1
|
Li J, Li Y, Ding Y, Song Y, Li J, Chen H, Feng G, Wang X, Ge B, Ding N, Huang F. Inverse Regulation of C-C Chemokine Receptor 3 Oligomerization by Downstream Proteins Indicates Biased Signal Transduction Pathways. J Phys Chem Lett 2024; 15:7652-7658. [PMID: 39037351 DOI: 10.1021/acs.jpclett.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Oligomerization is one of the important mechanisms for G protein-coupled receptors (GPCRs) to modulate their activity in signal transduction. However, details of how and why the oligomerization of GPCRs regulates their functions under physiological conditions remain largely unknown. Here, using single-molecule photobleaching technology, we show that chemokine ligand 5 (CCL5) and chemokine ligand 8 (CCL8) are similar to the previously reported chemokine ligand 11 (CCL11) and chemokine ligand 24 (CCL24), which can regulate the oligomerization of chemokine receptor 3 (CCR3). Our results further demonstrate that downstream proteins, β-arrestin 2 and Gi protein complex, on the CCR3 signal transduction pathway, can inversely regulate the oligomeric states of CCR3 induced by its binding ligands. This unexpected discovery suggests complex relationships between the oligomeric behaviors of CCR3 and the components of ligands-CCR3-downstream proteins, reflecting the potentially functional impact of the oligomerization on the multiple activation pathways of GPCR, such as biased activation.
Collapse
Affiliation(s)
- Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Yu Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Yanzhi Ding
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Junfeng Li
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Haitao Chen
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Guoqing Feng
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Ning Ding
- Qingdao Huangdao District Hospital, Qingdao, Shandong 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
2
|
Kayastha K, Zhou Y, Brünle S. Structural perspectives on chemokine receptors. Biochem Soc Trans 2024; 52:1011-1024. [PMID: 38856028 PMCID: PMC11346446 DOI: 10.1042/bst20230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Chemokine receptors are integral to the immune system and prime targets in drug discovery that have undergone extensive structural elucidation in recent years. We outline a timeline of these structural achievements, discuss the intracellular negative allosteric modulation of chemokine receptors, analyze the mechanisms of orthosteric receptor activation, and report on the emerging concept of biased signaling. Additionally, we highlight differences of G-protein binding among chemokine receptors. Intracellular allosteric modulators in chemokine receptors interact with a conserved motif within transmembrane helix 7 and helix 8 and exhibit a two-fold inactivation mechanism that can be harnessed for drug-discovery efforts. Chemokine recognition is a multi-step process traditionally explained by a two-site model within chemokine recognition site 1 (CRS1) and CRS2. Recent structural studies have extended our understanding of this complex mechanism with the identification of CRS1.5 and CRS3. CRS3 is implicated in determining ligand specificity and surrounds the chemokine by almost 180°. Within CRS3 we identified the extracellular loop 2 residue 45.51 as a key interaction mediator for chemokine binding. Y2917.43 on the other hand was shown in CCR1 to be a key determinant of signaling bias which, along with specific chemokine-dependent phosphorylation ensembles at the G-protein coupled receptors (GPCR's) C-terminus, seems to play a pivotal role in determining the direction of signal bias in GPCRs.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Yangli Zhou
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
3
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Borges VDF, Galant LS, Kanashiro A, Castanheira FVES, Monteiro VVS, Duarte DÂ, Rodrigues FC, Silva CMDS, Schneider AH, Cebinelli GCM, de Lima MHF, Viola JPDB, Cunha TM, da Costa Neto CM, Alves-Filho JCF, Pupo AS, Cunha FDQ. FK506 impairs neutrophil migration that results in increased polymicrobial sepsis susceptibility. Inflamm Res 2023; 72:203-215. [PMID: 36401631 DOI: 10.1007/s00011-022-01669-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.
Collapse
Affiliation(s)
- Vanessa de Fátima Borges
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Selinger Galant
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Vargas E Silva Castanheira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valter Vinícius Silva Monteiro
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego Ângelo Duarte
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Filipe Camargo Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Meirelles de Souza Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Cesar Martelossi Cebinelli
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio Miguel da Costa Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Farias Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - Fernando de Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Luo X, Li Y, Hua Z, Xue X, Wang X, Pang M, Xiao C, Zhao H, Lyu A, Liu Y. Exosomes-mediated tumor metastasis through reshaping tumor microenvironment and distant niche. J Control Release 2023; 353:327-336. [PMID: 36464063 DOI: 10.1016/j.jconrel.2022.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Tumor-derived exosomes (TDEs) are the particular communicator and messenger between tumor cells and other cells containing cancer-associated genetic materials and proteins. And TDEs who are also one of the important components consisting of the tumor microenvironment (TME) can reshape and interact with TME to promote tumor development and metastasis. Moreover, due to their long-distance transmission by body fluids, TDEs can facilitate the formation of pre-metastatic niche to support tumor colonization. We discuss the main characteristics and mechanism of TDE-mediated tumor metastasis by reshaping TME and pre-metastatic niche as well as the potential of TDEs for diagnosing tumor and predicting future metastatic development.
Collapse
Affiliation(s)
- Xinyi Luo
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
6
|
Lin H, Shen J, Zhu Y, Zhou L, Wu F, Liu Z, Zhang S, Zhan R. Elevated Serum CCL23 Levels at Admission Predict Delayed Cerebral Ischemia and Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. J Clin Med 2022; 11:jcm11236879. [PMID: 36498453 PMCID: PMC9737062 DOI: 10.3390/jcm11236879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: CC chemokine ligand 23 (CCL23) is a chemokine implicated in the inflammatory response following brain damage. The aim of this study is to identify the change in serum CCL23 levels within 24 h after aSAH and whether serum CCL23 levels are associated with initial clinical severity, delayed cerebral ischemia (DCI), and functional outcome in patients with aneurysmal subarachnoid hemorrhage (aSAH). (2) Methods: 102 patients with aSAH and 61 controls were included in this prospective observational study. All clinical data were collected prospectively, and their serum CCL23 levels were measured. Initial clinical severity was reflected by the Hunt-Hess score and mFisher score. Functional outcome was evaluated in terms of the Glasgow Outcome Scale (GOS) score at 6-month follow-up. (3) Results: Patients with aSAH had higher serum CCL23 levels than controls. The temporal profile of serum CCL23 levels and neutrophils count exhibited a sustained increase within 24 h after aSAH. Serum CCL23 levels were related to blood neutrophils count, blood CRP levels, and initial clinical severity. Serum CCL23 level was an independent predictor of DCI and 6-month poor outcome in aSAH patients. (4) Conclusions: Serum CCL23 levels emerged as an independent predictor for DCI and poor outcome in patients with aSAH.
Collapse
|
7
|
Al Abadey A, Connor B, Flamme ACL, Robichon K. Clozapine reduces chemokine-mediated migration of lymphocytes by targeting NF-κB and AKT phosphorylation. Cell Signal 2022; 99:110449. [PMID: 36031090 DOI: 10.1016/j.cellsig.2022.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.
Collapse
Affiliation(s)
- Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
8
|
Idowu MD, Taiwo G, Pech Cervantes A, Bowdridge S, Ogunade IM. Effects of a multi-component microbial feed additive containing prebiotics and probiotics on health, immune status, metabolism, and performance of newly weaned beef steers during a 35-d receiving period. Transl Anim Sci 2022; 6:txac053. [PMID: 35673543 PMCID: PMC9168071 DOI: 10.1093/tas/txac053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
We examined the effects of dietary supplementation of a multicomponent blend of prebiotics and probiotics on health, immune status, metabolism, and performance of newly weaned beef steers during a 35-d receiving period. Eighty newly weaned crossbred steers (12-hour postweaning; 206 ± 12 kg of body weight [BW]) from a single source were stratified by BW into four pens (20 steers per pen) such that each pen had similar BW at the beginning of the experiment. The pens were randomly assigned to receive a corn silage-based diet with no additive (CON; two pens; n = 40 steers) or a basal diet supplemented with SYNB feed additive at an average of 28 g/steer/d (SYNB; two pens; n = 40 steers). The SYNB additive is a blend of live Saccharomyces cerevisiae and the fermentation products of S. cerevisiae, Enterococcus lactis, Bacillus licheniformis, and Bacillus subtilis and was supplemented for the first 21 d only. Percentage of steers treated for bovine respiratory disease (BRD) was calculated for each dietary treatment. Daily dry matter intake (DMI) and meal events (meal frequency and duration) were measured. Weekly BWs were measured to calculate average daily gain (ADG). Blood samples collected on days 0, 14, 21, 28, and 35 were used for ex-vivo tumor necrosis factor alpha (TNF-α) release assay following lipopolysaccharides (LPS) stimulation, plasma metabolome analysis, and mRNA expression analysis of 84 innate and adaptive immune-related genes. Compared with CON, supplemental SYNB increased (P ≤ 0.05) ADG, DMI, and meal events during the first 7 d. At d 21, there was no treatment effect (P > 0.05) on final BW, DMI, ADG, and meal events; however, beef steers fed supplemental SYNB had greater (P = 0.02) meal duration. Over the entire 35-d receiving period, beef steers fed supplemental SYNB had greater (P = 0.01) ADG and feed efficiency, tended to have greater (P = 0.08) meal duration, and had lower percentage (35 vs. 50%) of animals treated for BRD and lower percentage of sick animals treated for BRD more than once (7.15 vs. 45%). Whole blood expression of pro-inflammatory genes was downregulated while that of anti-inflammatory genes was upregulated in beef steers fed supplemental SYNB. Beef steers fed supplemental SYNB had lower (P = 0.03) plasma concentration of TNF-α after LPS stimulation. Six nutrient metabolic pathways associated with health benefits were enriched (false discovery rate ≤ 0.05) in beef steers fed supplemental SYNB. This study demonstrated that dietary supplementation of SYNB during the first 21 d of arrival reduced BRD morbidity, improved the performance, immune, and metabolic status of beef steers over a 35-d receiving period thereby extending the SYNB effect by a further 14 days post supplementation.
Collapse
Affiliation(s)
- Modoluwamu D Idowu
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Andres Pech Cervantes
- Agricultural Research Station, Fort Valley State University, Fort Valley 31030, GA, USA
| | - Scott Bowdridge
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
9
|
Li Z, Bao X, Liu X, Li Y, Cui M, Liu X, Li B, Feng Y, Xu X, Sun G, Wang W, Yang J. Transcriptome profiling based on protein-protein interaction networks provides a set of core genes for understanding the immune response mechanisms of the egg-protecting behavior in Octopus ocellatus. FISH & SHELLFISH IMMUNOLOGY 2021; 117:113-123. [PMID: 34333127 DOI: 10.1016/j.fsi.2021.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Protection via of the immune system is indispensable to the life of organisms. Within an immune network, problems with a given link will affect the normal life activities of the organism. Octopus ocellatus is cephalopod widely distributed throughout the world's oceans. Because of its unique nervous system and locomotive organs, research on this species has gradually increased in recent years. Many immune response mechanisms associated with behaviors of O. ocellatus are still unclear. Moreover, as a factor affecting the normal growth of O. ocellatus, egg protection has rarely been considered in previous behavioral studies. In this study, we analyzed the transcriptome profile of gene expression in O. ocellatus larvae, and identified 5936 differentially expressed genes (DEGs). GO and KEGG enrichment analyses were used to search for immune-related DEGs. Protein-protein interaction networks were constructed to examine the interactions between immune-related genes. Fifteen hub genes involved in multiple KEGG signaling pathways or with multiple protein-protein interaction relationships were obtained and verified by quantitative RT-PCR. We first studied the effects of egg protection on the immunity of O. ocellatus larvae by means of protein-protein interaction networks, and the results provide valuable genetic resources for understanding the immunity of invertebrate larvae. The data serve as a foundation for further research on the egg-protecting behavior of invertebrates.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xintian Liu
- Weihai Oceanic Development Research Institute, Weihai, 264200, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Mingxian Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China; Jiangsu Baoyuan Biotechnology Co. Ltd., Lianyungang, 222100, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
10
|
Cellular, synaptic, and network effects of chemokines in the central nervous system and their implications to behavior. Pharmacol Rep 2021; 73:1595-1625. [PMID: 34498203 PMCID: PMC8599319 DOI: 10.1007/s43440-021-00323-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Accumulating evidence highlights chemokines as key mediators of the bidirectional crosstalk between neurons and glial cells aimed at preserving brain functioning. The multifaceted role of these immune proteins in the CNS is mirrored by the complexity of the mechanisms underlying its biological function, including biased signaling. Neurons, only in concert with glial cells, are essential players in the modulation of brain homeostatic functions. Yet, attempts to dissect these complex multilevel mechanisms underlying coordination are still lacking. Therefore, the purpose of this review is to summarize the current knowledge about mechanisms underlying chemokine regulation of neuron-glia crosstalk linking molecular, cellular, network, and behavioral levels. Following a brief description of molecular mechanisms by which chemokines interact with their receptors and then summarizing cellular patterns of chemokine expression in the CNS, we next delve into the sequence and mechanisms of chemokine-regulated neuron-glia communication in the context of neuroprotection. We then define the interactions with other neurotransmitters, neuromodulators, and gliotransmitters. Finally, we describe their fine-tuning on the network level and the behavioral relevance of their modulation. We believe that a better understanding of the sequence and nature of events that drive neuro-glial communication holds promise for the development of new treatment strategies that could, in a context- and time-dependent manner, modulate the action of specific chemokines to promote brain repair and reduce the neurological impairment.
Collapse
|
11
|
Alluri SR, Higashi Y, Kil KE. PET Imaging Radiotracers of Chemokine Receptors. Molecules 2021; 26:molecules26175174. [PMID: 34500609 PMCID: PMC8434599 DOI: 10.3390/molecules26175174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chemokines and chemokine receptors have been recognized as critical signal components that maintain the physiological functions of various cells, particularly the immune cells. The signals of chemokines/chemokine receptors guide various leukocytes to respond to inflammatory reactions and infectious agents. Many chemokine receptors play supportive roles in the differentiation, proliferation, angiogenesis, and metastasis of diverse tumor cells. In addition, the signaling functions of a few chemokine receptors are associated with cardiac, pulmonary, and brain disorders. Over the years, numerous promising molecules ranging from small molecules to short peptides and antibodies have been developed to study the role of chemokine receptors in healthy states and diseased states. These drug-like candidates are in turn exploited as radiolabeled probes for the imaging of chemokine receptors using noninvasive in vivo imaging, such as positron emission tomography (PET). Recent advances in the development of radiotracers for various chemokine receptors, particularly of CXCR4, CCR2, and CCR5, shed new light on chemokine-related cancer and cardiovascular research and the subsequent drug development. Here, we present the recent progress in PET radiotracer development for imaging of various chemokine receptors.
Collapse
Affiliation(s)
- Santosh R. Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
| | - Yusuke Higashi
- Department of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-884-7885
| |
Collapse
|
12
|
Selection of a picomolar antibody that targets CXCR2-mediated neutrophil activation and alleviates EAE symptoms. Nat Commun 2021; 12:2547. [PMID: 33953162 PMCID: PMC8100106 DOI: 10.1038/s41467-021-22810-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Receptors and their ligands are important therapeutic targets for about one third of marketed drugs. Here, we describe an epitope-guided approach for selection of antibodies that modulate cellular signaling of targeted receptors. We chose CXC chemokine receptor 2 (CXCR2) in the G-protein coupled receptor superfamily as receptor and a CXCR2 N-terminal peptide for antibody selection. We obtain a highly selective, tight-binding antibody from a 1011-member antibody library using combinatorial enrichment. Structural and Hydrogen-Deuterium-Exchange mass spectrometry analyses demonstrate antibody interaction with an N-terminal region of CXCR2 that is part of the IL-8 epitope. The antibody strongly inhibits IL-8-induced and CXCR2-mediated neutrophil chemotaxis in vitro and alleviates hCXCR2-dependent experimental autoimmune encephalomyelitis symptoms in mice. As inappropriate neutrophil migration accompanies many diseases including inflammatory bowel disease, glomerulonephritis, allergic asthma, chronic obstructive pulmonary disease, and cancer, this antibody has potential for development as a therapeutic agent, akin to anti-TNF antibodies. However, an important difference here is that the antibody targets the chemokine receptor and competes with natural ligand, rather than targeting the ligand itself. CXCR2 is central to neutrophil chemotaxis and hence to some inflammatory diseases. Here the authors demonstrate the value of an epitope-guided antibody panning method to develop a tight binding anti-hCXCR2 antibody, along with crystal structures of this antibody and antigen, that can block neutrophil chemotaxis and protect mice in an EAE model.
Collapse
|
13
|
Biological characterization of ligands targeting the human CC chemokine receptor 8 (CCR8) reveals the biased signaling properties of small molecule agonists. Biochem Pharmacol 2021; 188:114565. [PMID: 33872569 DOI: 10.1016/j.bcp.2021.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
The human CC chemokine receptor 8 (CCR8) is a promising drug target for cancer immunotherapy and autoimmune disease. Besides human and viral chemokines, previous studies revealed diverse classes of CCR8-targeting small molecules. We characterized a selection of these CCR8 ligands (hCCL1, vCCL1, ZK756326, AZ6; CCR8 agonists and a naphthalene-sulfonamide-based CCR8 antagonist), in in vitro cell-based assays (hCCL1AF647 binding, calcium mobilization, cellular impedance, cell migration, β-arrestin 1/2 recruitment), and used pharmacological tools to determine G protein-dependent and -independent signaling pathways elicited by these ligands. Our data reveal differences in CCR8-mediated signaling induced by chemokines versus small molecules, which was most pronounced in cell migration studies. Human CCL1 most efficiently induced cell migration whereby Gβγ signaling was indispensable. In contrast, Gβγ signaling did not contribute to cell migration induced by other CCR8 ligands (vCCL1, ZK756326, AZ6). Although all tested CCR8 agonists were full agonists for calcium mobilization, a significant contribution for Gβγ signaling herein was only apparent for human and viral CCL1. Despite both Gαi- and Gαq-signaling regulate intracellular Ca2+-release, cellular impedance experiments showed that CCR8 agonists predominantly induce Gαi-dependent signaling. Finally, small molecule agonists displayed higher efficacy in β-arrestin 1 recruitment, which occurred independently of Gαi signaling. Also in this latter assay, only hCCL1-induced activity was dependent on Gβγ-signaling. Our study provides insight into CCR8 signaling and function and demonstrates differential CCR8 activation by different classes of ligands. This reflects the ability of CCR8 small molecules to evoke different subsets of the receptor's signaling repertoire, which categorizes them as biased agonists.
Collapse
|
14
|
Liang Y, Chen X, Tao Z, Ma M, Adah D, Li X, Dai L, Ding W, Fanuel S, Zhao S, Qin L, Chen X, Zhang X. Plasmodium infection prevents recurrence and metastasis of hepatocellular carcinoma possibly via inhibition of the epithelial‑mesenchymal transition. Mol Med Rep 2021; 23:418. [PMID: 33846776 PMCID: PMC8025467 DOI: 10.3892/mmr.2021.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Postoperative recurrence causes a high mortality rate among patients with hepatocellular carcinoma (HCC). The current study aimed to determine the effects of Plasmodium infection on HCC metastasis and recurrence. The antitumor effects of Plasmodium infection were determined using two murine orthotopic HCC models: The non-resection model and the resection model. Tumour tissues derived from tumour-bearing mice treated with or without Plasmodium infection were harvested 15 days post-tumour inoculation. The expression levels of biomarkers related to epithelial-mesenchymal transition (EMT) and molecules associated with CC-chemokine receptor 10 (CCR10)-mediated PI3K/Akt/GSK-3β/Snail signalling were identified using reverse transcription-quantitative PCR and western blotting. The results demonstrated that Plasmodium infection significantly suppressed the progression, recurrence and metastasis of HCC in the two mouse models. The expression levels of E-cadherin were significantly higher in the Plasmodium-treated group compared with that in the control group, whereas the expression levels of Vimentin and Snail were significantly lower in the Plasmodium-treated group. Furthermore, Plasmodium infection inhibited the activation of Akt and GSK-3β in the tumour tissues by downregulating the expression levels of CCR10 and subsequently suppressing the accumulation of Snail, which may contribute to the suppression of EMT and the prevention of tumour recurrence and metastasis. In conclusion, the results of the present study demonstrated that Plasmodium infection inhibited the recurrence and metastasis and improved the prognosis of HCC by suppressing CCR10-mediated PI3K/Akt/GSK-3β/Snail signalling and preventing the EMT. These results may be important for the development of novel therapies for HCC recurrence and metastasis, especially for patients in the perioperative period.
Collapse
Affiliation(s)
- Yun Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiao Chen
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Zhu Tao
- CAS‑Lamvac Biotech Co., Ltd., Guangzhou, Guangdong 510670, P.R. China
| | - Meng Ma
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Dickson Adah
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Xiaofen Li
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Lingling Dai
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Wenting Ding
- CAS‑Lamvac Biotech Co., Ltd., Guangzhou, Guangdong 510670, P.R. China
| | - Songwe Fanuel
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Siting Zhao
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Li Qin
- CAS‑Lamvac Biotech Co., Ltd., Guangzhou, Guangdong 510670, P.R. China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Xiaowen Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
15
|
Ogunade IM, Taiwo G, Estrada-Reyes ZM, Yun J, Pech-Cervantes AA, Peters SO. Effects of a blend of mannan and glucan on growth performance, apparent nutrient digestibility, energy status, and whole-blood immune gene expression of beef steers during a 42-d receiving period. Transl Anim Sci 2021; 5:txaa226. [PMID: 33542996 PMCID: PMC7846145 DOI: 10.1093/tas/txaa226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 11/14/2022] Open
Abstract
We examined the effects of dietary supplementation of a blend of mannan and glucan on the growth performance, energy status, and whole-blood immune gene expression of newly weaned beef steers during a 42-d receiving period. Forty-eight newly weaned Angus crossbred steers (2-d post-weaning; 199 ± 13 kg of initial body weight [BW]) from a single source were stratified by BW and randomly assigned to one of the two treatments: basal diet with no additive (CON; n = 24) or a basal diet top-dressed with 5 g of a blend of mannan and glucan (MANGLU; n = 24). Average daily gain (ADG) and feed efficiency (FE) from days 1 to 14, 15 to 42, and 1 to 42 were calculated from daily dry matter intake (DMI) and weekly BW. Blood samples were collected on days 0, 14, and 42 for measurement of plasma glucose and nonesterified fatty acids (NEFA). Blood samples collected on days 14 and 42 were composited for each steer for untargeted carbonyl-metabolome analysis (measurement of carbonyl-containing metabolites). Expression of 84 immune-related genes was analyzed on blood samples collected on day 42. Beginning on days 37 to 42, total mixed ration, refusals, and fecal samples were collected once daily to determine apparent total tract digestibility of DM, CP, NDF, and ADF using indigestible NDF as an internal marker. Over the 42-d feeding trial, supplemental MANGLU tended to increase final BW (P = 0.07) and ADG (P = 0.06). Compared to CON, beef steers fed supplemental MANGLU had greater (P = 0.01) DMI during the first 14 d, greater DM digestibility (P = 0.03), and tended to have greater NDF digestibility (P = 0.09). No treatment effects (P > 0.10) on plasma glucose and NEFA on days 14 and 42 were detected; however, carbonyl-metabolome analysis revealed increased (FDR ≤ 0.05) plasma concentrations of galactose and glyceraldehydes, and altered (FDR ≤ 0.05) concentrations of some microbiome-derived metabolites in beef steers fed MANGLU. Compared with CON, MANGLU increased (P ≤ 0.05) the expression of five immune-related genes involved in recognition of and mounting immune defense against microbial pathogens. In conclusion, the results of this study demonstrated that supplemental MANGLU enhances beef cattle immunocompetence and productivity during feedlot receiving period.
Collapse
Affiliation(s)
- Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV
| | - Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV
| | - Zaira M Estrada-Reyes
- College of Agricultural, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA
| | - Jiang Yun
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Andres A Pech-Cervantes
- College of Agricultural, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA
| |
Collapse
|
16
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
18
|
Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020; 211:107540. [PMID: 32201315 PMCID: PMC7275904 DOI: 10.1016/j.pharmthera.2020.107540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are targeted by about a third of clinically used drugs. Many GPCRs couple to more than one type of heterotrimeric G proteins, become phosphorylated by any of several different GRKs, and then bind one or more types of arrestin. Thus, classical therapeutically active drugs simultaneously initiate several branches of signaling, some of which are beneficial, whereas others result in unwanted on-target side effects. The development of novel compounds to selectively channel the signaling into the desired direction has the potential to become a breakthrough in health care. However, there are natural and technological hurdles that must be overcome. The fact that most GPCRs are subject to homologous desensitization, where the active receptor couples to G proteins, is phosphorylated by GRKs, and then binds arrestins, suggest that in most cases the GPCR conformations that facilitate their interactions with these three classes of binding partners significantly overlap. Thus, while partner-specific conformations might exist, they are likely low-probability states. GPCRs are inherently flexible, which suggests that complete bias is highly unlikely to be feasible: in the conformational ensemble induced by any ligand, there would be some conformations facilitating receptor coupling to unwanted partners. Things are further complicated by the fact that virtually every cell expresses numerous G proteins, several GRK subtypes, and two non-visual arrestins with distinct signaling capabilities. Finally, novel screening methods for measuring ligand bias must be devised, as the existing methods are not specific for one particular branch of signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Abstract
Opioids, such as morphine and fentanyl, are widely used for the treatment of severe pain; however, prolonged treatment with these drugs leads to the development of tolerance and can lead to opioid use disorder. The "Opioid Epidemic" has generated a drive for a deeper understanding of the fundamental signaling mechanisms of opioid receptors. It is generally thought that the three types of opioid receptors (μ, δ, κ) are activated by endogenous peptides derived from three different precursors: Proopiomelanocortin, proenkephalin, and prodynorphin. Posttranslational processing of these precursors generates >20 peptides with opioid receptor activity, leading to a long-standing question of the significance of this repertoire of peptides. Here, we address some aspects of this question using a technical tour de force approach to systematically evaluate ligand binding and signaling properties ([35S]GTPγS binding and β-arrestin recruitment) of 22 peptides at each of the three opioid receptors. We show that nearly all tested peptides are able to activate the three opioid receptors, and many of them exhibit agonist-directed receptor signaling (functional selectivity). Our data also challenge the dogma that shorter forms of β-endorphin do not exhibit receptor activity; we show that they exhibit robust signaling in cultured cells and in an acute brain slice preparation. Collectively, this information lays the groundwork for improved understanding of the endogenous opioid system that will help in developing more effective treatments for pain and addiction.
Collapse
|
20
|
Abstract
BACKGROUND Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. CONCLUSIONS Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target.
Collapse
|
21
|
Cui LY, Chu SF, Chen NH. The role of chemokines and chemokine receptors in multiple sclerosis. Int Immunopharmacol 2020; 83:106314. [PMID: 32197226 PMCID: PMC7156228 DOI: 10.1016/j.intimp.2020.106314] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 01/13/2023]
Abstract
Summarize the study of the role of chemokines and their receptors in multiple sclerosis (MS) patients and MS animal models. Discuss their potential significance in inflammatory injury and repair of MS. Summarize the progress in the research of MS antagonists in recent years with chemokine receptors as targets.
Multiple sclerosis (MS) is a chronic inflammatory disease that is characterized by leukocyte infiltration and subsequent axonal damage, demyelinating inflammation, and formation of sclerosing plaques in brain tissue. The results of various studies in patients indicate that autoimmunity and inflammation make an important impact on the pathogenesis of MS. Chemokines are key mediators of inflammation development and cell migration, mediating various immune cell responses, including chemotaxis and immune activation, and are important in immunity and inflammation, therefore we focus on chemokines and their receptors in multiple sclerosis. In this article, we summarize the study of the role of prominent chemokines and their receptors in MS patients and MS animal modelsand discuss their potential significance in inflammatory injury and repair of MS. We have also summarized the progress in the treatment of multiple sclerosis antagonists in recent years with chemokine receptors as targets.
Collapse
Affiliation(s)
- Li-Yuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
22
|
Sommer F, Torraca V, Meijer AH. Chemokine Receptors and Phagocyte Biology in Zebrafish. Front Immunol 2020; 11:325. [PMID: 32161595 PMCID: PMC7053378 DOI: 10.3389/fimmu.2020.00325] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Phagocytes are highly motile immune cells that ingest and clear microbial invaders, harmful substances, and dying cells. Their function is critically dependent on the expression of chemokine receptors, a class of G-protein-coupled receptors (GPCRs). Chemokine receptors coordinate the recruitment of phagocytes and other immune cells to sites of infection and damage, modulate inflammatory and wound healing responses, and direct cell differentiation, proliferation, and polarization. Besides, a structurally diverse group of atypical chemokine receptors (ACKRs) are unable to signal in G-protein-dependent fashion themselves but can shape chemokine gradients by fine-tuning the activity of conventional chemokine receptors. The optically transparent zebrafish embryos and larvae provide a powerful in vivo system to visualize phagocytes during development and study them as key elements of the immune response in real-time. In this review, we discuss how the zebrafish model has furthered our understanding of the role of two main classes of chemokine receptors, the CC and CXC subtypes, in phagocyte biology. We address the roles of the receptors in the migratory properties of phagocytes in zebrafish models for cancer, infectious disease, and inflammation. We illustrate how studies in zebrafish enable visualizing the contribution of chemokine receptors and ACKRs in shaping self-generated chemokine gradients of migrating cells. Taking the functional antagonism between two paralogs of the CXCR3 family as an example, we discuss how the duplication of chemokine receptor genes in zebrafish poses challenges, but also provides opportunities to study sub-functionalization or loss-of-function events. We emphasize how the zebrafish model has been instrumental to prove that the major determinant for the functional outcome of a chemokine receptor-ligand interaction is the cell-type expressing the receptor. Finally, we highlight relevant homologies and analogies between mammalian and zebrafish phagocyte function and discuss the potential of zebrafish models to further advance our understanding of chemokine receptors in innate immunity and disease.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
23
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
24
|
Ortiz Zacarías NV, van Veldhoven JPD, den Hollander LS, Dogan B, Openy J, Hsiao YY, Lenselink EB, Heitman LH, IJzerman AP. Synthesis and Pharmacological Evaluation of Triazolopyrimidinone Derivatives as Noncompetitive, Intracellular Antagonists for CC Chemokine Receptors 2 and 5. J Med Chem 2019; 62:11035-11053. [PMID: 31742400 PMCID: PMC6935887 DOI: 10.1021/acs.jmedchem.9b00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
CC chemokine receptors 2 (CCR2) and 5 (CCR5) are involved
in many
inflammatory diseases; however, most CCR2 and CCR5 clinical candidates
have been unsuccessful. (Pre)clinical evidence suggests that dual
CCR2/CCR5 inhibition might be more effective in the treatment of such
multifactorial diseases. In this regard, the highly conserved intracellular
binding site in chemokine receptors provides a new avenue for the
design of multitarget ligands. In this study, we synthesized and evaluated
the biological activity of a series of triazolopyrimidinone
derivatives in CCR2 and CCR5. Radioligand binding assays first showed
that they bind to the intracellular site of CCR2, and in combination
with functional assays on CCR5, we explored structure–affinity/activity
relationships in both receptors. Although most compounds were CCR2-selective, 39 and 43 inhibited β-arrestin recruitment
in CCR5 with high potency. Moreover, these compounds displayed an
insurmountable mechanism of inhibition in both receptors, which holds
promise for improved efficacy in inflammatory diseases.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Lisa S den Hollander
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Burak Dogan
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Joseph Openy
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Ya-Yun Hsiao
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
25
|
Shen L, Yuan Y, Guo Y, Li M, Li C, Pu X. Probing the Druggablility on the Interface of the Protein-Protein Interaction and Its Allosteric Regulation Mechanism on the Drug Screening for the CXCR4 Homodimer. Front Pharmacol 2019; 10:1310. [PMID: 31787895 PMCID: PMC6855241 DOI: 10.3389/fphar.2019.01310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Modulating protein–protein interactions (PPIs) with small drug-like molecules targeting it exhibits great promise in modern drug discovery. G protein-coupled receptors (GPCRs) are the largest family of targeted proteins and could form dimers in living biological cells through PPIs. However, compared to drug development of the orthosteric site, there has been lack of investigations on the druggability of the PPI interface for GPCRs and its functional implication on experiments. Thus, in order to address these issues, we constructed a novel computational strategy, which involved in molecular dynamics simulation, virtual screening and protein structure network (PSN), to study one representative GPCR homodimer (CXCR4). One druggable pocket was identified in the PPI interface and one small molecule targeting it was screened, which could strengthen PPI mainly through hydrophobic interaction between the benzene rings of the PPI molecule and TM4 of the receptor. The PSN results further reveals that the PPI molecule could increase the number of the allosteric regulation pathways between the druggable pocket of the dimer interface to the orthostatic site for the subunit A but only play minor role for the other subunit B, leading to the asymmetric change in the volume of the binding pockets for the two subunits (increase for the subunit A and minor change for the subunit B). Consequently, the screening performance of the subunit A to the antagonists is enhanced while the subunit B is unchanged nearly, implying that the PPI molecule may be beneficial to enhance the drug efficacies of the antagonists. In addition, one main regulation pathway with the highest frequency was identified for the subunit A, which consists of Trp1955.34–Tyr190ECL2–Val1965.35–Gln2005.39–Asp2626.58–Cys28N-term, revealing their importance in the allosteric regulation from the PPI molecule. The observations from the work could provide valuable information for the development of the PPI drug-like molecule for GPCRs.
Collapse
Affiliation(s)
- Liting Shen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Yuan H, Li Y, Tian G, Zhang W, Guo H, Xu Q, Wang T. Identification and characterization of three CXC chemokines in Asian swamp eel (Monopterus albus) uncovers a third CXCL11_like group in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103454. [PMID: 31326565 DOI: 10.1016/j.dci.2019.103454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Chemokines direct cell migration in development and immune defense, and bridge between innate and adaptive immune responses. The chemokine gene family has been rapidly evolving and has undergone species/lineage-specific expansion. Mammals possess inflammatory CXC chemokines CXCL1-8/15 and CXCL9-11 sub-groups, and homeostatic CXCL12-14, 16-17. Orthologues of mammalian CXCL12-14, three chemokines related to CXCL1-8/15 (CXCL8_L1-3), two chemokines related to CXC9-11 (CXCL11_L1-2), and five fish-specific chemokines (CXCL_F1-5) have been described in teleosts. In this study, we reported three novel CXC chemokines in Asian swamp eel Monopterus albus, a commercially important freshwater fish species in China. Two of them belong to the fish-specific CXCL_F2 group, named CXCL_F2a/b, that share 89.5% amino acid identity. The other (CXCL11_L3) belongs to a third CXCL11_L related to the mammalian CXCL9-11 subfamily found only in percomorph fish species, and is the only CXCL9-11 related molecules in this lineage. Mammalian CXCL9-11 attract Th1 cells, and block the migration of Th2 cells in an immune response. This study suggests that all major lineages of teleosts have a CXCL9-11 related chemokine that will aid future functional investigation of CXCL11_L in fish. Cxcl_f2a is highly expressed constitutively in the skin of swamp eels that may attract immune cells to protect the skin in the absence of scales. Cxcl11_l3 and cxcl_f2b are highly expressed in immune tissues/organs and are up-regulated by the viral mimic poly I:C, but not bacterial infection in vivo, suggesting their role in anti-viral defense. The two cxcl_f2 paralogues are differentially expressed and modulated, indicating sub- and/or neo-functionalization.
Collapse
Affiliation(s)
- Hanwen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, PR China
| | - Youshen Li
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Guangming Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Huizhi Guo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, PR China.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
27
|
Shen A, Chen D, Kaur M, Bartels P, Xu B, Shi Q, Martinez JM, Man KNM, Nieves-Cintron M, Hell JW, Navedo MF, Yu XY, Xiang YK. β-blockers augment L-type Ca 2+ channel activity by targeting spatially restricted β 2AR signaling in neurons. eLife 2019; 8:49464. [PMID: 31609201 PMCID: PMC6813027 DOI: 10.7554/elife.49464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/13/2019] [Indexed: 01/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) transduce pleiotropic intracellular signals in mammalian cells. Here, we report neuronal excitability of β-blockers carvedilol and alprenolol at clinically relevant nanomolar concentrations. Carvedilol and alprenolol activate β2AR, which promote G protein signaling and cAMP/PKA activities without action of G protein receptor kinases (GRKs). The cAMP/PKA activities are restricted within the immediate vicinity of activated β2AR, leading to selectively enhance PKA-dependent phosphorylation and stimulation of endogenous L-type calcium channel (LTCC) but not AMPA receptor in rat hippocampal neurons. Moreover, we have engineered a mutant β2AR that lacks the catecholamine binding pocket. This mutant is preferentially activated by carvedilol but not the orthosteric agonist isoproterenol. Carvedilol activates the mutant β2AR in mouse hippocampal neurons augmenting LTCC activity through cAMP/PKA signaling. Together, our study identifies a mechanism by which β-blocker-dependent activation of GPCRs promotes spatially restricted cAMP/PKA signaling to selectively target membrane downstream effectors such as LTCC in neurons.
Collapse
Affiliation(s)
- Ao Shen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacology, University of California Davis, Davis, United States
| | - Dana Chen
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Manpreet Kaur
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Peter Bartels
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Bing Xu
- Department of Pharmacology, University of California Davis, Davis, United States.,VA Northern California Health Care System, Mather, United States
| | - Qian Shi
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Joseph M Martinez
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Kwun-Nok Mimi Man
- Department of Pharmacology, University of California Davis, Davis, United States
| | | | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang K Xiang
- Department of Pharmacology, University of California Davis, Davis, United States.,VA Northern California Health Care System, Mather, United States
| |
Collapse
|
28
|
Lucy D, Purvis GSD, Zeboudj L, Chatzopoulou M, Recio C, Bataille CJR, Wynne GM, Greaves DR, Russell AJ. A Biased Agonist at Immunometabolic Receptor GPR84 Causes Distinct Functional Effects in Macrophages. ACS Chem Biol 2019; 14:2055-2064. [PMID: 31465201 DOI: 10.1021/acschembio.9b00533] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GPR84 is an orphan G-protein-coupled receptor that is expressed on immune cells and implicated in several inflammatory diseases. The validation of GPR84 as a therapeutic target is hindered by the narrow range of available chemical tools and consequent poor understanding of GPR84 pathophysiology. Here we describe the discovery and characterization of DL-175, a potent, selective, and structurally novel GPR84 agonist and the first to display significantly biased signaling across GPR84-overexpressing cells, primary murine macrophages, and human U937 cells. By comparing DL-175 with reported GPR84 ligands, we show for the first time that biased GPR84 agonists have markedly different abilities to induce chemotaxis in human myeloid cells, while causing similar levels of phagocytosis enhancement. This work demonstrates that biased agonism at GPR84 enables the selective activation of functional responses in immune cells and delivers a high-quality chemical probe for further investigation.
Collapse
Affiliation(s)
- Daniel Lucy
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Gareth S. D. Purvis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Lynda Zeboudj
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Maria Chatzopoulou
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
| | - Carlota Recio
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | | | - Graham M. Wynne
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Angela J. Russell
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| |
Collapse
|
29
|
Sommer F, Torraca V, Kamel SM, Lombardi A, Meijer AH. Frontline Science: Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish. J Leukoc Biol 2019; 107:185-203. [PMID: 31529512 PMCID: PMC7028096 DOI: 10.1002/jlb.2hi0119-006r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
The CXCR3‐CXCL11 chemokine‐signaling axis plays an essential role in infection and inflammation by orchestrating leukocyte trafficking in human and animal models, including zebrafish. Atypical chemokine receptors (ACKRs) play a fundamental regulatory function in signaling networks by shaping chemokine gradients through their ligand scavenging function, while being unable to signal in the classic G‐protein‐dependent manner. Two copies of the CXCR3 gene in zebrafish, cxcr3.2 and cxcr3.3, are expressed on macrophages and share a highly conserved ligand‐binding site. However, Cxcr3.3 has structural characteristics of ACKRs indicative of a ligand‐scavenging role. In contrast, we previously showed that Cxcr3.2 is an active CXCR3 receptor because it is required for macrophage motility and recruitment to sites of mycobacterial infection. In this study, we generated a cxcr3.3 CRISPR‐mutant to functionally dissect the antagonistic interplay among the cxcr3 paralogs in the immune response. We observed that cxcr3.3 mutants are more susceptible to mycobacterial infection, whereas cxcr3.2 mutants are more resistant. Furthermore, macrophages in the cxcr3.3 mutant are more motile, show higher activation status, and are recruited more efficiently to sites of infection or injury. Our results suggest that Cxcr3.3 is an ACKR that regulates the activity of Cxcr3.2 by scavenging common ligands and that silencing the scavenging function of Cxcr3.3 results in an exacerbated Cxcr3.2 signaling. In human, splice variants of CXCR3 have antagonistic functions and CXCR3 ligands also interact with ACKRs. Therefore, in zebrafish, an analogous regulatory mechanism appears to have evolved after the cxcr3 gene duplication event, through diversification of conventional and atypical receptor variants.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sarah M Kamel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Amber Lombardi
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
30
|
Abstract
BACKGROUND Inflammation is a core element of many different, systemic and chronic diseases that usually involve an important autoimmune component. The clinical phase of inflammatory diseases is often the culmination of a long series of pathologic events that started years before. The systemic characteristics and related mechanisms could be investigated through the multi-omic comparative analysis of many inflammatory diseases. Therefore, it is important to use molecular data to study the genesis of the diseases. Here we propose a new methodology to study the relationships between inflammatory diseases and signalling molecules whose dysregulation at molecular levels could lead to systemic pathological events observed in inflammatory diseases. RESULTS We first perform an exploratory analysis of gene expression data of a number of diseases that involve a strong inflammatory component. The comparison of gene expression between disease and healthy samples reveals the importance of members of gene families coding for signalling factors. Next, we focus on interested signalling gene families and a subset of inflammation related diseases with multi-omic features including both gene expression and DNA methylation. We introduce a phylogenetic-based multi-omic method to study the relationships between multi-omic features of inflammation related diseases by integrating gene expression, DNA methylation through sequence based phylogeny of the signalling gene families. The models of adaptations between gene expression and DNA methylation can be inferred from pre-estimated evolutionary relationship of a gene family. Members of the gene family whose expression or methylation levels significantly deviate from the model are considered as the potential disease associated genes. CONCLUSIONS Applying the methodology to four gene families (the chemokine receptor family, the TNF receptor family, the TGF- β gene family, the IL-17 gene family) in nine inflammation related diseases, we identify disease associated genes which exhibit significant dysregulation in gene expression or DNA methylation in the inflammation related diseases, which provides clues for functional associations between the diseases.
Collapse
Affiliation(s)
- Hui Xiao
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Pietro Lio’
- Computer Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:257-284. [PMID: 30466987 DOI: 10.1016/j.phymed.2018.09.204] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood. AIM OF THE STUDY The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola rosea, Eleutherococcus senticosus, Withania somnifera, Rhaponticum carthamoides, and Bryonia alba. MATERIALS AND METHODS To investigate the underlying molecular mechanisms of adaptogens, we conducted RNA sequencing to profile gene expression alterations in T98G neuroglia cells upon treatment of adaptogens and analyzed the relevance of deregulated genes to adaptive stress-response signaling pathways using in silico pathway analysis software. RESULTS AND DISCUSSION At least 88 of the 3516 genes regulated by adaptogens were closely associated with adaptive stress response and adaptive stress-response signaling pathways (ASRSPs), including neuronal signaling related to corticotropin-releasing hormone, cAMP-mediated, protein kinase A, and CREB; pathways related to signaling involving CXCR4, melatonin, nitric oxide synthase, GP6, Gαs, MAPK, neuroinflammation, neuropathic pain, opioids, renin-angiotensin, AMPK, calcium, and synapses; and pathways associated with dendritic cell maturation and G-coupled protein receptor-mediated nutrient sensing in enteroendocrine cells. All samples tested showed significant effects on the expression of genes encoding neurohormones CRH, GNRH, UCN, G-protein-coupled and other transmembrane receptors TLR9, PRLR, CHRNE, GP1BA, PLXNA4, a ligand-dependent nuclear receptor RORA, transmembrane channels, transcription regulators FOS, FOXO6, SCX, STAT5A, ZFPM2, ZNF396, ZNF467, protein kinases MAPK10, MAPK13, MERTK, FLT1, PRKCH, ROS1, TTN), phosphatases PTPRD, PTPRR, peptidases, metabolic enzymes, a chaperone (HSPA6), and other proteins, all of which modulate numerous life processes, playing key roles in several canonical pathways involved in defense response and regulation of homeostasis in organisms. It is for the first time we report that the molecular mechanism of actions of melatonin and plant adaptogens are alike, all adaptogens tested activated the melatonin signaling pathway by acting through two G-protein-coupled membrane receptors MT1 and MT2 and upregulation of the ligand-specific nuclear receptor RORA, which plays a role in intellectual disability, neurological disorders, retinopathy, hypertension, dyslipidemia, and cancer, which are common in aging. Furthermore, melatonin activated adaptive signaling pathways and upregulated expression of UCN, GNRH1, TLR9, GP1BA, PLXNA4, CHRM4, GPR19, VIPR2, RORA, STAT5A, ZFPM2, ZNF396, FLT1, MAPK10, MERTK, PRKCH, and TTN, which were commonly regulated by all adaptogens tested. We conclude that melatonin is an adaptation hormone playing an important role in regulation of homeostasis. Adaptogens presumably worked as eustressors ("stress-vaccines") to activate the cellular adaptive system by inducing the expression of ASRSPs, which then reciprocally protected cells from damage caused by distress. Functional investigation by interactive pathways analysis demonstrated that adaptogens activated ASRSPs associated with stress-induced and aging-related disorders such as chronic inflammation, cardiovascular health, neurodegenerative cognitive impairment, metabolic disorders, and cancer. CONCLUSION This study has elucidated the genome-wide effects of several adaptogenic herbal extracts in brain cells culture. These data highlight the consistent activation of ASRSPs by adaptogens in T98G neuroglia cells. The extracts affected many genes playing key roles in modulation of adaptive homeostasis, indicating their ability to modify gene expression to prevent stress-induced and aging-related disorders. Overall, this study provides a comprehensive look at the molecular mechanisms by which adaptogens exerts stress-protective effects.
Collapse
Affiliation(s)
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
32
|
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR. The Role of CXCR3 and Its Chemokine Ligands in Skin Disease and Cancer. Front Med (Lausanne) 2018; 5:271. [PMID: 30320116 PMCID: PMC6167486 DOI: 10.3389/fmed.2018.00271] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Chemokines and their receptors play an important role in the recruitment, activation and differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9, CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced inflammatory responses. Inflammation of the skin resulting from infections or autoimmune disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector, CXCR3+ T cells from the circulation. The relative contributions of the different CXCR3 chemokines and the three variant isoforms of CXCR3 (CXCR3A, CXCR3B, CXCR3alt) to the inflammatory process in human skin requires further investigation. In skin cancers, the CXCR3 receptor can play a dual role whereby expression on tumor cells can lead to cancer metastasis to systemic sites while receptor expression on immune cells can frequently promote anti-tumor immune responses. This review will discuss the biology of CXCR3 and its associated ligands with particular emphasis on the skin during inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Paula T Kuo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Zhen Zeng
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Nazhifah Salim
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Mattarollo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Graham R Leggatt
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Sargsyan E, Cen J, Roomp K, Schneider R, Bergsten P. Identification of early biological changes in palmitate-treated isolated human islets. BMC Genomics 2018; 19:629. [PMID: 30134843 PMCID: PMC6106933 DOI: 10.1186/s12864-018-5008-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Long-term exposure to elevated levels of free fatty acids (FFAs) is deleterious for beta-cell function and may contribute to development of type 2 diabetes mellitus (T2DM). Whereas mechanisms of impaired glucose-stimulated insulin secretion (GSIS) in FFA-treated beta-cells have been intensively studied, biological events preceding the secretory failure, when GSIS is accentuated, are poorly investigated. To identify these early events, we performed genome-wide analysis of gene expression in isolated human islets exposed to fatty acid palmitate for different time periods. Results Palmitate-treated human islets showed decline in beta-cell function starting from day two. Affymetrix Human Transcriptome Array 2.0 identified 903 differentially expressed genes (DEGs). Mapping of the genes onto pathways using KEGG pathway enrichment analysis predicted four islet biology-related pathways enriched prior but not after the decline of islet function and three pathways enriched both prior and after the decline of islet function. DEGs from these pathways were analyzed at the transcript level. The results propose that in palmitate-treated human islets, at early time points, protective events, including up-regulation of metallothioneins, tRNA synthetases and fatty acid-metabolising proteins, dominate over deleterious events, including inhibition of fatty acid detoxification enzymes, which contributes to the enhanced GSIS. After prolonged exposure of islets to palmitate, the protective events are outweighed by the deleterious events, which leads to impaired GSIS. Conclusions The study identifies temporal order between different cellular events, which either promote or protect from beta-cell failure. The sequence of these events should be considered when developing strategies for prevention and treatment of the disease. Electronic supplementary material The online version of this article (10.1186/s12864-018-5008-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ernest Sargsyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123, Uppsala, Sweden. .,Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences, 0014, Yerevan, Armenia.
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123, Uppsala, Sweden
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7 avenue des Hauts fourneaux, 4362 Esch-Belval, Luxembourg City, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7 avenue des Hauts fourneaux, 4362 Esch-Belval, Luxembourg City, Luxembourg
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123, Uppsala, Sweden
| |
Collapse
|
34
|
Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis. Arthritis Res Ther 2018; 20:114. [PMID: 29880013 PMCID: PMC5992813 DOI: 10.1186/s13075-018-1611-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background B cells exert their pathogenic action in rheumatoid arthritis (RA) locally in the synovium. This study was undertaken to elucidate the chemokines responsible for the recruitment of B cells in the inflamed synovium, taking into account that the rich chemokine milieu present in the synovial tissue can fine-tune modulate discrete chemokine receptors. Methods Expression levels of chemokine receptors from the CC and CXC family, as well as CD27, were assessed by flow cytometry in CD20+ mononuclear cells isolated from the peripheral blood (PB) and synovial fluid (SF) of RA and psoriatic arthritis patients. Transwell experiments were used to study migration of B cells in response to a chemokine or in the presence of multiple chemokines. Results B cells from the SF of arthritis patients showed a significant increase in the surface expression of CCR1, CCR2, CCR4, CCR5 and CXCR4 with respect to PB. Conversely, SF B cells expressed consistently lower amounts of CXCR5, CXCR7 and CCR6, independent of CD27 expression. Analysis of permeabilized B cells suggested internalization of CXCR5 and CCR6 in SF B cells. In Transwell experiments, CCL20 and CXCL13, ligands of CCR6 and CXCR5, respectively, caused a significantly higher migration of B cells from PB than of those from SF of RA patients. Together, these two chemokines synergistically increased B-cell migration from PB, but not from SF. Conclusions These results suggest that CXCL13 and CCL20 might play major roles in RA pathogenesis by acting singly on their selective receptors and synergistically in the accumulation of B cells within the inflamed synovium. Electronic supplementary material The online version of this article (10.1186/s13075-018-1611-2) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Martínez-Muñoz L, Villares R, Rodríguez-Fernández JL, Rodríguez-Frade JM, Mellado M. Remodeling our concept of chemokine receptor function: From monomers to oligomers. J Leukoc Biol 2018; 104:323-331. [PMID: 29719064 DOI: 10.1002/jlb.2mr1217-503r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
The chemokines direct leukocyte recruitment in both homeostatic and inflammatory conditions, and are therefore critical for immune reactions. By binding to members of the class A G protein-coupled receptors, the chemokines play an essential role in numerous physiological and pathological processes. In the last quarter century, the field has accumulated much information regarding the implications of these molecules in different immune processes, as well as mechanistic insight into the signaling events activated through their binding to their receptors. Here, we will focus on chemokine receptors and how new methodological approaches have underscored the role of their conformations in chemokine functions. Advances in biophysical-based techniques show that chemokines and their receptors act in very complex networks and therefore should not be considered isolated entities. In this regard, the chemokine receptors can form homo- and heterodimers as well as oligomers at the cell surface. These findings are changing our view as to how chemokines influence cell biology, identify partners that regulate chemokine function, and open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Martínez-Muñoz
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Seville, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José Luis Rodríguez-Fernández
- Department of Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (CIB/CSIC), Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
36
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 884] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
37
|
Ortiz Zacarías NV, Lenselink EB, IJzerman AP, Handel TM, Heitman LH. Intracellular Receptor Modulation: Novel Approach to Target GPCRs. Trends Pharmacol Sci 2018; 39:547-559. [PMID: 29653834 DOI: 10.1016/j.tips.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
Recent crystal structures of multiple G protein-coupled receptors (GPCRs) have revealed a highly conserved intracellular pocket that can be used to modulate these receptors from the inside. This novel intracellular site partially overlaps with the G protein and β-arrestin binding site, providing a new manner of pharmacological intervention. Here we provide an update of the architecture and function of the intracellular region of GPCRs, until now portrayed as the signaling domain. We review the available evidence on the presence of intracellular binding sites among chemokine receptors and other class A GPCRs, as well as different strategies to target it, including small molecules, pepducins, and nanobodies. Finally, the potential advantages of intracellular (allosteric) ligands over orthosteric ligands are also discussed.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
38
|
Abstract
G protein-coupled receptors (GPCRs) transduce pleiotropic intracellular signals in a broad range of physiological responses and disease states. Activated GPCRs can undergo agonist-induced phosphorylation by G protein receptor kinases (GRKs) and second messenger-dependent protein kinases such as protein kinase A (PKA). Here, we characterize spatially segregated subpopulations of β2-adrenergic receptor (β2AR) undergoing selective phosphorylation by GRKs or PKA in a single cell. GRKs primarily label monomeric β2ARs that undergo endocytosis, whereas PKA modifies dimeric β2ARs that remain at the cell surface. In hippocampal neurons, PKA-phosphorylated β2ARs are enriched in dendrites, whereas GRK-phosphorylated β2ARs accumulate in soma, being excluded from dendrites in a neuron maturation-dependent manner. Moreover, we show that PKA-phosphorylated β2ARs are necessary to augment the activity of L-type calcium channel. Collectively, these findings provide evidence that functionally distinct subpopulations of this prototypical GPCR exist in a single cell. β2-adrenergic receptor (β2AR) can be phosphorylated by G protein receptor kinases and second messenger-dependent kinases. Here, the authors demonstrate that these phosphorylation events are specific to functionally distinct and spatially segregated subpopulations of β2AR that co-exist in a single cell.
Collapse
|
39
|
Rac1 plays a role in CXCL12 but not CCL3-induced chemotaxis and Rac1 GEF inhibitor NSC23766 has off target effects on CXCR4. Cell Signal 2018; 42:88-96. [DOI: 10.1016/j.cellsig.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022]
|
40
|
Lancaster JN, Li Y, Ehrlich LIR. Chemokine-Mediated Choreography of Thymocyte Development and Selection. Trends Immunol 2017; 39:86-98. [PMID: 29162323 DOI: 10.1016/j.it.2017.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Abstract
As they differentiate, thymocytes encounter spatially restricted cues critical for differentiation and selection of a functional, self-tolerant T cell repertoire. Sequential migration of developing T cells through distinct thymic microenvironments is enforced by the ordered expression of chemokine receptors. Herein, we provide an updated perspective on T cell differentiation through the lens of recent advances that illuminate the dynamics of chemokine-driven thymocyte migration, localization, and interactions with stromal cells. We consider these findings in the context of earlier groundwork exploring the contribution of chemokines to T cell development, recent advances regarding the specificity of chemokine signaling, and novel techniques for evaluating the T cell repertoire. We suggest future research should amalgamate visualization of localized cellular interactions with downstream molecular signals.
Collapse
Affiliation(s)
- Jessica N Lancaster
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
41
|
Thompson S, Martínez-Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS, Ali S. Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. Int J Mol Sci 2017; 18:ijms18081692. [PMID: 28771176 PMCID: PMC5578082 DOI: 10.3390/ijms18081692] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
The primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational modifications of chemokines, such as nitration, which occurs due to the production of reactive species during oxidative stress, can also alter their biological activity. This review describes the regulation of chemokine function by GAG-binding ability and by post-translational nitration. These are both aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like CXCL8, to modulate inflammation is to be realised.
Collapse
Affiliation(s)
- Sarah Thompson
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Beatriz Martínez-Burgo
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - John A Kirby
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Neil S Sheerin
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Simi Ali
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
42
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
43
|
Julian B, Gao K, Harwood BN, Beinborn M, Kopin AS. Mutation-Induced Functional Alterations of CCR6. J Pharmacol Exp Ther 2017; 360:106-116. [PMID: 27789680 DOI: 10.1124/jpet.116.237669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
The Cys-Cys chemokine receptor 6 (CCR6) is a well-established modulator of inflammation. Although several genetic associations have been identified between CCR6 polymorphisms and immune system disorders (e.g., rheumatoid arthritis and Crohn's disease), the pharmacological effects of naturally occurring missense mutations in this receptor have yet to be characterized. In this study, we initially assessed G protein-mediated signaling and observed that wild-type (WT) CCR6 exhibited ligand-independent activity. In addition, we found that the five most frequent CCR6 missense variants (A89T, A150V, R155W, G345S, and A369V) exhibited decreased basal and/or ligand induced Gαi protein signaling. To complement the study of these loss-of-function variants, we engineered a set of constitutively active CCR6 receptors. Selected mutations enhanced basal G protein-mediated signaling up to 3-fold relative to the WT value. Using a bioluminescence resonance energy transfer assay we investigated the ability of each naturally occurring and engineered CCR6 receptor mutant to recruit β-arrestin. In contrast to G protein-mediated signaling, β-arrestin mobilization was largely unperturbed by the naturally occurring loss-of-function CCR6 variants. Elevated recruitment of β-arrestin was observed in one of the engineered constitutively active mutants (T98P). Our results demonstrate that point mutations in CCR6 can result in either a gain or loss of receptor function. These observations underscore the need to explore how CCR6 natural variants may influence immune cell physiology and human disease.
Collapse
Affiliation(s)
- Bina Julian
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Kevin Gao
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Benjamin N Harwood
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Martin Beinborn
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Alan S Kopin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| |
Collapse
|
44
|
Berchiche YA, Sakmar TP. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Mol Pharmacol 2016; 90:483-95. [PMID: 27512119 DOI: 10.1124/mol.116.105502] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023] Open
Abstract
The G protein-coupled receptor (GPCR) C-X-C chemokine receptor 3 (CXCR3) is a potential drug target that mediates signaling involved in cancer metastasis and inflammatory diseases. The CXCR3 primary transcript has three potential alternative splice variants and cell-type specific expression results in receptor variants that are believed to have different functional characteristics. However, the molecular pharmacology of ligand binding to CXCR3 alternative splice variants and their downstream signaling pathways remain poorly explored. To better understand the role of the functional consequences of alternative splicing of CXCR3, we measured signaling in response to four different chemokine ligands (CXCL4, CXCL9, CXCL10, and CXCL11) with agonist activity at CXCR3. Both CXCL10 and CXCL11 activated splice variant CXCR3A. Whereas CXCL10 displayed full agonistic activity for Gαi activation and extracellular signal regulated kinase (ERK) 1/2 phosphorylation and partial agonist activity for β-arrestin recruitment, CXCL9 triggered only modest ERK1/2 phosphorylation. CXCL11 induced CXCR3B-mediated β-arrestin recruitment and little ERK phosphorylation. CXCR3Alt signaling was limited to modest ligand-induced receptor internalization and ERK1/2 phosphorylation in response to chemokines CXCL11, CXCL10, and CXCL9. These results show that CXCR3 splice variants activate different signaling pathways and that CXCR3 variant function is not redundant, suggesting a mechanism for tissue specific biased agonism. Our data show an additional layer of complexity for chemokine receptor signaling that might be exploited to target specific CXCR3 splice variants.
Collapse
Affiliation(s)
- Yamina A Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (Y.A.B.; T.P.S.); and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden (T.P.S)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (Y.A.B.; T.P.S.); and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden (T.P.S)
| |
Collapse
|
45
|
Bégin-Lavallée V, Midavaine É, Dansereau MA, Tétreault P, Longpré JM, Jacobi AM, Rose SD, Behlke MA, Beaudet N, Sarret P. Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development. Mol Pain 2016; 12:12/0/1744806916653969. [PMID: 27306408 PMCID: PMC4956154 DOI: 10.1177/1744806916653969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/16/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2 (CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund's adjuvant. RESULTS To this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA candidates (Evader and M7 2'-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2 messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the hypernociceptive responses observed in the complete Freund's adjuvant-induced inflammatory chronic pain model. CONCLUSION Altogether, these results validate CCR2 as a an appropriate molecular target for pain control and demonstrate that RNAi-based gene therapy represent an highly specific alternative to classical pharmacological approaches to treat central pathologies such as chronic pain.
Collapse
Affiliation(s)
- Valérie Bégin-Lavallée
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Philippe Sarret, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Élora Midavaine
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-André Dansereau
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal Tétreault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Scott D Rose
- Integrated DNA Technologies Inc, Coralville, IA, USA
| | - Mark A Behlke
- Integrated DNA Technologies Inc, Coralville, IA, USA
| | - Nicolas Beaudet
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
46
|
Milligan G, Shimpukade B, Ulven T, Hudson BD. Complex Pharmacology of Free Fatty Acid Receptors. Chem Rev 2016; 117:67-110. [PMID: 27299848 DOI: 10.1021/acs.chemrev.6b00056] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond simple competitive agonism or antagonism by ligands interacting with the orthosteric binding site of the receptor to incorporate concepts of allosteric agonism, allosteric modulation, signaling bias, constitutive activity, and inverse agonism. Herein, we consider how evolving concepts of GPCR pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| | - Bharat Shimpukade
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
47
|
Bonecchi R, Graham GJ. Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response. Front Immunol 2016; 7:224. [PMID: 27375622 PMCID: PMC4901034 DOI: 10.3389/fimmu.2016.00224] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Chemokines and their receptors are key mediators of the inflammatory process regulating leukocyte extravasation and directional migration into inflamed and infected tissues. The control of chemokine availability within inflamed tissues is necessary to attain a resolving environment and when this fails chronic inflammation ensues. Accordingly, vertebrates have adopted a number of mechanisms for removing chemokines from inflamed sites to help precipitate resolution. Over the past 15 years, it has become apparent that essential players in this process are the members of the atypical chemokine receptor (ACKR) family. Broadly speaking, this family is expressed on stromal cell types and scavenges chemokines to either limit their spatial availability or to remove them from in vivo sites. Here, we provide a brief review of these ACKRs and discuss their involvement in the resolution of inflammatory responses and the therapeutic implications of our current knowledge.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| |
Collapse
|
48
|
Li JL, Lim CH, Tay FW, Goh CC, Devi S, Malleret B, Lee B, Bakocevic N, Chong SZ, Evrard M, Tanizaki H, Lim HY, Russell B, Renia L, Zolezzi F, Poidinger M, Angeli V, St John AL, Harris JE, Tey HL, Tan SM, Kabashima K, Weninger W, Larbi A, Ng LG. Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. J Invest Dermatol 2016; 136:416-424. [PMID: 26802238 DOI: 10.1038/jid.2015.410] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023]
Abstract
Deposition of immune complexes (ICs) in tissues triggers acute inflammatory pathology characterized by massive neutrophil influx leading to edema and hemorrhage, and is especially associated with vasculitis of the skin, but the mechanisms that regulate this type III hypersensitivity process remain poorly understood. Here, using a combination of multiphoton intravital microscopy and genomic approaches, we re-examined the cutaneous reverse passive Arthus reaction and observed that IC-activated neutrophils underwent transmigration, triggered further IC formation, and transported these ICs into the interstitium, whereas neutrophil depletion drastically reduced IC formation and ameliorated vascular leakage in vivo. Thereafter, we show that these neutrophils expressed high levels of CXCL2, which further amplified neutrophil recruitment and activation in an autocrine and/or paracrine manner. Notably, CXCL1 expression was restricted to tissue-resident cell types, but IC-activated neutrophils may also indirectly, via soluble factors, modulate macrophage CXCL1 expression. Consistent with their distinct cellular origins and localization, only neutralization of CXCL2 but not CXCL1 in the interstitium effectively reduced neutrophil recruitment. In summary, our study establishes that neutrophils are able to self-regulate their own recruitment and responses during IC-mediated inflammation through a CXCL2-driven feed forward loop.
Collapse
Affiliation(s)
- Jackson LiangYao Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chun Hwee Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Fen Wei Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Sapna Devi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Nadja Bakocevic
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Hideaki Tanizaki
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hwee Ying Lim
- Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Laurent Renia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Veronique Angeli
- Department of Microbiology, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore
| | - John E Harris
- Division of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wolfgang Weninger
- Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia; Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
49
|
|
50
|
Allegretti M, Cesta MC, Locati M. Allosteric Modulation of Chemoattractant Receptors. Front Immunol 2016; 7:170. [PMID: 27199992 PMCID: PMC4852175 DOI: 10.3389/fimmu.2016.00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023] Open
Abstract
Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities.
Collapse
Affiliation(s)
| | | | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Segrate, Italy; Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|