1
|
Wang J, Miao Z, Gao Y, Xie Z, Liu M, Zou W. Formyl peptide receptor 2: a potential therapeutic target for inflammation-related diseases. Pharmacol Rep 2025; 77:593-609. [PMID: 40102363 DOI: 10.1007/s43440-025-00704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/20/2025]
Abstract
Formyl peptide receptor 2 (FPR2) is a G protein-coupled receptor with seven transmembrane domains, widely distributed in human cells. It plays a crucial role in inflammation-related diseases. Known for its "double-edged sword" nature, FPR2 can bind a variety of exogenous and endogenous ligands, mediating both pro-inflammatory and anti-inflammatory responses in tissues such as eyes, liver, joints, lungs, nerves, and blood vessels. FPR2's bioactivities are regulated by a complex network of genes and signaling pathways. However, the precise regulatory mechanisms governing its functions in different inflammatory conditions are still not well understood. This review summarizes the FPR2's activities in various inflammation-related diseases and looks into its potential as a therapeutic target. This review highlights recent advances in developing exogenous agonists for FPR2 and discusses receptor expression across species to support nonclinical research. Overall, this review aims to clarify FPR2's role in inflammation and provide insights for the development of new drugs against inflammatory diseases.
Collapse
Affiliation(s)
- Jiaying Wang
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China
| | - Zhishuo Miao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yinhuang Gao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - ZhiZhong Xie
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China
| | - Menghua Liu
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zou
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Lu P, Li X, Wang J, Li X, Shen Z, Qi Y, Chu M, Yao X, Zhang X, Zheng Y, Zhan F, Song M, Wang X. Circulating Mitochondrial N-Formyl Peptides Are Associated with Acute Respiratory Distress Syndrome after Cardiopulmonary Bypass and Regulate Endothelial Barrier through FPR2. Am J Respir Cell Mol Biol 2025; 72:533-550. [PMID: 39514404 DOI: 10.1165/rcmb.2024-0076oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiopulmonary bypass (CPB) increases the risk of acute respiratory distress syndrome (ARDS) because of endothelial cell (EC) barrier dysfunction. However, the specific role of mitochondrial N-formyl peptides (mtNFPs) in ARDS after CPB remains unexplored. Here, we investigated the differential expression of circulating mtNFPs in patients after CPB, focusing on the novel role of FPR2 (formyl-peptide receptor 2) in ECs. Concentrations of circulating mtNFPs were assessed using ELISA. Several mtNFPs (ND4 [nicotinamide adenine dinucleotide dehydrogenase subunit 4], ND5, ND6, and Cox1) were significantly upregulated in patients with ARDS at Day 1 after CPB compared with patients without ARDS. Higher concentrations of ND6 were correlated with worse ratios of arterial oxygen pressure to fraction of inspired oxygen (r = -0.2219; P < 0.0001) and cardiac troponin T (r = 2.107; P < 0.0001). Using patient-derived serum and a rat lung ischemia-reperfusion injury model, we observed a positive correlation between serum ND6 concentration and ARDS, which is also associated with EC barrier dysfunction. In vitro experiments, using transendothelial electric resistance measurements and fluorescence microscopy with FITC-labeled vascular endothelial cadherin, demonstrated that ND6 disrupts the EC barrier through FPR2. Furthermore, FPR2 controls the release of ND6 out of mitochondria and cytoplasm under hypoxia-reoxygenation. Activated FPR2 leads to the upregulation of NF-κB by inducing IκBα phosphorylation, promoting ICAM1 (intercellular cell adhesion molecule-1) and VCAM1 expression, thereby compromising EC barrier integrity. Circulating proinflammatory and barrier-disruptive mtNFPs, particularly ND6, are associated with ARDS in patients undergoing CPB. The novel ND6-FPR2 axis regulates inflammation and EC permeability through the NF-κB pathway.
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Surgery
| | | | - Jinqiang Wang
- Department of Intensive Care Unit, Xuchang People's Hospital, Xuchang, China; and
| | | | | | - Yuanpu Qi
- Department of Cardiovascular Surgery
| | | | - Xin Yao
- Department of Cardiovascular Surgery
| | | | - Yu Zheng
- Department of Rehabilitation Medicine, and
| | - Faliang Zhan
- Department of Cardiothoracic Surgery, The Friendship Hospital of Yili Kazakh Autonomous Prefecture, Yining, China
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
3
|
Chen YC, Lee YR, Chang YC, Wang YH, Fang SY, Lin CH, Chen PJ, Hwang TL. Scutellaria barbata ameliorates acute respiratory distress syndrome by inhibiting neutrophil-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119653. [PMID: 40122316 DOI: 10.1016/j.jep.2025.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional medicinal herb Scutellaria barbata D. Don (commonly known as Ban Zhi Lian) is renowned for its heat-clearing and detoxifying properties and has been used to treat inflammatory conditions and various cancers. While lung inflammation is an indication for S. barbata, its effects on acute respiratory distress syndrome (ARDS) remain unclear. AIM OF THE STUDY Dysregulated neutrophilic inflammation plays a critical role in the pathogenesis of ARDS. In this study, we aimed to investigate the novel application of S. barbata in treating neutrophilic inflammation and ARDS. We evaluated the therapeutic potential of the ethanol extract of S. barbata (SB-EtOH) in mitigating neutrophil-driven inflammatory responses. MATERIALS AND METHODS The chromatographic fingerprint of SB-EtOH was analyzed, and its ethnopharmacological mechanisms were examined for their effects on inflammatory responses in human neutrophils. The therapeutic potential of SB-EtOH was further assessed using a mouse model of lipopolysaccharide (LPS)-induced ARDS. RESULTS SB-EtOH significantly inhibited respiratory burst, degranulation, and chemotactic responses in activated human neutrophils without cytotoxic effects. Additionally, SB-EtOH attenuated phosphorylation of key inflammatory signaling molecules, Akt and p38, while reducing calcium mobilization in activated human neutrophils. In the LPS-induced ARDS mouse model, SB-EtOH reduced pulmonary neutrophil infiltration, lung tissue damage, and oxidative stress accumulation. CONCLUSION These findings suggest that S. barbata is a promising therapeutic candidate for ARDS and other neutrophil-predominant inflammatory diseases by mitigating neutrophilic inflammation.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yao-Rong Lee
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yu-Chia Chang
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan.
| | - Shu-Yen Fang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan.
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 50006, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402202, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402202, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824410, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Tsong-Long Hwang
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| |
Collapse
|
4
|
Xu Q, Authi KS, Kirpotina LN, Schepetkin IA, Quinn MT, Cilibrizzi A. Development of small-molecule fluorescent probes targeting neutrophils via N-formyl peptide receptors. RSC Med Chem 2025; 16:1397-1409. [PMID: 39886349 PMCID: PMC11775818 DOI: 10.1039/d4md00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
N-Formyl peptide receptors (FPRs) are membrane receptors that are abundantly expressed in innate immune cells, including neutrophils and platelets, demonstrating potential new targets for immune system regulation and the treatment of inflammatory conditions. We report here the development and bio-physical validation of new FPR imaging agents as effective tools to track FPR distribution, localisation and functions, ultimately helping to establish FPR exact roles and functions in pathological and physiological conditions. The new series of probes feature a small molecule-based FPR address system conjugated to suitable fluorophores, resulting in highly specific FPR agents, including a partial agonist endowed with high affinity (i.e. low/sub-nanomolar potency) on FPR-transfected cells and human neutrophils. Preliminary imaging studies via multiphoton microscopy demonstrate that the probes enable the visualisation of FPRs in live cells, thus representing valid bio-imaging tools for the analysis of FPR-mediated signalling, such as the activation of neutrophils in inflammatory events.
Collapse
Affiliation(s)
- Qi Xu
- Institute of Pharmaceutical Science, King's College London Stamford Street London SE1 9NH UK +44 (0) 20 7848 9532
| | - Kalwant S Authi
- BHF Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London London SE1 9NH UK
| | - Liliya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University Bozeman Montana 59717 USA
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University Bozeman Montana 59717 USA
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University Bozeman Montana 59717 USA
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London Stamford Street London SE1 9NH UK +44 (0) 20 7848 9532
| |
Collapse
|
5
|
Napolitano F, Montuori N. The N-formyl peptide receptors: much more than chemoattractant receptors. Relevance in health and disease. Front Immunol 2025; 16:1568629. [PMID: 40103822 PMCID: PMC11913705 DOI: 10.3389/fimmu.2025.1568629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025] Open
Abstract
Pattern Recognition Receptors (PRRs) are a superfamily of receptors that detect molecular structures typical for pathogens and damaged cells and play a crucial role in the proper function of the innate immune system. A particular subgroup of membrane-bound PRRs is represented by the N-formyl peptide receptors (FPRs) that consist of transmembrane G-protein coupled receptors involved in inflammatory responses. FPRs were initially described in immune cells as transducers of chemotactic signals in phagocytes that react to tissue injury. Subsequently, FPRs were also identified in a wide variety of cell types, including cancer cells. Beyond broad cellular distribution, FPRs are also characterized by the ability to bind a variety of ligands with different chemical and biological properties, ranging from natural peptides to synthetic compounds. The binding of FPRs to specific agonists induces a cascade of functional biological events, such as cell proliferation, migration, angiogenesis, and oxidative stress. From all this evidence, it becomes clear that FPRs are multifaceted receptors involved in several pathophysiological processes associated with inflammation. In this review, we provide a comprehensive molecular description of structure-function relationship of FPRs and their pivotal role in the host defense, highlighting the regulatory functions in both the initiation and resolution of inflammation. In addition to their activity as PRRs during innate immune response, we focus on their involvement in pathological conditions, including chronic inflammatory disease, neurodegenerative disorders, and cancer, with special emphasis on FPR targeting as promising therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
7
|
Pu Z, Luo D, Shuai B, Xu Y, Liu M, Zhao J. Focusing on Formyl Peptide Receptors after Traumatic Spinal Cord Injury: from Immune Response to Neurogenesis. Neurochem Res 2025; 50:98. [PMID: 39920516 DOI: 10.1007/s11064-025-04347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
The intricate pathophysiological cascades following spinal cord injury (SCI), encompassing cellular demise, axonal degeneration, and the formation of glial scars, pose formidable barriers to neural regeneration and restoration. Notably, neuroinflammation and glial scars emerge as pivotal barrier to post-SCI repair. Formyl peptide receptors (FPRs) emerge as critical regulators of immune responses, exerting significant influence over inflammatory modulation and nerve regeneration subsequent to SCI. Beyond their classical expression in myeloid cells, FPRs demonstrate a pronounced presence within the central nervous system (CNS) with roles in the progression of neurodegenerative disorders and neurological malignancies. Post-SCI, the equilibrium of the inflammatory microenvironment is recalibrated through the strategic modulation of FPRs, including facilitating a balance in microglial polarization, stimulating neural stem cells (NSCs) migration, and promoting neural axon elongation. These observations enlighten the potential of FPRs as innovative targets for neuronal regenerations bolstering SCI repair. This review endeavors to delineate the distribution and function of FPRs in the aftermath of SCI, with a special attention to their roles in inflammatory regulation, NSCs mobilization, and synaptic growth. By elucidating these mechanisms, we aspire to contribute novel insights and strategies for SCI therapy.
Collapse
Affiliation(s)
- Ziheng Pu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Luo
- Yu-Yue Pathology Scientific Research Center, Chongqing, China
| | - Beining Shuai
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuzhao Xu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingyong Liu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.
| | - Jianhua Zhao
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
8
|
Yui S, Fujii N, Terauchi J, Tanabe N, Kanno M, Umehara K, Iijima R, Kamata R, Ohkura N, Kishimoto S, Sasaki T. Chemotactic Activity of Products of Elizabethkingia anophelis Derived from Aedes albopictus against RAW264 Murine Macrophage Cell Line. Jpn J Infect Dis 2025; 78:35-42. [PMID: 39477519 DOI: 10.7883/yoken.jjid.2024.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Dengue viruses enter the dermal macrophages derived from other tissues following a bite from an infected mosquito. We examined the chemotactic activity of factors derived from the dengue vector mosquito Aedes albopictus on a RAW264 murine macrophage cell line. We found that Elizabethkingia anophelis isolated from the mosquitoes exhibits migration-inducing activity in RAW264 cells. The active substances that induce the chemotactic movement were extracted using ethyl acetate. Chemotactic activity was noted in several of the fractions isolated using reverse-phase chromatography, suggesting that multiple components were responsible for this activity. Next, we isolated three bacterial colonies from wild A. albopictus mosquitoes collected from Toyama Park (Tokyo, Japan). The bacterial 16S rRNA gene sequences shared homology with that of Lonsdalea quercina. These bacteria also exhibited migration-inducing activity in RAW264 cells. The migration-inducing activity of the bacteria in mosquitoes may be a novel aspect of mosquito-mediated viral infections.
Collapse
Affiliation(s)
- Satoru Yui
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | | | - Jo Terauchi
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | - Nana Tanabe
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | - Marie Kanno
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | - Kouta Umehara
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | - Ryosuke Iijima
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | - Riyo Kamata
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | - Naoki Ohkura
- Department of Pharmaceutical Sciences, Teikyo University, Japan
| | | | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| |
Collapse
|
9
|
Su L, Li J, Qin L, Feng Y, Xu D. Function of formyl peptide receptor 2 in adriamycin resistance of breast cancer. Exp Biol Med (Maywood) 2025; 249:10281. [PMID: 39881881 PMCID: PMC11776488 DOI: 10.3389/ebm.2024.10281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
FPRL2 has been shown to be associated with a variety of tumours but has not been well studied in breast cancer. In this study, We combine molecular biology techniques with bioinformatics to analyze the role of FPRL2 in breast cancer and adriamycin resistance. By utilizing bioinformatics, we mine TCGA and GEO public databases to assess FPRL2 expression in breast cancer patients and its correlation with patient prognosis. Additionally, we employ the DepMap tool to probe the CCLE database, examining the relationship between FPRL2 gene effects and adriamycin sensitivity. Chemosensitivity of Adriamycin in breast cancer cells was tested by CCK-8 method. The apoptosis of breast cancer cells was determined by flow cytometry assay. Expression of p-ERK5 and p-AKT was determined by Western blot assay. Our results indicate that the expression level of FPRL2 in tumor tissues of breast cancer patients is significantly higher than that in normal tissues, and it correlates with poor prognosis in patients. Furthermore, the expression level of FPRL2 in tumor tissues of adriamycin-resistant breast cancer patients is also significantly higher than that in adriamycin-sensitive patients. The IC50 (Inhibitory Concentration 50). Of Adriamycin was significantly lower in FPRL2 silenced cells than those control cells. The apoptosis was markedly increased in FPRL2-silenced cells. p-ERK5 and p-AKT in breast cancer cells was significantly reduced after FPRL2 knocked down. In Conclusion, FPRL2 mediates Adriamycin resistance in breast cancer cells, and knockdown of FPRL2 increased apoptosis and decreased Adriamycin resistance in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Dingwen Xu
- School of Medicine, Yangzhou Polytechnic College, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Li Z, Fierstein S, Tanaka-Yano M, Frenis K, Chen CC, Wang D, Falchetti M, Côté P, Curran C, Lu K, Liu T, Orkin S, Li H, Lummertz da Rocha E, Hu S, Zhu Q, Rowe RG. The epigenetic state of the cell of origin defines mechanisms of leukemogenesis. Leukemia 2025; 39:87-97. [PMID: 39354203 DOI: 10.1038/s41375-024-02428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.
Collapse
Affiliation(s)
- Zhiheng Li
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sara Fierstein
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Mayuri Tanaka-Yano
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Dahai Wang
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | - Parker Côté
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Curran
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Kate Lu
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianxin Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Stuart Orkin
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hojun Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | | | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qian Zhu
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA.
| | - R Grant Rowe
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Zuo B, Li X, Xu D, Zhao L, Yang Y, Luan Y, Zhang B. Targeting mitochondrial transfer: a new horizon in cardiovascular disease treatment. J Transl Med 2024; 22:1160. [PMID: 39741312 PMCID: PMC11687156 DOI: 10.1186/s12967-024-05979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality among individuals with noncommunicable diseases worldwide. Obesity is associated with an increased risk of developing cardiovascular disease (CVD). Mitochondria are integral to the cardiovascular system, and it has been reported that mitochondrial transfer is associated with the pathogenesis of multiple CVDs and obesity. This review offers a comprehensive examination of the relevance of mitochondrial transfer to cardiovascular health and disease, emphasizing the critical functions of mitochondria in energy metabolism and signal transduction within the cardiovascular system. This highlights how disruptions in mitochondrial transfer contribute to various CVDs, such as myocardial infarction, cardiomyopathies, and hypertension. Additionally, we provide an overview of the molecular mechanisms governing mitochondrial transfer and its potential implications for CVD treatment. This finding underscores the therapeutic potential of mitochondrial transfer and addresses the various mechanisms and challenges in its implementation. By delving into mitochondrial transfer and its targeted modulation, this review aims to advance our understanding of cardiovascular disease treatment, presenting new insights and potential therapeutic strategies in this evolving field.
Collapse
Affiliation(s)
- Baile Zuo
- Molecular Immunology and Immunotherapy Laboratory, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
- Department of Clinical Laboratory, Heping Branch, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dawei Xu
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Bi Zhang
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
13
|
Huang JJ, Zhuo JY, Wang Q, Sun Y, Qi JX, Wu JJ, Zhang Y, Chen G, Jiang PF, Fan YY. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age. Forensic Sci Med Pathol 2024; 20:1155-1165. [PMID: 38652217 DOI: 10.1007/s12024-024-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.
Collapse
Affiliation(s)
- Jun-Jie Huang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Ying Zhuo
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Qian Wang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yue Sun
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Xin Qi
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Juan-Juan Wu
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yu Zhang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Peng-Fei Jiang
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
| | - Yan-Yan Fan
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China.
| |
Collapse
|
14
|
De Fenza M, Locri F, Plastino F, Chino M, Maglio O, Leone L, Gazzaroli G, Belleri M, Giacomini A, Kvanta A, André H, Pavone V, D’Alonzo D. Turn-Adopting Peptidomimetic as a Formyl Peptide Receptor-1 Antagonist. ACS Pharmacol Transl Sci 2024; 7:3476-3487. [PMID: 39539264 PMCID: PMC11555506 DOI: 10.1021/acsptsci.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The design, synthesis, and characterization of a new peptidomimetic acting as a formyl peptide receptor (FPR1) antagonist (N-19004) are herein reported. The molecule has been identified with docking studies of the highly potent FPR1 antagonist UPARANT on human receptor. N-19004 recapitulates all pharmacophoric groups necessary for recognition into a minimal structure, with a crucial role of the 2,6-diamino-thiophenyl scaffold mimicking the positions of Cα atoms of Arg residues in the turned Arg-Aib-Arg segment of UPARANT. N-19004 demonstrated to interfere with the biological properties of FPR1 both in vitro and in vivo. In a mouse model of choroidal neovascularization, N-19004 markedly reduced the size of laser-induced choroidal lesions, with reabsorption of the edema regions by a systemic administration route.
Collapse
Affiliation(s)
- Maria De Fenza
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Filippo Locri
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Flavia Plastino
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Chino
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Ornella Maglio
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
- Institute
of Biostructures and Bioimaging (IBB), National
Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Linda Leone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Giorgia Gazzaroli
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mirella Belleri
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Anders Kvanta
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helder André
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vincenzo Pavone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| |
Collapse
|
15
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
16
|
Waki K, Ozawa M, Ohta K, Komatsu N, Yamada A. Tumor-derived mitochondrial formyl peptides suppress tumor immunity through modification of the tumor microenvironment. Cancer Sci 2024; 115:3218-3230. [PMID: 39086034 PMCID: PMC11447925 DOI: 10.1111/cas.16266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Mitochondrial N-formylpeptides are released from damaged or dead cells to the extracellular spaces and cause inflammatory responses. The role of mitochondrial N-formylpeptides in aseptic systemic inflammatory response syndromes induced by trauma or cardiac surgery has been well investigated. However, there are no reports regarding the role of mitochondrial N-formylpeptides in cancer. In this study, we investigated the role of tumor cell-derived mitochondrial N-formylpeptides in anti-tumor immunity using knockout murine tumor cells of mitochondrial methionyl-tRNA formyltransferase (MTFMT), which catalyze N-formylation of mitochondrial DNA-encoded proteins. There was no apparent difference among the wild-type and MTFMT-knockout clones of E.G7-OVA cells with respect to morphology, mitochondrial dynamics, glycolysis and oxidative phosphorylation, oxygen consumption rate, or in vitro cell growth. In contrast, in vivo tumor growth of MTFMT-knockout cells was slower than that of wild-type cells. A reduced number of myeloid-derived suppressor cells and an increase of cytotoxic T-lymphocytes in the tumor tissues were observed in the MTFMT-knockout tumors. These results suggested that tumor cell-derived mitochondrial N-formylpeptides had a negative role in the host anti-tumor immunity through modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Kayoko Waki
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
| | - Miyako Ozawa
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
| | - Keisuke Ohta
- Advanced Imaging Research CenterKurume University School of MedicineKurumeFukuokaJapan
| | - Nobukazu Komatsu
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
- Department of ImmunologyKurume University School of MedicineKurume, FukuokaJapan
| | - Akira Yamada
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
| |
Collapse
|
17
|
Pajonczyk D, Sternschulte MF, Soehnlein O, Bermudez M, Raabe CA, Rescher U. Comparative analysis of formyl peptide receptor 1 and formyl peptide receptor 2 reveals shared and preserved signalling profiles. Br J Pharmacol 2024. [PMID: 39294930 DOI: 10.1111/bph.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The pattern recognition receptors, formyl peptide receptors, FPR1 and FPR2, are G protein-coupled receptors that recognize many different pathogen- and host-derived ligands. While FPR1 conveys pro-inflammatory signals, FPR2 is linked with pro-resolving outcomes. To analyse how the two very similar FPRs exert opposite effects in modulating inflammatory responses despite their high homology, a shared expression profile on immune cells and an overlapping ligand repertoire, we questioned whether the signalling profile differs between these two receptors. EXPERIMENTAL APPROACH We deduced EC50 and Emax values for synthetic, pathogen-derived and host-derived peptide agonists for both FPR1 and FPR2 and analysed them within the framework of biased signalling. We furthermore investigated whether FPR isoform-specific agonists affect the ex vivo lifespan of human neutrophils. KEY RESULTS The FPRs share a core signature across signalling pathways. Whereas the synthetic WKYMVm and formylated peptides acted as potent agonists at FPR1, and at FPR2, only WKYMVm was a full agonist. Natural FPR2 agonists, irrespective of N-terminal formylation, displayed lower activity ratios, suggesting an underutilized signalling potential of this receptor. FPR2 agonism did not counteract LPS-induced neutrophil survival, indicating that FPR2 activation per se is not linked with a pro-resolving function. CONCLUSION AND IMPLICATIONS Activation of FPR1 and FPR2 by a representative agonist panel revealed a lack of a receptor-specific signalling texture, challenging assumptions about distinct inflammatory profiles linked to specific receptor isoforms, signalling patterns or agonist classes. These conclusions are restricted to the specific agonists and signalling pathways examined.
Collapse
Affiliation(s)
- Denise Pajonczyk
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Merle F Sternschulte
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Marcel Bermudez
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Muenster, Germany
| | - Carsten A Raabe
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Ursula Rescher
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
18
|
Zhou Q, Yan X, Guo Y, Jiang X, Cao T, Ke Y. Machine learning algorithms for predicting glioma patient prognosis based on CD163+FPR3+ macrophage signature. NPJ Precis Oncol 2024; 8:201. [PMID: 39271911 PMCID: PMC11399388 DOI: 10.1038/s41698-024-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a vital role in glioma progression and are associated with poor outcomes in glioma patients. However, the specific roles of different subpopulations of TAMs remain poorly understood. Two distinct cell types, glioma and myeloid cells, were identified through single-cell sequencing analysis in gliomas. Within the TAMs-associated weighted gene co-expression network analysis (WGCNA) module, FPR3 emerged as a hub gene and was found to be expressed on CD163+ macrophages, while also being associated with clinical outcomes. Subsequently, a comprehensive assessment was undertaken to investigate the correlation between FPR3 expression and immune characteristics, revealing that FPR3 potentially plays a role in reshaping the glioma microenvironment. We identified a macrophage subset with the nonzero expression of CD163 and FPR3 (CD163+FPR3+). Using the expression profiles of CD163+FPR3+ macrophage-related signature, we employed ten machine learning algorithms to construct a prognostic model across six glioma cohorts. Subsequently, we employed an optimal algorithm to generate an artificial intelligence-driven prognostic signature specifically for CD163+FPR3+ macrophages. The development of this model was based on the average C-index observed in the aforementioned six cohorts. The risk score of this model consistently and effectively predicted overall survival, surpassing the accuracy of conventional clinical factors and 100 previously published signatures. Consequently, the CD163+FPR3+ macrophage-related score shows potential as a prognostic biomarker for glioma patients.
Collapse
Affiliation(s)
- Quanwei Zhou
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejun Yan
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Tuo Cao
- Department of Clinical Laboratory, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| | - Yiquan Ke
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Modestino L, Tumminelli M, Mormile I, Cristinziano L, Ventrici A, Trocchia M, Ferrara AL, Palestra F, Loffredo S, Marone G, Rossi FW, de Paulis A, Galdiero MR. Neutrophil exhaustion and impaired functionality in psoriatic arthritis patients. Front Immunol 2024; 15:1448560. [PMID: 39308858 PMCID: PMC11412820 DOI: 10.3389/fimmu.2024.1448560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background Neutrophils (polymorphonuclear leukocytes, PMNs) are the most abundant subtype of white blood cells and are among the main actors in the inflammatory response. Psoriatic arthritis (PsA) is a chronic inflammatory disease affecting both the axial and peripheral joints. Typically associated with psoriasis, PsA can also affect multiple systems and organs, including the nails and entheses. Despite the involvement of PMNs in PsA, their specific role in the disease remains poorly understood. This study aimed to characterize the biological functions of PMNs and neutrophil-related mediators in PsA patients. Materials and methods 31 PsA patients and 22 healthy controls (HCs) were prospectively recruited. PMNs were isolated from peripheral blood and subjected to in vitro stimulation with lipopolysaccharide (LPS), N-Formylmethionyl-leucyl-phenylalanine (fMLP), tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate (PMA), or control medium. Highly purified peripheral blood PMNs (>99%) were evaluated for activation status, reactive oxygen species (ROS) production, phagocytic activity, granular enzyme and neutrophil extracellular traps (NETs) release. Serum levels of matrix metalloproteinase-9 (MMP-9), myeloperoxidase (MPO), TNF, interleukin 23 (IL-23), and interleukin 17 (IL-17) were measured by ELISA. Serum Citrullinated histone H3 (CitH3) was measured as a NET biomarker. Results Activated PMNs from PsA patients displayed reduced activation, decreased ROS production, and impaired phagocytic activity upon stimulation with TNF, compared to HCs. PMNs from PsA patients also displayed reduced granular enzyme (MPO) and NET release. Serum analyses revealed elevated levels of MMP-9, MPO, TNF, IL-23, IL-17, and CitH3 in PsA patients compared to HCs. Serum CitH3 levels positively correlated with MPO and TNF concentrations, and IL-17 concentrations were positively correlated with IL-23 levels in PsA patients. These findings indicate that PMNs from PsA patients show reduced in vitro activation and function, and an increased presence of neutrophil-derived mediators (MMP-9, MPO, TNF, IL-23, IL-17, and CitH3) in their serum. Conclusions Taken together, our findings suggest that PMNs from PsA patients exhibit an "exhausted" phenotype, highlighting their plasticity and multifaceted roles in PsA pathophysiology.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Manuela Tumminelli
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Ilaria Mormile
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Naples, Italy
| | - Francesca Wanda Rossi
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Scharf P, Sandri S, Rizzetto F, Xavier LF, Grosso D, Correia-Silva RD, Farsky PS, Gil CD, Farsky SHP. GPCRs overexpression and impaired fMLP-induced functions in neutrophils from chronic kidney disease patients. Front Immunol 2024; 15:1387566. [PMID: 39253088 PMCID: PMC11381270 DOI: 10.3389/fimmu.2024.1387566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction G-protein coupled receptors (GPCRs) expressed on neutrophils regulate their mobilization from the bone marrow into the blood, their half-live in the circulation, and their pro- and anti-inflammatory activities during inflammation. Chronic kidney disease (CKD) is associated with systemic inflammatory responses, and neutrophilia is a hallmark of CKD onset and progression. Nonetheless, the role of neutrophils in CKD is currently unclear. Methods Blood and renal tissue were collected from non-dialysis CKD (grade 3 - 5) patients to evaluate GPCR neutrophil expressions and functions in CKD development. Results CKD patients presented a higher blood neutrophil-to-lymphocyte ratio (NLR), which was inversely correlated with the glomerular filtration rate (eGFR). A higher frequency of neutrophils expressing the senescent GPCR receptor (CXCR4) and activation markers (CD18+CD11b+CD62L+) was detected in CKD patients. Moreover, CKD neutrophils expressed higher amounts of GPCR formyl peptide receptors (FPR) 1 and 2, known as neutrophil pro- and anti-inflammatory receptors, respectively. Cytoskeletal organization, migration, and production of reactive oxygen species (ROS) by CKD neutrophils were impaired in response to the FPR1 agonist (fMLP), despite the higher expression of FPR1. In addition, CKD neutrophils presented enhanced intracellular, but reduced membrane expression of the protein Annexin A1 (AnxA1), and an impaired ability to secrete it into the extracellular compartment. Secreted and phosphorylated AnxA1 is a recognized ligand of FPR2, pivotal in anti-inflammatory and efferocytosis effects. CKD renal tissue presented a low number of neutrophils, which were AnxA1+. Conclusion Together, these data highlight that CKD neutrophils overexpress GPCRs, which may contribute to an unbalanced aging process in the circulation, migration into inflamed tissues, and efferocytosis.
Collapse
Affiliation(s)
- Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Felipe Rizzetto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Lagoa Federal Hospital, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro S Farsky
- Dante Pazzanese Institute of Cardiology of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Li T, Zhou X, Zhang Q, Miao Q, Woodman OL, Chen Y, Qin C. Formyl peptide receptor 1 mitigates colon inflammation and maintains mucosal homeostasis through the inhibition of CREB-C/EBPβ-S100a8 signaling. Mucosal Immunol 2024; 17:651-672. [PMID: 38614323 DOI: 10.1016/j.mucimm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein β, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China; Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Shandong University, Jinan, China
| | - Qian Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Miao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Chengxue Qin
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
22
|
Salemi M, Schillaci FA, Lanza G, Marchese G, Salluzzo MG, Cordella A, Caniglia S, Bruccheri MG, Truda A, Greco D, Ferri R, Romano C. Transcriptome Study in Sicilian Patients with Autism Spectrum Disorder. Biomedicines 2024; 12:1402. [PMID: 39061976 PMCID: PMC11274004 DOI: 10.3390/biomedicines12071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
ASD is a complex condition primarily rooted in genetics, although influenced by environmental, prenatal, and perinatal risk factors, ultimately leading to genetic and epigenetic alterations. These mechanisms may manifest as inflammatory, oxidative stress, hypoxic, or ischemic damage. To elucidate potential variances in gene expression in ASD, a transcriptome analysis of peripheral blood mononuclear cells was conducted via RNA-seq on 12 ASD patients and 13 healthy controls, all of Sicilian ancestry to minimize environmental confounds. A total of 733 different statistically significant genes were identified between the two cohorts. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) terms were employed to explore the pathways influenced by differentially expressed mRNAs. GSEA revealed GO pathways strongly associated with ASD, namely the GO Biological Process term "Response to Oxygen-Containing Compound". Additionally, the GO Cellular Component pathway "Mitochondrion" stood out among other pathways, with differentially expressed genes predominantly affiliated with this specific pathway, implicating the involvement of different mitochondrial functions in ASD. Among the differentially expressed genes, FPR2 was particularly highlighted, belonging to three GO pathways. FPR2 can modulate pro-inflammatory responses, with its intracellular cascades triggering the activation of several kinases, thus suggesting its potential utility as a biomarker of pro-inflammatory processes in ASD.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Francesca A. Schillaci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
- Department of Surgery and Medical—Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Giovanna Marchese
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Angela Cordella
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Salvatore Caniglia
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Maria Grazia Bruccheri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Anna Truda
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Donatella Greco
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Corrado Romano
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| |
Collapse
|
23
|
Golenkina EA, Viryasova GM, Galkina SI, Iakushkina IV, Gaponova TV, Romanova YM, Sud’ina GF. ATP and Formyl Peptides Facilitate Chemoattractant Leukotriene-B4 Synthesis and Drive Calcium Fluxes, Which May Contribute to Neutrophil Swarming at Sites of Cell Damage and Pathogens Invasion. Biomedicines 2024; 12:1184. [PMID: 38927391 PMCID: PMC11201259 DOI: 10.3390/biomedicines12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Here, we demonstrate that human neutrophil interaction with the bacterium Salmonella typhimurium fuels leukotriene B4 synthesis induced by the chemoattractant fMLP. In this work, we found that extracellular ATP (eATP), the amount of which increases sharply during tissue damage, can effectively regulate fMLP-induced leukotriene B4 synthesis. The vector of influence strongly depends on the particular stage of sequential stimulation of neutrophils by bacteria and on the stage at which fMLP purinergic signaling occurs. Activation of 5-lipoxygenase (5-LOX), key enzyme of leukotriene biosynthesis, depends on an increase in the cytosolic concentration of Ca2+. We demonstrate that eATP treatment prior to fMLP, by markedly reducing the amplitude of the fMLP-induced Ca2+ transient jump, inhibits leukotriene synthesis. At the same time, when added with or shortly after fMLP, eATP effectively potentiates arachidonic acid metabolism, including by Ca2+ fluxes stimulation. Flufenamic acid, glibenclamide, and calmodulin antagonist R24571, all of which block calcium signaling in different ways, all suppressed 5-LOX product synthesis in our experimental model, indicating the dominance of calcium-mediated mechanisms in eATP regulatory potential. Investigation into the adhesive properties of neutrophils revealed the formation of cell clusters when adding fMLP to neutrophils exposed to the bacterium Salmonella typhimurium. eATP added simultaneously with fMLP supported neutrophil polarization and clustering. A cell-derived chemoattractant such as leukotriene B4 plays a crucial role in the recruitment of additional neutrophils to the foci of tissue damage or pathogen invasion, and eATP, through the dynamics of changes in [Ca2+]i, plays an important decisive role in fMLP-induced leukotrienes synthesis during neutrophil interactions with the bacterium Salmonella typhimurium.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Iuliia V. Iakushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, 125167 Moscow, Russia;
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| |
Collapse
|
24
|
Hong Z, Xu H, Ni K, Yang Y, Deng S. Effect of Cyclosporin H on ischemic injury and neutrophil infiltration in cerebral infarct model of rats via PET imaging. Ann Nucl Med 2024; 38:337-349. [PMID: 38360964 DOI: 10.1007/s12149-024-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.
Collapse
Affiliation(s)
- Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Nuclear Medicine and Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi, 214063, China
| | - Hong Xu
- Department of Oncology, Changshu Hospital Affiliated to Soochow University, Changzhou No. 1 People's Hospital, Suzhou, 215006, China
| | - Kairu Ni
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Yi Yang
- Department of Nuclear Medicine, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
25
|
Chen H, Yang T, Xu Y, Liang B, Liu X, Cai Y. Anti-inflammatory and immunoregulatory effects of colistin sulphate on human PBMCs. J Cell Mol Med 2024; 28:e18322. [PMID: 38661452 PMCID: PMC11044820 DOI: 10.1111/jcmm.18322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
In previous studies, CST has been identified as having an immunostimulatory effect on Caenorhabditis elegans and macrophage of rats. Here, we further investigated its immunomodulatory effects on human peripheral blood mononuclear cells (PBMCs). LPS-stimulated PBMCs inflammatory model was established. Flow cytometry was applied to measure phagocytosis of PBMCs. Cytokine mRNA and protein expression levels of LPS-stimulated PBMCs with or without CST were measured by qRT-PCR and ELISA. The transcriptomic profile of CST-treated PBMCs was investigated by RNA-sequencing. Gene Ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) were applied to find potential signalling pathways. PBMCs showed a significant increase in phagocytic activity at 6 h after being incubated with CST at the concentration of 10 μg/mL. In the presence of LPS, CST maintained and promoted the expression of TNF-α and chemokine CCL24. The content of pro-inflammatory cytokines, such as IL-1β, IL-6 and IFN-γ, which were released from LPS-stimulated PBMCs, was reduced by CST at 6 h. Anti-inflammatory cytokines, such as IL-4, IL-13 and TGF-β1, were significantly increased by CST at 24 h. A total of 277 differentially expressed immune-related genes (DEIRGs) were detected and cytokine-cytokine receptor interaction was highly enriched. CST presented obvious anti-inflammatory and immunoregulatory effects in LPS-induced PBMCs inflammatory model not only by improving the ability of PBMCs to clear pathogens but also by decreasing pro-inflammatory cytokines and increasing anti-inflammatory cytokines. And the mechanism may be related to cytokine-cytokine receptor interaction.
Collapse
Affiliation(s)
- Huiling Chen
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
- Department of PharmacyZigong Fourth People's HospitalZigongChina
| | - Tianli Yang
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
- Medical School of Chinese PLAGraduate School of Chinese PLA General HospitalBeijingChina
| | - Yiran Xu
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
- The Second Naval Hospital of Southern Theater Command of PLASanyaChina
| | - Beibei Liang
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
| | - Xianyong Liu
- Medical School of Chinese PLAGraduate School of Chinese PLA General HospitalBeijingChina
- Department of Thoracic SurgeryThe First Medical Center, PLA General HospitalBeijingChina
| | - Yun Cai
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
| |
Collapse
|
26
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
28
|
Pecchillo Cimmino T, Panico I, Scarano S, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl Peptide Receptor 2-Dependent cPLA2 and 5-LOX Activation Requires a Functional NADPH Oxidase. Antioxidants (Basel) 2024; 13:220. [PMID: 38397818 PMCID: PMC10886330 DOI: 10.3390/antiox13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Phospholipases (PL) A2 catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform. Signaling triggered by FPR2 includes the activation of several downstream kinases and NADPH oxidase (NOX)-dependent ROS generation. In a metabolomic analysis we observed a significant increase in AA concentration in FPR2-stimulated lung cancer cell line CaLu-6. We analyzed cPLA2 phosphorylation and observed a time-dependent increase in cPLA2 Ser505 phosphorylation in FPR2-stimulated cells, which was prevented by the MEK inhibitor (PD098059) and the p38MAPK inhibitor (SB203580) and by blocking NOX function. Similarly, we demonstrated that phosphorylation of 5-LOX at Ser271 and Ser663 residues requires FPR2-dependent p38MAPK and ERKs activation. Moreover, we showed that 5-LOX Ser271 phosphorylation depends on a functional NOX expression. Our overall data demonstrate for the first time that FPR2-induced ERK- and p38MAPK-dependent phosphorylation/activation of cPLA2 and 5-LOX requires a functional NADPH oxidase. These findings represent an important step towards future novel therapeutic possibilities aimed at resolving the inflammatory processes underlying many human diseases.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Iolanda Panico
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Simona Scarano
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| |
Collapse
|
29
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
30
|
Zhou Z, Wang J, Jiang C, Xu K, Xu T, Yu X, Fang J, Yang Y, Dai X. Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives. Gels 2024; 10:114. [PMID: 38391445 PMCID: PMC10887778 DOI: 10.3390/gels10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities.
Collapse
Affiliation(s)
- Zhuxing Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Chaoqian Jiang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Yanyu Yang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
31
|
McAllister MJ, Hall R, Whelan RJ, Fischer LJ, Chuah CS, Cartlidge PD, Drury B, Rutherford DG, Duffin RM, Cartwright JA, Dorward DA, Rossi AG, Ho GT. Formylated Peptide Receptor-1-Mediated Gut Inflammation as a Therapeutic Target in Inflammatory Bowel Disease. CROHN'S & COLITIS 360 2024; 6:otae003. [PMID: 38352118 PMCID: PMC10862654 DOI: 10.1093/crocol/otae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 02/16/2024] Open
Abstract
Background Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.
Collapse
Affiliation(s)
- Milly J McAllister
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rebecca Hall
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Robert J Whelan
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Lena J Fischer
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Cher S Chuah
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Peter D Cartlidge
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Broc Drury
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Duncan G Rutherford
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rodger M Duffin
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jennifer A Cartwright
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - David A Dorward
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Adriano G Rossi
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Gwo-tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
32
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
33
|
Park SJ, Greer PL, Lee N. From odor to oncology: non-canonical odorant receptors in cancer. Oncogene 2024; 43:304-318. [PMID: 38087050 DOI: 10.1038/s41388-023-02908-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Odorant receptors, traditionally associated with olfaction as chemoreceptors, have been increasingly recognized for their presence and diverse functions in various non-nasal tissues throughout the body. Beyond their roles in sensory perception, emerging evidence suggests a compelling interplay between odorant receptors and cancer progression as well. Alongside the canonical GPCR odorant receptors, dysregulation of non-canonical odorant receptors such as trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and membrane-spanning 4A family (MS4As) has been observed in various cancer types, suggesting their contributions to cancer progression. The roles of these non-canonical chemoreceptors in cancer are complex, with some receptors promoting tumorigenesis and others acting as tumor-suppressing factors upon activation, depending on the cancer type. These findings shed light on the potential of non-canonical odorant receptors as therapeutic targets and prognostic markers in cancer, inviting further exploration to unravel their precise mechanisms of action and implications in cancer biology. In this review, we provide a comprehensive overview of the intricate relationships between these chemoreceptors and various types of cancer, potentially paving the way for innovative odor-based therapeutics. Ultimately, this review discusses the potential development of novel therapeutic strategies targeting these non-canonical chemoreceptors.
Collapse
Affiliation(s)
- Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Namgyu Lee
- Department of Biomedical Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
34
|
Francavilla F, Sarcina F, Schepetkin IA, Kirpotina LN, Contino M, Schirizzi A, De Leonardis G, Khlebnikov AI, D'Alessandro R, Quinn MT, Lacivita E, Leopoldo M. Development of potent isoflavone-based formyl peptide receptor 1 (FPR1) antagonists and their effects in gastric cancer cell models. Eur J Med Chem 2023; 261:115854. [PMID: 37839346 PMCID: PMC10822168 DOI: 10.1016/j.ejmech.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Formyl peptide receptor-1 (FPR1) is a G protein-coupled chemoattractant receptor that plays a crucial role in the trafficking of leukocytes into the sites of bacterial infection and inflammation. Recently, FPR1 was shown to be expressed in different types of tumor cells and could play a significant role in tumor growth and invasiveness. Starting from the previously reported FPR1 antagonist 4, we have designed a new series of 4H-chromen-2-one derivatives that exhibited a substantial increase in FPR1 antagonist potency. Docking studies identified the key interactions for antagonist activity. The most potent compounds in this series (24a and 25b) were selected to study the effects of the pharmacological blockade of FPR1 in NCl-N87 and AGS gastric cancer cells. Both compounds potently inhibited cell growth through a combined effect on cell proliferation and apoptosis and reduced cell migration, while inducing an increase in angiogenesis, thus suggesting that FPR1 could play a dual role as oncogene and onco-suppressor.
Collapse
Affiliation(s)
- Fabio Francavilla
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Federica Sarcina
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Lilya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy.
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
35
|
Zhang X, Weiß T, Cheng MH, Chen S, Ambrosius CK, Czerniak AS, Li K, Feng M, Bahar I, Beck-Sickinger AG, Zhang C. Structural basis of G protein-Coupled receptor CMKLR1 activation and signaling induced by a chemerin-derived agonist. PLoS Biol 2023; 21:e3002188. [PMID: 38055679 PMCID: PMC10699647 DOI: 10.1371/journal.pbio.3002188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023] Open
Abstract
Chemokine-like receptor 1 (CMKLR1), also known as chemerin receptor 23 (ChemR23) or chemerin receptor 1, is a chemoattractant G protein-coupled receptor (GPCR) that responds to the adipokine chemerin and is highly expressed in innate immune cells, including macrophages and neutrophils. The signaling pathways of CMKLR1 can lead to both pro- and anti-inflammatory effects depending on the ligands and physiological contexts. To understand the molecular mechanisms of CMKLR1 signaling, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of the CMKLR1-Gi signaling complex with chemerin9, a nanopeptide agonist derived from chemerin, which induced complex phenotypic changes of macrophages in our assays. The cryo-EM structure, together with molecular dynamics simulations and mutagenesis studies, revealed the molecular basis of CMKLR1 signaling by elucidating the interactions at the ligand-binding pocket and the agonist-induced conformational changes. Our results are expected to facilitate the development of small molecule CMKLR1 agonists that mimic the action of chemerin9 to promote the resolution of inflammation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tina Weiß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Mary Hongying Cheng
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | | | - Anne Sophie Czerniak
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Kunpeng Li
- Cryo-EM core facility, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Ivet Bahar
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
36
|
Kuley R, Duvvuri B, Wallin JJ, Bui N, Adona MV, O’Connor NG, Sahi SK, Stanaway IB, Wurfel MM, Morrell ED, Liles WC, Bhatraju PK, Lood C. Mitochondrial N-formyl methionine peptides contribute to exaggerated neutrophil activation in patients with COVID-19. Virulence 2023; 14:2218077. [PMID: 37248708 PMCID: PMC10231045 DOI: 10.1080/21505594.2023.2218077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023] Open
Abstract
Neutrophil dysregulation is well established in COVID-19. However, factors contributing to neutrophil activation in COVID-19 are not clear. We assessed if N-formyl methionine (fMet) contributes to neutrophil activation in COVID-19. Elevated levels of calprotectin, neutrophil extracellular traps (NETs) and fMet were observed in COVID-19 patients (n = 68), particularly in critically ill patients, as compared to HC (n = 19, p < 0.0001). Of note, the levels of NETs were higher in ICU patients with COVID-19 than in ICU patients without COVID-19 (p < 0.05), suggesting a prominent contribution of NETs in COVID-19. Additionally, plasma from COVID-19 patients with mild and moderate/severe symptoms induced in vitro neutrophil activation through fMet/FPR1 (formyl peptide receptor-1) dependent mechanisms (p < 0.0001). fMet levels correlated with calprotectin levels validating fMet-mediated neutrophil activation in COVID-19 patients (r = 0.60, p = 0.0007). Our data indicate that fMet is an important factor contributing to neutrophil activation in COVID-19 disease and may represent a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Life Sciences, Mahindra University, Hyderabad, India
| | - Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | | | - Nam Bui
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Mary Vic Adona
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Nicholas G. O’Connor
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Sharon K. Sahi
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Ian B. Stanaway
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Mark M. Wurfel
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Eric D. Morrell
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - W. Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Pavan K. Bhatraju
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Borcherding N, Brestoff JR. The power and potential of mitochondria transfer. Nature 2023; 623:283-291. [PMID: 37938702 PMCID: PMC11590279 DOI: 10.1038/s41586-023-06537-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/14/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are believed to have originated through an ancient endosymbiotic process in which proteobacteria were captured and co-opted for energy production and cellular metabolism. Mitochondria segregate during cell division and differentiation, with vertical inheritance of mitochondria and the mitochondrial DNA genome from parent to daughter cells. However, an emerging body of literature indicates that some cell types export their mitochondria for delivery to developmentally unrelated cell types, a process called intercellular mitochondria transfer. In this Review, we describe the mechanisms by which mitochondria are transferred between cells and discuss how intercellular mitochondria transfer regulates the physiology and function of various organ systems in health and disease. In particular, we discuss the role of mitochondria transfer in regulating cellular metabolism, cancer, the immune system, maintenance of tissue homeostasis, mitochondrial quality control, wound healing and adipose tissue function. We also highlight the potential of targeting intercellular mitochondria transfer as a therapeutic strategy to treat human diseases and augment cellular therapies.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
38
|
Paterson NM, Al-Zubieri H, Ragona J, Kohler KM, Tirado J, Geisbrecht BV, Barber MF. Dynamic Evolution of Bacterial Ligand Recognition by Formyl Peptide Receptors. Genome Biol Evol 2023; 15:evad175. [PMID: 37776517 PMCID: PMC10566242 DOI: 10.1093/gbe/evad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The detection of invasive pathogens is critical for host immune defense. Cell surface receptors play a key role in the recognition of diverse microbe-associated molecules, triggering leukocyte recruitment, phagocytosis, release of antimicrobial compounds, and cytokine production. The intense evolutionary forces acting on innate immune receptor genes have contributed to their rapid diversification across plants and animals. However, the functional consequences of immune receptor divergence are often unclear. Formyl peptide receptors (FPRs) comprise a family of animal G protein-coupled receptors which are activated in response to a variety of ligands including formylated bacterial peptides, pathogen virulence factors, and host-derived antimicrobial peptides. FPR activation in turn promotes inflammatory signaling and leukocyte migration to sites of infection. Here we investigate patterns of gene loss, diversification, and ligand recognition among FPRs in primates and carnivores. We find that FPR1, which plays a critical role in innate immune defense in humans, has been lost in New World primates. Amino acid variation in FPR1 and FPR2 among primates and carnivores is consistent with a history of repeated positive selection acting on extracellular domains involved in ligand recognition. To assess the consequences of FPR divergence on bacterial ligand interactions, we measured binding between primate FPRs and the FPR agonist Staphylococcus aureus enterotoxin B, as well as S. aureus FLIPr-like, an FPR inhibitor. We found that few rapidly evolving sites in primate FPRs are sufficient to modulate recognition of bacterial proteins, demonstrating how natural selection may serve to tune FPR activation in response to diverse microbial ligands.
Collapse
Affiliation(s)
- Nicole M Paterson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hussein Al-Zubieri
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Joseph Ragona
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Kristin M Kohler
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Juan Tirado
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
39
|
Janko J, Bečka E, Kmeťová K, Hudecová L, Konečná B, Celec P, Bajaj-Elliott M, Pastorek M. Neutrophil extracellular traps formation and clearance is enhanced in fever and attenuated in hypothermia. Front Immunol 2023; 14:1257422. [PMID: 37849757 PMCID: PMC10577177 DOI: 10.3389/fimmu.2023.1257422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Fever and hypothermia represent two opposite strategies for fighting systemic inflammation. Fever results in immune activation; hypothermia is associated with energy conservation. Systemic Inflammatory Response Syndrome (SIRS) remains a significant cause of mortality worldwide. SIRS can lead to a broad spectrum of clinical symptoms but importantly, patients can develop fever or hypothermia. During infection, polymorphonuclear cells (PMNs) such as neutrophils prevent pathogen dissemination through the formation of neutrophil extracellular traps (NETs) that ensnare and kill bacteria. However, when dysregulated, NETs also promote host tissue damage. Herein, we tested the hypothesis that temperature modulates NETs homeostasis in response to infection and inflammation. NETs formation was studied in response to infectious (Escherichia coli, Staphylococcus aureus) and sterile (mitochondria) agents. When compared to body temperature (37°C), NETs formation increased at 40°C; interestingly, the response was stunted at 35°C and 42°C. While CD16+ CD49d+ PMNs represent a small proportion of the neutrophil population, they formed ~45-85% of NETs irrespective of temperature. Temperature increased formyl peptide receptor 1 (FPR1) expression to a differential extent in CD16+ CD49d- vs. CD49d+ PMNSs, suggesting further complexity to neutrophil function in hypo/hyperthermic conditions. The capacity of NETs to induce Toll-like receptor 9 (TLR9)-mediated NF-κB activation was found to be temperature independent. Interestingly, NET degradation was enhanced at higher temperatures, which corresponded with greater plasma DNase activity in response to temperature increase. Collectively, our observations indicate that NETs formation and clearance are enhanced at 40°C whilst temperatures of 35°C and 42°C attenuate this response. Targeting PMN-driven immunity may represent new venues for intervention in pathological inflammation.
Collapse
Affiliation(s)
- Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Emil Bečka
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Kmeťová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Letícia Hudecová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Mona Bajaj-Elliott
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
40
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
41
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
42
|
Zhang X, Weiß T, Cheng MH, Chen S, Ambrosius CK, Czerniak AS, Li K, Feng M, Bahar I, Beck-Sickinger AG, Zhang C. Structural basis of CMKLR1 signaling induced by chemerin9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544295. [PMID: 37333145 PMCID: PMC10274904 DOI: 10.1101/2023.06.09.544295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemokine-like receptor 1 (CMKLR1), also known as chemerin receptor 23 (ChemR23) or chemerin receptor 1, is a chemoattractant G protein-coupled receptor (GPCR) that responds to the adipokine chemerin and is highly expressed in innate immune cells, including macrophages and neutrophils. The signaling pathways of CMKLR1 can lead to both pro- and anti-inflammatory effects depending on the ligands and physiological contexts. To understand the molecular mechanisms of CMKLR1 signaling, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of the CMKLR1-Gi signaling complex with chemerin9, a nanopeptide agonist derived from chemerin, which induced complex phenotypic changes of macrophages in our assays. The cryo-EM structure, together with molecular dynamics simulations and mutagenesis studies, revealed the molecular basis of CMKLR1 signaling by elucidating the interactions at the ligand-binding pocket and the agonist-induced conformational changes. Our results are expected to facilitate the development of small molecule CMKLR1 agonists that mimic the action of chemerin9 to promote the resolution of inflammation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Tina Weiß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Mary Hongying Cheng
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11974, USA
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Carla Katharina Ambrosius
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Anne Sophie Czerniak
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Kunpeng Li
- Cryo-EM core facility, Case Western Reserve University, OH44106, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ivet Bahar
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11974, USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11974, USA
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
43
|
Lebtig M, Scheurer J, Muenkel M, Becker J, Bastounis E, Peschel A, Kretschmer D. Keratinocytes use FPR2 to detect Staphylococcus aureus and initiate antimicrobial skin defense. Front Immunol 2023; 14:1188555. [PMID: 37325619 PMCID: PMC10264695 DOI: 10.3389/fimmu.2023.1188555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Keratinocytes form a multilayer barrier that protects the skin from invaders or injuries. The barrier function of keratinocytes is in part mediated by the production of inflammatory modulators that promote immune responses and wound healing. Skin commensals and pathogens such as Staphylococcus aureus secrete high amounts of phenol-soluble modulin (PSM) peptides, agonists of formyl-peptide receptor 2 (FPR2). FPR2 is crucial for the recruitment of neutrophils to the sites of infection, and it can influence inflammation. FPR1 and FPR2 are also expressed by keratinocytes but the consequences of FPR activation in skin cells have remained unknown. Methods Since an inflammatory environment influences S. aureus colonization, e. g. in patients with atopic dermatitis (AD), we hypothesized that interference with FPRs may alter keratinocyte-induced inflammation, proliferation, and bacterial colonization of the skin. To assess this hypothesis, we investigated the effects of FPR activation and inhibition in keratinocytes with respect to chemokine and cytokine release as well as proliferation and skin wound gap closure. Results We observed that FPR activation induces the release of IL-8, IL-1α and promotes keratinocyte proliferation in a FPR-dependent manner. To elucidate the consequence of FPR modulation on skin colonization, we used an AD-simulating S. aureus skin colonization mouse model using wild-type (WT) or Fpr2-/- mice and demonstrate that inflammation enhances the eradication of S. aureus from the skin in a FPR2-dependent way. Consistently, inhibition of FPR2 in the mouse model or in human keratinocytes as well as human skin explants promoted S. aureus colonization. Discussion Our data indicate that FPR2 ligands promote inflammation and keratinocyte proliferation in a FPR2-dependent manner, which is necessary for eliminating S. aureus during skin colonization.
Collapse
Affiliation(s)
- Marco Lebtig
- Department first: Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Marie Muenkel
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Janna Becker
- Department first: Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Effie Bastounis
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Department first: Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Department first: Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Yamada H, Kaitani A, Izawa K, Ando T, Kamei A, Uchida S, Maehara A, Kojima M, Yamamoto R, Wang H, Nagamine M, Maeda K, Uchida K, Nakano N, Ohtsuka Y, Ogawa H, Okumura K, Shimizu T, Kitaura J. Staphylococcus aureus δ-toxin present on skin promotes the development of food allergy in a murine model. Front Immunol 2023; 14:1173069. [PMID: 37275864 PMCID: PMC10235538 DOI: 10.3389/fimmu.2023.1173069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Background Patients with food allergy often suffer from atopic dermatitis, in which Staphylococcus aureus colonization is frequently observed. Staphylococcus aureus δ-toxin activates mast cells and promotes T helper 2 type skin inflammation in the tape-stripped murine skin. However, the physiological effects of δ-toxin present on the steady-state skin remain unknown. We aimed to investigate whether δ-toxin present on the steady-state skin impacts the development of food allergy. Material and methods The non-tape-stripped skins of wild-type, KitW-sh/W-sh, or ST2-deficient mice were treated with ovalbumin (OVA) with or without δ-toxin before intragastric administration of OVA. The frequency of diarrhea, numbers of jejunum or skin mast cells, and serum levels of OVA-specific IgE were measured. Conventional dendritic cell 2 (cDC2) in skin and lymph nodes (LN) were analyzed. The cytokine levels in the skin tissues or culture supernatants of δ-toxin-stimulated murine keratinocytes were measured. Anti-IL-1α antibody-pretreated mice were analyzed. Results Stimulation with δ-toxin induced the release of IL-1α, but not IL-33, in murine keratinocytes. Epicutaneous treatment with OVA and δ-toxin induced the local production of IL-1α. This treatment induced the translocation of OVA-loaded cDC2 from skin to draining LN and OVA-specific IgE production, independently of mast cells and ST2. This resulted in OVA-administered food allergic responses. In these models, pretreatment with anti-IL-1α antibody inhibited the cDC2 activation and OVA-specific IgE production, thereby dampening food allergic responses. Conclusion Even without tape stripping, δ-toxin present on skin enhances epicutaneous sensitization to food allergen in an IL-1α-dependent manner, thereby promoting the development of food allergy.
Collapse
Affiliation(s)
- Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Anna Kamei
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mayuki Kojima
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Yamamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hexing Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Nagamine
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Juntendo Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ohtsuka
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Li S, Chen X, Chen J, Wu B, Liu J, Guo Y, Li M, Pu X. Multi-omics integration analysis of GPCRs in pan-cancer to uncover inter-omics relationships and potential driver genes. Comput Biol Med 2023; 161:106988. [PMID: 37201441 DOI: 10.1016/j.compbiomed.2023.106988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest drug target family. Unfortunately, applications of GPCRs in cancer therapy are scarce due to very limited knowledge regarding their correlations with cancers. Multi-omics data enables systematic investigations of GPCRs, yet their effective integration remains a challenge due to the complexity of the data. Here, we adopt two types of integration strategies, multi-staged and meta-dimensional approaches, to fully characterize somatic mutations, somatic copy number alterations (SCNAs), DNA methylations, and mRNA expressions of GPCRs in 33 cancers. Results from the multi-staged integration reveal that GPCR mutations cannot well predict expression dysregulation. The correlations between expressions and SCNAs are primarily positive, while correlations of the methylations with expressions and SCNAs are bimodal with negative correlations predominating. Based on these correlations, 32 and 144 potential cancer-related GPCRs driven by aberrant SCNA and methylation are identified, respectively. In addition, the meta-dimensional integration analysis is carried out by using deep learning models, which predict more than one hundred GPCRs as potential oncogenes. When comparing results between the two integration strategies, 165 cancer-related GPCRs are common in both, suggesting that they should be prioritized in future studies. However, 172 GPCRs emerge in only one, indicating that the two integration strategies should be considered concurrently to complement the information missed by the other such that obtain a more comprehensive understanding. Finally, correlation analysis further reveals that GPCRs, in particular for the class A and adhesion receptors, are generally immune-related. In a whole, the work is for the first time to reveal the associations between different omics layers and highlight the necessity of combing the two strategies in identifying cancer-related GPCRs.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Binjian Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jing Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
46
|
Chen K, Gong W, Huang J, Yoshimura T, Ming Wang J. Developmental and homeostatic signaling transmitted by the G-protein coupled receptor FPR2. Int Immunopharmacol 2023; 118:110052. [PMID: 37003185 PMCID: PMC10149111 DOI: 10.1016/j.intimp.2023.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Formyl peptide receptor 2 (FPR2) and its mouse counterpart Fpr2 are the members of the G protein-coupled receptor (GPCR) family. FPR2 is the only member of the FPRs that interacts with ligands from different sources. FPR2 is expressed in myeloid cells as well as epithelial cells, endothelial cells, neurons, and hepatocytes. During the past years, some unusual properties of FPR2 have attracted intense attention because FPR2 appears to possess dual functions by activating or inhibiting intracellular signal pathways based on the nature, concentration of the ligands, and the temporal and spatial settings of the microenvironment in vivo, the cell types it interacts with. Therefore, FPR2 controls an abundant array of developmental and homeostatic signaling cascades, in addition to its "classical" capacity to mediate the migration of hematopoietic and non-hematopoietic cells including malignant cells. In this review, we summarize recent development in FPR2 research, particularly in its role in diseases, therefore helping to establish FPR2 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jiaqiang Huang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA; College of Life Sciences, Beijing Jiaotong University, Beijing, PR China
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
47
|
Hardesty JE, Warner JB, Song YL, Floyd A, McClain CJ, Warner DR, Kirpich IA. Fpr2-/- Mice Developed Exacerbated Alcohol-Associated Liver Disease. BIOLOGY 2023; 12:639. [PMID: 37237453 PMCID: PMC10215685 DOI: 10.3390/biology12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Alcohol-associated liver disease (ALD) is the most common chronic liver disease and carries a significant healthcare burden. ALD has no long-term treatment options aside from abstinence, and the mechanisms that contribute to its pathogenesis are not fully understood. This study aimed to investigate the role of formyl peptide receptor 2 (FPR2), a receptor for immunomodulatory signals, in the pathogenesis of ALD. WT and Fpr2-/- mice were exposed to chronic-binge ethanol administration and subsequently assessed for liver injury, inflammation, and markers of regeneration. The differentiation capacity of liver macrophages and the oxidative burst activity of neutrophils were also examined. Compared to WT, Fpr2-/- mice developed more severe liver injury and inflammation and had compromised liver regeneration in response to ethanol administration. Fpr2-/- mice had fewer hepatic monocyte-derived restorative macrophages, and neutrophils isolated from Fpr2-/- mice had diminished oxidative burst capacity. Fpr2-/- MoMF differentiation was restored when co-cultured with WT neutrophils. Loss of FPR2 led to exacerbated liver damage via multiple mechanisms, including abnormal immune responses, indicating the crucial role of FPR2 in ALD pathogenesis.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Ying L. Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Alison Floyd
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
48
|
Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat 2023; 69:100963. [PMID: 37119690 DOI: 10.1016/j.drup.2023.100963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
MYC is a proto-oncogene that encodes a powerful regulator of transcription and cellular programs essential for normal development, as well as the growth and survival of various types of cancer cells. MYC rearrangement and amplification is a common cause of hematologic malignancies. In epithelial cancers such as colorectal cancer, genetic alterations in MYC are rare. Activation of Wnt, ERK/MAPK, and PI3K/mTOR pathways dramatically increases Myc levels through enhanced transcription, translation, and protein stability. Elevated Myc promotes stress adaptation, metabolic reprogramming, and immune evasion to drive cancer development and therapeutic resistance through broad changes in transcriptional and translational landscapes. Despite intense interest and effort, Myc remains a difficult drug target. Deregulation of Myc and its targets has profound effects that vary depending on the type of cancer and the context. Here, we summarize recent advances in the mechanistic understanding of Myc-driven oncogenesis centered around mRNA translation and proteostress. Promising strategies and agents under development to target Myc are also discussed with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Haris Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
49
|
Viana de Freitas T, Karmakar U, Vasconcelos AG, Santos MA, Oliveira do Vale Lira B, Costa SR, Barbosa EA, Cardozo-Fh J, Correa R, Ribeiro DJS, Prates MV, Magalhães KG, Soller Ramada MH, Roberto de Souza Almeida Leite J, Bloch C, Lima de Oliveira A, Vendrell M, Brand GD. Release of immunomodulatory peptides at bacterial membrane interfaces as a novel strategy to fight microorganisms. J Biol Chem 2023; 299:103056. [PMID: 36822328 PMCID: PMC10074799 DOI: 10.1016/j.jbc.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Cationic and amphiphilic peptides can be used as homing devices to accumulate conjugated antibiotics to bacteria-enriched sites and promote efficient microbial killing. However, just as important as tackling bacterial infections, is the modulation of the immune response in this complex microenvironment. In the present report, we designed a peptide chimaera called Chim2, formed by a membrane-active module, an enzyme hydrolysis site and a formyl peptide receptor 2 (FPR2) agonist. This molecule was designed to adsorb onto bacterial membranes, promote their lysis, and upon hydrolysis by local enzymes, release the FPR2 agonist sequence for activation and recruitment of immune cells. We synthesized the isolated peptide modules of Chim2 and characterized their biological activities independently and as a single polypeptide chain. We conducted antimicrobial assays, along with other tests aiming at the analyses of the cellular and immunological responses. In addition, assays using vesicles as models of eukaryotic and prokaryotic membranes were conducted and solution structures of Chim2 were generated by 1H NMR. Chim2 is antimicrobial, adsorbs preferentially to negatively charged vesicles while adopting an α-helix structure and exposes its disorganized tail to the solvent, which facilitates hydrolysis by tryptase-like enzymes, allowing the release of the FPR2 agonist fragment. This fragment was shown to induce accumulation of the cellular activation marker, lipid bodies, in mouse macrophages and the release of immunomodulatory interleukins. In conclusion, these data demonstrate that peptides with antimicrobial and immunomodulatory activities can be considered for further development as drugs.
Collapse
Affiliation(s)
- Thiago Viana de Freitas
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Utsa Karmakar
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Andreanne G Vasconcelos
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Michele A Santos
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil; Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Bianca Oliveira do Vale Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - Samuel Ribeiro Costa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Eder Alves Barbosa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - José Cardozo-Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Rafael Correa
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Dalila J S Ribeiro
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Maura Vianna Prates
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Kelly G Magalhães
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - José Roberto de Souza Almeida Leite
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Aline Lima de Oliveira
- Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Guilherme Dotto Brand
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil.
| |
Collapse
|
50
|
Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, Lin L, Xiang T, Yang J, Zhao X, Xi Y, Ma Y, Cheng G, Lin D, Wu C. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell 2023; 41:903-918.e8. [PMID: 36963399 DOI: 10.1016/j.ccell.2023.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
Esophageal squamous-cell carcinoma (ESCC) develops through multistage epithelial cancer formation, i.e., from normal epithelium, low- and high-grade intraepithelial neoplasia to invasive carcinoma. However, how the precancerous lesions progress to carcinoma remains elusive. Here, we report a comprehensive single-cell RNA sequencing and spatial transcriptomic study of 79 multistage esophageal lesions from 29 patients with ESCC. We reveal a gradual and significant loss of ANXA1 expression in epithelial cells due to its transcription factor KLF4 suppression along the lesion progression. We demonstrate that ANXA1 is a ligand to formyl peptide receptor type 2 (FPR2) on fibroblasts that maintain fibroblast homeostasis. Loss of ANXA1 leads to uncontrolled transformation of normal fibroblasts into cancer-associated fibroblasts (CAFs), which can be enhanced by secreted TGF-β from malignant epithelial cells. Given the role of CAFs in cancer, our study underscores ANXA1/FPR2 signaling as an important crosstalk mechanism between epithelial cells and fibroblasts in promoting ESCC.
Collapse
Affiliation(s)
- Yamei Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|