1
|
Ren C, Li Y, Li M, Wang Y. Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). Int J Oncol 2025; 66:40. [PMID: 40314093 PMCID: PMC12068847 DOI: 10.3892/ijo.2025.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 05/03/2025] Open
Abstract
Lymphoma is a malignancy of the immune system, which originates from lymphatic tissues and lymph nodes. Diffuse large B‑cell lymphoma (DLBCL) is a common type of non‑Hodgkin lymphoma, occurring in 30‑40% of all cases, which has persistent clinical challenges. The treatment of DLBCL is challenging due to its diverse genetic and biological characteristics and complex clinical physiology. Despite advancements in overall prognosis, 20‑25% of patients continue to experience relapse and 10‑15% of patients experience refractory disease. Vitamin C is a water‑soluble vitamin with antioxidant properties and notable pharmacological activity, with potential applications in cancer therapy. Pharmacological doses of vitamin C (1‑4 g/kg) can induce apoptosis in malignant cells by inhibiting and/or reversing gene mutations that are associated with hematological malignancies. For example, 10‑25% of patients with myeloid malignancies have tet methylcytosine dioxygenase 2 (TET2) gene mutations and vitamin C can regulate blood stem cell frequency and leukemia production by enhancing TET2 function. Consequently, pharmacological doses of vitamin C can inhibit the development and progression of hematological malignancies. Therefore, the present review aimed to investigate the role of vitamin C in the pathophysiology and treatment of DLBCL, whilst highlighting the potential challenges and future perspectives.
Collapse
Affiliation(s)
- Chunxiao Ren
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yaqiong Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Mingrui Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
2
|
Matous JG, Snook JP, Contreras NA, Ramstead AG, Charley KR, Kolawole EM, Kisiolek JN, Flint KA, Soedel AJ, Robinson B, Mendoza AB, Kumaki Y, Evavold BD, Williams MA. Shp-1 regulates the activity of low-affinity T cells specific to endogenous self-antigen during melanoma tumor growth and drives resistance to immune checkpoint inhibition. J Immunother Cancer 2025; 13:e010879. [PMID: 40246583 PMCID: PMC12007028 DOI: 10.1136/jitc-2024-010879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND The presence of activated CD8 T cells in the tumor microenvironment is correlated with an effective immune response to immune checkpoint inhibitor (ICI) therapy. However, ICI predominantly targets high-affinity T cells, which may be less abundant in tumors with few neoantigens. Targeting the intracellular phosphatase Src homology region 2 domain-containing phosphatase-1 (Shp-1) in combination with ICI lowers the T cell activation threshold and enhances the ability of low-affinity T cells to mount a productive antitumor response. METHODS In this study, we sought to determine whether temporal inhibition of Shp-1 during active tumor growth could rescue the activity of low-affinity T cells specific for endogenous self-antigens. To address this question, we implanted Yale University Mouse Melanoma (YUMM) tumor cell lines into WT mice and, on tumor establishment, administered an inhibitor of Shp-1 (TPI-1) with or without ICI treatment. We analyzed treatment-dependent changes in the immune infiltrate in the tumor via flow cytometry, major histocompatibility complex (MHC) tetramer-mediated detection of tyrosinase-related protein 2 (TRP-2)180-188-specific T cells and a micropipette-based two-dimensional affinity assay to measure the T cell receptor (TCR) affinity. RESULTS Administration of ICI and a Shp-1 inhibitor to mice with established YUMM tumors, but neither agent alone, resulted in a significant delay in tumor growth and an increased frequency of CD8 tumor-infiltrating T cells with enhanced effector and reduced exhaustion characteristics. In particular, combined treatment increased the frequency of CD8 T cells specific for the MHC Class I-restricted tumor self-antigen TRP-2180-188. We found that the increase in effector T cells was almost entirely due to an increase in T cells with very low TCR affinity. CONCLUSIONS We conclude that approaches for altering TCR signaling threshold are effective in enhancing the antitumor response of low-affinity T cells specific for endogenous self-antigens in settings of ICI resistance and/or where neoantigens are not available to drive antitumor responses.
Collapse
Affiliation(s)
- Joseph G Matous
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Jeremy P Snook
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Nico A Contreras
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Andrew G Ramstead
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Krystal R Charley
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | | - Jacob N Kisiolek
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
| | - Kaitlyn A Flint
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Ashleigh J Soedel
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Breyana Robinson
- North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | | | - Yohichi Kumaki
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brian D Evavold
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Williams
- Department of Pathology, The University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Yang X, Zhang H, He C, Wang D, Li J, Fu C, Wang Y, Wu Y, Zhang J. Gegen Qinlian decoction remodels tumor immune microenvironment and inhibits aerobic glycolysis with the synergistic combination of CPT-11 chemotherapy in colorectal cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119538. [PMID: 40023342 DOI: 10.1016/j.jep.2025.119538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although several traditional Chinese medicine formulas have demonstrated remarkable outcomes in suppressing the severe gastrointestinal toxicity induced by irinotecan (CPT-11), few studies have investigated whether enhanced anti-cancer efficacy and reduced intestinal toxicity can be achieved through co-administration. CPT-11, as a first-line drug for treating colorectal cancer, has the side effect of intestinal toxicity. Previous studies have primarily focused on using traditional Chinese medicine to alleviate diarrhea caused by CPT-11. The combination of the classic Chinese medicine prescription Gegen Qinlian decoction (GQD) extract and CPT-11 can significantly reduce its intestinal toxicity. However, the mechanism by which it enhances anti-cancer effects remains to be elucidated. AIM OF STUDY To investigate the combined effects of GQD and CPT-11 on colorectal cancer progression and intestinal toxicity. MATERIALS AND METHODS The CT-26 xenograft tumor-bearing mouse model was established to evaluate the synergistic antitumor effects of GQD extract and CPT-11. Tumor size and tumor tissue changes were assessed, and flow cytometry was employed to analyze immune cell populations, thereby evaluating the impact of the combined treatment on tumor growth inhibition and immune modulation. Under anaerobic glycolysis conditions, glucose uptake and cell viability of CT26 cells were measured, and Western blotting analysis was used to determine the protein expression of PKM2 and GAPDH in tumors, assessing the metabolic impact of GQD extract on cancer cells. Flow cytometry was also used to assess the polarization of macrophages in colon tissue, and ELISA was employed to measure cytokine levels in colon tissue, evaluating the protective effect of GQD extract on the colon. RESULTS The combination of GQD extract and CPT-11 significantly increased tumor growth suppression and decreased intestinal toxicity in the mouse model. The anti-cancer synergy was reduced Treg cell immunosuppression and increased CD4+ and CD8+ T cell populations. GQD extract regulated glucose uptake and cell viability in CT-26 cells under anaerobic glycolysis, potentially disrupting cancer cell glycolysis. GQD also alleviated intestinal toxicity by modulating cytokine levels and promoting macrophage polarization from M1 to M2 in colon tissues. CONCLUSION The study indicates that GQD extract improves CPT-11 efficacy in treating colorectal cancer and provides insights into the synergistic effects of TCM formulas in cancer treatment.
Collapse
Affiliation(s)
- Xiaoqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Heng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chenglin He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Traditional Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Li J, Zhang Y, Hu L, Ye H, Yan X, Li X, Li Y, Ye S, Wu B, Li Z. T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma. J Clin Transl Hepatol 2025; 13:69-83. [PMID: 39801788 PMCID: PMC11712086 DOI: 10.14218/jcth.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Luqi Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Heqing Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xingli Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Shuwen Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
5
|
McDonald MF, Curry RN, O’Reilly I, Lozzi B, Cervantes A, Lee ZF, Rosenbaum A, He P, Mohila C, Harmanci AO, Serin Harmanci A, Deneen B, Rao G. Tumor Expression of CD83 Reduces Glioma Progression and Is Associated with Reduced Immunosuppression. CANCER RESEARCH COMMUNICATIONS 2024; 4:3209-3223. [PMID: 39601621 PMCID: PMC11683667 DOI: 10.1158/2767-9764.crc-24-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
SIGNIFICANCE Immunosuppression in malignant glioma remains a barrier to therapeutic development. CD83 overexpression in human and mouse glioma increases survival. CD83+ tumor cells promote signatures related to cytotoxic T cells, enhanced activation of CD8+ T cells, and increased proinflammatory cytokines. These findings suggest that tumor-expressed CD83 could mediate tumor-immune communications.
Collapse
Affiliation(s)
- Malcolm F. McDonald
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
- Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Rachel Naomi Curry
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Isabella O’Reilly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Zhung-Fu Lee
- Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Anna Rosenbaum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Peihao He
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Carrie Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Arif O. Harmanci
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Benjamin Deneen
- Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, Texas
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Fu D, Zhang B, Fan W, Zeng F, Feng J, Wang X. Fatty acid metabolism prognostic signature predicts tumor immune microenvironment and immunotherapy, and identifies tumorigenic role of MOGAT2 in lung adenocarcinoma. Front Immunol 2024; 15:1456719. [PMID: 39478862 PMCID: PMC11521851 DOI: 10.3389/fimmu.2024.1456719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Background Aberrant fatty acid metabolism (FAM) plays a critical role in the tumorigenesis of human malignancies. However, studies on its impact in lung adenocarcinoma (LUAD) are limited. Methods We developed a prognostic signature comprising 10 FAM-related genes (GPR115, SOAT2, CDH17, MOGAT2, COL11A1, TCN1, LGR5, SLC34A2, RHOV, and DKK1) using data from LUAD patients in The Cancer Genome Atlas (TCGA). This signature was validated using six independent LUAD datasets from the Gene Expression Omnibus (GEO). Patients were classified into high- and low-risk groups, and overall survival (OS) was compared by Kaplan-Meier analysis. The signature's independence as a prognostic indicator was assessed after adjusting for clinicopathological features. Receiver operating characteristic (ROC) analysis validated the signature. Tumor immune microenvironment (TIME) was analyzed using ESTIMATE and multiple deconvolution algorithms. Functional assays, including CCK8, cell cycle, apoptosis, transwell, and wound healing assays, were performed on MOGAT2-silenced H1299 cells using CRISPR/Cas9 technology. Results Low-risk group patients exhibited decreased OS. The signature was an independent prognostic indicator and demonstrated strong risk-stratification utility for disease relapse/progression. ROC analysis confirmed the signature's validity across validation sets. TIME analysis revealed higher infiltration of CD8+ T cells, natural killers, and B cells, and lower tumor purity, stemness index, and tumor mutation burden (TMB) in low-risk patients. These patients also showed elevated T cell receptor richness and diversity, along with reduced immune cell senescence. High-risk patients exhibited enrichment in pathways related to resistance to immune checkpoint blockades, such as DNA repair, hypoxia, epithelial-mesenchymal transition, and the G2M checkpoint. LUAD patients receiving anti-PD-1 treatment had lower risk scores among responders compared to non-responders. MOGAT2 was expressed at higher levels in low-risk LUAD patients. Functional assays revealed that MOGAT2 knockdown in H1299 cells promoted proliferation and migration, induced G2 cell cycle arrest, and decreased apoptosis. Conclusions This FAM-related gene signature provides a valuable tool for prognostic stratification and monitoring of TIME and immunotherapy responses in LUAD. MOGAT2 is identified as a potential anti-tumor regulator, offering new insights into its role in LUAD pathogenesis.
Collapse
Affiliation(s)
- Denggang Fu
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Biyu Zhang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Wenyan Fan
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, Jiangxi, China
| | - Fanfan Zeng
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Jueping Feng
- Department of Oncology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Xin Wang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
7
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
8
|
Chen R, Chen L, Wang C, Zhu H, Gu L, Li Y, Xiong X, Chen G, Jian Z. CAR-T treatment for cancer: prospects and challenges. Front Oncol 2023; 13:1288383. [PMID: 38115906 PMCID: PMC10728652 DOI: 10.3389/fonc.2023.1288383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) cell therapy has been widely used in hematological malignancies and has achieved remarkable results, but its long-term efficacy in solid tumors is greatly limited by factors such as the tumor microenvironment (TME). In this paper, we discuss the latest research and future views on CAR-T cell cancer immunotherapy, compare the different characteristics of traditional immunotherapy and CAR-T cell therapy, introduce the latest progress in CAR-T cell immunotherapy, and analyze the obstacles that hinder the efficacy of CAR-T cell therapy, including immunosuppressive factors, metabolic energy deficiency, and physical barriers. We then further discuss the latest therapeutic strategies to overcome these barriers, as well as management decisions regarding the possible safety issues of CAR-T cell therapy, to facilitate solutions to the limited use of CAR-T immunotherapy.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Qin H, Hu H, Liao X, Zhao P, He W, Su X, Sun J, Li Q. Antitumor effect of neoantigen-reactive T cells combined with PD1 inhibitor therapy in mouse lung cancer. J Cancer Res Clin Oncol 2023; 149:7363-7378. [PMID: 36933035 PMCID: PMC10024025 DOI: 10.1007/s00432-023-04683-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE Neoantigens produced from mutations in tumors are important targets of T-cell-based immunotherapy and immune checkpoint blockade has been approved for treating multiple solid tumors. We investigated the potential benefit of adoptive neoantigen-reactive T (NRT) cells in combination with programmed cell death protein 1 inhibitor (anti-PD1) for treating lung cancer in a mouse model. METHODS NRT cells were prepared by co-culturing T cells and neoantigen-RNA vaccine-induced dendritic cells. Then, adoptive NRT cells in combination with anti-PD1 were administered to tumor-bearing mice. Pre- and post-therapy cytokine secretion, antitumor efficacy, and tumor microenvironment (TME) changes were determined both in vitro and in vivo. RESULTS We successfully generated NRT cells based on the 5 neoantigen epitopes identified in this study. NRT cells exhibited an enhanced cytotoxic phenotype in vitro and the combination therapy led to attenuated tumor growth. In addition, this combination strategy downregulated the expression of the inhibitory marker PD-1 on tumor-infiltrating T cells and promoted the trafficking of tumor-specific T cells to the tumor sites. CONCLUSION The adoptive transfer of NRT cells in association with anti-PD1 therapy can exert an antitumor effect on lung cancer, and is a feasible, effective, and novel immunotherapy regimen for treating solid tumors.
Collapse
Affiliation(s)
- Huan Qin
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyan Hu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjuan He
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou Tea Mountain Higher Education Park, Wenzhou, 325000, China
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Ahmed H, Mahmud AR, Siddiquee MFR, Shahriar A, Biswas P, Shimul MEK, Ahmed SZ, Ema TI, Rahman N, Khan MA, Mizan MFR, Emran TB. Role of T cells in cancer immunotherapy: Opportunities and challenges. CANCER PATHOGENESIS AND THERAPY 2023; 1:116-126. [PMID: 38328405 PMCID: PMC10846312 DOI: 10.1016/j.cpt.2022.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 09/01/2023]
Abstract
Immunotherapies boosting the immune system's ability to target cancer cells are promising for the treatment of various tumor types, yet clinical responses differ among patients and cancers. Recently, there has been increasing interest in novel cancer immunotherapy practices aimed at triggering T cell-mediated anti-tumor responses. Antigen-directed cytotoxicity mediated by T lymphocytes has become a central focal point in the battle against cancer utilizing the immune system. The molecular and cellular mechanisms involved in the actions of T lymphocytes have directed new therapeutic approaches in cancer immunotherapy, including checkpoint blockade, adoptive and chimeric antigen receptor (CAR) T cell therapy, and cancer vaccinology. This review addresses all the strategies targeting tumor pathogenesis, including metabolic pathways, to evaluate the clinical significance of current and future immunotherapies for patients with cancer, which are further engaged in T cell activation, differentiation, and response against tumors.
Collapse
Affiliation(s)
- Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | | | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Md. Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md. Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
12
|
Fang L, Tian W, Zhang C, Wang X, Li W, Zhang Q, Zhang Y, Zheng J. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol Res 2023; 189:106701. [PMID: 36796464 DOI: 10.1016/j.phrs.2023.106701] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) is particularly prominent in hematological but not in solid tumors, mainly based on the complex tumor immune microenvironment. Oncolytic virus (OVs) is an emerging adjuvant therapy method. OVs may prime tumor lesions to induce anti-tumor immune response, thereby enhancing CAR-T cells functionality and possibly increasing response rates. Here, we combined CAR-T cells targeting carbonic anhydrase 9 (CA9) and an oncolytic adenovirus (OAV) carrying chemokine (C-C motif) ligand 5 (CCL5), cytokine interleukin-12 (IL12) to explore the anti-tumor effects of this combination strategy. The data showed that Ad5-ZD55-hCCL5-hIL12 could infect and replicate in renal cancer cell lines and induced a moderate inhibition of xenografted tumor in nude mice. IL12 mediated by Ad5-ZD55-hCCL5-hIL12 promoted the phosphorylation of Stat4 in CAR-T cells, induced CAR-T cells to secrete more IFN-γ. We also found that Ad5-ZD55-hCCL5-hIL-12 combined with CA9-CAR-T cells significantly increased the infiltration of CAR-T cells in tumor mass, prolonged the survival of the mice and restrained tumor growth in immunodeficient mice. Ad5-ZD55-mCCL5-mIL-12 could also increase CD45+CD3+T cell infiltration and prolong mice survival in immunocompetent mice. These results provided feasibility for the combination of oncolytic adenovirus and CAR-T cells, which demonstrated the sufficient potential and prospects of CAR-T for the treatment of solid tumors.
Collapse
Affiliation(s)
- Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Weiping Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Chen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Oncology, The First People's Hospital of Yancheng, Jiangsu, China
| | - Xueyan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Wanjing Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuxin Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
13
|
Burton AM, Ligman BR, Kearney CA, Murray SE. SMAC mimetics inhibit human T cell proliferation and fail to augment type 1 cytokine responses. Cell Immunol 2023; 384:104674. [PMID: 36706656 PMCID: PMC10319349 DOI: 10.1016/j.cellimm.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Second mitochondria-derived activator of caspases (SMAC) mimetics are small molecule drugs that mimic the activity of the endogenous SMAC protein. SMAC and SMAC mimetics antagonize inhibitors of apoptosis proteins (IAPs), thereby sensitizing cells to apoptosis. As such, SMAC mimetics are being tested in numerous clinical trials for cancer. In addition to their direct anti-cancer effect, it has been suggested that SMAC mimetics may activate T cells, thereby promoting anti-tumor immunity. Here, we tested the effect of three clinically relevant SMAC mimetics on activation of primary human T cells. As previously reported, SMAC mimetics killed tumor cells and activated non-canonical NF-κB in T cells at clinically relevant doses. Surprisingly, none of the SMAC mimetics augmented T cell responses. Rather, SMAC mimetics impaired T cell proliferation and decreased the proportion of IFNγ/TNFα double-producing T cells. These results question the assumption that SMAC mimetics are likely to boost anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Ashley M Burton
- Department of Biology, University of Portland, Portland, OR, United States
| | - Brittany R Ligman
- Department of Biology, University of Portland, Portland, OR, United States
| | - Claire A Kearney
- Department of Biology, University of Portland, Portland, OR, United States
| | - Susan E Murray
- Department of Biology, University of Portland, Portland, OR, United States; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
14
|
Bae J, Liu L, Moore C, Hsu E, Zhang A, Ren Z, Sun Z, Wang X, Zhu J, Shen J, Qiao J, Fu YX. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8 + T cells to overcome immunotherapy resistance in cancer. Nat Cell Biol 2022; 24:1754-1765. [PMID: 36474070 DOI: 10.1038/s41556-022-01024-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB)-based immunotherapy depends on functional tumour-infiltrating lymphocytes (TILs), but essential cytokines are less understood. Here we uncover an essential role of endogenous IL-2 for ICB responsiveness and the correlation between insufficient IL-2 signalling and T-cell exhaustion as tumours progress. To determine if exogenous IL-2 in the tumour microenvironment can overcome ICB resistance, we engineered mesenchymal stem cells (MSCs) to successfully deliver IL-2 mutein dimer (SIL2-EMSC) to TILs. While MSCs have been used to suppress inflammation, SIL2-EMSCs elicit anti-tumour immunity and overcome ICB resistance without toxicity. Mechanistically, SIL2-EMSCs activate and expand pre-existing CD8+ TILs, sufficient for tumour control and induction of systemic anti-tumour effects. Furthermore, engineered MSCs create synergy of innate and adaptive immunity. The therapeutic benefits of SIL2-EMSCs were also observed in humanized mouse models. Overall, engineered MSCs rejuvenate CD8+ TILs and thus potentiate ICB and chemotherapy.
Collapse
Affiliation(s)
- Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anli Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenhua Ren
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhichen Sun
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiankun Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Singh A, Chatterjee A, Rakshit S, Shanmugam G, Mohanty LM, Sarkar K. Neem Leaf Glycoprotein in immunoregulation of cancer. Hum Immunol 2022; 83:768-777. [DOI: 10.1016/j.humimm.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
|
16
|
Claiborne MD, Sengupta S, Zhao L, Arwood ML, Sun IM, Wen J, Thompson EA, Mitchell-Flack M, Laiho M, Powell JD. Persistent CAD activity in memory CD8 + T cells supports rRNA synthesis and ribosomal biogenesis required at rechallenge. Sci Immunol 2022; 7:eabh4271. [PMID: 35622902 DOI: 10.1126/sciimmunol.abh4271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Memory CD8+ T cells are characterized by their ability to persist long after the initial antigen encounter and their capacity to generate a rapid recall response. Recent studies have identified a role for metabolic reprogramming and mitochondrial function in promoting the longevity of memory T cells. However, detailed mechanisms involved in promoting their rapid recall response are incompletely understood. Here, we identify a role for the initial and continued activation of the trifunctional rate-limiting enzyme of the de novo pyrimidine synthesis pathway CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) as critical in promoting the rapid recall response of previously activated CD8+ T cells. We found that CAD was rapidly phosphorylated upon naïve T cell activation in an mTORC1-dependent manner, yet remained phosphorylated long after initial activation. Previously activated CD8+ T cells displayed continued de novo pyrimidine synthesis in the absence of mitogenic signals, and interfering with this pathway diminished the speed and magnitude of cytokine production upon rechallenge. Inhibition of CAD did not affect cytokine transcript levels but diminished available pre-rRNA (ribosomal RNA), the polycistronic rRNA precursor whose synthesis is the rate-limiting step in ribosomal biogenesis. CAD inhibition additionally decreased levels of detectable ribosomal proteins in previously activated CD8+ T cells. Conversely, overexpression of CAD improved both the cytokine response and proliferation of memory T cells. Overall, our studies reveal a critical role for CAD-induced pyrimidine synthesis and ribosomal biogenesis in promoting the rapid recall response characteristic of memory T cells.
Collapse
Affiliation(s)
- Michael D Claiborne
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Matthew L Arwood
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Im-Meng Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiayu Wen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth A Thompson
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marikki Laiho
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan D Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
17
|
Sadeghi H, Kamal A, Ahmadi M, Najafi H, Sharifi Zarchi A, Haddad P, Shayestehpour B, Kamkar L, Salamati M, Geranpayeh L, Lashkari M, Totonchi M. A novel panel of blood-based microRNAs capable of discrimination between benign breast disease and breast cancer at early stages. RNA Biol 2021; 18:747-756. [PMID: 34793290 DOI: 10.1080/15476286.2021.1989218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) as a leading cause of cancer death among women, exhibits a wide range of genetic heterogeneity in affected individuals. Satisfactory management of BC depends on early diagnosis and proper monitoring of patients' response to therapy. In this study, we aimed to assess the relation between the expression patterns of blood-based microRNAs (miRNAs) with demographic characteristics of the patients with BC in an attempt to find novel diagnostic markers for BC with acceptable precision in clinical applications. To this end, we performed comprehensive statistical analysis of the data of the Cancer Genome Atlas (TCGA) database and the blood miRNome dataset (GSE31309). As a result, 21 miRNAs were selected for experimental verification by quantitative RT-PCR on blood samples of 70 BC patients and 60 normal individuals (without any lesions or benign breast diseases). Statistical one-way ANOVA revealed no significant difference in the blood levels of the selected miRNAs in BC patients compared to any lesions or benign breast diseases. However, the multi-marker panel consisting of hsa-miR-106b-5p, -126-3p, -140-3p, -193a-5p, and -10b-5p could detect early-stages of BC with 0.79 sensitivity, 0.86 specificity and 0.82 accuracy. Furthermore, this multi-marker panel showed the potential of detecting benign breast diseases from BC patients with 0.67 sensitivity, 0.80 specificity, and 0.74 accuracy. In conclusion, these data indicate that the present panel might be considered an asset in detecting benign breast disease and BC.
Collapse
Affiliation(s)
- Hanieh Sadeghi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Aryan Kamal
- Department of Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Marzieh Ahmadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Hadi Najafi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Peyman Haddad
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Shayestehpour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Leila Kamkar
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Masoumeh Salamati
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Loabat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Lashkari
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| |
Collapse
|
18
|
Liu X, Li L, Si F, Huang L, Zhao Y, Zhang C, Hoft DF, Peng G. NK and NKT cells have distinct properties and functions in cancer. Oncogene 2021; 40:4521-4537. [PMID: 34120141 DOI: 10.1038/s41388-021-01880-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.
Collapse
Affiliation(s)
- Xia Liu
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lingyun Li
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Fusheng Si
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lan Huang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Chenchen Zhang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
19
|
Gibadullin R, Randall CJ, Sidney J, Sette A, Gellman SH. Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. J Am Chem Soc 2021; 143:6470-6481. [PMID: 33881854 DOI: 10.1021/jacs.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous β-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-β backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/β-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/β-peptides could be a source of potent and proteolytically stable variants of native antigens.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caleb J Randall
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States.,Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sci 2021; 277:119426. [PMID: 33785342 DOI: 10.1016/j.lfs.2021.119426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Over the past few years, tumor immunotherapy has emerged as an innovative tumor treatment and owned incomparable advantages over other tumor therapy. With unique complexity and uncertainty, immunotherapy still need helper to apply in the clinic. Galectins, modulated in tumor microenvironment, can regulate the disorders of innate and adaptive immune system resisting tumor growth. Considering the role of galectins in tumor immunosuppression, combination therapy of targeted anti-galectins and immunotherapy may be a promising tumor treatment. This brief review summarizes the expression and immune functions of different galectins in tumor microenvironment and discusses the potential value of anti-galectins in combination with checkpoint inhibitors in tumor immunotherapy.
Collapse
|
21
|
Sharma R, Motedayen Aval L. Beyond First-Line Immune Checkpoint Inhibitor Therapy in Patients With Hepatocellular Carcinoma. Front Immunol 2021; 12:652007. [PMID: 33790915 PMCID: PMC8005707 DOI: 10.3389/fimmu.2021.652007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Until recently, the treatment landscape for hepatocellular cancer (HCC) was dominated by tyrosine kinase inhibitors (TKIs) which offered an overall survival (OS) benefit when used both in the first-and second-line setting compared to best supportive care. However, the treatment landscape has changed with the introduction of immune checkpoint inhibitors (ICIs) for the treatment of HCC with significant improvement in OS and progression free survival reported with combination atezolizumab and bevacizumab compared to sorafenib in the first-line setting. Nonetheless, the response to ICIs is 20–30% and invariably patients will progress. What remains unclear is which therapeutics should be used following ICI exposure. Extrapolating from the evidence base in renal cell carcinoma, subsequent therapy with TKIs offers both a response and survival benefit and are recommended by European guidelines. However, there are a number of novel therapies emerging that target mechanisms of ICI resistance that hold promise both in combination with ICI or as subsequent therapy. This paper will discuss the evidence for ICIs in HCC, the position of second-line therapies following ICIs and research strategies moving forward.
Collapse
Affiliation(s)
- Rohini Sharma
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Leila Motedayen Aval
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Mangal JL, Handlos JL, Esrafili A, Inamdar S, Mcmillian S, Wankhede M, Gottardi R, Acharya AP. Engineering Metabolism of Chimeric Antigen Receptor (CAR) Cells for Developing Efficient Immunotherapies. Cancers (Basel) 2021; 13:1123. [PMID: 33807867 PMCID: PMC7962004 DOI: 10.3390/cancers13051123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell-based therapies have shown tremendous advancement in clinical and pre-clinical studies for the treatment of hematological malignancies, such as the refractory of pre-B cell acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and large B cell lymphoma (LBCL). However, CAR T cell therapy for solid tumors has not been successful clinically. Although, some research efforts, such as combining CARs with immune checkpoint inhibitor-based therapy, have been used to expand the application of CAR T cells for the treatment of solid tumors. Importantly, further understanding of the coordination of nutrient and energy supplies needed for CAR T cell expansion and function, especially in the tumor microenvironment (TME), is greatly needed. In addition to CAR T cells, there is great interest in utilizing other types of CAR immune cells, such as CAR NK and CAR macrophages that can infiltrate solid tumors. However, the metabolic competition in the TME between cancer cells and immune cells remains a challenge. Bioengineering technologies, such as metabolic engineering, can make a substantial contribution when developing CAR cells to have an ability to overcome nutrient-paucity in the solid TME. This review introduces technologies that have been used to generate metabolically fit CAR-immune cells as a treatment for hematological malignancies and solid tumors, and briefly discusses the challenges to treat solid tumors with CAR-immune cells.
Collapse
Affiliation(s)
- Joslyn L. Mangal
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Jamie L. Handlos
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Arezoo Esrafili
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Sidnee Mcmillian
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Mamta Wankhede
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Fondazione Ri.MED, 90133 Palermo, Italy
| | - Abhinav P. Acharya
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
- Department of Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Tempe, AZ 85281, USA
| |
Collapse
|
23
|
Transcriptional regulatory network for the establishment of CD8 + T cell exhaustion. Exp Mol Med 2021; 53:202-209. [PMID: 33627794 PMCID: PMC8080584 DOI: 10.1038/s12276-021-00568-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic infection with persistent antigenic stimulation results in the generation of exhausted CD8+ T cells, which are considered defective effector CD8+ T cells, and thus compromises effective immune responses. However, recent studies have illustrated that exhausted CD8+ T cells may be purposely generated and maintained to provide mild immune responses against chronic infection or cancer, which can be safer over a long period of time than strong immune responses. Indeed, a specific population of exhausted CD8+ T cells that behaves similarly to self-renewing stem cells and provides a continuous supply of exhausted CD8+ T cells has been identified, indicating that this population can be considered progenitors of exhausted CD8+ T cells. Furthermore, several ground-breaking studies in the last few years have shed new light on the transcriptional regulatory network governing the generation and propagation of exhausted CD8+ T cells, which involves T cell receptor (TCR) signaling that leads to NFAT-TCF1 (nuclear factor of activated T cells-T cell factor 1) activity followed by activation of the TOX/NR4A axis. Elucidation of the intracellular signaling pathways will help to define the definitive developmental stages leading to exhausted CD8+ T cells, which can be exploited to advance our never-ending battle against cancer. This review will summarize the recent discoveries that have deepened our understanding of the exhaustion program of cytotoxic CD8+ T cells. A type of T cell previously thought to be defective could actually provide long-term mild immune responses for combating cancer. The unique environment created during chronic infections gives rise to functionally inert T cells known as ‘exhausted’ cells, which were once thought to impede immune responses. Wooseok Seo and co-workers at Nagoya University and the National Cancer Center in Tokyo, Japan, have reviewed recent studies suggesting that exhausted T cells may be generated by the body to provide mild immune responses. Such responses are safer over the long term than strong inflammatory defense mechanisms, where T cells may be overstimulated, leading to uncontrolled tissue damage and induced T cell death. The signaling pathways that generate and propagate exhausted cells are being revealed, shedding light on the developmental stages that lead to this subtle but effective response to chronic conditions.
Collapse
|
24
|
Transcriptional regulatory network for the establishment of CD8 + T cell exhaustion. Exp Mol Med 2021. [PMID: 33627794 DOI: 10.1038/s12276-021-00568-0.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chronic infection with persistent antigenic stimulation results in the generation of exhausted CD8+ T cells, which are considered defective effector CD8+ T cells, and thus compromises effective immune responses. However, recent studies have illustrated that exhausted CD8+ T cells may be purposely generated and maintained to provide mild immune responses against chronic infection or cancer, which can be safer over a long period of time than strong immune responses. Indeed, a specific population of exhausted CD8+ T cells that behaves similarly to self-renewing stem cells and provides a continuous supply of exhausted CD8+ T cells has been identified, indicating that this population can be considered progenitors of exhausted CD8+ T cells. Furthermore, several ground-breaking studies in the last few years have shed new light on the transcriptional regulatory network governing the generation and propagation of exhausted CD8+ T cells, which involves T cell receptor (TCR) signaling that leads to NFAT-TCF1 (nuclear factor of activated T cells-T cell factor 1) activity followed by activation of the TOX/NR4A axis. Elucidation of the intracellular signaling pathways will help to define the definitive developmental stages leading to exhausted CD8+ T cells, which can be exploited to advance our never-ending battle against cancer. This review will summarize the recent discoveries that have deepened our understanding of the exhaustion program of cytotoxic CD8+ T cells.
Collapse
|
25
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
26
|
Mahnke YD, Devevre E, Baumgaertner P, Matter M, Rufer N, Romero P, Speiser DE. Human melanoma-specific CD8(+) T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2021; 1:467-530. [PMID: 22754765 PMCID: PMC3382891 DOI: 10.4161/onci.19856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8+ T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8+ T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Collapse
Affiliation(s)
- Yolanda D Mahnke
- Ludwig Center for Cancer Research; University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Jiang W, He Y, He W, Wu G, Zhou X, Sheng Q, Zhong W, Lu Y, Ding Y, Lu Q, Ye F, Hua H. Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Front Immunol 2021; 11:622509. [PMID: 33633741 PMCID: PMC7902023 DOI: 10.3389/fimmu.2020.622509] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor-specific CD8+T cells are exposed to persistent antigenic stimulation which induces a dysfunctional state called "exhaustion." Though functioning to limit damage caused by immune response, T cell exhaustion leads to attenuated effector function whereby cytotoxic CD8+T cells fail to control tumor progression in the late stage. This pathway is a dynamic process from activation to "progenitor exhaustion" through to "terminally exhaustion" with distinct properties. With the rapid development of immunotherapy via enhancing T cell function, new studies are dissecting the mechanisms and identifying specific biomarkers of dynamic differentiation during the process of exhaustion. Further, although immune checkpoint inhibitors (ICIs) have achieved great success in clinical practice, most patients still show limited efficacy to ICIs. The expansion and differentiation of progenitor exhausted T cells explained the success of ICIs while the depletion of the progenitor T cell pool and the transient effector function of terminally exhausted T cells accounted for the failure of immune monotherapy in the context of exorbitant tumor burden. Thus, combination strategies are urgent to be utilized based on the reduction of tumor burden or the expansion of the progenitor T cell pool. In this review, we aim to introduce the concept of homeostasis of the activated and exhausted status of CD8+T cells in the tumor immune microenvironment, and present recent findings on dynamic differentiation process during T cell exhaustion and the implications for combination strategies in immune therapy.
Collapse
Affiliation(s)
- Weiqin Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yinjun He
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenguang He
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weixiang Zhong
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Lu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Lu
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ye
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hanju Hua
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Esen E, Sergin I, Jesudason R, Himmels P, Webster JD, Zhang H, Xu M, Piskol R, McNamara E, Gould S, Capietto AH, Delamarre L, Walsh K, Ye W. MAP4K4 negatively regulates CD8 T cell-mediated antitumor and antiviral immunity. Sci Immunol 2020; 5:5/45/eaay2245. [PMID: 32220977 DOI: 10.1126/sciimmunol.aay2245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
During cytotoxic T cell activation, lymphocyte function-associated antigen-1 (LFA-1) engages its ligands on antigen-presenting cells (APCs) or target cells to enhance T cell priming or lytic activity. Inhibiting LFA-1 dampens T cell-dependent symptoms in inflammation, autoimmune diseases, and graft-versus-host disease. However, the therapeutic potential of augmenting LFA-1 function is less explored. Here, we show that genetic deletion or inhibition of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) enhances LFA-1 activation on CD8 T cells and improves their adherence to APCs or LFA-1 ligand. In addition, loss of Map4k4 increases CD8 T cell priming, which culminates in enhanced antigen-dependent activation, proliferation, cytokine production, and cytotoxic activity, resulting in impaired tumor growth and improved response to viral infection. LFA-1 inhibition reverses these phenotypes. The ERM (ezrin, radixin, and moesin) proteins reportedly regulate T cell-APC conjugation, but the molecular regulator and effector of ERM proteins in T cells have not been defined. In this study, we demonstrate that the ERM proteins serve as mediators between MAP4K4 and LFA-1. Last, systematic analyses of many organs revealed that inducible whole-body deletion of Map4k4 in adult animals is tolerated under homeostatic conditions. Our results uncover MAP4K4 as a potential target to augment antitumor and antiviral immunity.
Collapse
Affiliation(s)
- Emel Esen
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Ismail Sergin
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Rajiv Jesudason
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Patricia Himmels
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Erin McNamara
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Stephen Gould
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | | | - Lélia Delamarre
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Kevin Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| | - Weilan Ye
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
29
|
Li Z, Deng J, Sun J, Ma Y. Hyperthermia Targeting the Tumor Microenvironment Facilitates Immune Checkpoint Inhibitors. Front Immunol 2020; 11:595207. [PMID: 33240283 PMCID: PMC7680736 DOI: 10.3389/fimmu.2020.595207] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have ushered in a new era of cancer therapy; however, ICIs are only effective in selective patients. The efficacy of ICIs is closely related to the tumor microenvironment. Fever for a long time was thought to directly regulate the immune response, and artificial “fever” from hyperthermia modulates the tumor immune microenvironment by providing danger signals with heat shock proteins (HSPs) as well as subsequent activation of immune systems. Encouraging results have been achieved in preclinical studies focused on potential synergetic effects by combining hyperthermia with ICIs. In this review, we summarized a cluster of immune-related factors that not only make hyperthermia a treatment capable of defending against cancer but also make hyperthermia a reliable treatment that creates a type I-like tumor microenvironment (overexpression of PD-L1 and enrichment of tumor infiltrating lymphocytes) in complementary for the enhancement of the ICIs. Then we reviewed recent preclinical data of the combination regimens involving hyperthermia and ICIs that demonstrated the combined efficacy and illustrated possible approaches to further boost the effectiveness of this combination.
Collapse
Affiliation(s)
- Zihui Li
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Deng
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jianhai Sun
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yanling Ma
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
30
|
Akagi J, Baba H. Hydrogen gas activates coenzyme Q10 to restore exhausted CD8 + T cells, especially PD-1 +Tim3 +terminal CD8 + T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncol Lett 2020; 20:258. [PMID: 32994821 DOI: 10.3892/ol.2020.12121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
As previously reported, hydrogen gas improves the prognosis of patients with cancer by restoring exhausted CD8+ T cells into active CD8+ T cells, possibly by activating mitochondria. As mitochondrial activators exhibit synergistic effects with nivolumab, the current study investigated whether hydrogen gas also affects the clinical outcomes of nivolumab. A total of 42 of 56 patients with lung cancer treated with nivolumab received hydrogen gas. Exhausted markers (PD-1 and Tim-3) on cell populations in the CD8+ T cell differentiation pathway were analyzed using flow cytometry. The concentration of coenzyme Q10 (CoQ10) was measured as a marker of mitochondrial function. The 42 patients treated with hydrogen gas and nivolumab (HGN) indicated a significantly longer overall survival (OS) compared with those treated with nivolumab only (n=14). In multivariate analysis, PD-1+Tim-3+terminal CD8+ T cells (PDT+) were an independent poor prognostic factor in OS, and CoQ10 showed a tendency to be associated with improved OS. The change in the rate of PDT+ and CoQ10 after vs. before HGN (PDT+ ratio and CoQ10 ratio, respectively) revealed that patients with low PDT+ ratio (<0.81) and high CoQ10 ratio (>1.175) had significantly longer OS compared with those with high PDT+ ratio and low CoQ10 ratio. Furthermore, PDT+, with a significant reverse correlation with CoQ10, was significantly lower in patients with high CoQ10 and/or CoQ10 ratio than in those low CoQ10 and/or CoQ10. Hydrogen gas has been suggested to enhance the clinical efficacy of nivolumab by increasing CoQ10 (mitochondria) to reduce PDT+, with PDT+ and CoQ10 as reliable negative and positive biomarkers of nivolumab, respectively.
Collapse
Affiliation(s)
- Junji Akagi
- Department of Surgery, Tamana Regional Health Medical Center, Kumamoto 865-0005, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
31
|
Snook JP, Soedel AJ, Ekiz HA, O'Connell RM, Williams MA. Inhibition of SHP-1 Expands the Repertoire of Antitumor T Cells Available to Respond to Immune Checkpoint Blockade. Cancer Immunol Res 2020; 8:506-517. [PMID: 32075800 DOI: 10.1158/2326-6066.cir-19-0690] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/12/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
The presence and activity of CD8+ T cells within the tumor microenvironment are essential for the control of tumor growth. Utilizing B16-F10 melanoma tumors that express altered peptide ligands of chicken ovalbumin, OVA257-264, we measured high- and low-affinity OVA-specific responses following adoptive transfer of OT-I CD8+ T cell into mice subsequently challenged with tumors. T-cell receptor (TCR) affinity positively correlated with the frequency of OT-I tumor-infiltrating lymphocytes (TIL). Differences in TCR affinity inversely corresponded to in vivo tumor growth rate. Blockade of the PD-1 and CTLA-4 checkpoints preferentially increased the frequency and antitumor function of TIL responding to high-affinity antigens, while failing to enhance the antitumor activity of low-affinity T cells. To determine whether lowering the TCR activation threshold could enhance the breadth and magnitude of the antitumor T-cell response, we inhibited Src homology region 2 domain-containing phosphatase 1 (SHP-1) in OT-I T cells prior to tumor antigen exposure. SHP-1 knockdown increased the cytokine-producing potential of high- and low-affinity T cells but failed to enhance control of tumor growth. In contrast, when SHP-1 knockdown of OT-I T cells was combined with immunotherapy, we observed a significant and long-lasting suppression of tumor growth mediated by low-affinity T cells. We conclude that lowering the TCR activation threshold by targeting SHP-1 expands the repertoire of T cells available to respond to conventional checkpoint blockade, leading to enhanced control of tumor growth.
Collapse
Affiliation(s)
- Jeremy P Snook
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Ashleigh J Soedel
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - H Atakan Ekiz
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Matthew A Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah. .,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
32
|
Sulaieva O, Selezniov O, Shapochka D, Belemets N, Nechay O, Chereshneva Y, Tsomartova D, Ivanova M. Hashimoto's thyroiditis attenuates progression of papillary thyroid carcinoma: deciphering immunological links. Heliyon 2020; 6:e03077. [PMID: 31938743 PMCID: PMC6953714 DOI: 10.1016/j.heliyon.2019.e03077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/08/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Although some studies have investigated the clinicopathologic relationships between papillary thyroid carcinoma (PTC) and Hashimoto's thyroiditis (HT), there is still no clear understanding of differences in tumor immune microenvironment for PTC with coexisting HT and HT effect on PTC progression. The aim of this study was to clarify immune-mediated mechanisms of coexisting HT, which might influence PTC progression. 30 patients with histologically confirmed conventional-type PTC and 30 patients with PTC and coexisting HT were enrolled in the study. To analyze the role of immune-mediated links between PTC and HT, immunohistochemical investigation was conducted to count the number of different immune cells including T-cytotoxic cells (CD8), plasma cells (CD138), Treg cells (FOXP3), mast cells (MCT), and M2 macrophages (CD163). It was shown that despite the high number of immune cells in the intact thyroid tissues of PTC patients with coexisting HT there were no significant differences in M2 macrophages, mast cells and Treg counts inside PTC with or without HT. PTC with HT was associated with a higher number of CD8+ cells (P < 0.001) reflecting the ability of immune system to generate and recruit T-cytotoxic cells in tumor area, which can explain the protective effect of HT on PTC progression. Lymph node metastases development was associated with an increased number of mast cells, M2 macrophages and Treg along with a decreased plasma cells count regardless of coexisting HT. However, we did not find significant differences in T-cytotoxic cells quantity in node-positive and node-negative patients with or without HT, which encourages further investigation of immune escape mechanisms in PTC.
Collapse
Affiliation(s)
| | | | | | - Nataliia Belemets
- Ukrainian Research and Practical Centre for Endocrine Surgery, Kiev, Ukraine
| | - Oleksandr Nechay
- Ukrainian Research and Practical Centre for Endocrine Surgery, Kiev, Ukraine
| | - Yelizaveta Chereshneva
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Dibakhan Tsomartova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Marina Ivanova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
33
|
Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol 2019; 17:27-35. [PMID: 31853000 DOI: 10.1038/s41423-019-0344-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The failure of a massive influx of tumor-infiltrating T lymphocytes to eradicate tumor cells in the tumor microenvironment is mainly due to the dysfunction of T cells hyporesponsive to tumors. T-cell exhaustion and senescence induced by malignant tumors are two important dysfunctional states that coexist in cancer patients, hindering effective antitumor immunity and immunotherapy and sustaining the suppressive tumor microenvironment. Although exhausted and senescent T cells share a similar dysfunctional role in antitumor immunity, they are distinctly different in terms of generation, development, and metabolic and molecular regulation during tumor progression. Here, we discuss the unique phenotypic and functional characteristics of these two types of dysfunctional T cells and their roles in tumor development and progression. In addition, we further discuss the potential molecular and metabolic signaling pathways responsible for the control of T-cell exhaustion and senescence in the suppressive tumor microenvironment. Understanding these critical and fundamental features should facilitate rethinking the unresponsiveness to current immunotherapies in clinical patients and lead to further development of novel and effective strategies that target different types of dysfunctional T cells to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
34
|
Wang J, Liu J, Tian F, Zhan Y, Kong D. Cyclin-dependent kinase 9 expression and its association with CD8 + T cell infiltration in microsatellite-stable colorectal cancer. Oncol Lett 2019; 18:6046-6056. [PMID: 31788079 PMCID: PMC6865572 DOI: 10.3892/ol.2019.10970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Programmed death 1 (PD-1)-targeted therapy has benefited patients with microsatellite instability-high metastatic colorectal cancer (mCRC). However, the efficacy of PD-1-targeted therapy is poor in patients with microsatellite-stable (MSS) mCRC. Therefore, it is imperative to explore additional co-inhibitory molecular signalling pathways to improve the efficacy of immunotherapy in MSS mCRC treatment. In the present study, the association between cyclin-dependent kinase 9 (CDK9) expression and the survival of patients with CRC was analysed using RNA sequencing data from 605 patients, including 121 cases of mortality, from human cancer datasets. Furthermore, 35 clinical MSS stage III–IV CRC specimens were collected to assess CDK9 protein expression by immunohistochemistry, and the frequency of tumor-infiltrating CD8+ T cells was assessed by flow cytometry. The human cancer datasets demonstrated that upregulation CDK9 significantly shortened the survival of patients with stage II–IV colon cancer. Additionally, CDK9 mRNA expression was positively correlated with the expression levels of genes associated with immune evasion in the tumor. Notably, CDK9 was expression was upregulated in stage IV CRC compared with para-cancerous tissues and early-stage tumors. Interestingly, CDK9 expression was negatively associated with the infiltration of CD8+ T cells at the tumor site. In addition, the expression levels of T-cell immunoglobulin mucin family member 3 and CD39, proteins associated with exhaustion, on tumor-infiltrating CD8+ T cells were significantly elevated in patients with abnormal CDK9 expression levels. The present study demonstrated that CDK9 expression was negatively associated with CD8+ T cell infiltration and positively associated with CD8+ T cell exhaustion in MSS mCRC. In conclusion, CDK9 may be utilized to evaluate the prognosis and the immune-type of the tumor microenvironment in patients with MSS mCRC.
Collapse
Affiliation(s)
- Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jia Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Fei Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yang Zhan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Dalu Kong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
35
|
Eomesodermin Increases Survival and IL-2 Responsiveness of Tumor-specific CD8+ T Cells in an Adoptive Transfer Model of Cancer Immunotherapy. J Immunother 2019; 41:53-63. [PMID: 29271784 DOI: 10.1097/cji.0000000000000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor-specific CD8 T cells often fail to elicit effective antitumor immune responses due to an inability to expand into a substantial effector population and persist long-term in vivo. Using an adoptive transfer model of cancer immunotherapy, we demonstrate that constitutive eomesodermin (Eomes) expression in tumor-specific CD8 T cells improves tumor rejection and survival. The increase in tumor rejection was associated with an increased number and persistence of CD8 T cells in lymphoid tissues during acute tumor rejection, tumor regrowth, and in mice that remained tumor-free. Constitutive Eomes expression increased expression of CD25, and this was associated with enhanced interleukin-2 responsiveness and tumor-specific CD8 T-cell proliferation. Moreover, constitutive Eomes expression improved cell survival. Taken together, our data suggest that constitutive Eomes expression enhances CD8 T-cell proliferation and survival, in part through the enhancement of interleukin-2 responsiveness through CD25 induction.
Collapse
|
36
|
Bai Y, Wang Y, Zhang X, Fu J, Xing X, Wang C, Gao L, Liu Y, Shi L. Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy. Int J Pharm 2019; 570:118636. [PMID: 31446027 DOI: 10.1016/j.ijpharm.2019.118636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
In recent years, researchers have made significant innovations in the field of tumor immunotherapy based on the knowledge of biology, oncology, and immunology. Tumor immunotherapy involves the use of immune checkpoint inhibitors and CAR (chimeric antigen receptor)-T cell therapy. As compared with conventional chemotherapy, immunotherapy is a potential approach to induce a more powerful immune response against tumor in the patient suffering from the advanced stage malignancy. Regardless of the developments made, a large number of clinical studies have confirmed that a substantial number of cancer patients still demonstrate non-responsiveness to immunotherapy, mainly due to the immunomodulating interactions of tumor cells with the immunosuppressive tumor microenvironment (iTME). It leads to immune tolerance of tumors and influences the efficacy of immunotherapy. This immune failure could be attributed to a complex immunosuppressive network comprising stromal and inflammatory cells, vessel system, ECM (extracellular matrix) and the cytokines released in tumor microenvironment (TME). The antitumor immune activity can be enhanced at different stages of tumor development by selective suppression of inhibitory pathways in the TME. This specific task can be achieved by using nano-sized drug delivery tools which are specific in their action and biocompatible in nature. Several recent studies have described the use of nanoparticles for iTME remodeling through the specific elimination of immunosuppressive cells, obstructing immune checkpoints, promotion of inflammatory cytokines, and amending the regulatory cells of the immune system. The efficacy of current immunotherapy can be improved by nanoparticle-mediated remodeling of iTME.
Collapse
Affiliation(s)
- Yuzhuo Bai
- Extrathoracic and Thyroid Mammary Surgery, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yun Wang
- Extrathoracic and Thyroid Mammary Surgery, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xudong Zhang
- Encephalopathy Center, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jianhua Fu
- Reproductive Center, Jilin Provincial People's Hospital, Changchun 130021, China
| | - Xiuli Xing
- Physical Examination Center, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Chunlan Wang
- Respiratory Department, First Clinical College, Academy of Traditional Chinese Medicine, Changchun 130021, China
| | - Longlan Gao
- Brain Surgery, Liaoyuan Hospital of Traditional Chinese Medicine, Liaoyuan 136000, China
| | - Yu Liu
- Brain Surgery, Liaoyuan Hospital of Traditional Chinese Medicine, Liaoyuan 136000, China
| | - Li Shi
- Department of Oncology and Hematology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
37
|
Rapp C, Dettling S, Liu F, Ull AT, Warta R, Jungk C, Roesch S, Mock A, Sahm F, Schmidt M, Jungwirth G, Zweckberger K, Lamszus K, Gousias K, Kessler AF, Grabe N, Loehr M, Ketter R, Urbschat S, Senft C, Westphal M, Abdollahi A, Debus J, von Deimling A, Unterberg A, Simon M, Herold-Mende CC. Cytotoxic T Cells and their Activation Status are Independent Prognostic Markers in Meningiomas. Clin Cancer Res 2019; 25:5260-5270. [DOI: 10.1158/1078-0432.ccr-19-0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022]
|
38
|
Cervera-Carrascon V, Havunen R, Hemminki A. Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system. Expert Opin Biol Ther 2019; 19:443-455. [PMID: 30905206 DOI: 10.1080/14712598.2019.1595582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Oncolytic adenoviruses are among the most studied oncolytic viruses because of their tumor selectivity, safety, and transgene-delivery capability. With a growing number of different immunotherapies against cancer, the extraordinary immunogenicity of the adenovirus has emerged as a differentiating strength. Enabling T-cell related therapies with oncolytic adenoviruses appears a promising approach due to its inherent ability to elicit responses from the adaptive immune compartment. AREAS COVERED These viruses have successfully enhanced both adoptive T-cell therapies and immune-checkpoint therapies. Oncolytic viruses induce several effects at the tumor and on the systemic level that help to circumvent current limitations of T-cells and related therapies, such as T-cell trafficking, tumor immune suppressivity and antigen spreading EXPERT OPINION Taking into account the multitude of possibilities of treating cancer with immunotherapies, learning to optimize the combinations and administration strategies of these drugs, could lead to durable responses in patients with currently incurable cancers.
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland
| | - Riikka Havunen
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland
| | - Akseli Hemminki
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland.,c Hospital Comprehensive Cancer Center , Helsinki University , Helsinki , Finland
| |
Collapse
|
39
|
Breaking tolerance with engineered class I antigen-presenting molecules. Proc Natl Acad Sci U S A 2019; 116:3136-3145. [PMID: 30728302 DOI: 10.1073/pnas.1807465116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful efforts to activate T cells capable of recognizing weak cancer-associated self-antigens have employed altered peptide antigens to activate T cell responses capable of cross-reacting on native tumor-associated self. A limitation of this approach is the requirement for detailed knowledge about the altered self-peptide ligands used in these vaccines. In the current study we considered allorecognition as an approach for activating CTL capable of recognizing weak or self-antigens in the context of self-MHC. Nonself antigen-presenting molecules typically contain polymorphisms that influence interactions with the bound peptide and TCR interface. Recognition of these nonself structures results in peptide-dependent alloimmunity. Alloreactive T cells target their inducing alloantigens as well as third-party alloantigens but generally fail to target self-antigens. Certain residues located on the alpha-1/2 domains of class I antigen-presenting molecules primarily interface with TCR. These residues are more conserved within and across species than are residues that determine peptide antigen binding properties. Class I variants designed with amino acid substitutions at key positions within the conserved helical structures are shown to provide strong activating signals to alloreactive CD8 T cells while avoiding changes in naturally bound peptide ligands. Importantly, CTL activated in this manner can break self-tolerance by reacting to self-peptides presented by native MHC. The ability to activate self-tolerant T cells capable of cross-reacting on self-peptide-MHC in vivo represents an approach for inducing autoimmunity, with possible application in cancer vaccines.
Collapse
|
40
|
Park J, Kwon M, Kim KH, Kim TS, Hong SH, Kim CG, Kang SG, Moon JH, Kim EH, Park SH, Chang JH, Shin EC. Immune Checkpoint Inhibitor-induced Reinvigoration of Tumor-infiltrating CD8 + T Cells is Determined by Their Differentiation Status in Glioblastoma. Clin Cancer Res 2019; 25:2549-2559. [PMID: 30659023 DOI: 10.1158/1078-0432.ccr-18-2564] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/07/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) are used for the treatment of various cancers, but clinical trials of anti-programmed cell death protein 1 (PD-1) with patients with recurrent glioblastoma (GBM) have failed to show clinical benefits. In this study, we examined the differentiation status of CD8+ tumor-infiltrating lymphocytes (TIL) from patients with primary GBM and their reinvigoration by ICIs to understand the nature of T-cell exhaustion in GBM. EXPERIMENTAL DESIGN We isolated TILs from 98 patients with newly diagnosed GBM and examined the expression of immune checkpoint receptors and T-cell transcription factors using flow cytometry. TILs were ex vivo stimulated with anti-CD3 in the presence of anti-PD-1 and/or anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) and their proliferation assessed. RESULTS CD8+ TILs had significantly increased expression of immune checkpoint receptors, including PD-1 and CTLA-4, compared with peripheral blood CD8+ T cells. Among CD8+ TILs, PD-1+ cells exhibited more terminally differentiated phenotypes (i.e., EomeshiT-betlo) than PD-1- cells. These data were confirmed by analyzing NY-ESO-1157-specific CD8+ TILs. Evaluating the proliferation of CD8+ TILs after ex vivo stimulation with anti-CD3 and anti-PD-1, we found that proliferation inversely correlated with the percentage of EomeshiT-betlo cells among PD-1+CD8+ TILs. When anti-CTLA-4 was used in combination with anti-PD-1, an additional increase in CD8+ TIL proliferation was observed in patients with low percentages of EomeshiT-betlo CD8+ TILs, who responded well to anti-PD-1 in ex vivo assays, but not in patients with high percentages of EomeshiT-betlo CD8+ TILs, who did not respond to anti-PD-1. CONCLUSIONS In primary GBM, the differentiation status of CD8+ TILs determines their reinvigoration ability upon ICI treatment.
Collapse
Affiliation(s)
- Junsik Park
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Minsuk Kwon
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyung Hwan Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-Shin Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seon-Hui Hong
- BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang Gon Kim
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
41
|
Abstract
Human T cells are a highly heterogeneous population and can recognize a wide variety of antigens by their T cell receptors (TCRs). Tumor cells display a large repertoire of antigens that serve as potential targets for recognition, thus making T cells in the tumor micro-environment more complicated. Making a connection between TCRs and the transcriptional information of individual T cells will be interesting for investigating clonal expansion within T cell populations under pathologic conditions. Advances in single cell RNA-sequencing (scRNA-seq) have allowed for comprehensive analysis of T cells. In this review, we briefly describe the research progress on tumor micro-environment T cells using single cell RNA sequencing, and then discuss how scRNA-seq can be used to resolve immune system heterogeneity in health and disease. Finally, we point out future directions in this field and potential for immunotherapy.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Hematology, First Affiliated Hospital, School of Medicine, Jinan University, Guangzhou 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, School of Medicine, Jinan University, Guangzhou 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
42
|
Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q, Wang X, Ke L, Shi K. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics 2019; 9:126-151. [PMID: 30662558 PMCID: PMC6332787 DOI: 10.7150/thno.29431] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Owing to the fast-paced growth and cross-infiltration of oncology, immunology and molecular biology, tumor immunotherapy technology represented by immune checkpoint blockade and chimeric antigen receptor (CAR) T cell therapy has lately made remarkable advancements. In comparison with traditional chemotherapy, immunotherapy has the potential to elicit a stronger sustained antitumor immune response in those patients who have advanced malignant malignancies. In spite of the advancements made, a significant number of clinical research works have validated that an extensive proportion of cancer patients still manifest insensitivity to immunotherapy, primarily because of the immunomodulatory interactions between tumor cells and the immunosuppressive tumor microenvironment (TME), together mediating the immune tolerance of tumors and accordingly impacting the positive response to immunotherapy. The intricate immunosuppressive networks formed by stromal cells, inflammatory cells, vasculature, extracellular matrix (ECM), and their secreted cytokines in the TME, play a pivotal role in tumor immune escape. Specific blocking of inhibition pathways in the TME is expected to effectively prevent immune escape and tolerance of tumor cells in addition to their metastasis, accordingly improving the antitumor immune response at various phases of tumor growth. Emerging nanoscale targeted drug carriers truly suit this specific requirement due to their specificity, biocompatibility, and convenience of production. This review emphasizes recent attempts to remodel the tumor immune microenvironment using novel nanoparticles, which include specifically eliminating immunosuppressive cells, reprogramming immune regulatory cells, promoting inflammatory cytokines and blocking immune checkpoints. Targeted remodeling of the immunosuppressive TME using well-designed and fabricated nanoparticles provides a promising strategy for improving the effectiveness of current immunotherapy and is greatly significant.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Dongjuan Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Qi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xiyan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Liyuan Ke
- Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, P. R. China
| | - Kai Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| |
Collapse
|
43
|
IL-17 production by NKG2D-expressing CD56+ T cells in type 2 diabetes. Mol Immunol 2018; 106:22-28. [PMID: 30576948 DOI: 10.1016/j.molimm.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/20/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
T cells expressing CD56 (identified as CD3+CD56+) play a potential role in activation or regulation of other immune cells by secreting various cytokines. We hypothesized that these cells expressing the natural group 2, member D (NKG2D) could produce high levels of interleukin (IL)-17 in type 2 diabetes (T2D). CD56 + T cells expressing NKG2D of T2D patients, particularly in poor glycemic control (PC) predominantly produced higher IL-17 compared to the NKG2D negative population. IL-17 production of CD56 + T cells with NKG2D + was positively correlated with the level of HbA1c (N = 22, R2 = 0.120 and P = 0.044). Interestingly, CD56+ T cells with NKG2DHi of T2D patients had significantly higher IL-17 production than those of CD56 + T cells with NKG2DLow (P = 0.027) and showed statistically significant with P-value < 0.001 compared to CD56 + T cells with NKG2DHi of non-diabetic individuals (ND). In summary, CD56 + T cells expressing NKG2D, especially in the NKG2DHi population may be involved in pathogenesis and severity of T2D via IL-17.
Collapse
|
44
|
Using the Spleen as an In Vivo Systemic Immune Barometer Alongside Osteosarcoma Disease Progression and Immunotherapy with α-PD-L1. Sarcoma 2018; 2018:8694397. [PMID: 30651716 PMCID: PMC6311869 DOI: 10.1155/2018/8694397] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Indications for immunotherapies are still unclear, and there is a great need for real-time patient immune status monitoring. In this study, we confirmed that the local and systemic immune profiles of an orthotopic osteosarcoma model with or without luciferase transfection were statistically equivalent. Next, we used flow cytometry to describe systemic immune cell populations influenced by osteosarcoma disease progression. When compared to vehicle-inoculated sham mice, it was found that tumor-bearing mice had significant immunophenotype disturbances at approximately 11 weeks after inoculation (at which time 90% of primary tumor-bearing mice have fulminant pulmonary metastases). Percent populations of natural killer cells and T regulatory cells were increased in the spleens of tumor-bearing mice (p < 0.0083) compared to shams. Additionally, T lymphocytes from spleens of tumor-bearing mice showed increased Tim-3/PD-1 exhaustion status (p < 0.0083). There were also increases in the percent populations of myeloid cells and overall M1/M2 macrophage marker expression on tumor-bearing mice spleens versus controls (p < 0.00714). Finally, treatment with 20 μg α-PD-L1 decreased T-cell exhaustion back to sham status, with a corresponding increase in CTLA-4 expression on cytotoxic T cells in the majority of mice tested. Checkpoint inhibition also increased splenic monocyte maturation and returned macrophage M1/M2 marker expression back to sham status. These data suggest that cancer induces systemic immune dysregulation and that these changes may be elucidated and utilized for treatment purposes by sampling the systemic immune environment via the spleen. In addition, treatment with the checkpoint inhibitor α-PD-L1 may neutralize but not overcome the systemic immunological changes induced by a progressing malignancy.
Collapse
|
45
|
Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol 2018; 40:17-35. [PMID: 30287177 DOI: 10.1016/j.smim.2018.09.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
46
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
47
|
Guedan S, Alemany R. CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Front Immunol 2018; 9:2460. [PMID: 30405639 PMCID: PMC6207052 DOI: 10.3389/fimmu.2018.02460] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells has resulted in unprecedented rates of long-lasting complete responses in patients with leukemia and lymphoma. However, despite the impressive results in patients with hematologic malignancies, CAR-T cells have showed limited effect against solid cancers. New approaches will need to simultaneously overcome the multiple challenges that CAR-T cells encounter in solid tumors, including the immunosuppressive tumor microenvironment and heterogeneity of antigen expression. Oncolytic viruses are lytic and immunogenic anti-cancer agents with the potential to synergize with CAR-T cells for the treatment of solid tumors. In addition, viruses can be further modified to deliver therapeutic transgenes selectively to the tumor microenvironment, which could enhance the effector functions of tumor-specific T cells. This review summarizes the major limitations of CAR-T cells in solid tumors and discusses the potential role for oncolytic viruses as partners for CAR-T cells in the fight against cancer.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Catala d'Oncologia, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
48
|
van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. THE JOURNAL OF IMMUNOLOGY 2018; 200:450-458. [PMID: 29311387 DOI: 10.4049/jimmunol.1701021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Samuel T Workenhe
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
49
|
Kurupati RK, Zhou X, Xiang Z, Keller LH, Ertl HCJ. Safety and immunogenicity of a potential checkpoint blockade vaccine for canine melanoma. Cancer Immunol Immunother 2018; 67:1533-1544. [PMID: 30051333 PMCID: PMC7080056 DOI: 10.1007/s00262-018-2201-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/06/2018] [Indexed: 12/13/2022]
Abstract
Human immunotherapy with checkpoint blockades has achieved significant breakthroughs in recent years. In this study, a checkpoint blockade vaccine for canine melanoma was tested for safety and immunogenicity. Five healthy adult dogs received a mixture of three replication-defective chimpanzee-derived adenoviral vectors, one expressing mouse fibroblast-associated protein (mFAP) and the others expressing canine melanoma-associated antigens Trp-1 or Trp-2 fused into Herpes Simplex-1 glycoprotein D, a checkpoint inhibitor of herpes virus entry mediator (HVEM) pathways. The vaccine mixture was shown to be well tolerated and increased frequencies of canineTrp-1-specific activated CD8+ and CD4+ T cells secreting interferon-(IFN)-γ, tumor necrosis factor (TNF)-α, or interleukin (IL)-2 alone or in combinations in four and five out of five dogs, respectively. To avoid excessive bleeds, responses to cTrp-2 were not analyzed. All dogs responded with increased frequencies of mFAP-specific activated CD8+ and CD4+ T cells. The results of this safety/immunogenicity trial invite further testing of this checkpoint blockade vaccine combination in dogs with melanoma.
Collapse
Affiliation(s)
- Raj K Kurupati
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiangyang Zhou
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Zhiquan Xiang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
50
|
Caruana I, Simula L, Locatelli F, Campello S. T lymphocytes against solid malignancies: winning ways to defeat tumours. Cell Stress 2018; 2:200-212. [PMID: 31225487 PMCID: PMC6551626 DOI: 10.15698/cst2018.07.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the last decades, a novel field has emerged in the cure of cancer, by boosting the ability of the patient’s immune system to recognize and kill tumour cells. Although excellent and encouraging results, exploiting the effect of genetically modified T cells, have been obtained, it is now evident that tumour malignancies can evolve several mechanisms to escape such immune responses, thus continuing their growth in the body. These mechanisms are in part due to tumour cell metabolic or genetic alterations, which can render the target invisible to the immune system or can favour the generation of an extracellular milieu preventing immune cell infiltration or cytotoxicity. Such mechanisms may also involve the accumulation inside the tumour microenvironment of different immune-suppressive cell types, which further down-regulate the activity of cytotoxic immune cells either directly by interacting with them or indirectly by releasing suppressive molecules. In this review, we will first focus on describing several mechanisms by which tumour cells may dampen or abrogate the immune response inside the tumour microenvironment and, second, on current strategies that are adopted to cope with and possibly overcome such alterations, thus ameliorating the efficacy of the current-in-use anti-cancer immuno-therapies.
Collapse
Affiliation(s)
- Ignazio Caruana
- Dept. of Pediatric Onco-Hematology and cell and gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luca Simula
- Dept. of Pediatric Onco-Hematology and cell and gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Dept. of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Dept. of Pediatric Onco-Hematology and cell and gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.,IRCCS, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|