1
|
Tang J, Song H, Li S, Lam SM, Ping J, Yang M, Li N, Chang T, Yu Z, Liu W, Lu Y, Zhu M, Tang Z, Liu Z, Guo YR, Shui G, Veillette A, Zeng Z, Wu N. TMEM16F Expressed in Kupffer Cells Regulates Liver Inflammation and Metabolism to Protect Against Listeria Monocytogenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402693. [PMID: 39136057 PMCID: PMC11497084 DOI: 10.1002/advs.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 10/25/2024]
Abstract
Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO). However, whether the protective effect of TMEM16F on Lm infection in vivo is mediated by an impact in T cells, or in other cell types, is not determined. Herein, the immune cell types and mechanisms implicated in the protective effect of TMEM16F against Lm in vivo are elucidated. Cellular protective effects of TMEM16F correlated with its capacity of lipid scrambling and augment PM fluidity. Using cell type-specific TMEM16F-deficient mice, the indication is obtained that TMEM16F expressed in liver Kupffer cells (KCs), but not in T cells or B cells, is key for protection against Listeria in vivo. In the absence of TMEM16F, Listeria induced PM rupture and fragmentation of KCs in vivo. KC death associated with greater liver damage, inflammatory changes, and dysregulated liver metabolism. Overall, the results uncovered that TMEM16F expressed in Kupffer cells is crucial to protect the host against Listeria infection. This influence is associated with the capacity of Kupffer cell-expressed TMEM16F to prevent excessive inflammation and abnormal liver metabolism.
Collapse
Affiliation(s)
- Jianlong Tang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Hua Song
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
| | - Shimin Li
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Jieming Ping
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Mengyun Yang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Na Li
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Teding Chang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ze Yu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Weixiang Liu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Yan Lu
- Department of Clinical ImmunologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Min Zhu
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhaohui Tang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Yusong R. Guo
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - André Veillette
- Laboratory of Molecular OncologyInstitut de recherches cliniques de Montréal (IRCM)MontréalQuébecH2W1R7Canada
- Department of MedicineUniversity of MontréalMontréalQuébecH3T 1J4Canada
- Department of MedicineMcGill UniversityMontréalQuébecH3G 1Y6Canada
| | - Zhutian Zeng
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
- Department of OncologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefei230001China
| | - Ning Wu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
2
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating exosomes from Alzheimer's disease suppress VE-cadherin expression and induce barrier dysfunction in recipient brain microvascular endothelial cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535441. [PMID: 37066187 PMCID: PMC10103966 DOI: 10.1101/2023.04.03.535441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Blood-brain barrier (BBB) breakdown is a component of the progression and pathology of Alzheimer's disease (AD). BBB dysfunction is primarily caused by reduced or disorganized tight junction or adherens junction proteins of brain microvascular endothelial cell (BMEC). While there is growing evidence of tight junction disruption in BMECs in AD, the functional role of adherens junctions during BBB dysfunction in AD remains unknown. Exosomes secreted from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. Objectives This study aimed to investigate the potential roles of AD circulating exosomes and their RNA cargos in brain endothelial dysfunction in AD. Methods We isolated exosomes from sera of five cases of AD compared with age- and sex-matched cognitively normal controls using size-exclusion chromatography technology. We validated the qualities and particle sizes of isolated exosomes with nanoparticle tracking analysis and atomic force microscopy. We measured the biomechanical natures of the endothelial barrier of BMECs, the lateral binding forces between live BMECs, using fluidic force miscopy. We visualized the paracellular expressions of the key adherens junction protein VE-cadherin in BMEC cultures and a 3D BBB model that employs primary human BMECs and pericytes with immunostaining and evaluated them using confocal microscopy. We also examined the VE-cadherin signal in brain tissues from five cases of AD and five age- and sex-matched cognitively normal controls. Results We found that circulating exosomes from AD patients suppress the paracellular expression levels of VE-cadherin and impair the barrier function of recipient BMECs. Immunostaining analysis showed that AD circulating exosomes damage VE-cadherin integrity in a 3D model of microvascular tubule formation. We found that circulating exosomes in AD weaken the BBB depending on the RNA cargos. In parallel, we observed that microvascular VE-cadherin expression is diminished in AD brains compared to normal controls. Conclusion Using in vitro and ex vivo models, our study illustrates that circulating exosomes from AD patients play a significant role in mediating the damage effect on adherens junction of recipient BMEC of the BBB in an exosomal RNA-dependent manner. This suggests a novel mechanism of peripheral senescent exosomes for AD risk.
Collapse
|
3
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating Exosomes from Alzheimer's Disease Suppress Vascular Endothelial-Cadherin Expression and Induce Barrier Dysfunction in Recipient Brain Microvascular Endothelial Cell. J Alzheimers Dis 2023; 95:869-885. [PMID: 37661885 DOI: 10.3233/jad-230347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Blood-brain barrier (BBB) breakdown is a crucial aspect of Alzheimer's disease (AD) progression. Dysfunction in BBB is primarily caused by impaired tight junction and adherens junction proteins in brain microvascular endothelial cells (BMECs). The role of adherens junctions in AD-related BBB dysfunction remains unclear. Exosomes from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. OBJECTIVE This study aimed to investigate the impact of AD circulating exosomes on brain endothelial dysfunction. METHODS Exosomes were isolated from sera of AD patients and age- and sex-matched cognitively normal controls using size-exclusion chromatography. The study measured the biomechanical nature of BMECs' endothelial barrier, the lateral binding forces between live BMECs. Paracellular expressions of the key adherens junction protein vascular endothelial (VE)-cadherin were visualized in BMEC cultures and a 3D BBB model using human BMECs and pericytes. VE-cadherin signals were also examined in brain tissues from AD patients and normal controls. RESULTS Circulating exosomes from AD patients reduced VE-cadherin expression levels and impaired barrier function in recipient BMECs. Immunostaining analysis demonstrated that AD exosomes damaged VE-cadherin integrity in a 3D microvascular tubule formation model. The study found that AD exosomes weakened BBB integrity depending on their RNA content. Additionally, diminished microvascular VE-cadherin expression was observed in AD brains compared to controls. CONCLUSION These findings highlight the significant role of circulating exosomes from AD patients in damaging adherens junctions of recipient BMECs, dependent on exosomal RNA.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ernesto G Miranda-Morales
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Qini Gan
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Yi Liew
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Balaji Krishnan
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subo Yuan
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiang Fang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Xu L, Lu G, Zhan B, Wei L, Deng X, Zhang Q, Shen X, Wang J, Feng H. Uncovering the efficacy and mechanisms of Genkwa flos and bioactive ingredient genkwanin against L. monocytogenes infection. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115571. [PMID: 35870686 DOI: 10.1016/j.jep.2022.115571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genkwa flos (yuanhua in Chinese), the dried flower buds of the plant Daphne genkwa Siebold & Zucc., as a traditional herb widely used for the treatment of inflammation-related symptoms and diseases, with the efficacies of diuretic, phlegm-resolving and cough suppressant. AIM OF THE STUDY Traditional Chinese Medicine (TCM) is presumed to be of immense potential against pathogens infection. Whereas, the potential efficacy and mechanisms of Genkwa flos against L. monocytogenes infection has not been extensively explored. The present study aimed to identify the bioactive ingredients of Genkwa flos against L. monocytogenes infection and to delineate the underlying mechanisms of action. MATERIALS AND METHODS Bioinformatics approach at protein network level was employed to investigate the therapeutic mechanisms of Genkwa flos against L. monocytogenes infection. And hemolysis inhibition assay, cytoprotection test, western blotting, oligomerization assay and molecular docking analysis were applied to substantiate the multiple efficacies of Genkwa flos and the bioactive ingredient genkwanin. Histopathological analysis and biochemistry detection were conducted to evaluate the in vivo protective effect of genkwanin. RESULTS Network pharmacology and experimental validation revealed that Traditional Chinese Medicine (TCM) Genkwa flos exhibited anti-L. monocytogenes potency and was found to inhibit the hemolytic activity of LLO. Bioactive ingredient genkwanin interfered with the pore-forming activity of LLO by engaging the active residues Tyr414, Tyr98, Asn473, Val100, Tyr440 and Val438, and thereby attenuated LLO-mediated cytotoxicity. Consistent with the bioinformatics prediction, exposed to genkwanin could upregulate the Nrf2 level and promote the translocation of Nrf2. In vivo, genkwanin oral administration (80 mg/kg) significantly protected against systemic L. monocytogenes infection, as evidenced by reduced myeloperoxidase (MPO) and malondialdehyde (MDA) levels, increased mice survival rate by 30% and decreased pathogen colonization. CONCLUSION Our study demonstrated that Genkwa flos is a potential anti-L. monocytogenes TCM, highlighted the therapeutic potential of Genkwa flos active ingredient genkwanin by targeting the pore-forming cytolysin LLO and acting as a promising antioxidative candidate against L. monocytogenes infection.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Gejin Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, China.
| | - Baihe Zhan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Lijuan Wei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Hebei Veterinary Medicine Technology Innovation Center, Shijiazhuang, 050041, Hebei, China.
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Qiaoling Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Qiu Y, Chien CC, Maroulis B, Bei J, Gaitas A, Gong B. Extending applications of AFM to fluidic AFM in single living cell studies. J Cell Physiol 2022; 237:3222-3238. [PMID: 35696489 PMCID: PMC9378449 DOI: 10.1002/jcp.30809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022]
Abstract
In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Basile Maroulis
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York City, New York, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. Role of IL-10-Producing Natural Killer Cells in the Regulatory Mechanisms of Inflammation during Systemic Infection. Biomolecules 2021; 12:biom12010004. [PMID: 35053151 PMCID: PMC8773486 DOI: 10.3390/biom12010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells have the dual ability to produce pro-inflammatory (IFNγ) and anti-inflammatory (IL-10) cytokines during systemic infection, which points to their crucial role both as inflammatory effectors for infection clearance and as regulators to counterbalance inflammation to limit immune-mediated damage to the host. In particular, immunosuppressive IL-10 secretion by NK cells has been described to occur in systemic, but not local, infections as a recent immunoregulatory mechanism of inflammation that may be detrimental or beneficial, depending on the timing of release, type of disease, or the infection model. Understanding the factors that drive the production of IL-10 by NK cells and their impact during dualistic inflammatory states, such as sepsis and other non-controlled inflammatory diseases, is relevant for achieving effective therapeutic advancements. In this review, the evidence regarding the immunoregulatory role of IL-10-producing NK cells in systemic infection is summarized and discussed in detail, and the potential molecular mechanisms that drive IL-10 production by NK cells are considered.
Collapse
|
7
|
Qiao X, Li P, Lin H, Zhang Y, Zhu Y, Du Z, Lu D. Chloroquine potentially modulated innate immune response to Vibrio parahaemolyticus in RAW 264.7 macrophages. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1978943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Pingchao Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Haoran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- College of Ocean, Hainan University, Haikou, People’s Republic of China
| | - Yong Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Ying Zhu
- R&D Health Food technology department, Infinitus (China) Co., LTD, Guangzhou, People’s Republic of China
| | - Zhiyun Du
- Drug and food homologous center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Pombinho R, Pinheiro J, Resende M, Meireles D, Jalkanen S, Sousa S, Cabanes D. Stabilin-1 plays a protective role against Listeria monocytogenes infection through the regulation of cytokine and chemokine production and immune cell recruitment. Virulence 2021; 12:2088-2103. [PMID: 34374322 PMCID: PMC8366540 DOI: 10.1080/21505594.2021.1958606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Scavenger receptors are part of a complex surveillance system expressed by host cells to efficiently orchestrate innate immune response against bacterial infections. Stabilin-1 (STAB-1) is a scavenger receptor involved in cell trafficking, inflammation, and cancer; however, its role in infection remains to be elucidated. Listeria monocytogenes (Lm) is a major intracellular human food-borne pathogen causing severe infections in susceptible hosts. Using a mouse model of infection, we demonstrate here that STAB-1 controls Lm-induced cytokine and chemokine production and immune cell accumulation in Lm-infected organs. We show that STAB-1 also regulates the recruitment of myeloid cells in response to Lm infection and contributes to clear circulating bacteria. In addition, whereas STAB-1 appears to promote bacterial uptake by macrophages, infection by pathogenic Listeria induces the down regulation of STAB-1 expression and its delocalization from the host cell membrane. We propose STAB-1 as a new SR involved in the control of Lm infection through the regulation of host defense mechanisms, a process that would be targeted by bacterial virulence factors to promote infection.
Collapse
Affiliation(s)
- Rita Pombinho
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Jorge Pinheiro
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Mariana Resende
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Microbiology and Immunology of Infection, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Diana Meireles
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Sandra Sousa
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto De Investigação E Inovação Em Saúde - i3S, Universidade Do Porto, Porto, Portugal.,Group of Molecular Microbiology, Instituto De Biologia Molecular E Celular - IBMC, Porto, Portugal
| |
Collapse
|
10
|
Bortell N, Aguilera ER, Lenz LL. Pulmonary insults exacerbate susceptibility to oral Listeria monocytogenes infection through the production of IL-10 by NK cells. PLoS Pathog 2021; 17:e1009531. [PMID: 33878120 PMCID: PMC8087096 DOI: 10.1371/journal.ppat.1009531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/30/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Most individuals who consume foods contaminated with the bacterial pathogen Listeria monocytogenes (Lm) develop mild symptoms, while others are susceptible to life-threatening systemic infections (listeriosis). Although it is known that the risk of severe disease is increased in certain human populations, including the elderly, it remains unclear why others who consume contaminated food develop listeriosis. Here, we used a murine model to discover that pulmonary coinfections can impair the host's ability to adequately control and eradicate systemic Lm that cross from the intestines to the bloodstream. We found that the resistance of mice to oral Lm infection was dramatically reduced by coinfection with Streptococcus pneumoniae (Spn), a bacterium that colonizes the respiratory tract and can also cause severe infections in the elderly. Exposure to Spn or microbial products, including a recombinant Lm protein (L1S) and lipopolysaccharide (LPS), rendered otherwise resistant hosts susceptible to severe systemic Lm infection. In addition, we show that this increase in susceptibility was dependent on an increase in the production of interleukin-10 (IL-10) from Ncr1+ cells, including natural killer (NK) cells. Lastly, the ability of Ncr1+ cell derived IL-10 to increase disease susceptibility correlated with a dampening of both myeloid cell accumulation and myeloid cell phagocytic capacity in infected tissues. These data suggest that efforts to minimize inflammation in response to an insult at the respiratory mucosa render the host more susceptible to infections by Lm and possibly other pathogens that access the oral mucosa.
Collapse
Affiliation(s)
- Nikki Bortell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Elizabeth R. Aguilera
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laurel L. Lenz
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
11
|
Antilisterial Potential of Lactic Acid Bacteria in Eliminating Listeria monocytogenes in Host and Ready-to-Eat Food Application. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Listeriosis is a severe food borne disease with a mortality rate of up to 30% caused by pathogenic Listeria monocytogenes via the production of several virulence factors including listeriolysin O (LLO), transcriptional activator (PrfA), actin (Act), internalin (Int), etc. It is a foodborne disease predominantly causing infections through consumption of contaminated food and is often associated with ready-to-eat food (RTE) and dairy products. Common medication for listeriosis such as antibiotics might cause an eagle effect and antibiotic resistance if it is overused. Therefore, exploration of the use of lactic acid bacteria (LAB) with probiotic characteristics and multiple antimicrobial properties is increasingly getting attention for their capability to treat listeriosis, vaccine development, and hurdle technologies. The antilisterial gene, a gene coding to produce antimicrobial peptide (AMP), one of the inhibitory substances found in LAB, is one of the potential key factors in listeriosis treatment, coupled with the vast array of functions and strategies; this review summarizes the various strategies by LAB against L. monocytogenes and the prospect in development of a ‘generally regarded as safe’ LAB for treatment of listeriosis.
Collapse
|
12
|
Larson SR, Bortell N, Illies A, Crisler WJ, Matsuda JL, Lenz LL. Myeloid Cell CK2 Regulates Inflammation and Resistance to Bacterial Infection. Front Immunol 2020; 11:590266. [PMID: 33363536 PMCID: PMC7752951 DOI: 10.3389/fimmu.2020.590266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
Kinase activity plays an essential role in the regulation of immune cell defenses against pathogens. The protein kinase CK2 (formerly casein kinase II) is an evolutionarily conserved kinase with hundreds of identified substrates. CK2 is ubiquitously expressed in somatic and immune cells, but the roles of CK2 in regulation of immune cell function remain largely elusive. This reflects the essential role of CK2 in organismal development and limited prior work with conditional CK2 mutant murine models. Here, we generated mice with a conditional (floxed) allele of Csnk2a, which encodes the catalytic CK2α subunit of CK2. When crossed to Lyz2-cre mice, excision of Csnk2a sequence impaired CK2α expression in myeloid cells but failed to detectably alter myeloid cell development. By contrast, deficiency for CK2α increased inflammatory myeloid cell recruitment, activation, and resistance following systemic Listeria monocytogenes (Lm) infection. Results from mixed chimera experiments indicated that CK2α deficiency in only a subset of myeloid cells was not sufficient to reduce bacterial burdens. Nor did cell-intrinsic deficiency for CK2α suffice to alter accumulation or activation of monocytes and neutrophils in infected tissues. These data suggest that CK2α expression by Lyz2-expressing cells promotes inflammatory and anti-bacterial responses through effects in trans. Our results highlight previously undescribed suppressive effects of CK2 activity on inflammatory myeloid cell responses and illustrate that cell-extrinsic effects of CK2 can shape inflammatory and protective innate immune responses.
Collapse
Affiliation(s)
- Sandy R. Larson
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Nikki Bortell
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alysha Illies
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - William J. Crisler
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jennifer L. Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Laurel L. Lenz
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
13
|
Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, Pham QM, Andrusaite A, Bravo-Blas A, Milling SWF, Lefrancois L, Khanna KM, Puddington L, Sheridan BS. Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection. Front Immunol 2020; 11:575967. [PMID: 33042159 PMCID: PMC7518468 DOI: 10.3389/fimmu.2020.575967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAMLm). InlAMLm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAMLm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAMLm. At this time Batf3–/– mice displayed reduced InlAMLm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAMLm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAMLm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAMLm infection and in driving the establishment of intestinal Lm-specific effector T cells.
Collapse
Affiliation(s)
- Jessica Nancy Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Daqi Xu
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Pablo A Romagnoli
- Centro de Investigacion en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Pedro Perez
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Quynh-Mai Pham
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Leo Lefrancois
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Kamal M Khanna
- Department of Microbiology, New York University, New York City, NY, United States
| | - Lynn Puddington
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
14
|
Nguyen BN, Chávez-Arroyo A, Cheng MI, Krasilnikov M, Louie A, Portnoy DA. TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes. PLoS Pathog 2020; 16:e1008622. [PMID: 32634175 PMCID: PMC7340287 DOI: 10.1371/journal.ppat.1008622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.
Collapse
Affiliation(s)
- Brittney N. Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alfredo Chávez-Arroyo
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mandy I. Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Maria Krasilnikov
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
15
|
Li G, Wang G, Li M, Li L, Liu H, Sun M, Wen Z. Morin inhibits Listeria monocytogenes virulence in vivo and in vitro by targeting listeriolysin O and inflammation. BMC Microbiol 2020; 20:112. [PMID: 32398085 PMCID: PMC7216731 DOI: 10.1186/s12866-020-01807-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/29/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Listeria monocytogenes (L. monocytogenes) is a global opportunistic intracellular pathogen that can cause many infections, including meningitis and abortion in humans and animals; thus, L. monocytogenes poses a great threat to public safety and the development of the aquaculture industry. The isolation rate of Listeria monocytogenes in fishery products has always been high. And the pore-forming toxin listeriolysin O (LLO) is one of the most important virulence factors of L. monocytogenes. LLO can promote cytosolic bacterial proliferation and help the pathogen evade attacks from the host immune system. In addition, L. monocytogenes infection can trigger a series of severe inflammatory reactions. RESULTS Here, we further confirmed that morin lacking anti-Listeria activity could inhibit LLO oligomerization. We also found that morin can effectively alleviate the inflammation induced by Listeria in vivo and in vitro and exerted an obvious protective effect on infected cells and mice. CONCLUSIONS Morin does not possess anti-Listeria activity, neither does it interfere with secretion of LLO. However, morin inhibits oligomerisation of LLO and morin does reduce the inflammation caused during Listeria infection.
Collapse
Affiliation(s)
- Gen Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guizhen Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Meng Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Li Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hongtao Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Meiyang Sun
- Department of Breast Surgery, Jilin Provincial Cancer Hospital, Changchun, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
16
|
Wu Z, Cheng Y, Yang Y, Gao Y, Sun X, Wang L, Sun Q, Zhang J, Xu X. In vitro and in vivo anti-Listeria effect of Succinoglycan Riclin through regulating MAPK/IL-6 axis and metabolic profiling. Int J Biol Macromol 2020; 150:802-813. [PMID: 32057883 DOI: 10.1016/j.ijbiomac.2020.02.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
Abstract
Infectious diseases such as Listeria monocytogenes infection pose a great threat to the health of human beings and the development of livestock and poultry farming. Currently the treatment of Listeria infection mainly relies on antibiotics, which may result in excessive antibiotic residues in livestock and poultry products, as well as causing an increase in the occurrence of zoonotic diseases. Here, we demonstrate that Succinoglycan Riclin promoted the clearance of Listeria in the in vitro and in vivo infection model. The expression and secretion of inflammatory cytokines including IL-6 and IL-1β were significantly increased after Riclin treatment upon infection. The protective effect of Riclin was mainly through activating MAPK/IL-6 axis. HO-1/IL-1β signaling pathway was less important in this process. Moreover, Riclin caused significant metabolic changes including pathways involved in glycolysis, protein synthesis and oxidative stress during Listeria infection. These results suggest a potential use of Succinoglycan Riclin as non-antibiotic preventive and therapeutic anti-microbial agent in livestock and poultry farming and human diseases.
Collapse
Affiliation(s)
- Zhuhui Wu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yingying Cheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Lei Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| |
Collapse
|
17
|
A new role for host annexin A2 in establishing bacterial adhesion to vascular endothelial cells: lines of evidence from atomic force microscopy and an in vivo study. J Transl Med 2019; 99:1650-1660. [PMID: 31253864 PMCID: PMC6913097 DOI: 10.1038/s41374-019-0284-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding bacterial adhesion is challenging and critical to our understanding of the initial stages of the pathogenesis of endovascular bacterial infections. The vascular endothelial cell (EC) is the main target of Rickettsia, an obligately intracellular bacterium that causes serious systemic disease in humans and animals. But the mechanism(s) underlying bacterial adherence to ECs under shear stress from flowing blood prior to activation are unknown for any bacteria. Although host surface annexin a2 (ANXA2) has been identified to participate in efficient bacterial invasion of epithelial cells, direct evidence is lacking in the field of bacterial infections of ECs. In the present study, we employ a novel, anatomically based, in vivo quantitative bacterial-adhesion-to-vascular-EC system, combined with atomic force microscopy (AFM), to examine the role of endothelial luminal surface ANXA2 during rickettsial adherence to ECs. We also examined whether ANXA2 antibody affected binding of Staphylococcus aureus to ECs. We found that deletion of ANXA2 impeded rickettsial attachment to the ECs in vitro and blocked rickettsial adherence to the blood vessel luminal surface in vivo. The AFM studies established that EC surface ANXA2 acts as an adherence receptor for rickettsiae, and that rickettsial adhesin OmpB is the associated bacterial ligand. Furthermore, pretreatment of ECs with anti-ANXA2 antibody reduced EC surface-associated S. aureus. We conclude that the endothelial surface ANXA2 plays an important role in initiating pathogen-host interactions, ultimately leading to bacterial anchoring on the vascular luminal surface.
Collapse
|
18
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
19
|
Rios-Covian D, Nogacka A, Salazar N, Hernández-Barranco AM, Cuesta I, Gueimonde M, de Los Reyes Gavilán CG. Bifidobacterium breve IPLA20005 affects in vitro the expression of hly and luxS genes, related to the virulence of Listeria monocytogenes Lm23. Can J Microbiol 2018; 64:215-221. [PMID: 29298396 DOI: 10.1139/cjm-2017-0625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanistic features that characterize the interaction and inhibition of the food-borne pathogen Listeria monocytogenes by members of the genus Bifidobacterium still remain unclear. In the present work, we tried to shed light on the influence that co-cultivation of L. monocytogenes with Bifidobacterium breve may exert on both microorganisms and on virulence of the pathogen. Production of acetate and lactate was measured by gas chromatography and high-performance liquid chromatography, respectively; bacterial counts were obtained by plate count; gene expression was determined by RT-qPCR; and haemolytic activity was analyzed against goat erythrocytes. We found slightly but significantly lower final counts of Listeria and Bifidobacterium (p < 0.05) and lower haemolytic efficiency in L. monocytogenes cells from cocultures than in those from monocultures. In contrast, the hly and luxS genes, which code for the cytolysin listeriolysin O and participate in biofilm formation, respectively, were overexpressed when L. monocytogenes was grown in coculture. This indicates that the presence of Bifidobacterium is able to modify the gene expression and haemolytic activity of L. monocytogenes when both microorganisms grow together.
Collapse
Affiliation(s)
- David Rios-Covian
- a Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain
| | - Alicja Nogacka
- a Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain.,b Diet, Microbiota and Health group, Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| | - Nuria Salazar
- a Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain.,b Diet, Microbiota and Health group, Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| | - A M Hernández-Barranco
- c Scientific and Technical Facilities, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain
| | - Isabel Cuesta
- c Scientific and Technical Facilities, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- a Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain.,b Diet, Microbiota and Health group, Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| | - Clara G de Los Reyes Gavilán
- a Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain.,b Diet, Microbiota and Health group, Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| |
Collapse
|
20
|
Alice AF, Kramer G, Bambina S, Baird JR, Bahjat KS, Gough MJ, Crittenden MR. Amplifying IFN-γ Signaling in Dendritic Cells by CD11c-Specific Loss of SOCS1 Increases Innate Immunity to Infection while Decreasing Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 200:177-185. [PMID: 29150567 DOI: 10.4049/jimmunol.1700909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/23/2017] [Indexed: 01/23/2023]
Abstract
Although prophylactic vaccines provide protective humoral immunity against infectious agents, vaccines that elicit potent CD8 T cell responses are valuable tools to shape and drive cellular immunity against cancer and intracellular infection. In particular, IFN-γ-polarized cytotoxic CD8 T cell immunity is considered optimal for protective immunity against intracellular Ags. Suppressor of cytokine signaling (SOCS)1 is a cross-functional negative regulator of TLR and cytokine receptor signaling via degradation of the receptor-signaling complex. We hypothesized that loss of SOCS1 in dendritic cells (DCs) would improve T cell responses by accentuating IFN-γ-directed immune responses. We tested this hypothesis using a recombinant Listeria monocytogenes vaccine platform that targets CD11c+ DCs in mice in which SOCS1 is selectively deleted in all CD11c+ cells. Unexpectedly, in mice lacking SOCS1 expression in CD11c+ cells, we observed a decrease in CD8+ T cell response to the L. monocytogenes vaccine. NK cell responses were also decreased in mice lacking SOCS1 expression in CD11c+ cells but did not explain the defect in CD8+ T cell immunity. We found that DCs lacking SOCS1 expression were functional in driving Ag-specific CD8+ T cell expansion in vitro but that this process was defective following infection in vivo. Instead, monocyte-derived innate TNF-α and inducible NO synthase-producing DCs dominated the antibacterial response. Thus, loss of SOCS1 in CD11c+ cells skewed the balance of immune response to infection by increasing innate responses while decreasing Ag-specific adaptive responses to infectious Ags.
Collapse
Affiliation(s)
- Alejandro F Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213; and
| | - Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213; and
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213; and
| | - Jason R Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213; and
| | - Keith S Bahjat
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213; and
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213; and
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213; and .,The Oregon Clinic, Portland, OR 97213
| |
Collapse
|
21
|
Silvestri V, Isernia G. Suspected Giant Cell Aortitis: From Multiple Aortic Structural Damage to Fatal Listeria Sepsis, a Case Report. Ann Vasc Surg 2017; 42:307.e1-307.e6. [DOI: 10.1016/j.avsg.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 11/15/2022]
|
22
|
Johnston DGW, Kearney J, Zasłona Z, Williams MA, O'Neill LAJ, Corr SC. MicroRNA-21 Limits Uptake of Listeria monocytogenes by Macrophages to Reduce the Intracellular Niche and Control Infection. Front Cell Infect Microbiol 2017; 7:201. [PMID: 28589100 PMCID: PMC5440467 DOI: 10.3389/fcimb.2017.00201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
MiRNAs are important post-transcriptional regulators of gene expression. MiRNA expression is a crucial part of host responses to bacterial infection, however there is limited knowledge of their impact on the outcome of infections. We investigated the influence of miR-21 on macrophage responses during infection with Listeria monocytogenes, which establishes an intracellular niche within macrophages. MiR-21 is induced following infection of bone marrow-derived macrophages (BMDMs) with Listeria. MiR-21−/− macrophages display an increased bacterial burden with Listeria at 30 min and 2 h post-infection. This phenotype was reversed by the addition of synthetic miR-21 mimics to the system. To assess the immune response of wildtype (WT) and miR-21−/− macrophages, BMDMs were treated with bacterial LPS or infected with Listeria. There was no difference in IL-10 and IL-6 between WT and miR-21−/− BMDMs in response to LPS or Listeria. TNF-α was increased in miR-21−/− BMDMs stimulated with LPS or Listeria compared to WT macrophages. We next assessed the production of nitric oxide (NO), a key bactericidal factor in Listeria infection. There was no significant difference in NO production between WT and miR-21−/− cells, indicating that the increased bacterial burden may not be due to impaired killing. As the increased bacterial load was observed early following infection (30 min), we questioned whether this is due to differences in uptake of Listeria by WT and miR-21−/− macrophages. We show that miR-21-deficiency enhances uptake of FITC-dextran and FITC-Escherichia coli bioparticles by macrophages. The previously observed Listeria burden phenotype was ablated by pre-treatment of cells with the actin polymerization inhibitor cytochalasin-D. From analysis of miR-21 targets, we selected the pro-phagocytic regulators myristoylated alanine-rich C-kinase substrate (MARCKS) and Ras homolog gene family, member B (RhoB) for further investigation. MARCKS and RhoB are increased in miR-21−/− BMDMs, correlating with increased uptake of Listeria. Finally, intra-peritoneal infection of mice with Listeria led to increased bacterial burden in livers of miR-21−/− mice compared to WT mice. These findings suggest a possible role for miR-21 in regulation of phagocytosis during infection, potentially by repression of MARCKS and RhoB, thus serving to limit the availability of the intracellular niche of pathogens like L. monocytogenes.
Collapse
Affiliation(s)
- Daniel G W Johnston
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Zbigniew Zasłona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Michelle A Williams
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| |
Collapse
|
23
|
Eshleman EM, Delgado C, Kearney SJ, Friedman RS, Lenz LL. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection. PLoS Pathog 2017; 13:e1006388. [PMID: 28542482 PMCID: PMC5457163 DOI: 10.1371/journal.ppat.1006388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/02/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ) acts on a cell surface receptor (IFNGR) to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1) driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.
Collapse
Affiliation(s)
- Emily M. Eshleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
| | - Christine Delgado
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
| | - Staci J. Kearney
- Department of Biomedical Sciences, National Jewish Health, Denver, CO United States of America
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
- Department of Biomedical Sciences, National Jewish Health, Denver, CO United States of America
| | - Laurel L. Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
- Department of Biomedical Sciences, National Jewish Health, Denver, CO United States of America
| |
Collapse
|
24
|
Inflammation-induced CD69 + Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF-β1. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1259-1269. [PMID: 27933593 DOI: 10.1007/s11427-016-0357-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
Abstract
Kupffer cells, tissue-resident macrophage lineage cell, are enriched in vertebrate liver. The mouse F4/80+ Kupffer cells have been subclassified into two subpopulations according to their phenotype and function: CD68+ subpopulation with potent reactive oxygen species (ROS) production and phagocytic capacities, and CD11b+ subpopulation with a potent capacity to produce T helper 1 cytokines. In addition, CD11b+ Kupffer cells/macrophages may be migrated from the bone marrow or spleen, especially in inflammatory conditions of the liver. For analyzing diverse Kupffer cell subsets, we infected mice with Listeria monocytogenes and analyzed the phenotype variations of hepatic Kupffer cells. During L. monocytogenes infection, hepatic CD69+ Kupffer cells were significantly induced and expanded, and CD69+ Kupffer cells expressed higher level of CD11b, and particularly high level of membrane-bound TGF-β1 (mTGF-β1) but lower level of F4/80. We also found that clodronate liposome administration did not eliminate hepatic CD69+ Kupffer cell subset. We consider the hepatic CD69+ Kupffer cell population corresponds to CD11b+ Kupffer cells, the bone marrow-derived population. Hepatic CD69+ Kupffer cells suppressed Ag-nonspecific and OVA-specific CD4 T cell proliferation through mTGF-β1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells. Thus, we have identified a new subset of inflammation-induced CD69+ Kupffer cells which can feedback inhibit CD4 T cell response via cell surface TGF-β1 at the late stage of immune response against infection. CD69+ Kupffer cells may contribute to protect host from pathological injure by preventing overactivation of immune response.
Collapse
|
25
|
Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, González-Jiménez M, Paredes-Vivas Y, Cerbulo-Vázquez A, Serafín-López J, García-Pérez B, Ullrich SE, Flores-Romo L, Pérez-Tapia SM, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Listeria monocytogenes induces mast cell extracellular traps. Immunobiology 2016; 222:432-439. [PMID: 27520114 DOI: 10.1016/j.imbio.2016.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/04/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
Mast cells play an essential role in different immunological phenomena including allergy and infectious diseases. Several bacteria induce mast cell activation leading to degranulation and the production of several cytokines and chemokines. However, mast cells also have different microbicidal activities such as phagocytosis and the release of DNA with embedded granular proteins known as Mast Cell Extracellular Traps (MCETs). Although previous reports indicate that extracellular bacteria are able to induce MCETs little is known if intracellular bacteria can induce these structures. In this work, we evaluated MCETs induction by the intracellular bacteria Listeria monocytogenes. We found that mast cells released DNA after stimulation with L. monocytogenes, and this DNA was complexed to histone and tryptase. Before extracellular DNA release, L. monocytogenes induced modifications to the mast cell nuclear envelope and DNA was detected outside the nucleus. L. monocytogenes stimulated mast cells to produce significant amounts of reactive oxygen species (ROS) and blocking NADPH oxidase diminished DNA release by mast cells. Finally, MCETs showed antimicrobial activity against L. monocytogenes that was partially blocked when β-hexosaminidase activity was inhibited. These results show that L. monocytogenes induces mast cells to produce microbicidal MCETs, suggesting a role for mast cells in containing infection beyond the induction of inflammation.
Collapse
Affiliation(s)
- Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Kahiry Leyva-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Luis Donis-Maturano
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, Mexico
| | | | | | | | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Blanca García-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, USA; The University of Texas Graduate School of Biological Sciences at Houston, TX, USA
| | | | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico.
| |
Collapse
|
26
|
Kummer A, Nishanth G, Koschel J, Klawonn F, Schlüter D, Jänsch L. Listeriosis downregulates hepatic cytochrome P450 enzymes in sublethal murine infection. Proteomics Clin Appl 2016; 10:1025-1035. [PMID: 27273978 DOI: 10.1002/prca.201600030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Listeria monocytogenes (Lm) can cross the intestinal barrier in humans and then disseminates into different organs. Invasion of the liver occurs even in sublethal infections, however, knowledge of affected physiological processes is scarce. This study employed a sublethal murine infection model to investigate liver responses systematically by proteomics. EXPERIMENTAL DESIGN Liver samples from three stages of the sublethal infection covering the initial invasion, the peak of infection, and the clearance phase (1, 3, 9 days postinoculation) were analyzed in comparison to samples from noninfected mice. Apart from flow cytometry and RT-PCRs for immune status control, liver responses were analyzed by quantitative peptide sequencing (HPLC-Orbitrap Fusion) using 4-plex iTRAQ-labeling. RESULTS Accurate MS characterized about 3600 proteins and statistics revealed 15% of the hepatic proteome as regulated. Immunological data as well as protein regulation dynamics strongly indicate stage-specific hepatic responses in sublethal infections. Most notably, this study detected a comprehensive deregulation of drug metabolizing enzymes at all stages, including 25 components of the cytochrome P450 system. CONCLUSIONS AND CLINICAL RELEVANCE Sublethal Lm infection deregulates hepatic drug metabolizing pathways. This finding indicates the need to monitor drug administration along Lm infections, especially in all patients needing constant medication.
Collapse
Affiliation(s)
- Anne Kummer
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gopala Nishanth
- Otto-von-Guericke University, Magdeburg, Germany.,Organ-specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Dirk Schlüter
- Otto-von-Guericke University, Magdeburg, Germany.,Organ-specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
27
|
Clark SE, Filak HC, Guthrie BS, Schmidt RL, Jamieson A, Merkel P, Knight V, Cole CM, Raulet DH, Lenz LL. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection. PLoS Pathog 2016; 12:e1005708. [PMID: 27295349 PMCID: PMC4905663 DOI: 10.1371/journal.ppat.1005708] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. Natural killer (NK) cells are an innate immune cell population known to promote antiviral immunity through cytolysis and production of cytokines. Yet, some pathogens encode proteins that cause increased NK cell activation. Here, using a model of systemic infection by the bacterial pathogen Listeria monocytogenes (Lm), we show that NK cell activation increases host susceptibility. Activated NK cells increased bacterial burdens in infected tissues despite their early production of the pro-inflammatory cytokine IFNγ. We found that the ability of NK cells to exacerbate infection was independent from their production of IFNγ and instead due to subsequent production of the anti-inflammatory cytokine IL-10. A single bacterial protein, p60, was sufficient to elicit NK cell production of both early IFNγ and delayed IL-10. IL-10-production by NK cells has been shown to occur in other systems, but our studies are first to show how this “regulatory” response impacts the course of a bacterial infection. We found that IL-10 producing NK cells suppress accumulation and activation of inflammatory myeloid cells. Our studies suggest that the exploitation of NK cell regulatory activity provides selective pressure for the evolution of pathogen proteins that promote NK cell activation.
Collapse
Affiliation(s)
- Sarah E. Clark
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Holly C. Filak
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
| | - Brandon S. Guthrie
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Rebecca L. Schmidt
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
| | - Amanda Jamieson
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, Berkeley, California, United States of America
| | - Patricia Merkel
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Vijaya Knight
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Caroline M. Cole
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - David H. Raulet
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, Berkeley, California, United States of America
| | - Laurel L. Lenz
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
Margaroli C, Oberle S, Lavanchy C, Scherer S, Rosa M, Strasser A, Pellegrini M, Zehn D, Acha-Orbea H, Ehirchiou D. Role of proapoptotic BH3-only proteins inListeria monocytogenesinfection. Eur J Immunol 2016; 46:1427-37. [DOI: 10.1002/eji.201545857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/25/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Camilla Margaroli
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Susanne Oberle
- Swiss Vaccine Research Institute; Centre des laboratoires d'Epalinges; Epalinges Switzerland
- Division of Immunology and Allergy; Department of Medicine; Lausanne University Hospital; Lausanne Switzerland
| | - Christine Lavanchy
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Stefanie Scherer
- Swiss Vaccine Research Institute; Centre des laboratoires d'Epalinges; Epalinges Switzerland
- Division of Immunology and Allergy; Department of Medicine; Lausanne University Hospital; Lausanne Switzerland
| | - Muriel Rosa
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research; Melbourne Australia
- The Department of Medical Biology; University of Melbourne; Melbourne Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research; Melbourne Australia
- The Department of Medical Biology; University of Melbourne; Melbourne Australia
| | - Dietmar Zehn
- Technische Universität München; Weihenstephaner Berg 3; 85354 Freising-Weihenstephan Germany
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Driss Ehirchiou
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| |
Collapse
|
29
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
30
|
Okita Y, Shiono T, Yahagi A, Hamada S, Umemura M, Matsuzaki G. Interleukin-22-Induced Antimicrobial Phospholipase A2 Group IIA Mediates Protective Innate Immunity of Nonhematopoietic Cells against Listeria monocytogenes. Infect Immun 2016; 84:573-9. [PMID: 26644377 PMCID: PMC4730562 DOI: 10.1128/iai.01000-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023] Open
Abstract
Listeria monocytogenes is a bacterial pathogen which establishes intracellular parasitism in various cells, including macrophages and nonhematopoietic cells, such as hepatocytes. It has been reported that several proinflammatory cytokines have pivotal roles in innate protection against L. monocytogenes infection. We found that a proinflammatory cytokine, interleukin 22 (IL-22), was expressed by CD3(+) CD4(+) T cells at an early stage of L. monocytogenes infection in mice. To assess the influence of IL-22 on L. monocytogenes infection in hepatocytes, cells of a human hepatocellular carcinoma line, HepG2, were treated with IL-22 before L. monocytogenes infection in vitro. Gene expression analysis of the IL-22-treated HepG2 cells identified phospholipase A2 group IIA (PLA2G2A) as an upregulated antimicrobial molecule. Addition of recombinant PLA2G2A to the HepG2 culture significantly suppressed L. monocytogenes infection. Culture supernatant of the IL-22-treated HepG2 cells contained bactericidal activity against L. monocytogenes, and the activity was abrogated by a specific PLA2G2A inhibitor, demonstrating that HepG2 cells secreted PLA2G2A, which killed extracellular L. monocytogenes. Furthermore, colocalization of PLA2G2A and L. monocytogenes was detected in the IL-22-treated infected HepG2 cells, which suggests involvement of PLA2G2A in the mechanism of intracellular killing of L. monocytogenes by HepG2 cells. These results suggest that IL-22 induced at an early stage of L. monocytogenes infection enhances innate immunity against L. monocytogenes in the liver by stimulating hepatocytes to produce an antimicrobial molecule, PLA2G2A.
Collapse
Affiliation(s)
- Yamato Okita
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takeru Shiono
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ayano Yahagi
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Satoru Hamada
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masayuki Umemura
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Goro Matsuzaki
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
31
|
Kanoh M, Maruyama S, Shen H, Matsumoto A, Shinomiya H, Przybilla K, Gouin E, Cossart P, Goebel W, Asano Y. Listeria arpJ gene modifies T helper type 2 subset differentiation. J Infect Dis 2015; 212:223-33. [PMID: 25589336 DOI: 10.1093/infdis/jiv021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. METHODS Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. RESULTS We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. CONCLUSIONS arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection.
Collapse
Affiliation(s)
- Makoto Kanoh
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Toon, Japan
| | - Saho Maruyama
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hua Shen
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Toon, Japan
| | - Akira Matsumoto
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroto Shinomiya
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Toon, Japan
| | - Karin Przybilla
- Department of Microbiology, Theodor-Boveri-Institute, Würtzburg University, Germany
| | - Edith Gouin
- Unit of Bacteria-Cell Interactions, INSERM U604, INRA USC2020, Institut Pasteur, Paris, France
| | - Pascale Cossart
- Unit of Bacteria-Cell Interactions, INSERM U604, INRA USC2020, Institut Pasteur, Paris, France
| | - Werner Goebel
- Department of Microbiology, Theodor-Boveri-Institute, Würtzburg University, Germany
| | - Yoshihiro Asano
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
32
|
Pathogen-expanded CD11b+ invariant NKT cells feedback inhibit T cell proliferation via membrane-bound TGF-β1. J Autoimmun 2015; 58:21-35. [DOI: 10.1016/j.jaut.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/13/2014] [Accepted: 12/21/2014] [Indexed: 12/23/2022]
|
33
|
Orsi RH, Bergholz TM, Wiedmann M, Boor KJ. The Listeria monocytogenes strain 10403S BioCyc database. Database (Oxford) 2015; 2015:bav027. [PMID: 25819074 PMCID: PMC4377088 DOI: 10.1093/database/bav027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry, while the high mortality of listeriosis in specific groups of humans makes it a great concern for public health. Previous studies have shown that a regulatory network involving alternative sigma (σ) factors and transcription factors is pivotal to stress survival. However, few studies have evaluated at the metabolic networks controlled by these regulatory mechanisms. The L. monocytogenes BioCyc database uses the strain 10403S as a model. Computer-generated initial annotation for all genes also allowed for identification, annotation and display of predicted reactions and pathways carried out by a single cell. Further ongoing manual curation based on published data as well as database mining for selected genes allowed the more refined annotation of functions, which, in turn, allowed for annotation of new pathways and fine-tuning of previously defined pathways to more L. monocytogenes-specific pathways. Using RNA-Seq data, several transcription start sites and promoter regions were mapped to the 10403S genome and annotated within the database. Additionally, the identification of promoter regions and a comprehensive review of available literature allowed the annotation of several regulatory interactions involving σ factors and transcription factors. The L. monocytogenes 10403S BioCyc database is a new resource for researchers studying Listeria and related organisms. It allows users to (i) have a comprehensive view of all reactions and pathways predicted to take place within the cell in the cellular overview, as well as to (ii) upload their own data, such as differential expression data, to visualize the data in the scope of predicted pathways and regulatory networks and to carry on enrichment analyses using several different annotations available within the database.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Teresa M Bergholz
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
MacDuff DA, Reese TA, Kimmey JM, Weiss LA, Song C, Zhang X, Kambal A, Duan E, Carrero JA, Boisson B, Laplantine E, Israel A, Picard C, Colonna M, Edelson BT, Sibley LD, Stallings CL, Casanova JL, Iwai K, Virgin HW. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. eLife 2015; 4. [PMID: 25599590 PMCID: PMC4298697 DOI: 10.7554/elife.04494] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/24/2014] [Indexed: 12/12/2022] Open
Abstract
Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies. DOI:http://dx.doi.org/10.7554/eLife.04494.001 The immune system protects an individual from invading bacteria, viruses and parasites, as well as malfunctioning or cancerous host cells. However, some people inherit genetic defects that cause part of the immune system to be missing or to not work properly. This is called a genetic immunodeficiency, and puts individuals at a higher risk of infection and disease. The symptoms of immunodeficiencies can vary substantially between individuals, even when they have defects in the same gene. For example, only some of the individuals who have defects in both of their copies of a gene called HOIL-1—which has been linked to several roles in the body's immune response—are reported to suffer from an altered susceptibility to bacterial infections and chronic (persistent) inflammation. Gaining a clear understanding of the possible factors that influence such variations in the symptoms of genetic immune deficiencies could help to speed up their diagnosis, as well as helping to develop more effective treatments. MacDuff et al. studied mice that had mutations in both copies of the mouse equivalent of the HOIL-1 gene. These mice, when raised in a clean barrier facility that reduces their exposure to viruses, were severely immunodeficient and died when infected by certain bacteria and parasites, including Listeria monocytogenes. However, they were able to tolerate infections with a herpesvirus or the bacterium that causes tuberculosis. The immunodeficiency to L. monocytogenes was linked to problems producing protective molecules called cytokines, which form a crucial part of the immune response. Unexpectedly, MacDuff et al. found that a chronic herpesvirus infection substantially protected these very immunodeficient animals from infection with Listeria monocytogenes, and the mice were able to efficiently produce protective cytokines. Mice with two other distinct genetic deficiencies that affect their immune system were also better able to survive otherwise lethal bacterial infections if they had a long-term herpesvirus infection. Macduff et al. suggest that the chronic herpesvirus infection stimulates the immune system, and so allows it to compensate for the lack of cytokine production associated with various immunodeficiencies, including those caused by mutations in the HOIL-1 gene. This suggests that the presence of viruses or other long-term infections may be responsible for some of the variability seen in the symptoms of different individuals with the same genetic immunodeficiency. This is an important concept since essentially all humans have life-long chronic infections from various herpesviruses, as well as other viruses that form the human virome. DOI:http://dx.doi.org/10.7554/eLife.04494.002
Collapse
Affiliation(s)
- Donna A MacDuff
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Tiffany A Reese
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
| | - Leslie A Weiss
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
| | - Christina Song
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Xin Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Amal Kambal
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Erning Duan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | | | - Emmanuel Laplantine
- Laboratory of Molecular Signaling and Cell Activation, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée, Paris, France
| | - Alain Israel
- Laboratory of Molecular Signaling and Cell Activation, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée, Paris, France
| | - Capucine Picard
- St Giles Laboratory of Human Genetics of Infectious Disease, Rockefeller University, New York, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
| | | | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| |
Collapse
|
35
|
Wang J, Qiu J, Tan W, Zhang Y, Wang H, Zhou X, Liu S, Feng H, Li W, Niu X, Deng X. Fisetin inhibits Listeria monocytogenes virulence by interfering with the oligomerization of listeriolysin O. J Infect Dis 2014; 211:1376-87. [PMID: 25231018 DOI: 10.1093/infdis/jiu520] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022] Open
Abstract
Listeriolysin O (LLO), an essential virulence determinant of Listeria monocytogenes, is a pore-forming toxin whose primary function is to facilitate cytosolic bacterial replication by breaching the phagosomal membranes, which is critical for the pathogen to evade host immune recognition. The critical role of LLO in the virulence of L. monocytogenes renders it an ideal target for designing novel antivirulence therapeutics. We found that fisetin, a natural flavonoid without antimicrobial activity, is a potent antagonist of LLO-mediated hemolysis. Fisetin effectively inhibits L. monocytogenes infection in both tissue culture and animal infection models. Molecular modeling and mutational analysis revealed that fisetin directly engages loop 2 and loop 3 of LLO, leading to the blockage of cholesterol binding and the reduction of its oligomerization, thus inhibiting its hemolytic activity. Our results establish fisetin as an effective antitoxin agent for LLO, which can be further developed into novel therapeutics against infections caused by L. monocytogenes.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Wei Tan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Yu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Hongshu Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Shui Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Wenhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Xiaodi Niu
- Department of Food Quality and Safety, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| |
Collapse
|
36
|
3,4-Methylenedioxymethamphetamine (MDMA – Ecstasy) Decreases Neutrophil Activity Through the Glucocorticoid Pathway and Impairs Host Resistance to Listeria Monocytogenes Infection in Mice. J Neuroimmune Pharmacol 2014; 9:690-702. [DOI: 10.1007/s11481-014-9562-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/04/2014] [Indexed: 01/09/2023]
|
37
|
Arnold-Schrauf C, Dudek M, Dielmann A, Pace L, Swallow M, Kruse F, Kühl AA, Holzmann B, Berod L, Sparwasser T. Dendritic cells coordinate innate immunity via MyD88 signaling to control Listeria monocytogenes infection. Cell Rep 2014; 6:698-708. [PMID: 24529704 DOI: 10.1016/j.celrep.2014.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes (LM), a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88) is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs) is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α(+) cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c(+) conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo.
Collapse
Affiliation(s)
- Catharina Arnold-Schrauf
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Center for Infection Research (HZI), 30625 Hannover, Germany
| | - Markus Dudek
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Center for Infection Research (HZI), 30625 Hannover, Germany
| | - Anastasia Dielmann
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Center for Infection Research (HZI), 30625 Hannover, Germany
| | - Luigia Pace
- Institut National de la Santé et de la Recherche Médicale (INSERM) U932, Institut Curie, 75005 Paris, France
| | - Maxine Swallow
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Center for Infection Research (HZI), 30625 Hannover, Germany
| | - Friederike Kruse
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Center for Infection Research (HZI), 30625 Hannover, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Bernhard Holzmann
- Chirurgische Klinik und Poliklinik, Technische Universität München, 81675 Munich, Germany
| | - Luciana Berod
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Center for Infection Research (HZI), 30625 Hannover, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Center for Infection Research (HZI), 30625 Hannover, Germany.
| |
Collapse
|
38
|
Rothman J, Paterson Y. Live-attenuatedListeria-based immunotherapy. Expert Rev Vaccines 2014; 12:493-504. [DOI: 10.1586/erv.13.34] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Arnett E, Vadia S, Nackerman CC, Oghumu S, Satoskar AR, McLeish KR, Uriarte SM, Seveau S. The pore-forming toxin listeriolysin O is degraded by neutrophil metalloproteinase-8 and fails to mediate Listeria monocytogenes intracellular survival in neutrophils. THE JOURNAL OF IMMUNOLOGY 2013; 192:234-44. [PMID: 24319266 DOI: 10.4049/jimmunol.1301302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The pore-forming toxin listeriolysin O (LLO) is a major virulence factor secreted by the facultative intracellular pathogen Listeria monocytogenes. This toxin facilitates L. monocytogenes intracellular survival in macrophages and diverse nonphagocytic cells by disrupting the internalization vesicle, releasing the bacterium into its replicative niche, the cytosol. Neutrophils are innate immune cells that play an important role in the control of infections, yet it was unknown if LLO could confer a survival advantage to L. monocytogenes in neutrophils. We report that LLO can enhance the phagocytic efficiency of human neutrophils and is unable to protect L. monocytogenes from intracellular killing. To explain the absence of L. monocytogenes survival in neutrophils, we hypothesized that neutrophil degranulation leads to the release of LLO-neutralizing molecules in the forming phagosome. In support of this, L. monocytogenes is a potent inducer of neutrophil degranulation, since its virulence factors, such as LLO, facilitate granule exocytosis. Within the first few minutes of interaction with L. monocytogenes, granules can fuse with the plasma membrane at the bacterial interaction site before closure of the phagosome. Furthermore, granule products directly degrade LLO, irreversibly inhibiting its activity. The matrix metalloproteinase-8, stored in secondary granules, was identified as an endoprotease that degrades LLO, and blocking neutrophil proteases increased L. monocytogenes intracellular survival. In conclusion, we propose that LLO degradation by matrix metalloproteinase-8 during phagocytosis protects neutrophil membranes from perforation and contributes to maintaining L. monocytogenes in a bactericidal phagosome from which it cannot escape.
Collapse
Affiliation(s)
- Eusondia Arnett
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Identification of IFN-γ-producing innate B cells. Cell Res 2013; 24:161-76. [PMID: 24296781 PMCID: PMC3915900 DOI: 10.1038/cr.2013.155] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 12/14/2022] Open
Abstract
Although B cells play important roles in the humoral immune response and the regulation of adaptive immunity, B cell subpopulations with unique phenotypes, particularly those with non-classical immune functions, should be further investigated. By challenging mice with Listeria monocytogenes, Escherichia coli, vesicular stomatitis virus and Toll-like receptor ligands, we identified an inducible CD11a(hi)FcγRIII(hi) B cell subpopulation that is significantly expanded and produces high levels of IFN-γ during the early stage of the immune response. This subpopulation of B cells can promote macrophage activation via generating IFN-γ, thereby facilitating the innate immune response against intracellular bacterial infection. As this new subpopulation is of B cell origin and exhibits the phenotypic characteristics of B cells, we designated these cells as IFN-γ-producing innate B cells. Dendritic cells were essential for the inducible generation of these innate B cells from the follicular B cells via CD40L-CD40 ligation. Increased Bruton's tyrosine kinase activation was found to be responsible for the increased activation of non-canonical NF-κB pathway in these innate B cells after CD40 ligation, with the consequent induction of additional IFN-γ production. The identification of this new population of innate B cells may contribute to a better understanding of B cell functions in anti-infection immune responses and immune regulation.
Collapse
|
41
|
Köprülü AD, Kastner R, Wienerroither S, Lassnig C, Putz EM, Majer O, Reutterer B, Sexl V, Kuchler K, Müller M, Decker T, Ellmeier W. The tyrosine kinase Btk regulates the macrophage response to Listeria monocytogenes infection. PLoS One 2013; 8:e60476. [PMID: 23544144 PMCID: PMC3609758 DOI: 10.1371/journal.pone.0060476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
In this study we investigated the role of Bruton's tyrosine kinase (Btk) in the immune response to the Gram-positive intracellular bacterium Listeria monocytogenes (Lm). In response to Lm infection, Btk was activated in bone marrow-derived macrophages (BMMs) and Btk−/− BMMs showed enhanced TNF-α, IL-6 and IL-12p40 secretion, while type I interferons were produced at levels similar to wild-type (wt) BMMs. Although Btk-deficient BMMs displayed reduced phagocytosis of E. coli fragments, there was no difference between wt and Btk−/− BMMs in the uptake of Lm upon infection. Moreover, there was no difference in the response to heat-killed Lm between wt and Btk−/− BMMs, suggesting a role for Btk in signaling pathways that are induced by intracellular Lm. Finally, Btk−/− mice displayed enhanced resistance and an increased mean survival time upon Lm infection in comparison to wt mice. This correlated with elevated IFN-γ and IL-12p70 serum levels in Btk−/− mice at day 1 after infection. Taken together, our data suggest an important regulatory role for Btk in macrophages during Lm infection.
Collapse
Affiliation(s)
- Afitap Derya Köprülü
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Renate Kastner
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Sebastian Wienerroither
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics and Biomodels Austria, University of Veterinary Medicine, Vienna, Austria
| | - Eva Maria Putz
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Olivia Majer
- Department of Molecular Genetics, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Benjamin Reutterer
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Karl Kuchler
- Department of Molecular Genetics, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels Austria, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|