Collapse
|
41
|
Tomasi S, Li L, Hinske LC, Tomasi R, Amini M, Strauß G, Müller MB, Hirschberger S, Peterss S, Effinger D, Pogoda K, Kreth S, Hübner M. A Functional Network Driven by MicroRNA-125a Regulates Monocyte Trafficking in Acute Inflammation. Int J Mol Sci 2022; 23:ijms231810684. [PMID: 36142632 PMCID: PMC9503790 DOI: 10.3390/ijms231810684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
During the onset of acute inflammation, rapid trafficking of leukocytes is essential to mount appropriate immune responses towards an inflammatory insult. Monocytes are especially indispensable for counteracting the inflammatory stimulus, neutralising the noxa and reconstituting tissue homeostasis. Thus, monocyte trafficking to the inflammatory sites needs to be precisely orchestrated. In this study, we identify a regulatory network driven by miR-125a that affects monocyte adhesion and chemotaxis by the direct targeting of two adhesion molecules, i.e., junction adhesion molecule A (JAM-A), junction adhesion molecule-like (JAM-L) and the chemotaxis-mediating chemokine receptor CCR2. By investigating monocytes isolated from patients undergoing cardiac surgery, we found that acute yet sterile inflammation reduces miR-125a levels, concomitantly enhancing the expression of JAM-A, JAM-L and CCR2. In contrast, TLR-4-specific stimulation with the pathogen-associated molecular pattern (PAMP) LPS, usually present within the perivascular inflamed area, resulted in dramatically induced levels of miR-125a with concomitant repression of JAM-A, JAM-L and CCR2 as early as 3.5 h. Our study identifies miR-125a as an important regulator of monocyte trafficking and shows that the phenotype of human monocytes is strongly influenced by this miRNA, depending on the type of inflammatory stimulus.
Collapse
Affiliation(s)
- Stephanie Tomasi
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Lei Li
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Ludwig Christian Hinske
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Institute for Digital Medicine, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Roland Tomasi
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Martina Amini
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anesthesiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Gabriele Strauß
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Martin Bernhard Müller
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Simon Hirschberger
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Sven Peterss
- Department of Cardiac Surgery, University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - David Effinger
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Kristin Pogoda
- Physiology, Institute for Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Simone Kreth
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
| | - Max Hübner
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
42
|
Xia A, Thai A, Cao Z, Chen X, Chen J, Bacacao B, Bekale LA, Schiel V, Bollyky PL, Maria PLS. Chronic suppurative otitis media causes macrophage-associated sensorineural hearing loss. J Neuroinflammation 2022; 19:224. [PMID: 36096817 PMCID: PMC9465898 DOI: 10.1186/s12974-022-02585-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic suppurative otitis media (CSOM) is the most common cause of permanent hearing loss in children in the developing world. A large component of the permanent hearing loss is sensory in nature and our understanding of the mechanism of this has so far been limited to post-mortem human specimens or acute infection models that are not representative of human CSOM. In this report, we assess cochlear injury in a validated Pseudomonas aeruginosa (PA) CSOM mouse model. Methods We generated persisters (PCs) and inoculated them into the mouse middle ear cavity. We tracked infection with IVIS and detected PA using RT-PCR. We assessed cochlear damage and innate immunity by Immunohistochemistry. Finally, we evaluated cytokines with multiplex assay and quantitative real-time PCR. Results We observed outer hair cell (OHC) loss predominantly in the basal turn of the cochlear at 14 days after bacterial inoculation. Macrophages, not neutrophils are the major immune cells in the cochlea in CSOM displaying increased numbers and a distribution correlated with the observed cochlear injury. The progression of the morphological changes suggests a transition from monocytes into tissue macrophages following infection. We also show that PA do not enter the cochlea and live bacteria are required for cochlear injury. We characterized cytokine activity in the CSOM cochlea. Conclusions Taken together, this data shows a critical role for macrophages in CSOM-mediated sensorineural hearing loss (SNHL). Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02585-w.
Collapse
|
43
|
Chen Q, Gu Y, Tan C, Sundararajan B, Li Z, Wang D, Zhou Z. Comparative effects of five polymethoxyflavones purified from Citrus tangerina on inflammation and cancer. Front Nutr 2022; 9:963662. [PMID: 36159482 PMCID: PMC9493082 DOI: 10.3389/fnut.2022.963662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Although the Citrus tangerina cultivar “Dahongpao” (CTD) has been established as a rich source of polymethoxyflavones (PMFs) with anti-inflammatory and anti-cancer properties, their individual effects on cellular signaling remain to be elucidated. In this study, five major PMFs from the peel of CTD were isolated, including sinensetin, tetramethyl-O-scutellarin (5,6,7,4′-tetramethoxyflavone), nobiletin (5,6,7,8,3′, 4′-hexamethoxyflavone), tangeretin (5,6,7,8,4′-pentamethoxyflavone), and 5-demethylnobiletin (5-OH-6,7,8,3′,4′-pentamethoxyflavone). These PMFs were found to significantly (p < 0.05) inhibit the production of NO and biomarkers of chronic inflammation (TNF-α and IL-6). Additionally, they effectively suppressed mRNA biomarkers of acute inflammation (Cox-2 and iNOS), and to varying degrees promoted the activation of anti-inflammatory cytokines (IL-4, IL-13, TNF-β, and IL-10). Among the five PMFs, tangeretin was found to have a considerable anti-proliferative effect on tumor cell lines (PC-3 and DU145) and synergistically enhanced the cytotoxicity of mitoxantrone, partially via activation of the PTEN/AKT pathway. The findings of this study provide valuable insights into the activity of different PMF monomers and advance the understanding of the roles of PMFs in promoting apoptotic and anti-cancer effects.
Collapse
Affiliation(s)
- Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yue Gu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chun Tan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Balasubramani Sundararajan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhenqing Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- *Correspondence: Dan Wang
| | - Zhiqin Zhou
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
- Zhiqin Zhou
| |
Collapse
|
44
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Feng J, Li X, Mo B. Monocytes subtypes from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Clin Lab Anal 2022; 36:e24579. [PMID: 35819097 PMCID: PMC9396188 DOI: 10.1002/jcla.24579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pleural effusion is a common clinical condition caused by several respiratory diseases, including tuberculosis and malignancy. However, rapid and accurate diagnoses of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remain challenging. Although monocytes have been confirmed as an important immune cell in tuberculosis and malignancy, little is known about the role of monocytes subpopulations in the diagnosis of pleural effusion. Methods Pleural effusion samples and peripheral blood samples were collected from 40 TPE patients, 40 MPE patients, and 24 transudate pleural effusion patients, respectively. Chemokines (CCL2, CCL7, and CX3CL1) and cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were measured by ELISA. The monocytes phenotypes were analyzed by flow cytometry. The chemokines receptors (CCR2 and CX3CR1) and cytokines above in different monocytes subsets were analyzed by real‐time PCR. Receiver operating characteristic curve analysis was performed for displaying differentiating power of intermediate and nonclassical subsets between tuberculous and malignant pleural effusions. Results CCL7 and CX3CL1 levels in TPE were significantly elevated in TPE compared with MPE and transudate pleural effusion. Cytokines, such as IL‐1β, IL‐17, IL‐27, and IFN‐γ, in TPE were much higher than in other pleural effusions. Moreover, CD14+CD16++ nonclassical subset frequency in TPE was remarkably higher than that in MPE, while CD14++CD16+ intermediate subset proportion in MPE was found elevated. Furthermore, CX3CL1‐CX3CR1 axis‐mediated infiltration of nonclassical monocytes in TPE was related to CX3CL1 and IFN‐γ expression in TPE. Higher expression of cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were found in nonclassical monocytes compared with other subsets. Additionally, the proportions of intermediate and nonclassical monocytes in pleural effusion have the power in discriminating tuberculosis from malignant pleural effusion. Conclusions CD14 and CD16 markers on monocytes could be potentially used as novel diagnostic markers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, China
| |
Collapse
|
45
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
46
|
Mawhinney M, Kulle A, Thanabalasuriar A. From infection to repair: Understanding the workings of our innate immune cells. WIREs Mech Dis 2022; 14:e1567. [PMID: 35674186 DOI: 10.1002/wsbm.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022]
Abstract
In a world filled with microbes, some posing a threat to our body, our immune system is key to living a healthy life. The innate immune system is made of various cell types that act to guard our bodies. Unlike the adaptive immune system that has a specific response, our innate immune system encompasses cells that elicit unspecific immune responses, triggered whenever the right signals are detected. Our understanding of immunity started with the concept of our immune system only responding to "nonself" like the pathogens that invade our body. However, over the past few decades, we have learned that the immune system is more than an on/off switch that recognizes nonself. The innate immune system regularly patrols our bodies for pathogens and tissue damage. Our innate immune system not only seeks to resolve infection but also repair tissue injury, through phagocytosing debris and initiating the release of growth factors. Recently, we are starting to see that it is not just recognizing danger, our innate immune system plays a crucial role in repair. Innate immune cells phenotypically change during repair. In the context of severe injury or trauma, our innate immune system is modified quite drastically to help repair, resulting in reduced infection control. Moreover, these changes in immune cell function can be modified by sex as a biological variable. From past to present, in this overview, we provide a summary of the innate immune cells and pathways in infection and tissue repair. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Martin Mawhinney
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Amelia Kulle
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ajitha Thanabalasuriar
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Medina-Gil JM, Pérez-García A, Saavedra-Santana P, Díaz-Carrasco A, Martínez-Quintana E, Rodríguez-González F, Ramírez CM, Riaño M, Garay-Sánchez P, Tugores A. A Common Variant at the 3'untranslated Region of the CCL7 Gene (rs17735770) Is Associated With Decreased Susceptibility to Coronary Heart Disease. Front Cardiovasc Med 2022; 9:908070. [PMID: 35711383 PMCID: PMC9194478 DOI: 10.3389/fcvm.2022.908070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Monocytes participate in the development of atherosclerosis through the action of cytokines and other inflammatory mediators. Among them, CCR2 and its ligands, CCL2 and CCL7 play an important role, so the main objective of this work was to determine whether genetic variants affecting their activity were associated with cardiovascular disease. A cohort of 519 patients that have suffered coronary events was analyzed under a propensity score-matching protocol selecting a homogeneous set of cases and controls, according to age, sex, smoking status, dyslipidemia, arterial hypertension and type 2 diabetes as risk factors. While dyslipidemia and arterial hypertension were more prevalent among patients with angina pectoris, current smoking status and elevated inflammatory markers, including total leukocyte and monocyte counts, were more likely associated with acute coronary events. Propensity score matching analysis, performed to eliminate the influence of these risk factors and highlight genetic modifiers, revealed that a single nucleotide variant, rs17735770 at the 3'untranslated region of the CCL7 gene transcript, was associated with decreased cardiovascular risk in a group represented mostly by men, with an average age of 57, and without significant differences in traditional risk factors. Furthermore, the presence of this variant altered the local mRNA structure encompassing a binding site for miR-23ab, resulting in increased translation of a reporter gene in a miR23 independent fashion. The rs17735770 genetic variant led to increased expression of CCL7, a potential antagonist of CCR2 at inflammatory sites, where it could play a meaningful role during the evolution of atherosclerosis.
Collapse
Affiliation(s)
- José María Medina-Gil
- Servicio de Cardiología, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - Pedro Saavedra-Santana
- Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Efrén Martínez-Quintana
- Servicio de Cardiología, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Fayna Rodríguez-González
- Servicio de Oftalmología, Hospital Universitario Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | | | - Marta Riaño
- Servicio de Bioquímica Clínica y Análisis Clínicos, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Paloma Garay-Sánchez
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Antonio Tugores
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
- *Correspondence: Antonio Tugores
| |
Collapse
|
48
|
Systemic inflammation biomarkers in 6-OHDA- and LPS-induced Parkinson’s disease in rats. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Circulating Monocyte Subsets and Transcatheter Aortic Valve Replacement. Int J Mol Sci 2022; 23:ijms23105303. [PMID: 35628113 PMCID: PMC9141814 DOI: 10.3390/ijms23105303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR), as an alternative to open heart surgery, has revolutionized the treatment of severe aortic valve stenosis (AVS), the most common valvular disorder in the elderly. AVS is now considered a form of atherosclerosis and, like the latter, partly of inflammatory origin. Patients with high-grade AVS have a highly disturbed blood flow associated with high levels of shear stress. The immediate reopening of the valve during TAVR leads to a sudden restoration of a normal blood flow hemodynamic. Despite its good prognosis for patients, TAVR remains associated with bleeding or thrombotic postprocedural complications, involving mechanisms that are still poorly understood. Many studies report the close link between blood coagulation and inflammation, termed thromboinflammation, including monocytes as a major actor. The TAVR procedure represents a unique opportunity to study the influence of shear stress on human monocytes, key mediators of inflammation and hemostasis processes. The purpose of this study was to conduct a review of the literature to provide a comprehensive overview of the impact of TAVR on monocyte phenotype and subset repartition and the association of these parameters with the clinical outcomes of patients with severe AVS who underwent TAVR.
Collapse
|
50
|
Jangani M, Vuononvirta J, Yamani L, Ward E, Capasso M, Nadkarni S, Balkwill F, Marelli-Berg F. Loss of mTORC2-induced metabolic reprogramming in monocytes uncouples migration and maturation from production of proinflammatory mediators. J Leukoc Biol 2022; 111:967-980. [PMID: 34585416 DOI: 10.1002/jlb.1a0920-588r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monocyte migration to the sites of inflammation and maturation into macrophages are key steps for their immune effector function. Here, we show that mechanistic target of rapamycin complex 2 (mTORC2)-dependent Akt activation is instrumental for metabolic reprogramming at the early stages of macrophage-mediated immunity. Despite an increased production of proinflammatory mediators, monocytes lacking expression of the mTORC2 component Rictor fail to efficiently migrate to inflammatory sites and fully mature into macrophages, resulting in reduced inflammatory responses in vivo. The mTORC2-dependent phosphorylation of Akt is instrumental for the enhancement of glycolysis and mitochondrial respiration, required to sustain monocyte maturation and motility. These observations are discussed in the context of therapeutic strategies aimed at selective inhibition of mTORC2 activity.
Collapse
Affiliation(s)
- Maryam Jangani
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Juho Vuononvirta
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Lamya Yamani
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Eleanor Ward
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Melania Capasso
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Bonn, Germany
| | - Suchita Nadkarni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Frances Balkwill
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|