1
|
Sudomir M, Chmielewski P, Truszkowska G, Kłopotowski M, Śpiewak M, Legatowicz-Koprowska M, Gawor-Prokopczyk M, Szczygieł J, Zakrzewska-Koperska J, Kruk M, Krzysztoń-Russjan J, Grzybowski J, Płoski R, Bilińska ZT. PRKAG2 Syndrome: Clinical Features, Imaging Findings and Cardiac Events. Biomedicines 2025; 13:751. [PMID: 40149727 PMCID: PMC11940498 DOI: 10.3390/biomedicines13030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:PRKAG2 syndrome (PS) is a rare genocopy of hypertrophic cardiomyopathy (HCM). Our goal was to expand knowledge about PS by analyzing patient clinical, imaging, and follow-up data. Methods: The study included carriers of likely pathogenic or pathogenic PRKAG2 variants identified in the years 2011-2022. Cardiac involvement was assessed by electrocardiography, echocardiography, cardiac magnetic resonance imaging, and endomyocardial biopsy (EMB). We recorded concomitant diseases and cardiac events, including the implantation of electronic cardiac devices, arrhythmia, heart failure (HF), and death. Results: Seven patients from four families (median age 43 years) with PRKAG2 variants: Phe293Leu, Val336Leu, Arg302Gln, and His530Arg were included. At the first evaluation, 3 carriers were in New York Heart Association (NYHA) functional class II-III, while the remaining were in NYHA class I. Left ventricular hypertrophy (LVH) was present in 5 patients; 2 had ventricular pre-excitation, one was in atrial flutter and pacemaker-dependent; 2 had bradycardia. Two female carriers had concomitant chronic renal disease. In the EMB of one of the patients, staining for glycogen deposits was positive. Furthermore, we provide a link between the Val336Leu PRKAG2 variant and autophagy identified on EMB. After a median follow-up of 13.1 years, 6 carriers had LVH, 3 required admission for HF, and 1 had sustained ventricular tachycardia with subsequent cardioverter defibrillator implantation, and despite this, died suddenly; there were two de novo pacemaker implantations due to symptomatic bradycardia. Conclusions: PR is a distinctive disorder with an early onset of arrhythmic events, often leading to HF.
Collapse
Affiliation(s)
- Maria Sudomir
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warsaw, Poland; (M.S.); (P.C.)
| | - Przemysław Chmielewski
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warsaw, Poland; (M.S.); (P.C.)
| | - Grażyna Truszkowska
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warsaw, Poland; (G.T.); (J.K.-R.); (R.P.)
| | - Mariusz Kłopotowski
- Department of Cardiology and Interventional Angiology, National Institute of Cardiology, 04-628 Warsaw, Poland;
- Cardiomyopathy Outpatient Clinic, Cardiac Arrhythmia Center, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Mateusz Śpiewak
- Magnetic Resonance Unit, Department of Radiology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Marta Legatowicz-Koprowska
- Department of Pathomorphology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Monika Gawor-Prokopczyk
- Department of Cardiomyopathy, National Institute of Cardiology, 04-628 Warsaw, Poland; (M.G.-P.); (J.S.); (J.G.)
| | - Justyna Szczygieł
- Department of Cardiomyopathy, National Institute of Cardiology, 04-628 Warsaw, Poland; (M.G.-P.); (J.S.); (J.G.)
| | | | - Mariusz Kruk
- Coronary Artery and Structural Diseases Department, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Jolanta Krzysztoń-Russjan
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warsaw, Poland; (G.T.); (J.K.-R.); (R.P.)
| | - Jacek Grzybowski
- Department of Cardiomyopathy, National Institute of Cardiology, 04-628 Warsaw, Poland; (M.G.-P.); (J.S.); (J.G.)
| | - Rafał Płoski
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warsaw, Poland; (G.T.); (J.K.-R.); (R.P.)
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Zofia T. Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warsaw, Poland; (M.S.); (P.C.)
| |
Collapse
|
2
|
Rujirachun P, Taveeamornrat S, Winijkul A. A Young Man With Syncope: What Is the Diagnosis? Circulation 2025; 151:804-806. [PMID: 40096291 DOI: 10.1161/circulationaha.124.072433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Affiliation(s)
- Pongprueth Rujirachun
- Department of Medicine (P.R., S.T.), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Svita Taveeamornrat
- Department of Medicine (P.R., S.T.), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arjbordin Winijkul
- Division of Cardiology (A.W.), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Han ZP, Zhang LL, Li XP, Zhu LJ, Zhang XC, Zhou W, Liu S. Single nucleotide polymorphism-based analysis of linkage disequilibrium and runs of homozygosity patterns of indigenous sheep in the southern Taklamakan desert. BMC Genomics 2025; 26:267. [PMID: 40102738 PMCID: PMC11917010 DOI: 10.1186/s12864-025-11445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Runs of Homozygosity (ROH) are homozygous genomic fragments inherited from parents to offspring. ROH can be used to indicate the level of inbreeding, as well as to identify possible signatures of artificial or natural selection. Indigenous sheep populations on the southern edge of the Taklimakan Desert have evolved unique genetic traits adapted to extreme desert environments. In an attempt to better understand the adaptive mechanisms of these populations under harsh conditions, we used Illumina® Ovine SNP50K BeadChip to perform a genomic characterization of three recognized breeds (Duolang: n = 36, Hetian: n = 84, Qira black: n = 189) and one ecotypic breed (Kunlun: n = 27) in the region. Additionally, we assessed genomic inbreeding coefficients through ROH analysis, revealing insights into the inbreeding history of these populations. Subsequently, we retrieved candidate genes associated with economic traits in sheep from ROH islands in each breed. To better understand the autozygosity and distribution of ROH islands in these indigenous sheep breeds relative to international breeds, we also included three commercial mutton breeds (Poll Dorset: n = 108, Suffolk: n = 163, Texel: n = 150). The study revealed that among seven sheep breeds, Hetian exhibited the shortest linkage disequilibrium (LD) decay distance, while Kunlun demonstrated the highest LD levels. A total of 10,916 ROHs were obtained. The number of ROHs per breed ranged from 34 (Kunlun) to 2,826 (Texel). The length of ROH was mainly 1-5 Mb (63.54%). Furthermore, 991 candidate genes specific to indigenous sheep breeds were identified, including those associated with heat tolerance, adaptability, energy metabolism, reproduction, and immune response. These findings elucidate the genetic adaptation of indigenous sheep in the Taklimakan Desert, uncovering distinctive characteristics of indigenous sheep formation, and advocating for the conservation and genetic enhancement of local sheep populations.
Collapse
Affiliation(s)
- Zhi-Peng Han
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Lu-Lu Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Xiao-Peng Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Li-Jun Zhu
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Xue-Chen Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, 843300, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China.
| |
Collapse
|
4
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
5
|
Satish V, Maliha M, Chi KY, Kharawala A, Seo J, Apple S, Alhuarrat MAD, Palaiodimos L, Di Biase L, Krumerman A, Ferrick K. Catheter Ablation of Atrial Fibrillation in Infiltrative Cardiomyopathies: A Narrative Review. J Cardiovasc Electrophysiol 2025; 36:276-285. [PMID: 39506617 DOI: 10.1111/jce.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Atrial and ventricular arrhythmias are common in patients with Infiltrative heart diseases. This review discusses ablative techniques for arrhythmias in amyloidosis, sarcoidosis, hemochromatosis, and glycogen storage disorders, primarily focusing on atrial fibrillation (AF). A thorough literature review was conducted on the MEDLINE database to synthesize current knowledge and propose future research directions. AF is the most common arrhythmia identified in patients with amyloidosis due to cellular infiltration and atrial dilation. While catheter ablation is associated with a significantly lower rate of all-cause mortality and admission rate, conflicting data exist regarding the higher risk of pericardial effusion, in-hospital mortality, length of stay, and cost of hospitalization. Cardiac sarcoid predisposes AF due to granulomas, atrial dilation, and scarring. Studies demonstrate encouraging outcomes and low recurrence rates in these patients who undergo ablation for AF, with no difference in complications compared to those without sarcoidosis. AF is the most common arrhythmia in hereditary hemochromatosis (HH), secondary to increased myocardial iron stores and elevated oxidative stress, and is primarily managed by chelation. Scant reports regarding ablation are described for HH and glycogen storage disorders. Catheter ablation is a safe and effective modality for the treatment of AF in infiltrative cardiomyopathy. Future large-scale trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Vikyath Satish
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maisha Maliha
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kuan-Yu Chi
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amrin Kharawala
- Department of Medicine, Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jiyoung Seo
- Department of Medicine, Division of Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Samuel Apple
- Department of Medicine, Division of Cardiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Majd Al Deen Alhuarrat
- Department of Medicine, Division of Cardiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Leonidas Palaiodimos
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Luigi Di Biase
- Department of Medicine, Division of Cardiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrew Krumerman
- Department of Medicine, Division of Cardiology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Kevin Ferrick
- Department of Medicine, Division of Cardiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Hiruma T, Inoue S, Ko T, Nomura S, Abe R, Bujo C, Ishida J, Takeda N, Amiya E, Hatano M, Abe H, Morita H, Ono M, Takeda N, Komuro I. PRKAG2 Syndrome Caused by a Novel Missense Variant Mimicked Sporadic Hypertrophic Cardiomyopathy Until Its Progression to Burned-Out Phase. Circ Heart Fail 2024; 17:e012047. [PMID: 39584259 DOI: 10.1161/circheartfailure.124.012047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Affiliation(s)
- Takashi Hiruma
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Shunsuke Inoue
- Department of Frontier Cardiovascular Science (S.I., T.K., S.N., I.K.), Graduate School of Medicine, University of Tokyo, Japan
| | - Toshiyuki Ko
- Department of Frontier Cardiovascular Science (S.I., T.K., S.N., I.K.), Graduate School of Medicine, University of Tokyo, Japan
| | - Seitaro Nomura
- Department of Frontier Cardiovascular Science (S.I., T.K., S.N., I.K.), Graduate School of Medicine, University of Tokyo, Japan
| | - Ryo Abe
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Chie Bujo
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Junichi Ishida
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Masaru Hatano
- Advanced Medical Center for Heart Failure, University of Tokyo Hospital, Japan (M.H.)
| | - Hiroyuki Abe
- Department of Pathology (H.A.), Graduate School of Medicine, University of Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Minoru Ono
- Department of Cardiovascular Surgery (M.O.), Graduate School of Medicine, University of Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine (T.H., R.A., C.B., J.I., Norifumi Takeda, E.A., H.M., Norihiko Takeda), Graduate School of Medicine, University of Tokyo, Japan
| | - Issei Komuro
- Department of Frontier Cardiovascular Science (S.I., T.K., S.N., I.K.), Graduate School of Medicine, University of Tokyo, Japan
- International University of Health and Welfare, Tokyo, Japan (I.K.)
| |
Collapse
|
7
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
8
|
Xue X, Su L, Zhang T, Zhan J, Gu X. Effects of α-Particle Radiation on DNA Methylation in Human Hepatocytes. Dose Response 2024; 22:15593258241297871. [PMID: 39583032 PMCID: PMC11583490 DOI: 10.1177/15593258241297871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Objective: This paper explores the role of DNA methylation in α-irradiation damage at the cellular level. Methods: Human normal hepatocytes L-02 were irradiated using a 241 Am α source at doses of 0, 1.0, and 2.0 Gy. The methylation levels of the six differentially methylated genes were examined by pyrophosphate sequencing, and the mRNA expression levels of the six differentially methylated genes were examined by real-time fluorescence quantitative PCR. Results: The rate of γH2AX foci positive cells was significantly higher than that of the control group after irradiation of cells in different dose groups for 1 h and 2 h respectively (P < .05). The proportion of S-phase cells was significantly increased in the 1.0 Gy and 2.0 Gy dose groups compared with the control group (P < .05). The methylation levels of CDK2AP1, PDGFRL, PCDHB16 and FAS genes were significantly increased, while the mRNA expression levels were significantly decreased (P < .05). The expression levels of CDK2Apl, PCDHB16 and FAS were significantly negatively correlated with the methylation levels (P < .05). Conclusion: The α-particle radiation can affect gene expression at the epigenetic level, which led to the speculation that altered methylation levels of CDK2AP1, PCDHB16, and FAS genes may be involved in the α radiation damage process.
Collapse
Affiliation(s)
- Xiangming Xue
- China Institute of Radiation Protection, Taiyuan, China
| | - Lixia Su
- China Institute of Radiation Protection, Taiyuan, China
| | - Teng Zhang
- China Institute of Radiation Protection, Taiyuan, China
| | - Jingming Zhan
- China Institute of Radiation Protection, Taiyuan, China
| | - Xiaona Gu
- China Institute of Radiation Protection, Taiyuan, China
| |
Collapse
|
9
|
Lampert R, Chung EH, Ackerman MJ, Arroyo AR, Darden D, Deo R, Dolan J, Etheridge SP, Gray BR, Harmon KG, James CA, Kim JH, Krahn AD, La Gerche A, Link MS, MacIntyre C, Mont L, Salerno JC, Shah MJ. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play. Heart Rhythm 2024; 21:e151-e252. [PMID: 38763377 DOI: 10.1016/j.hrthm.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Youth and adult participation in sports continues to increase, and athletes may be diagnosed with potentially arrhythmogenic cardiac conditions. This international multidisciplinary document is intended to guide electrophysiologists, sports cardiologists, and associated health care team members in the diagnosis, treatment, and management of arrhythmic conditions in the athlete with the goal of facilitating return to sport and avoiding the harm caused by restriction. Expert, disease-specific risk assessment in the context of athlete symptoms and diagnoses is emphasized throughout the document. After appropriate risk assessment, management of arrhythmias geared toward return to play when possible is addressed. Other topics include shared decision-making and emergency action planning. The goal of this document is to provide evidence-based recommendations impacting all areas in the care of athletes with arrhythmic conditions. Areas in need of further study are also discussed.
Collapse
Affiliation(s)
- Rachel Lampert
- Yale University School of Medicine, New Haven, Connecticut
| | - Eugene H Chung
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Rajat Deo
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joe Dolan
- University of Utah, Salt Lake City, Utah
| | | | - Belinda R Gray
- University of Sydney, Camperdown, New South Wales, Australia
| | | | | | | | - Andrew D Krahn
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Andre La Gerche
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | | | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jack C Salerno
- University of Washington School of Medicine, Seattle, Washington
| | - Maully J Shah
- Childrens Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Ochoa JP, Espinosa MÁ, Gayan-Ordas J, Fernández-Valledor A, Gallego-Delgado M, Tirón C, Lozano-Ibañez A, García-Pinilla JM, Rodríguez-Palomares JF, Larrañaga-Moreira JM, Llamas-Gómez H, Ripoll-Vera T, Braza-Boïls A, Vilches S, Méndez I, Bascompte-Claret R, García-Álvarez A, Villacorta E, Fernandez-Lozano I, Lara-Pezzi E, Garcia-Pavia P. Rare Genetic Variants in Young Adults Requiring Pacemaker Implantation. JACC Clin Electrophysiol 2024; 10:2250-2260. [PMID: 39001760 DOI: 10.1016/j.jacep.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Genetic disease has recently emerged as a cause of cardiac conduction disorders (CCDs), but the diagnostic yield of genetic testing and the contribution of the different genes to CCD is still unsettled. OBJECTIVES This study sought to determine the diagnostic yield of genetic testing in young adults with CCD of unknown etiology requiring pacemaker implantation. We also studied the prevalence of rare protein-altering variants across individual genes and functional gene groups. METHODS We performed whole exome sequencing in 150 patients with CCD of unknown etiology who had permanent pacemaker implanted at age ≤60 years at 14 Spanish hospitals. Prevalence of rare protein-altering variants in patients with CCD was compared with a reference population of 115,522 individuals from gnomAD database (control subjects). RESULTS Among 39 prioritized genes, patients with CCD had more rare protein-altering variants than control subjects (OR: 2.39; 95% CI: 1.75-3.33). Significant enrichment of rare variants in patients with CCD was observed in all functional gene groups except in the desmosomal genes group. Rare variants in the nuclear envelope genes group exhibited the strongest association with CCD (OR: 6.77; 95% CI: 3.71-13.87). Of note, rare variants in sarcomeric genes were also enriched (OR: 1.73; 95% CI: 1.05-3.10). An actionable genetic variant was detected in 21 patients (14%), with LMNA being the most frequently involved gene (4.6%). CONCLUSIONS Unrecognized rare genetic variants increase the risk of CCD in young adults with CCD of unknown etiology. Genetic testing should be performed in patients age ≤60 years with CCD of unknown etiology. The role of genetic variants in sarcomeric genes as a cause of CCD should be further investigated.
Collapse
Affiliation(s)
- Juan Pablo Ochoa
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Maria Ángeles Espinosa
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiovascular Diseases Program, Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jara Gayan-Ordas
- Department of Cardiology, Hospital Universitario Arnau de Vilanova, Lleida, Spain; Institut de Recerca Biomèdica, Lleida, Spain
| | - Andrea Fernández-Valledor
- Department of Cardiology, Hospital Clínic Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - María Gallego-Delgado
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Disease Unit, Department of Cardiology, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain; Gerencia Regional de Salud de Castilla y León (SACYL), Salamanca, Spain
| | - Coloma Tirón
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitari Dr Josep Trueta, Girona, Spain; Medical Science Department, School of Medicine, University of Girona, Spain
| | | | - José Manuel García-Pinilla
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Heart Failure and Familial Heart Diseases Unit, Hospital Universitario Virgen de la Victoria, IBIMA, Málaga, Spain; Department of Medicine and Dermatology, Universidad de Málaga, Málaga, Spain
| | - José F Rodríguez-Palomares
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Imaging Unit and Inherited Cardiac Diseases Unit, Cardiology Department, Vall Hebron Hospital, Barcelona, Spain; Universitat Autònoma Barcelona, Barcelona, Spain
| | | | - Helena Llamas-Gómez
- Inherited Cardiovascular Disease Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Tomas Ripoll-Vera
- Inherited Heart Diseases Unit, Hospital Universitario Son Llatzer, Palma de Mallorca, Spain
| | - Aitana Braza-Boïls
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe), Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Silvia Vilches
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Méndez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiovascular Diseases Program, Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Ana García-Álvarez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Cardiology, Hospital Clínic Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Villacorta
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Disease Unit, Department of Cardiology, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain; Gerencia Regional de Salud de Castilla y León (SACYL), Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Ignacio Fernandez-Lozano
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Lara-Pezzi
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pablo Garcia-Pavia
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain.
| |
Collapse
|
11
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
12
|
Assunção MELSDM, da Silva NLCL, Silva MPDM. PRKAG2 Syndrome: Is Screening with Early Echocardiography Effective in Children with a Positive Genotype? Arq Bras Cardiol 2024; 121:e20240543. [PMID: 39356949 PMCID: PMC11495802 DOI: 10.36660/abc.20240543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Maria Elisa Lucena Sales de Melo Assunção
- Universidade de PernambucoPronto Socorro Cardiológico de PernambucoRecifePEBrasilUniversidade de Pernambuco – Pronto Socorro Cardiológico de Pernambuco, Recife, PE – Brasil
| | | | - Mychelle Pascoaline de Miranda Silva
- Universidade de PernambucoPronto Socorro Cardiológico de PernambucoRecifePEBrasilUniversidade de Pernambuco – Pronto Socorro Cardiológico de Pernambuco, Recife, PE – Brasil
| |
Collapse
|
13
|
dos Santos DA, de Souza I, Barbosa AP, Sternick EB, Pena JLB. Echocardiographic Findings in Children of Patients Diagnosed with PRKAG2 Syndrome. Arq Bras Cardiol 2024; 121:e20230531. [PMID: 39230106 PMCID: PMC11495819 DOI: 10.36660/abc.20230531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND PRKAG2 syndrome typically manifests in adolescence and early adulthood, progressing with left ventricular hypertrophy, arrhythmias, and risk of sudden death. Findings of echocardiographic markers before clinical manifestation in children of patients affected by the disease can facilitate prevention strategies and therapeutic planning for this patient group. OBJECTIVE To identify the existence of echocardiographic findings that manifest early in children of parents affected by PRKAG2 syndrome, while they are still asymptomatic. METHODS In this cross-sectional observational study, 7 participants who were children of parents with established diagnosis of PRKAG2 syndrome, between the ages of 9 months and 12 years, with proven genetic diagnosis, underwent conventional and advanced echocardiography. Their findings were compared to those of a control group composed of 7 age- and sex-matched volunteers who were healthy from a cardiovascular point of view. P values < 0.05 were considered significant. RESULTS Conventional echocardiography showed statistically significantly higher values in the case group for left atrium, interventricular septum, left ventricular posterior wall, indexed ventricular mass, and relative wall thickness (p < 0.05). Global longitudinal systolic strain on 2-dimensional echocardiography did not show statistical significance between the case and control groups. None of the parameters on 3-dimensional echocardiography showed statistical significance between groups. CONCLUSION Children diagnosed with PRKAG2 showed echocardiographic findings indicative of a tendency toward cardiac hypertrophy. Echocardiography can be a useful tool in the evaluation and follow-up of this patient group before the onset of clinical manifestations.
Collapse
Affiliation(s)
- Dinamar Amador dos Santos
- Faculdade Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG – Brasil
| | - Igor de Souza
- Faculdade Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG – Brasil
| | - Alice Pinheiro Barbosa
- Faculdade Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG – Brasil
| | - Eduardo Back Sternick
- Faculdade Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG – Brasil
| | - José Luiz Barros Pena
- Faculdade Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG – Brasil
- Hospital Felício Rocho - EcocardiografiaBelo HorizonteMGBrasilHospital Felício Rocho - Ecocardiografia, Belo Horizonte, MG – Brasil
| |
Collapse
|
14
|
Micaglio E, Tondi L, Benedetti S, Schiavo MA, Camporeale A, Disabato G, Attanasio A, Guida G, Carrafiello G, Piepoli M, Spagnolo P, Pappone C, Lombardi M. When Paying Attention Pays Back: Missense Mutation c.1006G>A p. (Val336Ile) in PRKAG2 Gene Causing Left Ventricular Hypertrophy and Conduction Abnormalities in a Caucasian Patient: Case Report and Literature Review. Int J Mol Sci 2024; 25:9171. [PMID: 39273120 PMCID: PMC11395525 DOI: 10.3390/ijms25179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
PRKAG2 cardiomyopathy is a rare genetic disorder that manifests early in life with an autosomal dominant inheritance pattern. It harbors left ventricular hypertrophy (LVH), ventricular pre-excitation and progressively worsening conduction system defects. Its estimated prevalence among patients with LVH ranges from 0.23 to about 1%, but it is likely an underdiagnosed condition. We report the association of the PRKAG2 missense variant c.1006G>A p. (Val336Ile) with LVH, conduction abnormalities (short PR interval and incomplete right bundle branch bock) and early-onset arterial hypertension (AH) in a 44-year-old Caucasian patient. While cardiac magnetic resonance (CMR) showed a mild hypertrophic phenotype with maximal wall thickness of 17 mm in absence of tissue alterations, the electric phenotype was relevant including brady-tachy syndrome and recurrent syncope. The same variant has been detected in the patient's sister and daughter, with LVH + early-onset AH and electrocardiographic (ECG) alterations + lipothymic episodes, respectively. Paying close attention to the coexistence of LVH and ECG alterations in the proband has been helpful in directing genetic tests to exclude primary cardiomyopathy. Hence, identifying the genetic basis in the patient allowed for familial screening as well as a proper follow-up and therapeutic management of the affected members. A review of the PRKAG2 cardiomyopathy literature is provided alongside the case report.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Lara Tondi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sara Benedetti
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Maria Alessandra Schiavo
- Cardiology Unit IRCCS Azienda, Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna, 40138 Bologna, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giandomenico Disabato
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Andrea Attanasio
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianluigi Guida
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Massimo Piepoli
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Pietro Spagnolo
- Unit of Radiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Department of Cardiology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
| |
Collapse
|
15
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
16
|
Wu B, Sheng Y, Yu W, Ruan L, Geng H, Xu C, Wang C, Tang D, Lv M, Hua R, Li K. Differential methylation patterns in paternally imprinted gene promoter regions in sperm from hepatitis B virus infected individuals. BMC Mol Cell Biol 2024; 25:19. [PMID: 39090552 PMCID: PMC11295637 DOI: 10.1186/s12860-024-00515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.
Collapse
Affiliation(s)
- Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yuying Sheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Wenwei Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Rong Hua
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
17
|
van der Steld LDP, Rocha MDS, Ladeia AMT, Livramento HL, Campos GB, Darrieux FCDC, Campuzano O, Brugada R. PRKAG2 syndrome, a rare hypertrophic cardiomyopathy: a Brazilian long-term follow-up with extracardiac disorders. EINSTEIN-SAO PAULO 2024; 22:eAO0549. [PMID: 39082507 PMCID: PMC11239200 DOI: 10.31744/einstein_journal/2024ao0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE This study aimed to provide a long-term follow-up of PRKAG2 syndrome and describe the new phenotypic aspects of the condition. PRKAG2 syndrome is a rare autosomal-dominant glycogen storage disease characterized by cardiac hypertrophy, ventricular pre-excitation, and conduction system disease. Fatal arrhythmias occur frequently. METHODS A family cohort of 66 participants was recruited. Clinical and genetic analyses were performed. RESULTS Median age of 36.97±17.28 years, with 69.9% being men. Nineteen subjects carried the deleterious variant p.K290I of the PRKAG2 gene. This group experienced many malignant events, including eight pacemaker implants, three sudden cardiac deaths, five aborted cardiac arrests, four strokes, four premature neonatal deaths, two spontaneous abortions, five forceps deliveries, and 12 cesarean procedures. Extracardiac involvement, such as in neurocognitive and psychiatric disorders, has been observed only in carriers of mutations. Palpitations, Syncope, atrial fibrillation, atrial flutter, sinus pauses, and bradycardia were strongly and significantly associated with major or severe adverse events (sudden cardiac death, aborted cardiac arrest, pacemaker use, stroke, and congestive heart failure). Early diagnosis and intervention through antiarrhythmic drugs, anticoagulation, pacemaker implantation, radiofrequency catheter ablation, and cesarean section surgery improved the symptoms and survival rates. Mutations carriers were advised to avoid pregnancy. CONCLUSION This study identified that the p.K291I_PRKAG2 mutation is associated with poor prognosis, highlighting the need for early intervention. Further research may uncover the potential connections between intellectual disability, miscarriage, and neonatal death in individuals with this syndrome.
Collapse
Affiliation(s)
- Lenises de Paula van der Steld
- Escola Bahiana de Medicina e Saúde PúblicaSalvadorBABrazilEscola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil.
| | - Mario de Seixas Rocha
- Escola Bahiana de Medicina e Saúde PúblicaSalvadorBABrazilEscola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil.
| | - Ana Marice Teixeira Ladeia
- Escola Bahiana de Medicina e Saúde PúblicaSalvadorBABrazilEscola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil.
| | - Humberto Lago Livramento
- Universidade Federal da BahiaSalvadorBABrazil Universidade Federal da Bahia, Salvador, BA, Brazil.
| | - Gervásio Batista Campos
- Universidade Federal da BahiaSalvadorBABrazil Universidade Federal da Bahia, Salvador, BA, Brazil.
| | - Francisco Carlos da Costa Darrieux
- Instituto do CoraçãoFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Oscar Campuzano
- Medical Science DepartmentSchool of MedicineUniversity of GironaGironaSpain Medical Science Department, School of Medicine, University of Girona, Girona, Spain.
- Cardiovascular Genetics CenterUniversity of GironaGironaSpain Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.
- Centro de Investigación Biomédica en Red-Enfermedades CardiovascularesMadridSpain Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares, Madrid, Spain.
| | - Ramon Brugada
- Medical Science DepartmentSchool of MedicineUniversity of GironaGironaSpain Medical Science Department, School of Medicine, University of Girona, Girona, Spain.
- Cardiovascular Genetics CenterUniversity of GironaGironaSpain Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.
- Centro de Investigación Biomédica en Red-Enfermedades CardiovascularesMadridSpain Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares, Madrid, Spain.
- Hospital Josep TruetaUniversity of GironaGironaSpain Cardiology Service, Hospital Josep Trueta, University of Girona, Girona, Spain.
| |
Collapse
|
18
|
Fernandes F, Simões MV, Correia EDB, Marcondes-Braga FG, Coelho-Filho OR, Mesquita CT, Mathias Junior W, Antunes MDO, Arteaga-Fernández E, Rochitte CE, Ramires FJA, Alves SMM, Montera MW, Lopes RD, Oliveira Junior MTD, Scolari FL, Avila WS, Canesin MF, Bocchi EA, Bacal F, Moura LZ, Saad EB, Scanavacca MI, Valdigem BP, Cano MN, Abizaid AAC, Ribeiro HB, Lemos Neto PA, Ribeiro GCDA, Jatene FB, Dias RR, Beck-da-Silva L, Rohde LEP, Bittencourt MI, Pereira ADC, Krieger JE, Villacorta Junior H, Martins WDA, Figueiredo Neto JAD, Cardoso JN, Pastore CA, Jatene IB, Tanaka ACS, Hotta VT, Romano MMD, Albuquerque DCD, Mourilhe-Rocha R, Hajjar LA, Brito Junior FSD, Caramelli B, Calderaro D, Farsky PS, Colafranceschi AS, Pinto IMF, Vieira MLC, Danzmann LC, Barberato SH, Mady C, Martinelli Filho M, Torbey AFM, Schwartzmann PV, Macedo AVS, Ferreira SMA, Schmidt A, Melo MDTD, Lima Filho MO, Sposito AC, Brito FDS, Biolo A, Madrini Junior V, Rizk SI, Mesquita ET. Guidelines on the Diagnosis and Treatment of Hypertrophic Cardiomyopathy - 2024. Arq Bras Cardiol 2024; 121:e202400415. [PMID: 39082572 DOI: 10.36660/abc.20240415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Affiliation(s)
- Fabio Fernandes
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Marcus V Simões
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | | | - Fabiana Goulart Marcondes-Braga
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Wilson Mathias Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Murillo de Oliveira Antunes
- Universidade São Francisco (USF), São Paulo, SP - Brasil; Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
| | - Edmundo Arteaga-Fernández
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Felix José Alvarez Ramires
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Silvia Marinho Martins Alves
- Universidade São Francisco (USF), São Paulo, SP - Brasil; Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
- Universidade de Pernambuco (UPE), Recife, PE - Brasil
| | | | | | - Mucio Tavares de Oliveira Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Walkiria Samuel Avila
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Fernando Bacal
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Eduardo Benchimol Saad
- Hospital Samaritano, Rio de Janeiro, RJ - Brasil
- Beth Israel Deaconess Medical Center / Harvard Medical School, Boston - USA
| | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Alexandre Antonio Cunha Abizaid
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Henrique Barbosa Ribeiro
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Fabio Biscegli Jatene
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Luis Beck-da-Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | | | - Alexandre da Costa Pereira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fundação Zerbini, São Paulo, SP - Brasil
| | - José Eduardo Krieger
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | - Juliano Novaes Cardoso
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Faculdade Santa Marcelina, São Paulo, SP - Brasil
| | - Carlos Alberto Pastore
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Ana Cristina Sayuri Tanaka
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Viviane Tiemi Hotta
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fleury Medicina e Saúde, São Paulo, SP - Brasil
| | | | - Denilson Campos de Albuquerque
- Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ - Brasil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ - Brasil
| | | | - Ludhmila Abrahão Hajjar
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Bruno Caramelli
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Daniela Calderaro
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | - Marcelo Luiz Campos Vieira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | | | - Silvio Henrique Barberato
- CardioEco Centro de Diagnóstico Cardiovascular e Ecocardiografia, Curitiba, PR - Brasil
- Quanta Diagnósticos, Curitiba, PR - Brasil
| | - Charles Mady
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Martino Martinelli Filho
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Pedro Vellosa Schwartzmann
- Hospital Unimed Ribeirão Preto, Ribeirão Preto, SP - Brasil
- Centro Avançado de Pesquisa, Ensino e Diagnóstico (CAPED), Ribeirão Preto, SP - Brasil
| | | | - Silvia Moreira Ayub Ferreira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fundação Zerbini, São Paulo, SP - Brasil
| | - Andre Schmidt
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | | | | | - Andrei C Sposito
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | - Flávio de Souza Brito
- Hospital Vera Cruz, Campinas, SP - Brasil
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), São Paulo, SP - Brasil
- Centro de Pesquisa Clínica - Indacor, São Paulo, SP - Brasil
| | - Andreia Biolo
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
- Hospital Moinhos de Vento, Porto Alegre, RS - Brasil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS - Brasil
| | - Vagner Madrini Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | - Stephanie Itala Rizk
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | |
Collapse
|
19
|
Gong F, Yang L, Liu Q. Fasciculoventricular accessory pathway masked extensive atrioventricular conduction system disease in a patient with PRKAG2 syndrome. Ann Noninvasive Electrocardiol 2024; 29:e13134. [PMID: 38937983 PMCID: PMC11211205 DOI: 10.1111/anec.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
A 23-year-old male with a history of ventricular pre-excitation and atrial flutter presented for evaluation after recurrent syncope. The possible mechanism of syncope erroneously attributed to pre-excited atrial flutter with fast heart rates in the first hospitalization. The patient was found to have advanced heart block and PRKAG2 genetic mutation in the second hospitalization. The genetic findings and clinical features are consistent with PRKAG2 syndrome (PS). PS is a rare, autosomal dominant inherited disease, characterized by ventricular pre-excitation, supraventricular tachycardia, and cardiac hypertrophy. It is frequently followed by atrial-fibrillation-induced ventricular fibrillation and advanced heart blocks. An accurate differential diagnosis of syncope is important because of the different arrhythmic features and clinical course of PS.
Collapse
Affiliation(s)
- Fuhan Gong
- Department of CardiologyTongren Municipal People's HospitalTongrenGuizhouChina
| | - Long Yang
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Qifang Liu
- Department of CardiologyTongren Municipal People's HospitalTongrenGuizhouChina
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
20
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 699] [Impact Index Per Article: 699.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
21
|
Wang S, Chen Y, Du J, Wang Z, Lin Z, Hong G, Qu D, Shen Y, Li L. Post-mortem genetic analysis of sudden unexplained death in a young cohort: a whole-exome sequencing study. Int J Legal Med 2023; 137:1661-1670. [PMID: 37624372 DOI: 10.1007/s00414-023-03075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Sudden unexplained death (SUD) constitutes a considerable portion of unexpected sudden death in the young. Molecular autopsy has proved to be an efficient diagnostic tool in the multidisciplinary management of SUD. Yet, many cases remain undiagnosed using the widely adopted targeted genetic screening strategies. Here, we investigated the genetic substrates of a young SUD cohort (18-40 years old) from China using whole-exome sequencing (WES), with the primary aim to identify novel SUD susceptibility genes. Within 255 previously acknowledged SUD-associated genes, 21 variants with likely functional effects (pathogenic/likely pathogenic) were identified in 51.9% of the SUD cases. More importantly, a set of 33 candidate genes associated with myopathy were identified to be novel susceptibility genes for SUD. Comparative analysis of the cumulative PHRED-scaled CADD score and polygenetic burden score showed that the amount and deleteriousness of variants in the 255 SUD-associated genes and the 33 candidate genes identified by this study were significantly higher compared with 289 randomly selected genes. A significantly higher genetic burden of rare variants (MAF < 0.1%) in the 33 candidate genes also highlighted putative roles of these genes in SUD. After incorporating these novel genes, the genetic testing yields of the current SUD cohort elevated from 51.9 to 66.7%. Our study expands understanding of the genetic variants underlying SUD and presents insights that improve the utility of genetic screenings.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Yongsheng Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zhimin Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Guanghui Hong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Dong Qu
- Institute of Legal Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
22
|
Przybylski R, Saravu Vijayashankar S, O'Leary ET, Hylind RJ, Noon J, Dionne A, DeWitt ES, Bezzerides VJ, Abrams DJ. Hypertrophic Cardiomyopathy and Ventricular Preexcitation in the Young: Cause and Accessory Pathway Characteristics. Circ Arrhythm Electrophysiol 2023; 16:e012191. [PMID: 37877314 PMCID: PMC10843507 DOI: 10.1161/circep.123.012191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND The cause of hypertrophic cardiomyopathy (HCM) in the young is highly varied. Ventricular preexcitation (preexcitation) is well recognized, yet little is known about the specificity for any cause and the characteristics of the responsible accessory pathways (AP). METHODS Retrospective cohort study of patients <21 years of age with HCM/preexcitation from 2000 to 2022. The cause of HCM was defined as isolated HCM, storage disorder, metabolic disease, or genetic syndrome. Atrioventricular AP (true AP) were distinguished from fasciculoventricular fibers (FVF) using standard invasive electrophysiology study criteria. AP were defined as high risk if any of the following were <250 ms: shortest preexcited RR interval in atrial fibrillation, shortest paced preexcited cycle length, or anterograde AP effective refractory period. RESULTS We identified 345 patients with HCM and 28 (8%) had preexcitation (isolated HCM, 10/220; storage disorder, 8/17; metabolic disease, 5/19; and genetic syndrome, 5/89). Six (21%) patients had clinical atrial fibrillation (1 with shortest preexcited RR interval <250 ms). Twenty-two patients underwent electrophysiology study which identified 23 true AP and 16 FVF. Preexcitation was exclusively FVF mediated in 8 (36%) patients. Five (23%) patients had AP with high-risk conduction properties (including ≥1 patient in each etiologic group). Multiple AP were seen in 8 (36%) and AP plus FVF in 10 (45%) patients. Ablation was acutely successful in 13 of 14 patients with recurrence in 3. One procedure was complicated by complete heart block after ablation of a high-risk midseptal AP. There were significant differences in QRS amplitude and delta wave amplitude between groups. There were no surface ECG features that differentiated AP from FVF. CONCLUSIONS Young patients with HCM and preexcitation have a high likelihood of underlying storage disease or metabolic disease. Nonisolated HCM should be suspected in young patients with large QRS and delta wave amplitudes. Surface ECG is not adequate to discriminate preexcitation from a benign FVF from that secondary to potentially life-threatening AP.
Collapse
Affiliation(s)
- Robert Przybylski
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA
| | | | - Edward T O'Leary
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA
| | - Robyn J Hylind
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA
| | - Jennifer Noon
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA
| | - Audrey Dionne
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA
| | - Elizabeth S DeWitt
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA
| | | | - Dominic J Abrams
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA
| |
Collapse
|
23
|
Hong KN, Eshraghian EA, Arad M, Argirò A, Brambatti M, Bui Q, Caspi O, de Frutos F, Greenberg B, Ho CY, Kaski JP, Olivotto I, Taylor MRG, Yesso A, Garcia-Pavia P, Adler ED. International Consensus on Differential Diagnosis and Management of Patients With Danon Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1628-1647. [PMID: 37821174 DOI: 10.1016/j.jacc.2023.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023]
Abstract
Danon disease is a rare X-linked autophagic vacuolar cardioskeletal myopathy associated with severe heart failure that can be accompanied with extracardiac neurologic, skeletal, and ophthalmologic manifestations. It is caused by loss of function variants in the LAMP2 gene and is among the most severe and penetrant of the genetic cardiomyopathies. Most patients with Danon disease will experience symptomatic heart failure. Male individuals generally present earlier than women and die of either heart failure or arrhythmia or receive a heart transplant by the third decade of life. Herein, the authors review the differential diagnosis of Danon disease, diagnostic criteria, natural history, management recommendations, and recent advances in treatment of this increasingly recognized and extremely morbid cardiomyopathy.
Collapse
Affiliation(s)
- Kimberly N Hong
- University of California-San Diego, San Diego, California, USA
| | | | - Michael Arad
- Leviev Heart Center, Sheba Hospital and Tel Aviv University, Tel Aviv, Israel
| | - Alessia Argirò
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Quan Bui
- University of California-San Diego, San Diego, California, USA
| | - Oren Caspi
- Rambam Medical Centre and B. Rappaport Faculty of Medicine, Technion Medical School, Haifa, Israel
| | - Fernando de Frutos
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
| | - Barry Greenberg
- University of California-San Diego, San Diego, California, USA
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juan Pablo Kaski
- Great Ormond Street Hospital and University College London, London, United Kingdom
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Abigail Yesso
- Division of Cardiology/Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain.
| | - Eric D Adler
- University of California-San Diego, San Diego, California, USA.
| |
Collapse
|
24
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 786] [Impact Index Per Article: 393.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
25
|
Chumakova OS, Baulina NM. Advanced searching for hypertrophic cardiomyopathy heritability in real practice tomorrow. Front Cardiovasc Med 2023; 10:1236539. [PMID: 37583586 PMCID: PMC10425241 DOI: 10.3389/fcvm.2023.1236539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease associated with morbidity and mortality at any age. As studies in recent decades have shown, the genetic architecture of HCM is quite complex both in the entire population and in each patient. In the rapidly advancing era of gene therapy, we have to provide a detailed molecular diagnosis to our patients to give them the chance for better and more personalized treatment. In addition to emphasizing the importance of genetic testing in routine practice, this review aims to discuss the possibility to go a step further and create an expanded genetic panel that contains not only variants in core genes but also new candidate genes, including those located in deep intron regions, as well as structural variations. It also highlights the benefits of calculating polygenic risk scores based on a combination of rare and common genetic variants for each patient and of using non-genetic HCM markers, such as microRNAs that can enhance stratification of risk for HCM in unselected populations alongside rare genetic variants and clinical factors. While this review is focusing on HCM, the discussed issues are relevant to other cardiomyopathies.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of Cardiology Named After E.I. Chazov, Moscow, Russia
| | | |
Collapse
|
26
|
Luo S, Wong ICK, Chui CSL, Zheng J, Huang Y, Schooling CM, Yeung SLA. Effects of putative metformin targets on phenotypic age and leukocyte telomere length: a mendelian randomisation study using data from the UK Biobank. THE LANCET. HEALTHY LONGEVITY 2023; 4:e337-e344. [PMID: 37421961 DOI: 10.1016/s2666-7568(23)00085-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Metformin, a first-line medication for type 2 diabetes, might also have a protective effect against ageing-related diseases, but so far little experimental evidence is available. We sought to assess the target-specific effect of metformin on biomarkers of ageing in the UK Biobank. METHODS In this drug target mendelian randomisation study, we assessed the target-specific effect of four putative targets of metformin (AMPK, ETFDH, GPD1, and PEN2), involving ten genes. Genetic variants with evidence of causation of gene expression, glycated haemoglobin A1c (HbA1c), and colocalisation were used as instruments mimicking the target-specific effect of metformin via HbA1c lowering. The biomarkers of ageing considered were phenotypic age (PhenoAge) and leukocyte telomere length. To triangulate the evidence, we also assessed the effect of HbA1c on the outcomes using a polygenic mendelian randomisation design and assessed the effect of metformin use on these outcomes using a cross-sectional observational design. FINDINGS GPD1-induced HbA1c lowering was associated with younger PhenoAge (β -5·26, 95% CI -6·69 to -3·83) and longer leukocyte telomere length (β 0·28, 0·03 to 0·53), and AMPKγ2 (PRKAG2)-induced HbA1c lowering was associated with younger PhenoAge (β -4·88, -7·14 to -2·62) but not with longer leukocyte telomere length. Genetically predicted HbA1c lowering was associated with younger PhenoAge (β -0·96 per SD lowering of HbA1c, 95% CI -1·19 to -0·74) but not associated with leukocyte telomere length. In the propensity score matched analysis, metformin use was associated with younger PhenoAge (β -0·36, 95% CI -0·59 to -0·13) but not with leukocyte telomere length. INTERPRETATION This study provides genetic validation evidence that metformin might promote healthy ageing via targets GPD1 and AMPKγ2 (PRKAG2), and the effect could be in part due to its glycaemic property. Our findings support further clinical research into metformin and longevity. FUNDING Healthy Longevity Catalyst Award, National Academy of Medicine, and Seed Fund for Basic Research, The University of Hong Kong.
Collapse
Affiliation(s)
- Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ian Chi Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Celine Sze Ling Chui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yuan Huang
- Hong Kong Quantum AI Lab, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Catherine Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
27
|
Sidler M, Santarelli G, Kovacevic A, Novo Matos J, Schreiber N, Baron Toaldo M. Ventricular pre-excitation in cats: 17 cases. J Vet Cardiol 2023; 47:70-82. [PMID: 37267820 DOI: 10.1016/j.jvc.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Atrioventricular accessory pathways are abnormal electrical connections between the atria and ventricles that predispose to ventricular pre-excitation (VPE) and tachycardias. ANIMALS Seventeen cats with VPE and 15 healthy matched-control cats. MATERIAL AND METHODS Multicenter case-control retrospective study. Clinical records were searched for cats with VPE, defined as preserved atrioventricular synchrony, reduced PQ interval, and increased QRS complex duration with a delta wave. Clinical, electrocardiography, echocardiographic, and outcome data were collated. RESULTS Most cats with VPE were male (16/17 cats), non-pedigree cats (11/17 cats). Median age and mean body weight were 5.4 years (0.3-11.9 years) and 4.6 ± 0.8 kg, respectively. Clinical signs at presentation included lethargy (10/17 cats), tachypnea (6/17 cats), and/or syncope (3/17 cats). In two cats, VPE was an incidental finding. Congestive heart failure was uncommon (3/17 cats). Nine (9/17) cats had tachyarrhythmias: 7/9 cats had narrow QRS complex tachycardia and 2/9 cats had wide QRS complex tachycardia. Four cats had ventricular arrhythmias. Cats with VPE had larger left (P < 0.001) and right (P < 0.001) atria and thicker interventricular septum (P = 0.019) and left ventricular free wall (P = 0.028) than controls. Three cats had hypertrophic cardiomyopathy. Treatment included different combinations of sotalol (5/17 cats), diltiazem (5/17 cats), atenolol (4/17 cats), furosemide (4/17 cats), and platelet inhibitors (4/17 cats). Five cats died, all from cardiac death (median survival time 1882 days [2-1882 days]). CONCLUSIONS Cats with VPE had a relatively long survival, albeit showing larger atria and thicker left ventricular walls than healthy cats.
Collapse
Affiliation(s)
- M Sidler
- Division of Cardiology, Clinic for Small Animal Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | - G Santarelli
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Utrecht, the Netherlands
| | - A Kovacevic
- Division of Small Animal Cardiology, Department of Veterinary Clinical Medicine, Vetsuisse Faculty, University of Bern, Switzerland
| | - J Novo Matos
- Queen's Veterinary School Hospital, Department of Veterinary Medicine, University of Cambridge, UK
| | - N Schreiber
- Division of Cardiology, Clinic for Small Animal Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | - M Baron Toaldo
- Division of Cardiology, Clinic for Small Animal Medicine, Vetsuisse Faculty, University of Zurich, Switzerland.
| |
Collapse
|
28
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2180] [Impact Index Per Article: 1090.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
29
|
Olivotto I, Udelson JE, Pieroni M, Rapezzi C. Genetic causes of heart failure with preserved ejection fraction: emerging pharmacological treatments. Eur Heart J 2023; 44:656-667. [PMID: 36582184 DOI: 10.1093/eurheartj/ehac764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/31/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major driver of cardiac morbidity and mortality in developed countries, due to ageing populations and the increasing prevalence of comorbidities. While heart failure with reduced ejection fraction is dominated by left ventricular impairment, HFpEF results from a complex interplay of cardiac remodelling, peripheral circulation, and concomitant features including age, hypertension, obesity, and diabetes. In an important subset, however, HFpEF is subtended by specific diseases of the myocardium that are genetically determined, have distinct pathophysiology, and are increasingly amenable to targeted, innovative treatments. While each of these conditions is rare, they collectively represent a relevant subset within HFpEF cohorts, and their prompt recognition has major consequences for clinical practice, as access to dedicated, disease-specific treatments may radically change the quality of life and outcome. Furthermore, response to standard heart failure treatment will generally be modest for these individuals, whose inclusion in registries and trials may dilute the perceived efficacy of treatments targeting mainstream HFpEF. Finally, a better understanding of the molecular underpinnings of monogenic myocardial disease may help identify therapeutic targets and develop innovative treatments for selected HFpEF phenotypes of broader epidemiological relevance. The field of genetic cardiomyopathies is undergoing rapid transformation due to recent, groundbreaking advances in drug development, and deserves greater awareness within the heart failure community. The present review addressed existing and developing therapies for genetic causes of HFpEF, including hypertrophic cardiomyopathy, cardiac amyloidosis, and storage diseases, discussing their potential impact on management and their broader implications for our understanding of HFpEF at large.
Collapse
Affiliation(s)
- Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer University Children Hospital and Careggi University Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| | - James E Udelson
- Division of Cardiology and The CardioVascular Center, Tufts Medical Center, and the Tufts University School of Medicine, 800 Washington St, Boston, MA 02111, USA
| | - Maurizio Pieroni
- Cardiology Department, Hospital San Donato, Via Pietro Nenni, 20 - 52100 Arezzo, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Via Fossato di Mortara, 64/B - 44121 Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Via Corriera, 1, 48033 Cotignola, Emilia-Romagna, Italy
| |
Collapse
|
30
|
Kontorovich AR. Approaches to Genetic Screening in Cardiomyopathies: Practical Guidance for Clinicians. JACC. HEART FAILURE 2023; 11:133-142. [PMID: 36754525 DOI: 10.1016/j.jchf.2022.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 02/08/2023]
Abstract
Patients and families benefit when the genetic etiology of cardiomyopathy is elucidated through a multidisciplinary approach including genetic counseling and judicious use of genetic testing. The yield of genetic testing is optimized when performed on a proband with a clear phenotype, and interrogates genes that are validated in association with that specific form of cardiomyopathy. Variants of uncertain significance are frequently uncovered and should not be overinterpreted. Identifying an impactful genetic variant as the cause of a patient's cardiomyopathy can have important prognostic impact, and enable streamlined cascade testing to highlight at risk relatives. Certain genotypes are associated with unique potential cardiac and noncardiac risk factors and may dictate personalized approaches to treatment.
Collapse
Affiliation(s)
- Amy R Kontorovich
- Center for Inherited Cardiovascular Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
31
|
Intrafamilial Phenotypical Variability Linked to PRKAG2 Mutation-Family Case Report and Review of the Literature. Life (Basel) 2022; 12:life12122136. [PMID: 36556501 PMCID: PMC9788523 DOI: 10.3390/life12122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant phenocopy of sarcomeric hypertrophic cardiomyopathy (HCM), that mainly presents with ventricular pre-excitation, cardiac hypertrophy and progressive conduction system degeneration. Its natural course, treatment and prognosis are significantly different from sarcomeric HCM. The clinical phenotypes of PRKAG2 syndrome often overlap with HCM due to sarcomere protein mutations, causing this condition to be frequently misdiagnosed. The syndrome is caused by mutations in the gene encoding for the γ2 regulatory subunit (PRKAG2) of 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK), an enzyme that modulates glucose uptake and glycolysis. PRKAG2 mutations (OMIM#602743) are responsible for structural changes of AMPK, leading to an impaired myocyte glucidic uptake, and finally causing storage cardiomyopathy. We describe the clinical and investigative findings in a family with several affected members (NM_016203.4:c.905G>A or p.(Arg302Gln), heterozygous), highlighting the various phenotypes even in the same family, and the utility of genetic testing in diagnosing PS. The particularity of this family case is represented by the fact that the index patient was diagnosed at age 16 with cardiac hypertrophy and ventricular pre-excitation while his mother, by age 42, only had Wolff−Parkinson−White syndrome, without left ventricle hypertrophy. Both the grandmother and the great-grandmother underwent pacemaker implantation at a young age because of conduction abnormalities. Making the distinction between PS and sarcomeric HCM is actionable, given the early-onset of the disease, the numerous life-threatening consequences and the high rate of conduction disorders. In patients who exhibit cardiac hypertrophy coexisting with ventricular pre-excitation, genetic screening for PRKAG2 mutations should be considered.
Collapse
|
32
|
Lopes LR. Focusing on the Right Ventricle in PRKAG2 Syndrome. Arq Bras Cardiol 2022; 119:910-911. [PMID: 36541985 PMCID: PMC9814802 DOI: 10.36660/abc.20220795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Luís Rocha Lopes
- St Bartholomew’s HospitalBarts Heart CentreLondresReino UnidoBarts Heart Centre, St Bartholomew’s Hospital, Londres - Reino Unido,University College LondonInstitute of Cardiovascular ScienceLondresReino UnidoInstitute of Cardiovascular Science, University College London, Londres - Reino Unido,Correspondência: Luís Rocha Lopes • Barts Health NHS Trust - Barts Heart Centre - West Smithfield London E1 1RD Reino Unido da Grã-Bretanha e Irlanda do Norte. E-mail:
| |
Collapse
|
33
|
Pena JLB, de Melo FJ, Santos WC, Moura ICG, Nakashima GP, Freitas NC, Sternick EB. Right Ventricle Involvement by Glycogen Storage Cardiomyopathy (PRKAG2): Standard and Advanced Echocardiography Analyses. Arq Bras Cardiol 2022; 119:902-909. [PMID: 36417616 PMCID: PMC9814818 DOI: 10.36660/abc.20210801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND PRKAG2 syndrome is a rare, early-onset autosomal dominant inherited disease. We aimed to describe the right ventricle (RV) echocardiographic findings using two and three-dimensional (2D and 3D) modalities including myocardial deformation indices in this cardiomyopathy. We also aimed to demonstrate whether this technique could identify changes in RV function that could distinguish any particular findings. METHODS Thirty patients with genetically proven PRKAG2 (R302Q and H401Q), 16 (53.3%) males, mean age 39.1 ± 15.4 years, underwent complete echocardiography examination. RV-focused, 4-chamber view was acquired for 2D and 3D measurements. Student's t or Wilcoxon-Mann-Whitney tests were used to compare numerical variables between 2 groups, and p < 0.05 was considered significant. RESULTS Twelve patients (40%) had a pacemaker implanted for 12.4 ± 9.9 years. RV free wall mean diastolic thickness was 7.9 ± 2.9 mm. RV 4-chamber longitudinal strain (RV4LS), including the free wall and interventricular septum, was -17.3% ± 6.7%, and RV free wall longitudinal strain (RVFWLS) was -19.1% ± 8.5%. The RVFWLS apical ratio measured 0.63 ± 0.15. Mean RV 3D ejection fraction (EF) was 42.6% ± 10.9% and below normal limits in 56.7% of patients. Positive correlation occurred between RV 3DEF, RV4LS, and RVFWLS, especially for patients without a pacemaker (p = 0.006). CONCLUSION RV involvement in PRKAG2 syndrome is frequent, occurring in different degrees. Echocardiography is a valuable tool in detecting RV myocardial abnormalities in this condition. The use of 2D RV4LS, RVFWLS, and 3DEF offers reliable indicators of RV systolic dysfunction in this rare, challenging cardiomyopathy.
Collapse
Affiliation(s)
- José Luiz Barros Pena
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil,Hospital Felicio RochoBelo HorizonteMGBrasilHospital Felicio Rocho – Ecocardiografia, Belo Horizonte, MG – Brasil
| | - Fabricio Junqueira de Melo
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Wander Costa Santos
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Isabel Cristina Gomes Moura
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Gabriela Pansanato Nakashima
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Natalia Costa Freitas
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Eduardo Back Sternick
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| |
Collapse
|
34
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
35
|
de Magalhães EFS, de Magalhães LP, Pinheiro JDO, Guabiru AT, Aras R. Atrial Flutter in PRKAG2 Syndrome: Clinical and Electrophysiological Characteristics. Arq Bras Cardiol 2022; 119:S0066-782X2022005014202. [PMID: 36102422 PMCID: PMC9750222 DOI: 10.36660/abc.20210792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/14/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND PRKAG2 syndrome is a rare autosomal dominant disease, a phenocopy of hypertrophic cardiomyopathy characterized by intracellular glycogen accumulation. Clinical manifestations include ventricular preexcitation, cardiac conduction disorder, ventricular hypertrophy, and atrial arrhythmias. OBJECTIVE To compare the clinical and electrophysiological characteristics observed in patients with atrial flutter, with and without PRKAG2 syndrome. METHODS An observational study comparing patients with atrial flutter: group A consisted of five patients with PRKAG2 syndrome from a family, and group B consisted of 25 patients without phenotype of PRKAG2 syndrome. The level of significance was 5%. RESULTS All patients in group A had ventricular preexcitation and right branch block, and four had pacemakers (80%). Patients in group A were younger (39±5.4 vs 58.6±17.6 years, p=0.021), had greater interventricular septum (median=18 vs 10 mm; p<0.001) and posterior wall thickness (median=14 vs 10 mm; p=0.001). In group A, four patients were submitted to an electrophysiological study, showing a fasciculoventricular pathway, and atrial flutter ablation was performed in tree. All patients in group B were submitted to ablation of atrial flutter, with no evidence of accessory pathway. Group B had a higher prevalence of hypertension, diabetes mellitus, coronary artery disease and sleep apnea, with no statistically significant difference. CONCLUSION Patients with PRKAG2 syndrome presented atrial flutter at an earlier age and had fewer comorbidities when compared to patients with atrial flutter without mutation phenotype. The occurrence of atrial flutter in young individuals, especially in the presence of ventricular preexcitation and familial ventricular hypertrophy, should raise the suspicion of PRKAG2 syndrome.
Collapse
Affiliation(s)
- Eduardo Faria Soares de Magalhães
- Universidade Federal da BahiaFaculdade de Medicina de BahiaSalvadorBABrasil Universidade Federal da Bahia – Faculdade de Medicina de Bahia , Salvador , BA – Brasil
| | - Luiz Pereira de Magalhães
- Universidade Federal da BahiaFaculdade de Medicina de BahiaSalvadorBABrasil Universidade Federal da Bahia – Faculdade de Medicina de Bahia , Salvador , BA – Brasil
- Hospital Universitário Professor Edgard SantosSalvadorBABrasil Hospital Universitário Professor Edgard Santos , Salvador , BA – Brasil
| | - Jussara de Oliveira Pinheiro
- Hospital Universitário Professor Edgard SantosSalvadorBABrasil Hospital Universitário Professor Edgard Santos , Salvador , BA – Brasil
| | - Alex Teixeira Guabiru
- Hospital Universitário Professor Edgard SantosSalvadorBABrasil Hospital Universitário Professor Edgard Santos , Salvador , BA – Brasil
| | - Roque Aras
- Universidade Federal da BahiaFaculdade de Medicina de BahiaSalvadorBABrasil Universidade Federal da Bahia – Faculdade de Medicina de Bahia , Salvador , BA – Brasil
| |
Collapse
|
36
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
37
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
38
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
39
|
Komurcu-Bayrak E, Kalkan MA, Coban N, Ozsait-Selcuk B, Bayrak F. Identification of the pathogenic effects of missense variants causing PRKAG2 cardiomyopathy. Arch Biochem Biophys 2022; 727:109340. [PMID: 35787834 DOI: 10.1016/j.abb.2022.109340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pathogenic missense variants in PRKAG2, the gene for the gamma 2 regulatory subunit of adenosine monophosphate-activated protein kinase (AMPK), cause severe progressive cardiac disease and sudden cardiac death, named PRKAG2 cardiomyopathy. In our previous study, we reported a E506K variant in the PRKAG2 gene that was associated with this disease. This study aimed to functionally characterize the three missense variants (E506K, E506Q, and R531G) of PRKAG2 and determine the possible effects on AMPK activity. METHODS The proband was clinically monitored for eight years. To investigate the functional effects of three missense variants of PRKAG2, in vitro mutagenesis experiments using HEK293 cells with wild and mutant transcripts and proteins were comparatively analyzed using quantitative RT-PCR, immunofluorescence staining, and enzyme-linked immunosorbent assay. RESULTS In the long-term follow-up, the proband was deceased due to progressive heart failure. In the in vitro experimental studies, PRKAG2 was overexpressed after 48 h of transfection in three mutated cells, after which the expression levels of PRKAG2 were regressed to the level of wild-type cells in 3-weeks stably transformed cells, except for the cells with E506K variant. E506K, E506Q, and R531G variants had caused a reduction in the AMPK activity and resulted in the formation of cytoplasmic glycogen deposits. CONCLUSION Three missense variants that alter AMPK activity affect a residue in the CBS4 domain associated with ATP/AMP-binding. Detailed information on the influence of PRKAG2 pathogenic variants on AMPK activity would be helpful to improve the treatment and management of patients with metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Evrim Komurcu-Bayrak
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul, Turkey; Istanbul University, Istanbul Faculty of Medicine, Departments of Medical Genetics, Istanbul, Turkey.
| | - Muhammed Abdulvahid Kalkan
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul, Turkey; Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
| | - Neslihan Coban
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul, Turkey.
| | - Bilge Ozsait-Selcuk
- Istanbul University, Istanbul Faculty of Medicine, Departments of Medical Genetics, Istanbul, Turkey.
| | - Fatih Bayrak
- Acibadem Altunizade Hospital, Department of Cardiology, Istanbul, Turkey.
| |
Collapse
|
40
|
Gong X, Yu P, Wu T, He Y, Zhou K, Hua Y, Lin S, Wang T, Huang H, Li Y. Controversial molecular functions of CBS versus non-CBS domain variants of PRKAG2 in arrhythmia and cardiomyopathy: A case report and literature review. Mol Genet Genomic Med 2022; 10:e1962. [PMID: 35588295 PMCID: PMC9266596 DOI: 10.1002/mgg3.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background PRKAG2 cardiac syndrome is a rare autosomal dominant genetic disorder caused by a PRKAG2 gene variant. There are several major adverse cardiac presentations, including hypertrophic cardiomyopathy (HCM) and life‐threatening arrhythmia. Two cases with pathogenic variants in the PRKAG2 gene are reported here who presents different cardiac phenotypes. Methods Exome sequencing and variant analysis of PRKAG2 were performed to obtain genetic data, and clinical characteristics were determined. Results The first proband was a 9‐month‐old female infant (Case 1), and was identified with severe DCM and resistant heart failure. The second proband was a 10‐year‐old female infant (Case 2), and presented with HCM and ventricular preexcitation. Exome sequencing identified a de novo c.425C > T (p.T142I) heterozygous variant in the PRKAG2 gene for Case 1, and a c.869A > T (p.K290I) for Case 2. The mutated sites in the protein were labeled and identified as p.K290 in the CBS domain and p.T142 in the non‐CBS domain. Differences in the molecular functions of CBS and non‐CBS domains have not been resolved, and variants might lead to the different cardiomyopathy phenotypes. Single‐cell RNA analysis demonstrated similar expression levels of PRKAG2 in cardiomyocytes and conductive tissues. These results suggest that the arrhythmia induced by the PRKAG2 variant was the primary change, and not secondary to cardiomyopathy. Conclusion In summary, this is the first case report to describe a DCM phenotype with early onset in patients possessing a PRKAG2 c.425C > T (p.T142I) pathogenic variant. Our results aid in understanding the molecular function of non‐CBS variants in terms of the disordered sequence of transcripts. Moreover, we used scRNA‐seq to show that electrically conductive cells express a higher level of PRKAG2 than do cardiomyocytes. Therefore, variants in PRKAG2 are expected to also alter the biological function of the conduction system.
Collapse
Affiliation(s)
- Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Peiyu Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Chengdu Shangjin Nanfu Hospital, Chengdu, China
| | - Ting Wu
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yunru He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - He Huang
- Department of Echocardiography, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Tang L, Li X, Zhou N, Jiang Y, Pan C, Shu X. Echocardiographic characteristics of PRKAG2 syndrome: a research using three-dimensional speckle tracking echocardiography compared with sarcomeric hypertrophic cardiomyopathy. Cardiovasc Ultrasound 2022; 20:14. [PMID: 35509080 PMCID: PMC9069802 DOI: 10.1186/s12947-022-00284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background PRKAG2 syndrome is a rare disease characterized as left ventricular hypertrophy (LVH), ventricular preexcitation syndrome, and sudden cardiac death. Its natural course, treatment, and prognosis were significantly different from sarcomeric hypertrophic cardiomyopathy (HCM). However, it is often clinically misdiagnosed as sarcomeric HCM. PRKAG2 patients tend to experience delayed treatment. The delay may lead to adverse outcomes. This study aimed to identify the echocardiographic parameters which can differentiate PRKAG2 syndrome from sarcomeric HCM. Methods Nine PRKAG2 patients with LVH, 41 HCM patients with sarcomere gene mutations, and 202 healthy volunteers were enrolled. Clinical characteristics, conventional echocardiography, and three-dimensional images were recorded, and reviewed by an attending cardiologist. We evaluated the parameters of left ventricular strains from three-dimensional speckle tracking echocardiography (3D STE) by TomTec software. Receiver operating characteristic (ROC) curves analysis was used to assess clinical and echocardiographic parameters’ differential diagnosis potential. Results The heart rate (HR) of the PRKAG2 group was significantly lower than both the healthy group (53.11 ± 10.14 vs. 69.22 ± 10.48 bpm, P < 0.001) and the sarcomeric HCM group (53.11 ± 10.14 vs. 67.23 ± 10.32 bpm, P = 0.001). The PRKAG2 group had similar interventricular septal thickness (IVS), posterior wall thickness (PWT), and maximum wall thickness (MWT) to the HCM group (P > 0.05). The absolute value of GLS in the PRKAG2 group was significantly higher than HCM patients (-18.92 ± 4.98 vs. -13.43 ± 4.30%, P = 0.004). SV calculated from EDV and ESV in PRKAG2 syndrome showed a higher value than sarcomeric HCM (61.83 ± 13.52 vs. 44.96 ± 17.53%, P = 0.020). The area under the ROC curve (AUC) for HR + GLS was 0.911 (0.803 -1). For HR + GLS, the sensitivity and specificity of the best cut-off value (0.114) were 69.0% and 100%, respectively. Conclusions PRKAG2 patients present deteriorated LV diastolic function and preserved LV systolic function. Bradycardia and preserved GLS are useful to identify PRKAG2 syndrome from sarcomeric HCM, which may be beneficial for clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1186/s12947-022-00284-3.
Collapse
Affiliation(s)
- Lu Tang
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Xuejie Li
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Nianwei Zhou
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Yingying Jiang
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Cuizhen Pan
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Wasserstrum Y, Larrañaga-Moreira JM, Martinez-Veira C, Itelman E, Lotan D, Sabbag A, Kuperstein R, Peled Y, Freimark D, Barriales-Villa R, Arad M. Hypokinetic hypertrophic cardiomyopathy: clinical phenotype, genetics, and prognosis. ESC Heart Fail 2022; 9:2301-2312. [PMID: 35488723 PMCID: PMC9288812 DOI: 10.1002/ehf2.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Aims To describe the phenotype, genetics, and events associated with the development of hypertrophic cardiomyopathy (HCM) with reduced ventricular function (HCMr). Heart failure in HCM is usually associated with preserved ejection fraction, yet some HCM patients develop impaired systolic function that is associated with worse outcomes. Methods and results Our registry included 1328 HCM patients from two centres in Spain and Israel. Patients with normal baseline ventricular function were matched, and a competing‐risk analysis was performed to find factors associated with HCMr development. Patient records were reviewed to recognize clinically significant events that occurred closely before the development of HCMr. Genetic data were collected in patients with HCMr. A composite of all‐cause mortality or ventricular assist device (VAD)/heart transplantation was assessed according to ventricular function. Median age was 56, and 34% were female patients. HCMr at evaluation was seen in 37 (2.8%) patients, and 46 (3.5%) developed HCMr during median follow up of 9 years. HCMr was associated with younger age of diagnosis, poor functional class, and ventricular arrhythmia. Atrial fibrillation, pacemaker implantation, and baseline left ventricular ejection fraction (LVEF) of ≤55% were significant predictors of future HCMr development, while LV obstruction predicted a lower risk. Genetic testing performed in 53 HCMr patients, identifying one or more pathogenic variant in 38 (72%): most commonly in myosin binding protein C (n = 20). Six of these patients had an additional pathogenic variant in one of the sarcomere genes. Patients with baseline HCMr had a higher risk (hazard ratio 6.4, 4.1–10.1) for the composite outcome and for the individual components. Patients who developed HCMr in the course of the study had similar mortality but a higher rate of VAD/heart transplantation compared with HCM with normal LVEF. Conclusions Hypertrophic cardiomyopathy with reduced ejection fraction is associated with heart failure and poor outcome. Arrhythmia, cardiac surgery, and device implantation were commonly documented prior to HCMr development, suggesting they may be either a trigger or the result of adverse remodelling. Future studies should focus on prediction and prevention of HCMr.
Collapse
Affiliation(s)
- Yishay Wasserstrum
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| | - José M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares, Cardiology Service, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Cristina Martinez-Veira
- Unidad de Cardiopatías Familiares, Cardiology Service, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Edward Itelman
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| | - Dor Lotan
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| | - Avi Sabbag
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| | - Rafael Kuperstein
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| | - Yael Peled
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| | - Dov Freimark
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Cardiology Service, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain.,Centro de Investigación Biomédica en Red (CIBERCV), Madrid, Spain
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center in Tel-Ha'Shomer, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, 35 Kalachkin St., Tel-Aviv, 6997801, Israel
| |
Collapse
|
43
|
Chen S, Lin Y, Zhu Y, Geng L, Cui C, Li Z, Liu H, Chen H, Ju W, Chen M. Atrial Lesions in a Pedigree With PRKAG2 Cardiomyopathy: Involvement of Disrupted AMP-Activated Protein Kinase Signaling. Front Cardiovasc Med 2022; 9:840337. [PMID: 35360035 PMCID: PMC8960295 DOI: 10.3389/fcvm.2022.840337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
PRKAG2 cardiomyopathy is a rare progressive disease characterized by increased ventricular wall thickness and preexcitation. Dysfunction of the protein 5′-AMP-activated protein kinase (AMPK) plays a decisive role in the progression of ventricular lesions. Although patients with the PRKAG2-R302Q mutation have a high incidence of atrial fibrillation (AF), the molecular mechanism contributing to the disease remains unclear. We carried out whole-genome sequencing with linkage analysis in three affected members of a family. Atrial samples were obtained from the proband via surgical intervention. Control atrium biopsies were obtained from patients with persistent AF. Pathological changes were analyzed using the hematoxylin and eosin (H&E), Masson, and periodic acid–Schiff (PAS) staining. The AMPK signaling pathway was investigated by western blot. A murine atrial cardiomyocyte cell line (HL-1) and human induced pluripotent stem derived atrial cardiomyocytes (hiPSC-ACMs) were transfected with an adenovirus carrying the same mutation. We used enzyme linked immunosorbent assay (ELISA) to determine the AMPK activity in HL-1 cells and hiPSC-ACMs overexpressing PRKAG2-R302Q. Pathological results showed a large quantity of glycogen accumulation and vacuolization in cardiomyocytes from the proband atrial tissue. Western blot analysis revealed that the AMPK activity was significantly downregulated compared with that of the controls. Furthermore, remarkable glycogen deposition and impairment of AMPK activity were reproduced in HL-1 cells overexpressing PRKAG2-R302Q. Taken together, PRKAG2-R302Q mutation directly impair atrial cardiomyocytes. PRKAG2-R302Q mutation lead to glycogen deposition and promote the growth of atrial lesions by disrupting the AMPK pathway.
Collapse
Affiliation(s)
- Shaojie Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Geng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaomin Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwu Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhu Ju
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Weizhu Ju,
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Minglong Chen,
| |
Collapse
|
44
|
Magalhães LPD, Magalhães EFSD, Pinheiro JDO, Guabiru AT, Reis FJFBD, Aras R. Long-Term Cardiac Complications of PRKAG2 Syndrome. Arq Bras Cardiol 2022; 118:106-109. [PMID: 35195217 PMCID: PMC8959048 DOI: 10.36660/abc.20210062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | | | | | | | - Roque Aras
- Hospital Universitário Professor Edgard Santos, Salvador, BA - Brasil
| |
Collapse
|
45
|
Raber I, Palmeri NO, Tahir UA, Zimetbaum PJ. A Pacemaker Red Herring and a Hypertrophic Cardiomyopathy Copycat. Circulation 2022; 145:622-625. [PMID: 35188796 DOI: 10.1161/circulationaha.121.058658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Inbar Raber
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Nicholas O Palmeri
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Usman A Tahir
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter J Zimetbaum
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3077] [Impact Index Per Article: 1025.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
47
|
Li J, Gao W, Liu J, Zhang X, Tao J, Zhang G. Red blood cell distribution width and maximum left ventricular wall thickness predict poor outcomes in patients with hypertrophic cardiomyopathy. Echocardiography 2022; 39:278-285. [PMID: 35066909 DOI: 10.1111/echo.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jia Li
- Department of Cardiology The Jiangmen Central Hospital The Jiangmen Central Hospital of Sun Yat‐Set University Jiangmen China
- Department of Cardiology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Grade 17, Sun Yat‐sen University Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Weidong Gao
- Department of Cardiology The Jiangmen Central Hospital The Jiangmen Central Hospital of Sun Yat‐Set University Jiangmen China
| | - Jinxue Liu
- Department of Cardiology The Jiangmen Central Hospital The Jiangmen Central Hospital of Sun Yat‐Set University Jiangmen China
| | - Xuefang Zhang
- Department of Cardiology The Jiangmen Central Hospital The Jiangmen Central Hospital of Sun Yat‐Set University Jiangmen China
| | - Jun Tao
- Department of Cardiology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Gaoxing Zhang
- Department of Cardiology The Jiangmen Central Hospital The Jiangmen Central Hospital of Sun Yat‐Set University Jiangmen China
| |
Collapse
|
48
|
Witasp A, Luttropp K, Qureshi AR, Barany P, Heimbürger O, Wennberg L, Ekström TJ, Shiels PG, Stenvinkel P, Nordfors L. Longitudinal genome-wide DNA methylation changes in response to kidney failure replacement therapy. Sci Rep 2022; 12:470. [PMID: 35013499 PMCID: PMC8748627 DOI: 10.1038/s41598-021-04321-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic kidney disease (CKD) is an emerging public health priority associated with high mortality rates and demanding treatment regimens, including life-style changes, medications or even dialysis or renal transplantation. Unavoidably, the uremic milieu disturbs homeostatic processes such as DNA methylation and other vital gene regulatory mechanisms. Here, we aimed to investigate how dialysis or kidney transplantation modifies the epigenome-wide methylation signature over 12 months of treatment. We used the Infinium HumanMethylation450 BeadChip on whole blood samples from CKD-patients undergoing either dialysis (n = 11) or kidney transplantation (n = 12) and 24 age- and sex-matched population-based controls. At baseline, comparison between patients and controls identified several significant (PFDR < 0.01) CpG methylation differences in genes with functions relevant to inflammation, cellular ageing and vascular calcification. Following 12 months, the global DNA methylation pattern of patients approached that seen in the control group. Notably, 413 CpG sites remained differentially methylated at follow-up in both treatment groups compared to controls. Together, these data indicate that the uremic milieu drives genome-wide methylation changes that are partially reversed with kidney failure replacement therapy. Differentially methylated CpG sites unaffected by treatment may be of particular interest as they could highlight candidate genes for kidney disease per se.
Collapse
Affiliation(s)
- Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Karin Luttropp
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Peter Barany
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Olof Heimbürger
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas J Ekström
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- College of Medical, Veterinary and Life Sciences Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Louise Nordfors
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden.
| |
Collapse
|
49
|
Rodríguez Ortuño J, Peña Peña ML, López Haldón JE. Hypertrophic cardiomyopathy phenocopy (PRKAG2 syndrome) due to p.Arg302Gln mutation. Med Clin (Barc) 2021; 158:340-341. [PMID: 34656342 DOI: 10.1016/j.medcli.2021.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Affiliation(s)
| | - María Luisa Peña Peña
- Departamento de Cardiología, Hospital Universitario Virgen del Rocío, Sevilla, España
| | | |
Collapse
|
50
|
Phenocopies of sarcomere gene mediated hypertrophic cardiomyopathy in children. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|