1
|
Dubey S, Yu Z, Stephens EM, Lazrak A, Ahmad I, Aggarwal S, Andrabi S, Hossain MI, Jilling T, Fernandez SR, Bartels JL, Lapi SE, Mobley JA, Pastukh VM, Gillespie MN, Matalon S. Oxidative damage to lung mitochondrial DNA is a key contributor to the development of chemical lung injury. Redox Biol 2025; 82:103624. [PMID: 40209617 PMCID: PMC12013491 DOI: 10.1016/j.redox.2025.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Humans exposed to chlorine (Cl2) due to industrial accidents or acts of terrorism may develop lung injury culminating to Acute Respiratory Distress syndrome and death from respiratory failure. Early molecular targets of inhaled oxidant gases suitable for pharmacologic modulation have not been established. Because the mitochondrial genome is highly sensitive to oxidant stress, we tested the hypothesis that mice exposure to Cl2 gas causes oxidative damage to the mitochondrial DNA (mtDNA) that triggers the development of acute and chronic lung injury. Cl2 gas-exposed C57BL/6 mice and returned to room air, developed progressive loss of lung DNA glycosylase OGG1, followed by oxidative mtDNA damage. This resulted in activation of inflammatory pathways by circulating DNA, progressive increased airway resistance, alveolar injury and acute pulmonary edema due to loss of epithelial amiloride-sensitive sodium channels. Mice not succumbing acutely displayed a delayed syndrome of progressive increase in airway resistance and emphysematous-like changes in lung morphology. Global proteomics of lungs harvested 24 h post Cl2 exposure revealed alterations in over 1500 lung proteins, including 14 key mitochondrial proteins. Intranasal instillation of a recombinant protein targeting OGG1 to mitochondria (mitoOGG1) at 1 h post exposure decreased oxidized lung mtDNA, alterations to the lung and mitochondrial proteomes, severity of the acute and delayed lung injury and increased survival. These data show that injury to the mt-genome is a key contributor to the development of acute and chronic lung injury after Cl2 gas exposure and point to mtDNA oxidation as a target for pharmacologic intervention.
Collapse
Affiliation(s)
- Shubham Dubey
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, USA
| | | | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, USA
| | | | | | | | - Tamas Jilling
- Department of Pediatrics, Division of Neonatology, USA
| | - Solana R Fernandez
- Department of Radiology, The Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Bartels
- Department of Radiology, The Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Lapi
- Department of Radiology, The Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Viktor M Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Mark N Gillespie
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, USA.
| |
Collapse
|
2
|
Han D, Zhang B, Wang Z, Mi Y. Cell-Autonomous Immunity: From Cytosolic Sensing to Self-Defense. Int J Mol Sci 2025; 26:4025. [PMID: 40362284 PMCID: PMC12071787 DOI: 10.3390/ijms26094025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
As an evolutionarily conserved and ubiquitous mechanism of host defense, non-immune cells in vertebrates possess the intrinsic ability to autonomously detect and combat intracellular pathogens. This process, termed cell-autonomous immunity, is distinct from classical innate immunity. In this review, we comprehensively examine the defense mechanisms employed by non-immune cells in response to intracellular pathogen invasion. We provide a detailed analysis of the cytosolic sensors that recognize aberrant nucleic acids, lipopolysaccharide (LPS), and other pathogen-associated molecular patterns (PAMPs). Specifically, we elucidate the molecular mechanisms underlying key signaling pathways, including the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mitochondrial antiviral signaling (MAVS) axis, and the guanylate-binding proteins (GBPs)-mediated pathway. Furthermore, we critically evaluate the involvement of these pathways in the pathogenesis of various diseases, including autoimmune disorders, inflammatory conditions, and malignancies, while highlighting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Danlin Han
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Bozheng Zhang
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Zhe Wang
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Yang Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zhang W, Zhang Y, Han L, Bo T, Qi Z, Zhong H, Xu H, Hu L, Chen S, Zhang S. Double-stranded DNA enhances platelet activation, thrombosis, and myocardial injury via cyclic GMP-AMP synthase. Cardiovasc Res 2025; 121:353-366. [PMID: 39302147 DOI: 10.1093/cvr/cvae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Elevated dsDNA levels in ST-elevated myocardial infarction (STEMI) patients are associated with increased infarct size and worse clinical outcomes. However, the direct effect of dsDNA on platelet activation remains unclear. This study aims to investigate the direct influence of dsDNA on platelet activation, thrombosis, and the underlying mechanisms. METHODS AND RESULTS Analysis of clinical samples revealed elevated plasma dsDNA levels in STEMI patients, which positively correlated with platelet aggregation and markers of neutrophil extracellular traps such as MPO-DNA and CitH3. Platelet assays demonstrated the activation of the cGAS-STING pathway in platelets from STEMI patients. DsDNA directly potentiated platelet activation and thrombus formation. Mechanistic studies using G150 (cGAS inhibitor), H151 (STING inhibitor), and MCC950 (NLRP3 inhibitor), as well as cGAS-/-, STING-/-, and NLRP3-/- mice, showed that dsDNA activated cGAS, a previously unreported DNA sensor in platelets, and induced activation of the STING/NLRP3/caspase-1/IL-1β axis. This cascade enhanced platelet activation and thrombus formation. Platelet cGAS depletion or Palbociclib, a cGAS-STING inhibitor, approved by the FDA for advanced breast cancer, ameliorated myocardial ischaemia-reperfusion injury in ApoE-/- mice fed with a high-fat diet for 12 weeks. CONCLUSIONS These results suggested that dsDNA is a novel driver of platelet activation and thrombus formation in STEMI patients.
Collapse
Affiliation(s)
- Wei Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Yan Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Liping Han
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Tao Bo
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Zhiyong Qi
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Haoxuan Zhong
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Huajie Xu
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Liang Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| |
Collapse
|
4
|
Chen Z, Wang J, Lu B, Li H, Liu C, Zeng H, Chen J, Liu S, Jiang Q, Jia K. Lumpy skin disease virus ORF142 protein inhibits type I interferon production by disrupting interactions of TBK1 and IRF3. BMC Vet Res 2025; 21:257. [PMID: 40205612 PMCID: PMC11984027 DOI: 10.1186/s12917-025-04714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Lumpy skin disease virus (LSDV) causes lumpy skin disease, which is one of the most devastating ruminant diseases. The pathogenesis of the disease remains largely unknown; however, the disease seriously threatens the global cattle-farming industry. In our previous study, we found that LSDV 142 gene deletion affected LSDV proliferation in cells and was an early gene involved in LSDV infection. Additionally, the study found that ORF142 inhibits the production of interferon beta. RESULTS Herein, we report that LSDV inhibits the host antiviral response. The results revealed that the LSDV ORF142 protein inhibited interferon-promoter activation. ORF142 suppresses the host antiviral response by blocking interferon beta (IFN-β) production based on 381-417 amino acids at the C-terminal domain site of interferon regulatory factor 3 (IRF3). ORF142 interacts with IRF3 and interferes with the recruitment of IRF3 to TANK-binding kinase 1 (TBK1) in a dose-dependent manner, preventing nuclear translocation of IRF3. CONCLUSIONS These results suggest that LSDV ORF142 antagonizes host antiviral innate immunity by affecting the binding between TANK-binding kinase 1 and IRF3. Our findings provide new information regarding the pathogenesis of this virus.
Collapse
Affiliation(s)
- Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Baochun Lu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Heyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Chuanli Liu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Huijuan Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jinping Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Shizhe Liu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Qifeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China.
| |
Collapse
|
5
|
Acchioni M, Acchioni C, Hiscott J, Sgarbanti M. Origin and function of anti-interferon type I viral proteins. Virology 2025; 605:110456. [PMID: 39999585 DOI: 10.1016/j.virol.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Type I interferons (IFN-I) are the most important innate immune cytokines produced by vertebrate host cells following, virus infection. Broadly speaking, detection of infecting viral nucleic acids by pattern recognition receptors (PRR) and subsequent downstream signaling triggers synthesis of a large number of IFN-I-stimulated genes (ISGs), endowed with diverse antiviral effector function. The co-evolution of virus-host interactions over million years has resulted in the emergence of viral strategies that target and inhibit host PRR-mediated detection, signal transduction pathways and IFN-I-mediated stimulation of ISGs. In this review, we illustrate the multiple mechanisms of viral immune evasion and discuss the co-evolution of anti-IFN-I viral proteins by summarizing key examples from recent literature. Due to the large number of anti-IFN-I proteins described, we provide here an evaluation of the prominent examples from different virus families. Understanding the unrelenting evolution of viral evasion strategies will provide mechanistic detail concerning these evolving interactions but will further enhance the development of tailored antiviral approaches.
Collapse
Affiliation(s)
- Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - John Hiscott
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
6
|
Kim HJ, Kim HJ, Kim SY, Roh J, Yun JH, Kim CH. TBK1 is a signaling hub in coordinating stress-adaptive mechanisms in head and neck cancer progression. Autophagy 2025:1-23. [PMID: 40114316 DOI: 10.1080/15548627.2025.2481661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Tumorigenesis is closely linked to the ability of cancer cells to activate stress-adaptive mechanisms in response to various cellular stressors. Stress granules (SGs) play a crucial role in promoting cancer cell survival, invasion, and treatment resistance, and influence tumor immune escape by protecting essential mRNAs involved in cell metabolism, signaling, and stress responses. TBK1 (TANK binding kinase 1) functions in antiviral innate immunity, cell survival, and proliferation in both the tumor microenvironment and tumor cells. Here, we report that MUL1 loss results in the hyperactivation of TBK1 in both HNC cells and tissues. Mechanistically, under proteotoxic stress induced by proteasomal inhibition, HSP90 inhibition, or Ub+ stress, MUL1 promotes the degradation of active TBK1 through K48-linked ubiquitination at lysine 584. Furthermore, TBK1 facilitates autophagosome-lysosome fusion and phosphorylates SQSTM1, regulating selective macroautophagic/autophagic clearance in HNC cells. TBK1 is required for SG formation and cellular protection. Moreover, we found that MAP1LC3B is partially localized within SGs. TBK1 depletion enhances the sensitivity of HNC cells to cisplatin-induced cell death. GSK8612, a novel TBK1 inhibitor, significantly inhibits HNC tumorigenesis in xenografts. In summary, our study reveals that TBK1 facilitates the rapid removal of ubiquitinated proteins within the cell through protective autophagy under stress conditions and assists SG formation through the use of the autophagy machinery. These findings highlight the potential of TBK1 as a therapeutic target in HNC treatment.Abbreviations: ALP: autophagy-lysosomal pathway; AMBRA1: autophagy and beclin 1 regulator 1; BaF: bafilomycin A1; CC: coiled-coil; CD274/PDL-1: CD274 molecule; CHX: cycloheximide; CQ: chloroquine; DNP: dinitrophenol; EGFR: epidermal growth factor receptor; ESCC: esophageal squamous cell carcinoma; G3BP1: G3BP stress granule assembly factor 1; HNC: head and neck cancer; HPV: human papillomavirus; IFN: interferon; IGFBP3: insulin like growth factor binding protein 3; IRF: interferon-regulatory factor 3; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; NPC: nasopharyngeal carcinoma; PABP: poly(A) binding protein; PI: proteasome inhibitor; PQC: protein quality control; PROTAC: proteolysis-targeting chimera; PURA/PURα: purine rich element binding protein A; RIGI: RNA sensor RIG-I; SD: standard deviation; SG: stress granule; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; UPS: ubiquitin-proteasome system; USP10: ubiquitin specific peptidase 10; VCP: valosin containing protein; VHL: von Hippel-Lindau tumor suppressor; WT: wild type.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Haeng-Jun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun-Yong Kim
- Department of New Business Development, Future Business Division, DaehanNupharm Co. Ltd, Seongnam, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Masi M, Poppi L, Previtali V, Nelson SR, Wynne K, Varignani G, Falchi F, Veronesi M, Albanesi E, Tedesco D, De Franco F, Ciamarone A, Myers SH, Ortega JA, Bagnolini G, Ferrandi G, Farabegoli F, Tirelli N, Di Stefano G, Oliviero G, Walsh N, Roberti M, Girotto S, Cavalli A. Investigating synthetic lethality and PARP inhibitor resistance in pancreatic cancer through enantiomer differential activity. Cell Death Discov 2025; 11:106. [PMID: 40091075 PMCID: PMC11911456 DOI: 10.1038/s41420-025-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
The RAD51-BRCA2 interaction is central to DNA repair through homologous recombination. Emerging evidence indicates RAD51 overexpression and its correlation with chemoresistance in various cancers, suggesting RAD51-BRCA2 inhibition as a compelling avenue for intervention. We previously showed that combining olaparib (a PARP inhibitor (PARPi)) with RS-35d (a BRCA2-RAD51 inhibitor) was efficient in killing pancreatic ductal adenocarcinoma (PDAC) cells. However, RS-35d impaired cell viability even when administered alone, suggesting potential off-target effects. Here, through multiple, integrated orthogonal biological approaches in different 2D and 3D PDAC cultures, we characterised RS-35d enantiomers, in terms of mode of action and single contributions. By differentially inhibiting both RAD51-BRCA2 interaction and sensor kinases ATM, ATR and DNA-PK, RS-35d enantiomers exhibit a 'within-pathway synthetic lethality' profile. To the best of our knowledge, this is the first reported proof-of-concept single small molecule capable of demonstrating this built-in synergism. In addition, RS-35d effect on BRCA2-mutated, olaparib-resistant PDAC cells suggests that this compound may be effective as an anticancer agent possibly capable of overcoming PARPi resistance. Our results demonstrate the potential of synthetic lethality, with its diversified applications, to propose new and concrete opportunities to effectively kill cancer cells while limiting side effects and potentially overcoming emerging drug resistance.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Laura Poppi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Shannon R Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Giulia Varignani
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Federico Falchi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Marina Veronesi
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), I-40129, Bologna, Italy
| | | | - Andrea Ciamarone
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Samuel H Myers
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Jose Antonio Ortega
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giovanni Ferrandi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Giuseppina Di Stefano
- Department of Surgical and Medical Sciences, University of Bologna, 40126, Bologna, Italy
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy.
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Wang X, Wang Q, Zheng C, Wang L. MAVS: The next STING in cancers and other diseases. Crit Rev Oncol Hematol 2025; 207:104610. [PMID: 39746492 DOI: 10.1016/j.critrevonc.2024.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025] Open
Abstract
The mitochondrial antiviral signaling protein (MAVS) is a pivotal adaptor in the antiviral innate immune signaling pathway and plays a crucial role in the activation of antiviral defences. This comprehensive review delves into the multifaceted functions of MAVS, spanning from its integral role in the RIG-I-like receptor (RLR) pathway to its emerging roles in tumor biology and autoimmune diseases. We discuss the structural and functional aspects of MAVS, its activation mechanisms, and the intricate regulatory networks that govern its activity. The potential of MAVS as a therapeutic target has been explored, highlighting its promise in personalized cancer therapy and developing combination treatment strategies. Additionally, we compare it with the STING signaling pathway and discuss the synergistic potential of targeting both pathways in immunotherapy. Our review underscores the importance of MAVS in maintaining immune homeostasis and its implications for a broad spectrum of diseases, offering new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xichen Wang
- The Second People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Qingwen Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Leisheng Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Guo Y, Wang YY, Wang Y, Liu YH, Liu JY, Shen YY, Cao AP, Wang RB, Xie BY, Pan X, Li AL, Zhou T, Wang N, Xia Q, Zhang WN. Petroselinic Acid from Apiaceae Family Plants Ameliorates Autoimmune Disorders Through Suppressing Cytosolic-Nucleic-Acid-Mediated Type I Interferon Signaling. Biomolecules 2025; 15:329. [PMID: 40149865 PMCID: PMC11939978 DOI: 10.3390/biom15030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
The recognition of cytosolic nucleic acids is a critical step in the host immune response against danger signals, such as molecular patterns from pathogens or tissue damage. Nonetheless, over-reactivity to self-nucleic acids leads to the sustained production of type I interferon (IFN), mediated either by cGAS or RLR, contributing to the pathogenesis of certain autoimmune diseases, such as Aicardi-Goutières syndrome (AGS). Therefore, inhibiting excessive IFN production represents a potential therapeutic strategy for such autoimmune conditions. In this study, we discovered that petroselinic acid (PA), a natural compound isolated from Apiaceae family plants, effectively suppresses type I IFN production induced by cytosolic nucleic acids. Mechanistic investigations revealed that PA inhibits the phosphorylation of TBK1 and IRF3, which are key nodal proteins within the type I interferon pathway. Notably, molecular docking suggests potential binding between PA and cytosolic nucleic acid sensors, such as cGAS and RIG-I. Moreover, we found that PA effectively attenuates the expression of type I IFN and their downstream interferon-stimulated genes (ISGs) in models of AGS autoimmune disease characterized by excessive nucleic acid accumulation. Thus, our research identifies a natural compound that offers a promising strategy for treating autoimmune diseases resulting from aberrant self-nucleic acid recognition and the hyperactivation of type I interferon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qing Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.G.); (Y.-Y.W.); (Y.W.); (Y.-H.L.); (J.-Y.L.); (Y.-Y.S.); (A.-P.C.); (R.-B.W.); (B.-Y.X.); (X.P.); (A.-L.L.); (T.Z.); (N.W.)
| | - Wei-Na Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.G.); (Y.-Y.W.); (Y.W.); (Y.-H.L.); (J.-Y.L.); (Y.-Y.S.); (A.-P.C.); (R.-B.W.); (B.-Y.X.); (X.P.); (A.-L.L.); (T.Z.); (N.W.)
| |
Collapse
|
10
|
Yuan M, Shi L, Liu Y, Xiang K, Zhang Y, Zhou Y, Wang J, Ji M, Hou P. Disulfiram/copper triggers cGAS-STING innate immunity pathway via ROS-induced DNA damage that potentiates antitumor response to PD-1 checkpoint blockade. Int J Biol Sci 2025; 21:1730-1748. [PMID: 39990655 PMCID: PMC11844283 DOI: 10.7150/ijbs.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Immune checkpoint blockades (ICBs) have emerged as the leading strategy for treating advanced malignancies; however, their clinical efficacy is frequently constrained by primary or acquired resistance. Harnessing innate immune signaling to increase lymphocyte infiltration into tumors has been recognized a promising approach to augment the anti-cancer immune response to ICBs. Disulfiram (DSF), an FDA-approved drug for chronic alcoholism, has shown potent anti-tumor effect, particularly when used in combination with copper (Cu). Here, we demonstrated a combination treatment of DSF and Cu (DSF/Cu) robustly activated cancer cell-intrinsic cGAS-STING-dependent innate immune signaling pathway. Further studies revealed that DSF/Cu caused mitochondrial and nuclear DNA damage and the release of cytosolic dsDNA by inducing excessive reactive oxygen species (ROS) generation, thereby triggering innate immunity and enhancing anti-tumor effects. Moreover, DSF/Cu significantly increased the intratumoral infiltration of CD8+ cytotoxic lymphocytes and natural killer (NK) cells, and potentiated the therapeutic efficacy of PD-1 checkpoint blockade in murine tumor models. Overall, our findings provide a rationale underlying the anti-cancer and immunomodulatory function of DSF/Cu and highlight the potential of repurposing DSF to improve responses to ICBs in cancer patients.
Collapse
Affiliation(s)
- Mengmeng Yuan
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Shi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yan Liu
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ke Xiang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yan Zhang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ye Zhou
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jianling Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Peng Hou
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
11
|
Louloudes-Lázaro A, Nogales-Altozano P, Rojas JM, Veloz J, Carlón AB, Van Rijn PA, Martín V, Fernández-Sesma A, Sevilla N. Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction. Cell Mol Life Sci 2025; 82:55. [PMID: 39836220 PMCID: PMC11751250 DOI: 10.1007/s00018-025-05580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/10/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS. We found mitochondrial damage and DNA accumulation in the cytoplasm of infected cells. In addition, we show that BTV infection blocks DNA-induced IFN-I transcription and that virus infection prevents DNA sensing by inducing cGAS and STING degradation. We identify BTV-NS3 as the viral protein responsible for cGAS degradation, showing that NS3 physically interacts with cGAS and induces its degradation through an autophagy-dependent mechanism. Taken together, these findings identify for the first time a mechanism by which a dsRNA virus interferes with a DNA sensing pathway to evade the innate immune response.
Collapse
Affiliation(s)
- Andrés Louloudes-Lázaro
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Pablo Nogales-Altozano
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - José M Rojas
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Jeury Veloz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana B Carlón
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Piet A Van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Ana Fernández-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.
| |
Collapse
|
12
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Wu Y, He L, Li R, Li J, Zhao Q, Shao B. A20 as a Potential Therapeutic Target for COVID-19. Immun Inflamm Dis 2025; 13:e70127. [PMID: 39853876 PMCID: PMC11760982 DOI: 10.1002/iid3.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors. A20, which is widely accepted as a pivotal regulator of inflammation, has been shown to be implicated in the processes of antiviral responses and immunosuppression. Thus, A20 may participate in regulating the pathological processes of COVID-19. METHODS This narrative literature review summarizes recent evidence on the mechanisms of A20 in regulating the pathological processes of COVID-19. We also downloaded single-cell RNA-seq data sets from healthy individuals and patients with varying severities of COVID-19 from the NCBI GEO database to further dissect A20's regulatory mechanisms of these intricate cytokine pathways that are closely associated with SARS-CoV-2 infection. RESULTS A20 might be one of the most critical anti-infectious and anti-inflammatory factors involved in the pathogenesis of COVID-19. It effectively suppresses the immune damage and inflammatory storm caused by viral infection. CONCLUSIONS Understanding the relationship between A20-regulated signaling pathways and pathological processes of COVID-19 can provide insight into potential targets for intervention. Precise regulation of A20 to induce antiviral activity and an anti-inflammatory response could mediate the pathogenesis of COVID-19 and could become an effective treatment.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Lilan He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Rong Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiuxuan Li
- Laboratory of Radiation Biology, Laboratory Medicine Centre, Department of Blood TransfusionThe Second Affiliated HospitalArmy Military Medical UniversityChongqingChina
| | - Qing Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
14
|
Liu S, Luo A, Que T, Liang Y, Song Y, Liu T, Li J, Li N, Zhang Z, Liu Y, Zhang Z, Zhou Y, Wang X, Zhu Z. Negative regulation of SREBP-1/FAS signaling molecules activates the RIG-1/TBK1-mediated IFN-I pathway to inhibit BVDV replication. Antiviral Res 2025; 233:106054. [PMID: 39653278 DOI: 10.1016/j.antiviral.2024.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
For many viruses, controlling the process of infection is largely dependent on the enzymes of the fatty acid synthesis (FAS) pathway. An appealing therapeutic target in antiviral research is fatty acid synthetase (FASN), a crucial enzyme in the FAS pathway. Bovine viral diarrhea, caused by the Bovine viral diarrhea virus (BVDV), is a significant viral infectious disease posing a substantial threat to global animal husbandry. Our study revealed that BVDV infection not only upregulates the expression of FAS-related enzymes in BT cells and the blood, liver, and spleen of mice but also markedly enhances the accumulation of lipid droplets, free fatty acids, and triglycerides. The FAS pathway plays a pivotal role throughout the entire BVDV replication cycle. Additionally, administration of the FASN inhibitor C75 and Acetyl CoA carboxylase-1 (ACC-1) inhibitor TOFA significantly reduced the viral content in both serum and organs of BVDV-infected mice, exhibiting inhibitory effects across diverse viral strains. Intriguingly, We found that RIG-1/TBK1-mediated IFN-I signaling inhibits SREBP-1/FAS and reduces BVDV replication. Conversely, targeting a few essential enzymes of SREBP-1/FAS also activates IFN-I signaling. More importantly, FASN inhibitor led to heightened expression of ISGs in mouse spleens by activating the RIG-1/TBK-1 pathway. These findings highlight that FASN inhibitors inhibit BVDV replication through the activation of the RIG-1/TBK-1 pathway to induce ISGs, and offering a novel therapeutic approach for combating BVDV. Thus, it is crucial to negatively regulate SREBP-1/FAS signaling molecules in order to create novel antiviral drugs that are safe, effective, and broad-spectrum.
Collapse
Affiliation(s)
- Shanshan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - An Luo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Taolin Que
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuxin Liang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuxin Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tianyi Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jing Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Nan Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zechen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, 163319, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, 163319, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, 163319, China
| | - Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, 163319, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, 163319, China.
| |
Collapse
|
15
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2025; 35:33-45. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
16
|
Lei Z, Wang L, Gao H, Guo S, Kang X, Yuan J, Lv Z, Jiang Y, Yi J, Chen Z, Wang G. Mechanisms underlying the compromised clinical efficacy of interferon in clearing HBV. Virol J 2024; 21:314. [PMID: 39633459 PMCID: PMC11619119 DOI: 10.1186/s12985-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that can cause acute or chronic hepatitis, representing a significant global health concern. By 2019, approximately 296 million individuals were chronically infected with HBV, with 1.5 million new cases annually and 820,000 deaths due to HBV-related cirrhosis and liver cancer. Current treatments for chronic hepatitis B include nucleotide analogs (NAs) and interferons (IFNs), particularly IFN-α. NAs, such as entecavir and tenofovir, inhibit viral reverse transcription, while IFN-α exerts antiviral effects by directly suppressing viral replication, modulating viral genome epigenetics, degrading cccDNA, and activating immune responses. Despite its potential, IFN-α shows limited clinical efficacy, partly due to HBV's interference with the IFN signaling pathway. HBV encodes proteins like HBc, Pol, HBsAg, and HBx that disrupt IFN-α function. For example, HBV Pol inhibits STAT1 phosphorylation, HBsAg suppresses STAT3 phosphorylation, and HBx interferes with IFN-α efficacy through multiple mechanisms. Additionally, HBV downregulates key genes in the IFN signaling pathway, further diminishing IFN-α's antiviral effects. Understanding these interactions is crucial for improving IFN-α-based therapies. Future research may focus on overcoming HBV resistance by targeting viral proteins or optimizing IFN-α delivery. In summary, HBV's ability to resist IFN-α limits its therapeutic effectiveness, highlighting the need for new strategies to enhance treatment outcomes.
Collapse
Affiliation(s)
- Zhuoyan Lei
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Luye Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Hanlin Gao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Shubian Guo
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Xinjian Kang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jiajun Yuan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Ziying Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Yuxin Jiang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
17
|
Ladak RJ, Choi JH, Luo J, Chen OJ, Mahmood N, He AJ, Naeli P, Snell PH, Bayani E, Hoang HD, Alain T, Teodoro JG, Wang J, Zhang X, Jafarnejad SM, Sonenberg N. The 4EHP-mediated translational repression of cGAS impedes the host immune response against DNA viruses. Proc Natl Acad Sci U S A 2024; 121:e2413018121. [PMID: 39560640 PMCID: PMC11621783 DOI: 10.1073/pnas.2413018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
A critical host response against viral infections entails the activation of innate immune signaling that culminates in the production of antiviral proteins. DNA viruses are sensed by the cytosolic pattern recognition receptor cyclic GMP-AMP synthase (cGAS), which initiates a signaling pathway that results in production of proinflammatory cytokines such as Interferon-β (IFN-β) and activation of the antiviral response. Precise regulation of the antiviral innate immune response is required to avoid deleterious effects of its overactivation. We previously reported that the 4EHP/GIGYF2 translational repressor complex reduces the translation of Ifnb1 mRNA, which encodes IFN-β, upon RNA viral infections. Here, we report a distinct regulatory mechanism by which 4EHP controls replication of DNA viruses by translational repression of the Cgas mRNA, which encodes the DNA viral sensor cGAS. We show that 4EHP is required for effective translational repression of Cgas mRNA triggered by miR-23a. Upon infection, 4EHP deficiency bolsters the elicited innate immune response against the diverse DNA viruses Herpes simplex virus 1 (HSV-1) and Vaccinia Virus (VacV) and concomitantly reduces their rate of replication in vitro and in vivo. This study elucidates an intrinsic regulatory mechanism of the host response to DNA viruses which may provide unique opportunities for countering viral infections.
Collapse
Affiliation(s)
- Reese Jalal Ladak
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jung-Hyun Choi
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jun Luo
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Owen J. Chen
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Niaz Mahmood
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Alexander J. He
- Department of Physiology, McGill University, Montreal, QCH3A 1A2, Canada
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Esha Bayani
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QCH3A 2B4, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jianwei Wang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, China
| | - Xu Zhang
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Nahum Sonenberg
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
18
|
Dubey S, Yu Z, Stephens EM, Lazrak A, Ahmad I, Aggarwal S, Andrabi S, Hossain MI, Jilling T, Fernadez SR, Bartels JL, Lapi SE, Mobley J, Pastukh VM, Gillespie M, Matalon S. Oxidative Injury to Lung Mitochondrial DNA is a Key Contributor for the Development of Chemical Lung Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624949. [PMID: 39651262 PMCID: PMC11623505 DOI: 10.1101/2024.11.22.624949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The mechanisms and extent to which inhalation of oxidant gases damage the mitochondrial genome contributing to the development of acute and chronic lung injury have not been investigated. C57BL/6 mice exposed to chlorine (Cl 2 ) gas and returned to room air, developed progressive loss of lung DNA glycosylase OGG1, significant oxidative injury to mtDNA, decreased intact lung mitochondrial (mt) DNA, generation of inflammatory pathway by DAMPs causing airway and alveolar injury with significant mortality. Global proteomics identified over 1400 lung proteins with alteration of key mitochondrial proteins at 24 h post Cl 2 exposure. Intranasal instillation of a recombinant protein containing mitochondrial targeted OGG1 (mitoOGG1) post exposure, decreased oxidative injury to mtDNA, lung mitochondrial proteome, severity of the acute and chronic lung injury and increased survival. These data show that injury to the mt-genome is a key contributor to the development of acute and chronic lung injury.
Collapse
|
19
|
Gupta P, Dev K, Kaur G. Phytoconstituents as modulator of inflammatory pathways for COVID-19: A comprehensive review and recommendations. Phytother Res 2024; 38:5389-5416. [PMID: 39246209 DOI: 10.1002/ptr.8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024]
Abstract
SARS-CoV-2 infection causes disruptions in inflammatory pathways, which fundamentally contribute to COVID-19 pathophysiology. The present review critically evaluates the gaps in scientific literature and presents the current status regarding the inflammatory signaling pathways in COVID-19. We propose that phytoconstituents can be used to treat COVID-19 associated inflammation, several already formulated in traditional medications. For this purpose, extensive literature analysis was conducted in the PubMed database to collect relevant in vitro, in vivo, and human patient studies where inflammation pathways were shown to be upregulated in COVID-19. Parallelly, scientific literature was screened for phytoconstituents with known cellular mechanisms implicated for inflammation or COVID-19 associated inflammation. Studies with insufficient evidence on cellular pathways for autophagy and mitophagy were considered out of scope and excluded from the study. The final analysis was visualized in figures and evaluated for accuracy. Our findings demonstrate the frequent participation of NF-κB, a transcription factor, in inflammatory signaling pathways linked to COVID-19. Moreover, the MAPK signaling pathway is also implicated in producing inflammatory molecules. Furthermore, it was also analyzed that the phytoconstituents with flavonoid and phenolic backbones could inhibit either the TLR4 receptor or its consecutive signaling molecules, thereby, decreasing NF-κB activity and suppressing cytokine production. Although, allopathy has treated the early phase of COVID-19, anti-inflammatory phytoconstituents and existing ayurvedic formulations may act on the COVID-19 associated inflammatory pathways and provide an additional treatment strategy. Therefore, we recommend the usage of flavonoids and phenolic phytoconstituents for the treatment of inflammation associated with COVID-19 infection and similar viral ailments.
Collapse
Affiliation(s)
- Pragati Gupta
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Department of Pharmacology & Toxicology, Wright State University, Dayton, Ohio, USA
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
- National Center cum Department of Human Genome Research Center and Studies, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
20
|
Li X, Wu C, Li J, Yu J, Yang X, Yu L, Wang C, Kuai R. An immunostimulatory liponanogel reveals immune activation-enhanced drug delivery and therapeutic efficacy in cancer. J Control Release 2024; 376:167-183. [PMID: 39384154 DOI: 10.1016/j.jconrel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The clinical use of immunostimulatory polyinosinic:polycytidylic acid (pIC) for cancer therapy has been notably limited by its low tumor accumulation and poor cytosolic delivery to activate innate immune sensors. Here, we report a liponanogel (LNG)-based platform to address these challenges. The immunostimulatory LNG consists of an ionizable lipid shell coating a nanogel made of hyaluronic acid (HA), Mn2+ and pIC, which is denoted as LNG-Mn-pIC (LMP). The protonation of internal HA within acidic endosomes increases the endosomal membrane permeability and facilitates the cytosolic delivery of pIC. Moreover, Mn2+, previously reported to activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, synergizes with pIC to activate innate immune cells. Remarkably, intravenously injected LMP significantly induces tumor vasculature disruption and tumor cell apoptosis in an innate immune activation-dependent manner, facilitating the LMP delivery into tumors and leading to enhanced antitumor immunity that potently inhibits or even completely regresses the established tumors. In summary, this immunostimulatory LNG platform not only serves as a useful tool to uncover the immune activation-enhanced drug delivery profile but also represents a broadly applicable platform for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinchao Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiuxiu Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lvshan Yu
- School of Basic Medical Sciences, Tsinghua University, Beijing 10084, China; Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
21
|
Dai DL, Xie C, Zhong LY, Liu SX, Zhang LL, Zhang H, Wu XP, Wu ZM, Kang K, Li Y, Sun YM, Xia TL, Zhang CS, Zhang A, Shi M, Sun C, Chen ML, Zhao GX, Bu GL, Liu YT, Huang KY, Zhao Z, Li SX, Zhang XY, Yuan YF, Wen SJ, Zhang L, Li BK, Zhong Q, Zeng MS. AXIN1 boosts antiviral response through IRF3 stabilization and induced phase separation. Signal Transduct Target Ther 2024; 9:281. [PMID: 39384753 PMCID: PMC11464762 DOI: 10.1038/s41392-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Axis inhibition protein 1 (AXIN1), a scaffold protein interacting with various critical molecules, plays a vital role in determining cell fate. However, its impact on the antiviral innate immune response remains largely unknown. Here, we identify that AXIN1 acts as an effective regulator of antiviral innate immunity against both DNA and RNA virus infections. In the resting state, AXIN1 maintains the stability of the transcription factor interferon regulatory factor 3 (IRF3) by preventing p62-mediated autophagic degradation of IRF3. This is achieved by recruiting ubiquitin-specific peptidase 35 (USP35), which removes lysine (K) 48-linked ubiquitination at IRF3 K366. Upon virus infection, AXIN1 undergoes a phase separation triggered by phosphorylated TANK-binding kinase 1 (TBK1). This leads to increased phosphorylation of IRF3 and a boost in IFN-I production. Moreover, KYA1797K, a small molecule that binds to the AXIN1 RGS domain, enhances the AXIN1-IRF3 interaction and promotes the elimination of various highly pathogenic viruses. Clinically, patients with HBV-associated hepatocellular carcinoma (HCC) who show reduced AXIN1 expression in pericarcinoma tissues have low overall and disease-free survival rates, as well as higher HBV levels in their blood. Overall, our findings reveal how AXIN1 regulates IRF3 signaling and phase separation-mediated antiviral immune responses, underscoring the potential of the AXIN1 agonist KYA1797K as an effective antiviral agent.
Collapse
Affiliation(s)
- Dan-Ling Dai
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chu Xie
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lan-Yi Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shang-Xin Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Le-Le Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hua Zhang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xing-Ping Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zhou-Ming Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kexin Kang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P. R. China
| | - Yan Li
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ya-Meng Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tian-Liang Xia
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P. R. China
| | - Ao Zhang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ming Shi
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Cong Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei-Ling Chen
- Department of Nuclear medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ge-Xin Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guo-Long Bu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan-Tao Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kui-Yuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Zheng Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shu-Xin Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiao-Yong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yun-Fei Yuan
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shi-Jun Wen
- Medicinal Synthetic Chemistry Center, Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, P. R. China
| | - Bin-Kui Li
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Qian Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Mu-Sheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
22
|
Salgueiro BA, Saramago M, Tully MD, Issoglio F, Silva STN, Paiva ACF, Arraiano CM, Matias PM, Matos RG, Moe E, Romão CV. SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease. Biometals 2024; 37:1127-1146. [PMID: 38538957 PMCID: PMC11473540 DOI: 10.1007/s10534-024-00596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/05/2024] [Indexed: 10/15/2024]
Abstract
Over recent years, we have been living under a pandemic, caused by the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). One of the major virulence factors of Coronaviruses is the Non-structural protein 1 (Nsp1), known to suppress the host cells protein translation machinery, allowing the virus to produce its own proteins, propagate and invade new cells. To unveil the molecular mechanisms of SARS-CoV2 Nsp1, we have addressed its biochemical and biophysical properties in the presence of calcium, magnesium and manganese. Our findings indicate that the protein in solution is a monomer and binds to both manganese and calcium, with high affinity. Surprisingly, our results show that SARS-CoV2 Nsp1 alone displays metal-dependent endonucleolytic activity towards both RNA and DNA, regardless of the presence of host ribosome. These results show Nsp1 as new nuclease within the coronavirus family. Furthermore, the Nsp1 double variant R124A/K125A presents no nuclease activity for RNA, although it retains activity for DNA, suggesting distinct binding sites for DNA and RNA. Thus, we present for the first time, evidence that the activities of Nsp1 are modulated by the presence of different metals, which are proposed to play an important role during viral infection. This research contributes significantly to our understanding of the mechanisms of action of Coronaviruses.
Collapse
Affiliation(s)
- Bruno A Salgueiro
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Margarida Saramago
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mark D Tully
- ESRF, European Synchrotron Radiation Facility, 71, avenue des Martyrs CS 40220, 38043, Grenoble Cedex 9, France
| | - Federico Issoglio
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Sara T N Silva
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Ana C F Paiva
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Cecília M Arraiano
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Pedro M Matias
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Rute G Matos
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Elin Moe
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- Department of Chemistry, UiT, the Arctic University of Norway, Tromsø, Norway.
| | - Célia V Romão
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
23
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
24
|
Triantafilou K, Szomolay B, Shepherd MW, Ramanjulu J, Triantafilou M. STING Orchestrates EV-D68 Replication and Immunometabolism within Viral-Induced Replication Organelles. Viruses 2024; 16:1541. [PMID: 39459875 PMCID: PMC11512225 DOI: 10.3390/v16101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Some respiratory viruses, such as Human Rhinovirus, SARS-CoV-2, and Enterovirus D-68 (EV-D68), share the feature of hijacking host lipids in order to generate specialised replication organelles (ROs) with unique lipid compositions to enable viral replication. We have recently uncovered a novel non-canonical function of the stimulator of interferon genes (STING) pathway, as a critical factor in the formation of ROs in response to HRV infection. The STING pathway is the main DNA virus sensing system of the innate immune system controlling the type I IFN machinery. Although it is well-characterised as part of the DNA sensor machinery, the STING function in RNA viral infections is largely unexplored. In the current study, we investigated whether other RO-forming RNA viruses, such as EV-D68 and SARS-CoV-2, can also utilise STING for their replication. Using genetic and pharmacological inhibition, we demonstrate that STING is hijacked by these viruses and is utilised as part of the viral replication machinery. STING also co-localises with glycolytic enzymes needed to fuel the energy for replication. The inhibition of STING leads to the modulation of glucose metabolism in EV-D68-infected cells, suggesting that it might also manipulate immunometabolism. Therefore, for RO-generating RNA viruses, STING seems to have non-canonical functions in membrane lipid re-modelling, and the formation of replication vesicles, as well as immunometabolism.
Collapse
Affiliation(s)
- Kathy Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Mark William Shepherd
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Joshi Ramanjulu
- Immunology Research Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Martha Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| |
Collapse
|
25
|
Marques JT, Meignin C, Imler JL. An evolutionary perspective to innate antiviral immunity in animals. Cell Rep 2024; 43:114678. [PMID: 39196781 DOI: 10.1016/j.celrep.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Viruses pose a significant threat to cellular organisms. Innate antiviral immunity encompasses both RNA- and protein-based mechanisms designed to sense and respond to infections, a fundamental aspect present in all living organisms. A potent RNA-based antiviral mechanism is RNA interference, where small RNA-programmed nucleases target viral RNAs. Protein-based mechanisms often rely on the induction of transcriptional responses triggered by the recognition of viral infections through innate immune receptors. These responses involve the upregulation of antiviral genes aimed at countering viral infections. In this review, we delve into recent advances in understanding the diversification of innate antiviral immunity in animals. An evolutionary perspective on the gains and losses of mechanisms in diverse animals coupled to mechanistic studies in model organisms such as the fruit fly Drosophila melanogaster is essential to provide deep understanding of antiviral immunity that can be translated to new strategies in the treatment of viral diseases.
Collapse
Affiliation(s)
- Joao T Marques
- Université de Strasbourg, INSERM U1257, CNRS UPR9022, 67084 Strasbourg, France; Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Mendonça LO, Frémond ML. Interferonopathies: From concept to clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101975. [PMID: 39122631 DOI: 10.1016/j.berh.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
The horror autoinflammaticus derived from aberrant type I interferon secretion determines a special group of autoinflammatory diseases named interferonopathies. Diverse mechanisms involved in nucleic acids sensing, metabolizing or the lack of interferon signaling retro-control are responsible for the phenotypes associated to Aicardi-Goutières Syndrome (AGS), Proteasome-Associated Autoinflammatory Diseases (PRAAS), STING-Associated Vasculopathy with Infancy Onset (SAVI) and certain forms of monogenic Systemic lupus erythematosus (SLE). This review approaches interferonopathies from the basic immunogenetic concept to diagnosis and treatment.
Collapse
Affiliation(s)
- Leonardo Oliveira Mendonça
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil; Discipline of Clinical Immunology and Allergy, Department of Internal Medicine, Universidade de Santo Amaro (UNISA), São Paulo, Brazil.
| | - Marie-Louise Frémond
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Laboratory of Neurogenetics and Neuroinflammation Imagine Institute, INSERM UMR1163, Paris, France
| |
Collapse
|
27
|
Huang S, Yang L, Zheng R, Weng S, He J, Xie J. Nervous necrosis virus capsid protein and Protein A dynamically modulate the fish cGAS-mediated IFN signal pathway to facilitate viral evasion. J Virol 2024; 98:e0068624. [PMID: 38888343 PMCID: PMC11264591 DOI: 10.1128/jvi.00686-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Nervous necrosis virus (NNV), an aquatic RNA virus belonging to Betanodavirus, infects a variety of marine and freshwater fishes, leading to massive mortality of cultured larvae and juveniles and substantial economic losses. The enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is widely recognized as a central component in the innate immune response to cytosolic DNA derived from different pathogens. However, little is known about the response of cGAS to aquatic RNA viruses. This study found that Epinephelus coioides cGAS (EccGAS) overexpression inhibited NNV replication, whereas EccGAS silencing promoted NNV replication. The anti-NNV activity of EccGAS was involved in interferon (IFN) signaling activation including tumor necrosis factor receptor-associated factor family member-associated NF-kappa-B activator-binding kinase 1 (TBK1) phosphorylation, interferon regulatory factor 3 (IRF3) nuclear translocation, and the subsequent induction of IFNc and ISGs. Interestingly, NNV employed its capsid protein (CP) or Protein A (ProA) to negatively or positively modulate EccGAS-mediated IFN signaling by simultaneously targeting EccGAS. CP interacted with EccGAS via the arm-P, S-P, and SD structural domains and promoted its polyubiquitination with K48 and K63 linkages in an EcUBE3C (the ubiquitin ligase)-dependent manner, ultimately leading to EccGAS degradation. Conversely, ProA bound to EccGAS and inhibited its ubiquitination and degradation. In regulating EccGAS protein content, CP's inhibitory action was more pronounced than ProA's protective effect, allowing successful NNV replication. These novel findings suggest that NNV CP and ProA dynamically modulate the EccGAS-mediated IFN signaling pathway to facilitate the immune escape of NNV. Our findings shed light on a novel mechanism of virus-host interaction and provide a theoretical basis for the prevention and control of NNV.IMPORTANCEAs a well-known DNA sensor, cGAS is a pivotal component in innate anti-viral immunity to anti-DNA viruses. Although there is growing evidence regarding the function of cGAS in the resistance to RNA viruses, the mechanisms by which cGAS participates in RNA virus-induced immune responses in fish and how aquatic viruses evade cGAS-mediated immune surveillance remain elusive. Here, we investigated the detailed mechanism by which EccGAS positively regulates the anti-NNV response. Furthermore, NNV CP and ProA interacted with EccGAS, regulating its protein levels through ubiquitin-proteasome pathways, to dynamically modulate the EccGAS-mediated IFN signaling pathway and facilitate viral evasion. Notably, NNV CP was identified to promote the ubiquitination of EccGAS via ubiquitin ligase EcUBE3C. These findings unveil a novel strategy for aquatic RNA viruses to evade cGAS-mediated innate immunity, enhancing our understanding of virus-host interactions.
Collapse
Affiliation(s)
- Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Hu T, Liu Y, Fleck J, King C, Schalk E, Zhang Z, Mehle A, Smith JA. Multiple unfolded protein response pathways cooperate to link cytosolic dsDNA release to stimulator of interferon gene activation. Front Immunol 2024; 15:1358462. [PMID: 39100663 PMCID: PMC11294172 DOI: 10.3389/fimmu.2024.1358462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-β expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-β induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-β, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-β mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-β via mitochondrial dsDNA release.
Collapse
Affiliation(s)
- Tiancheng Hu
- Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, NJ, United States
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Fleck
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - Cason King
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Elaine Schalk
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zhenyu Zhang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
29
|
Kerr CP, Sheehan-Klenk J, Grudzinski JJ, Adam DP, Nguyen TPT, Ferreira CA, Bates AM, Jin WJ, Kwon O, Olson AP, Lin W, Hyun M, Jagodinsky JC, Powers M, Sriramaneni RN, Clark PA, Shea AG, Rojas HC, Choi C, Massey CF, Zangl LM, Pinchuk AN, Aluicio-Sarduy E, Kim K, Engle JW, Hernandez R, Bednarz BP, Weichert JP, Morris ZS. Effects of clinically relevant radionuclides on the activation of a type I interferon response by radiopharmaceuticals in syngeneic murine tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602990. [PMID: 39071353 PMCID: PMC11275738 DOI: 10.1101/2024.07.10.602990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Radiopharmaceutical therapies (RPT) activate a type I interferon (IFN1) response in tumor cells. We hypothesized that the timing and amplitude of this response varies by isotope. We compared equal doses delivered by 90 Y, 177 Lu, and 225 Ac in vitro as unbound radionuclides and in vivo when chelated to NM600, a tumor-selective alkylphosphocholine. Response in murine MOC2 head and neck carcinoma and B78 melanoma was evaluated by qPCR and flow cytometry. Therapeutic response to 225 Ac-NM600+anti-CTLA4+anti-PD-L1 immune checkpoint inhibition (ICI) was evaluated in wild-type and stimulator of interferon genes knockout (STING KO) B78. The timing and magnitude of IFN1 response correlated with radionuclide half-life and linear energy transfer. CD8 + /Treg ratios increased in tumors 7 days after 90 Y- and 177 Lu-NM600 and day 21 after 225 Ac-NM600. 225 Ac-NM600+ICI improved survival in mice with WT but not with STING KO tumors, relative to monotherapies. Immunomodulatory effects of RPT vary with radioisotope and promote STING-dependent enhanced response to ICIs in murine models. Teaser This study describes the time course and nature of tumor immunomodulation by radiopharmaceuticals with differing physical properties.
Collapse
|
30
|
Ali HS, Al-Amodi HS, Hamady S, Roushdy MMS, Helmy Hasanin A, Ellithy G, Elmansy RA, Ahmed HHT, Ahmed EME, Elzoghby DMA, Kamel HFM, Hassan G, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Elesawi M, Fikry H, Saleh LA, Matboli M. Rosavin improves insulin resistance and alleviates hepatic and kidney damage via modulating the cGAS-STING pathway and autophagy signaling in HFD/STZ-induced T2DM animals. RSC Med Chem 2024; 15:2098-2113. [PMID: 38911169 PMCID: PMC11187545 DOI: 10.1039/d4md00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Inflammation-mediated insulin resistance in type 2 diabetes mellitus (T2DM) increases complications, necessitating investigation of its mechanism to find new safe therapies. This study investigated the effect of rosavin on the autophagy and the cGAS-STING pathway-related signatures (ZBP1, STING1, DDX58, LC3B, TNF-α) and on their epigenetic modifiers (miR-1976 and lncRNA AC074117.2) that were identified from in silico analysis in T2DM animals. Methods: A T2DM rat model was established by combining a high-fat diet (HFD) and streptozotocin (STZ). After four weeks from T2DM induction, HFD/STZ-induced T2DM rats were subdivided into an untreated group (T2DM group) and three treated groups which received 10, 20, or 30 mg per kg of R. rosea daily for 4 weeks. Results: The study found that rosavin can affect the cGAS-STING pathway-related RNA signatures by decreasing the expressions of ZBP1, STING1, DDX58, and miR-1976 while increasing the lncRNA AC074117.2 level in the liver, kidney, and adipose tissues. Rosavin prevented further weight loss, reduced serum insulin and glucose, improved insulin resistance and the lipid panel, and mitigated liver and kidney damage compared to the untreated T2DM group. The treatment also resulted in reduced inflammation levels and improved autophagy manifested by decreased immunostaining of TNF-α and increased immunostaining of LC3B in the liver and kidneys of the treated T2DM rats. Conclusion: Rosavin has shown potential in attenuating T2DM, inhibiting inflammation in the liver and kidneys, and improving metabolic disturbances in a T2DM animal model. The observed effect was linked to the activation of autophagy and suppression of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Hebatallah S Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Shaimaa Hamady
- Biochemistry Department, Faculty of Science, Ain Shams University Cairo Egypt
| | - Marian M S Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Ghada Ellithy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Rasha A Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University Buraydah Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
| | - Hagir H T Ahmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University Sudan
| | - Enshrah M E Ahmed
- Pathology unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University Saudi Arabia
| | | | - Hala F M Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ghida Hassan
- Physiology Department, Faculty of Medicine, Ain Shams University Egypt
| | - Hind A ELsawi
- Department of Internal Medicine, Badr University in Cairo Badr City Egypt
| | - Laila M Farid
- Pathology Department Faculty of Medicine, Ain Shams University Egypt
| | | | - Eman K Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University Egypt
| | - Mohamed Elesawi
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
31
|
Liu X, Ji L, Cheng Y, Kong L, Xie S, Yang J, Chen J, Wang Z, Ma J, Wang H, Yan Y, Sun J. Porcine deltacoronavirus nonstructural protein 2 inhibits type I and III IFN production by targeting STING for degradation. Vet Res 2024; 55:79. [PMID: 38886840 PMCID: PMC11184774 DOI: 10.1186/s13567-024-01330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that has been reported to use various strategies to counter the host antiviral innate immune response. The cGAS-STING signalling pathway plays an important role in antiviral innate immunity. However, it remains unclear whether PDCoV achieves immune evasion by regulating the cGAS-STING pathway. Here, we demonstrated that the nonstructural protein 2 (nsp2) encoded by PDCoV inhibits cGAS-STING-mediated type I and III interferon (IFN) responses via the regulation of porcine STING (pSTING) stability. Mechanistically, ectopically expressed PDCoV nsp2 was found to interact with the N-terminal region of pSTING. Consequently, pSTING was degraded through K48-linked ubiquitination and the proteasomal pathway, leading to the disruption of cGAS-STING signalling. Furthermore, K150 and K236 of pSTING were identified as crucial residues for nsp2-mediated ubiquitination and degradation. In summary, our findings provide a basis for elucidating the immune evasion mechanism of PDCoV and will contribute to the development of targets for anti-coronavirus drugs.
Collapse
Affiliation(s)
- Xiqian Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Likai Ji
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linghe Kong
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songhua Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Chen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Rezabakhsh A, Sadaie MR, Ala A, Roosta Y, Habtemariam S, Sahebnasagh A, Khezri MR. STING agonists as promising vaccine adjuvants to boost immunogenicity against SARS-related coronavirus derived infection: possible role of autophagy. Cell Commun Signal 2024; 22:305. [PMID: 38831299 PMCID: PMC11145937 DOI: 10.1186/s12964-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS‑CoV‑2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Reza Sadaie
- NovoMed Consulting, Biomedical Sciences, Germantown, Maryland, USA
| | - Alireza Ala
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Roosta
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, University of Greenwich, Kent, UK
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, 5715799313, Iran.
| |
Collapse
|
33
|
Bonhomme D, Poirier EZ. Early signaling pathways in virus-infected cells. Curr Opin Virol 2024; 66:101411. [PMID: 38718574 DOI: 10.1016/j.coviro.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 06/07/2024]
Abstract
Virus infection activates specific pattern recognition receptors and immune signal transduction, resulting in pro-inflammatory cytokine production and activation of innate immunity. We describe here the molecular organization of early signaling pathways downstream of viral recognition, including conformational changes, post-translational modifications, formation of oligomers, and generation of small-molecule second messengers. Such molecular organization allows tight regulation of immune signal transduction, characterized by swift but transient responses, nonlinearity, and signal amplification. Pathologies of early immune signaling caused by genomic mutations illustrate the fine regulation of the immune transduction cascade.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France
| | - Enzo Z Poirier
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
34
|
Zhang Y, Cen J, Wu H, Gao W, Jia Z, Adamek M, Zou J. Autophagy mediated degradation of MITA/TBK1/IRF3 by a hnRNP family member attenuates interferon production in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109563. [PMID: 38642725 DOI: 10.1016/j.fsi.2024.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.
Collapse
Affiliation(s)
- Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Cen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Haixia Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wa Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, CAFS, Harbin, Heilongjiang Province, 150070, China
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
| |
Collapse
|
35
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
36
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
37
|
Hu T, Liu Y, Fleck J, King C, Schalk E, Zhang Z, Mehle A, Smith JA. Multiple Unfolded Protein Response pathways cooperate to link cytosolic dsDNA release to Stimulator of Interferon Gene (STING) activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593557. [PMID: 38798499 PMCID: PMC11118346 DOI: 10.1101/2024.05.10.593557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-β expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-β induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-β, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-β mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-β via mitochondrial dsDNA release.
Collapse
|
38
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
39
|
Dey S, Mohapatra S, Khokhar M, Hassan S, Pandey RK. Extracellular Vesicles in Malaria: Shedding Light on Pathogenic Depths. ACS Infect Dis 2024; 10:827-844. [PMID: 38320272 PMCID: PMC10928723 DOI: 10.1021/acsinfecdis.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Malaria, a life-threatening infectious disease caused by Plasmodium falciparum, remains a significant global health challenge, particularly in tropical and subtropical regions. The epidemiological data for 2021 revealed a staggering toll, with 247 million reported cases and 619,000 fatalities attributed to the disease. This formidable global health challenge continues to perplex researchers seeking a comprehensive understanding of its pathogenesis. Recent investigations have unveiled the pivotal role of extracellular vesicles (EVs) in this intricate landscape. These tiny, membrane-bound vesicles, secreted by diverse cells, emerge as pivotal communicators in malaria's pathogenic orchestra. This Review delves into the multifaceted roles of EVs in malaria pathogenesis, elucidating their impact on disease progression and immune modulation. Insights into EV involvement offer potential therapeutic and diagnostic strategies. Integrating this information identifies targets to mitigate malaria's global impact. Moreover, this Review explores the potential of EVs as diagnostic biomarkers and therapeutic targets in malaria. By deciphering the intricate dialogue facilitated by these vesicles, new avenues for intervention and novel strategies for disease management may emerge.
Collapse
Affiliation(s)
- Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru 560066, Karnataka, India
| | - Salini Mohapatra
- Department
of Biotechnology, Chandigarh University, Punjab 140413, India
| | - Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences Jodhpur, Rajasthan 342005, India
| | - Sana Hassan
- Department
of Life Sciences, Manipal Academy of Higher
Education, Dubai 345050, United Arab Emirates
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
40
|
Li Z, Zhang X, Fu Z, He W, Gao Y, Ma Y. Retinoic acid-inducible gene-1 knockdown induces immature properties in dendritic cells and prolongs the survival time of allograft mice. Gene 2024; 897:148049. [PMID: 38043832 DOI: 10.1016/j.gene.2023.148049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The mature state of dendritic cells (DCs) determines their ability to regulate immune responses. Retinoic acid-inducible gene-1 (RIG-1) plays a critical role in DC activation and maturation. RIG-1 activation triggers mitogen-activated protein kinase and nuclear factor-kappa B signal transduction. In this study, we aimed to investigate the effects of inhibiting RIG-1 expression in DCs and its potential in inducing immune tolerance. METHODS DCs were transduced with the recombinant lentiviral vector (Lv) to inhibit RIG-1 expression. A murine islet and skin transplantation model were constructed to find out whether DC-DDX58-RNAi could prolong allograft survival. The phenotypes of DCs and T-cells were analyzed using flow cytometry. Cytokines in serum were detected by the enzyme-linked immunosorbent assay. Protein levels were determined by Western blot. RESULTS RIG-1-deficient DCs had low expression of costimulatory molecules and major histocompatibility complex and a strong phagocytic ability. DC-DDX58-RNAi induced regulatory T cell differentiation in the transplant recipient spleens. The DC-DDX58-RNAi-treated recipients showed satisfactory islet allograft function and longer survival time. CONCLUSION Inhibition of RIG-1 with DDX58-RNAi prevented the activation and maturation of the DCs, affected T cell differentiation, protected the biological function of the allograft, and prolonged graft survival. These findings may have important therapeutic implications for new immunomodulatory regimens.
Collapse
Affiliation(s)
- Zhongqiu Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuzhi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zongli Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenjing He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yifang Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
41
|
Jiao H, James SJ, Png CW, Cui C, Li H, Li L, Chia WN, Min N, Li W, Claser C, Rénia L, Wang H, Chen MIC, Chu JJH, Tan KSW, Deng Y, Zhang Y. DUSP4 modulates RIG-I- and STING-mediated IRF3-type I IFN response. Cell Death Differ 2024; 31:280-291. [PMID: 38383887 PMCID: PMC10923883 DOI: 10.1038/s41418-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.
Collapse
Affiliation(s)
- Huipeng Jiao
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Sharmy J James
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chaoyu Cui
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China
| | - Heng Li
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wan Ni Chia
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nyo Min
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kevin Shyong Wei Tan
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
42
|
Guo X, Yang L, Wang J, Wu Y, Li Y, Du L, Li L, Fang Z, Zhang X. The cytosolic DNA-sensing cGAS-STING pathway in neurodegenerative diseases. CNS Neurosci Ther 2024; 30:e14671. [PMID: 38459658 PMCID: PMC10924111 DOI: 10.1111/cns.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND With the widespread prevalence of neurodegenerative diseases (NDs) and high rates of mortality and disability, it is imminent to find accurate targets for intervention. There is growing evidence that neuroimmunity is pivotal in the pathology of NDs and that interventions targeting neuroimmunity hold great promise. Exogenous or dislocated nucleic acids activate the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), activating the stimulator of interferon genes (STING). The activated STING triggers innate immune responses and then the cGAS-STING signaling pathway links abnormal nucleic acid sensing to the immune response. Recently, numerous studies have shown that neuroinflammation regulated by cGAS-STING signaling plays an essential role in NDs. AIMS In this review, we summarized the mechanism of cGAS-STING signaling in NDs and focused on inhibitors targeting cGAS-STING. CONCLUSION The cGAS-STING signaling plays an important role in the pathogenesis of NDs. Inhibiting the cGAS-STING signaling may provide new measures in the treatment of NDs.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Intensive Care UnitJoint Logistics Force No. 988 HospitalZhengzhouChina
| | - Lin Yang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Jiawei Wang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - You Wu
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Yi Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Lixia Du
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Ling Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Anesthesiology, Xijing HospitalFourth Military Medical UniversityShaanxiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| |
Collapse
|
43
|
Silva RCMC, Gomes FM. Evolution of the Major Components of Innate Immunity in Animals. J Mol Evol 2024; 92:3-20. [PMID: 38281163 DOI: 10.1007/s00239-024-10155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Innate immunity is present in all animals. In this review, we explore the main conserved mechanisms of recognition and innate immune responses among animals. In this sense, we discuss the receptors, critical for binding to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs); the downstream signaling proteins; and transcription factors that govern immune responses. We also highlight conserved inflammatory mediators that are induced after the recognition of DAMPs and PAMPs. At last, we discuss the mechanisms that are involved in the regulation and/or generation of reactive oxygen species (ROS), influencing immune responses, like heme-oxygenases (HOs).
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fábio Mendonça Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Abo-Samaha MI, Sharaf MM, El Nahas AF, Odemuyiwa SO. Innate immune response to double-stranded RNA in American heritage chicken breeds. Poult Sci 2024; 103:103318. [PMID: 38064884 PMCID: PMC10757028 DOI: 10.1016/j.psj.2023.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/02/2024] Open
Abstract
Backyard poultry flocks that employ heritage breeds of chicken play a crucial role in the maintenance of poultry pathogens of economic and zoonotic importance. This study examined innate immunity to viral pathogens in heritage chicken breeds using a model of viral double-stranded RNA (dsRNA). Following intraperitoneal injection of high molecular weight (HMW) -poly(I:C)/Lyovec into 4-wk-old chicks, we evaluated gene expression in peripheral blood mononuclear cells (PBMCs) and splenocytes. There was a significant difference across breeds in the expression of IL-4, IL-12p40, IFNγ, and B-cell activating factor (BAFF) in the spleen. In PBMCs, a significant difference in IFN-α expression was seen across breeds. Approximately 57% of IFN-α transcripts in PBMCs was explained by levels of expression of MDA5 transcripts. Using flow cytometry, we showed that only monocytes/macrophages (KUL01+ cells) expressed the scavenger receptor CD163. Regression analysis showed that 42% of fold change in CD163 expression on PBMCs was explained by breed (P < 0.0004). In general, breeds that responded to HMW-poly(I:C) by showing higher upregulation of IFNγ, IL-1β, and IL-12p40 transcripts in the spleen, and higher IFNα transcripts in peripheral blood, expressed less CD163 on blood monocytes. These findings suggest a genetic basis for the response of chickens to double-stranded RNA. Surface expression of the scavenger receptor CD163 in PBMCs following injection of high molecular weight poly(I:C) may be a rapid method to select chickens for breeding based on innate immune response to viral dsRNA.
Collapse
Affiliation(s)
- Magda I Abo-Samaha
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088; Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohammed M Sharaf
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer F El Nahas
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Solomon O Odemuyiwa
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
45
|
Wang A, Chen C, Mei C, Liu S, Xiang C, Fang W, Zhang F, Xu Y, Chen S, Zhang Q, Bai X, Lin A, Neculai D, Xia B, Ye C, Zou J, Liang T, Feng XH, Li X, Shen C, Xu P. Innate immune sensing of lysosomal dysfunction drives multiple lysosomal storage disorders. Nat Cell Biol 2024; 26:219-234. [PMID: 38253667 DOI: 10.1038/s41556-023-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.
Collapse
Affiliation(s)
- Ailian Wang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Mei
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Cong Xiang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wen Fang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shasha Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Xia
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Institutes of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinran Li
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| | - Chengyong Shen
- Department of Neurobiology of The First Affiliated Hospital, Institute of Translational Medicine, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
46
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
47
|
Kumar M, Michael S, Alvarado-Valverde J, Zeke A, Lazar T, Glavina J, Nagy-Kanta E, Donagh J, Kalman Z, Pascarelli S, Palopoli N, Dobson L, Suarez C, Van Roey K, Krystkowiak I, Griffin J, Nagpal A, Bhardwaj R, Diella F, Mészáros B, Dean K, Davey N, Pancsa R, Chemes L, Gibson T. ELM-the Eukaryotic Linear Motif resource-2024 update. Nucleic Acids Res 2024; 52:D442-D455. [PMID: 37962385 PMCID: PMC10767929 DOI: 10.1093/nar/gkad1058] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Germany
| | - András Zeke
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Eszter Nagy-Kanta
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Juan Mac Donagh
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - Zsofia E Kalman
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Stefano Pascarelli
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - László Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| | - Carmen Florencia Suarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Kim Van Roey
- Health Services Research, Sciensano, Brussels, Belgium
| | - Izabella Krystkowiak
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Juan Esteban Griffin
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Rajesh Bhardwaj
- Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Bálint Mészáros
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kellie Dean
- School of Biochemistry and Cell Biology, 3.91 Western Gateway Building, University College Cork, Cork, Ireland
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
48
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
49
|
Madsen HB, Pease LI, Scanlan RL, Akbari M, Rasmussen LJ, Shanley DP, Bohr VA. The DNA repair enzyme, aprataxin, plays a role in innate immune signaling. Front Aging Neurosci 2023; 15:1290681. [PMID: 38161589 PMCID: PMC10754971 DOI: 10.3389/fnagi.2023.1290681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is a progressive neurodegenerative disorder characterized by a gradual loss of coordination of hand movements, speech, and eye movements. AOA1 is caused by an inactivation mutation in the APTX gene. APTX resolves abortive DNA ligation intermediates. APTX deficiency may lead to the accumulation of 5'-AMP termini, especially in the mitochondrial genome. The consequences of APTX deficiency includes impaired mitochondrial function, increased DNA single-strand breaks, elevated reactive oxygen species production, and altered mitochondrial morphology. All of these processes can cause misplacement of nuclear and mitochondrial DNA, which can activate innate immune sensors to elicit an inflammatory response. This study explores the impact of APTX knockout in microglial cells, the immune cells of the brain. RNA-seq analysis revealed significant differences in the transcriptomes of wild-type and APTX knockout cells, especially in response to viral infections and innate immune pathways. Specifically, genes and proteins involved in the cGAS-STING and RIG-I/MAVS pathways were downregulated in APTX knockout cells, which suggests an impaired immune response to cytosolic DNA and RNA. The clinical relevance of these findings was supported by analyzing publicly available RNA-seq data from AOA1 patient cell lines. Comparisons between APTX-deficient patient cells and healthy control cells also revealed altered immune responses and dysregulated DNA- and RNA-sensing pathways in the patient cells. Overall, this study highlights the critical role of APTX in regulating innate immunity, particularly in DNA- and RNA-sensing pathways. Our findings contribute to a better understanding of the underlying molecular mechanisms of AOA1 pathology and highlights potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Helena B. Madsen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Louise I. Pease
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | | | - Mansour Akbari
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene J. Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daryl P. Shanley
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - Vilhelm A. Bohr
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Tong JF, Gan RH, Yu L, Bu SY, Sun JL, Wen X, Song FB, Zhou L, Gui JF, Luo J. Molecular and functional characterization of golden pompano (Trachinotus blochii) TBK1 on IFN regulation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109163. [PMID: 37838211 DOI: 10.1016/j.fsi.2023.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The golden pompano (Trachinotus blochii), a pivotal commercial marine species in China, has gained significant popularity worldwide. However, accompanied with rapid growth and high density aquaculture, golden pompano has been seriously threatened by Nervous necrosis virus (NNV), while its molecular biology research regarding the innate immune system remains unexplored, which is crucial for understanding the activation of interferon (IFN) production and antiviral responses. In this study, we aimed to identify the characterization and function of golden pompano TANK-binding kinase 1 (gpTBK1), thereby providing evidence of the conservation of this classical factor in the RLR pathway among marine fish. Initially, we found the expression of gpTBK1 upregulation in diseased golden pompano with NNV infection and we successfully cloned the full-length open reading frame (ORF) of gpTBK1, consisting of 2172 nucleotides encoding 723 amino acids, from the head kidney. Subsequent analysis of the amino acid sequence revealed homology between gpTBK1 and other fish TBK1 proteins, with conserved N-terminal Serine/Threonine protein kinases catalytic domain (S_TKc) and C-terminal coiled coil domain (CCD). Moreover, the expression pattern showed that gpTBK1 exhibited ubiquitous expression across all evaluated tissues. Furthermore, functional identification experiments indicated that gpTBK1 activated interferon promoters' activity in golden pompano and induced the expression of downstream IFN-stimulated genes (ISGs). Notably, gpTBK1 was found to co-localize and interact with gpIRF3 in the cytoplasm. Collectively, these data provide a comprehensive analysis of the characterization and functional role of gpTBK1 in promoting interferon production. This research may facilitate the further study of the innate antiviral response, particularly the anti-NNV mechanisms, in golden pompano.
Collapse
Affiliation(s)
- Jin-Feng Tong
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lang Yu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Shao-Yang Bu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Jun-Long Sun
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Xin Wen
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Fei-Biao Song
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian Luo
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|