1
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Sutradhar S, Ali H. Mast cell MrgprB2 in neuroimmune interaction in IgE-mediated airway inflammation and its modulation by β-arrestin2. Front Immunol 2024; 15:1470016. [PMID: 39483467 PMCID: PMC11524863 DOI: 10.3389/fimmu.2024.1470016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Allergic asthma has been linked to the activation of mast cells (MCs) by the neuropeptide substance P (SP), but the mechanism underlying this neuroimmune interaction is unknown. Substance P produced from cutaneous nociceptors activates MCs via Mas-related G-protein-coupled receptor B2 (MrgprB2) to enhance type 2 immune response in experimental atopic dermatitis in mice. We recently showed that the adapter protein β-arrestin2 (β-arr2) contributes to MrgprB2-mediated MC chemotaxis. The goals of this study were to determine if MrgprB2 facilitates neuroimmune interaction in IgE (FcεRI)-mediated allergic airway inflammation (AAI) and to assess if this response is modulated by β-arr2. Methods Wild-type (WT), MrgprB2-/- mice and mice with MC-specific deletion of β-arr2 (Cpa3Cre+ /β-arr2fl/fl ) were passively sensitized with anti-TNP-IgE and challenged with antigen. The generation of SP and MC recruitment in the lung were determined by immunofluorescence and toluidine blue staining, respectively. The transcripts for Tac1, MrgprB2, TNF-α, and Th2 cytokines in lung tissue were assessed by RT-PCR, and the release of selected cytokines in bronchoalveolar lavage (BAL) was determined by ELISA. Eosinophil and neutrophil recruitment in lung tissue and BAL were determined by immunofluorescence staining and flow cytometry, respectively. Goblet cell hyperplasia was determined by periodic acid-Schiff staining. Results Following IgE sensitization and antigen challenge in WT mice, SP generation, and MC recruitment, transcripts for Tac1, MrgprB2, TNF-α, and Th2 cytokine were upregulated when compared to the control challenge. TNF-α, Th2 cytokine production, eosinophil/neutrophil recruitment, and goblet cell hyperplasia were also increased. These responses were significantly reduced in MrgprB2-/- and Cpa3Cre+ /β-arr2fl/fl mice. Discussion The data presented herein suggest that SP-mediated MrgprB2 activation contributes to AAI and goblet cell hyperplasia in mice. Furthermore, these responses are modulated by β-arr2, which promotes MC recruitment to facilitate their activation through FcεRI.
Collapse
Affiliation(s)
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Mrozewski L, Tharmalingam S, Michael P, Kumar A, Tai TC. C5a Induces Inflammatory Signaling and Apoptosis in PC12 Cells through C5aR-Dependent Signaling: A Potential Mechanism for Adrenal Damage in Sepsis. Int J Mol Sci 2024; 25:10673. [PMID: 39409001 PMCID: PMC11477224 DOI: 10.3390/ijms251910673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis.
Collapse
Affiliation(s)
- Lucas Mrozewski
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Aseem Kumar
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - T. C. Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
4
|
Sommer C, Neuhaus V, Gogesch P, Flandre T, Dehmel S, Sewald K. Type 2 responses determine skin rash during recombinant interleukin-2 therapy. J Immunotoxicol 2024; 21:S48-S59. [PMID: 39655497 DOI: 10.1080/1547691x.2024.2343359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the organ most often affected by adverse drug reactions. Although these cutaneous adverse drug reactions (CADRs) often are mild, they represent a major burden for patients. One of the drugs inducing CADRs is aldesleukin, a recombinant interleukin-2 (recIL-2) originally approved to treat malignant melanoma and metastatic renal cell carcinoma which frequently led to skin rashes when applied in high doses for anti-cancer therapy. Skin rashes and other side effects, together with poor efficacy led to a drawback of the therapeutic, but modified recIL-2 molecules are on the rise to treat both cancer and inflammatory diseases such as autoimmunity. Still, pathophysiological mechanisms of recIL-2-induced skin rashes are not understood. In the study reported here, a hypothetical literature-based immune-related adverse outcome pathway (irAOP) was developed to identify possible key cells and molecules in recIL-2-induced skin rash. Using this approach, a hypothesis was formed that the induced immune response predominantly is Type 2-driven by T-helper and innate lymphoid cells, leading to the occurrence of cutaneous side effects during recIL-2 therapy. This paper further discusses mechanisms beyond the proposed irAOP which might add to the pathology but currently are less-studied. Together, this hypothetic irAOP forms a basis to clarify possible cellular and molecular interactions leading to recIL-2-induced skin rash. This might be used to adapt existing or develop new test systems to help predict and prevent cutaneous side effects in future IL-2-based or similar therapies.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | | | | | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| |
Collapse
|
5
|
Cosoroaba R, Ceausu RA, Gaje NP, Vasca EM, Dumitru CS, Olariu I, Popovici RA, Raica M. High Intraepithelial Mast Cell Density in Warthin's Tumor. In Vivo 2024; 38:1104-1111. [PMID: 38688595 PMCID: PMC11059896 DOI: 10.21873/invivo.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Warthin's tumor, the second most frequent neoplasia of the parotid gland, is characterized by a proliferation of both epithelial and lymphoid components. In addition to epithelial and lymphoid cells, various other cell types are implicated to varying degrees in the immune response. Notably, mast cells have long been recognized as a consistent cell population within this tumor. Despite the historical acknowledgment of mast cell presence, their true distribution and significance within Warthin's tumor remain unclear. In this study, we aimed to elucidate the distribution and significance of mast cells in Warthin's tumor. MATERIALS AND METHODS Histochemical and immunohistochemical methods were employed for the evaluation of mast cells within tumor specimens. RESULTS Our study revealed a notable concentration of mast cells in the epithelial component of Warthin's tumor. Microscopic examination showed predominant lymphoid and epithelial elements with occasional cystic formations. Immunohistochemical analysis identified mast cells in both components, emphasizing their role in the tumor microenvironment. Double immunostaining (mast cell tryptase and CD34) revealed no significant correlation between mast cells and blood vessels. Intraepithelial mast cells (IEMCs) had a significantly higher density in the epithelial component, suggesting a potential association with the tumor's benign nature. The relationship between IEMCs and epithelial cells, especially in the presence of cystic structures, offers valuable insights into the unique features of Warthin's tumor. CONCLUSION Our study contributes to the understanding of mast cells in Warthin's tumor, highlighting a substantial concentration within the epithelial component. This knowledge may pave the way for further investigations into the roles of mast cells in the pathogenesis and treatment of Warthin's tumor.
Collapse
Affiliation(s)
- Raluca Cosoroaba
- Department I, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Nela Pusa Gaje
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Elisabeta Maria Vasca
- Department of Dentistry, Faculty of Dentistry, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cristina Stefania Dumitru
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania;
| | - Iustin Olariu
- Department of Dentistry, Faculty of Dentistry, Vasile Goldis Western University of Arad, Arad, Romania
| | - Ramona Amina Popovici
- Department I, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
6
|
Mullur J, Buchheit KM. Aspirin-exacerbated respiratory disease: Updates in the era of biologics. Ann Allergy Asthma Immunol 2023; 131:317-324. [PMID: 37225000 PMCID: PMC10524829 DOI: 10.1016/j.anai.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Aspirin-exacerbated respiratory disease (AERD) is a chronic respiratory condition characterized by severe chronic rhinosinusitis with nasal polyps (CRSwNP), eosinophilic asthma, and respiratory reactions to cyclooxygenase inhibitors. The management of AERD has evolved recently with the availability of respiratory biologics for treatment of severe asthma and CRSwNP. The objective of this review is to provide an update on the management of AERD in the era of respiratory biologic therapy. DATA SOURCES A literature review of pathogenesis and treatment of AERD, with a specific focus on biologic therapies in AERD, was performed through publications gathered from PubMed. STUDY SELECTIONS Original research, randomized controlled trials, retrospective studies, meta-analyses, and case series of high relevance are selected and reviewed. RESULTS Aspirin therapy after desensitization (ATAD) and respiratory biologic therapies targeting interleukin (IL)-4Rα, IL-5, IL-5Rα, and immunoglobulin E, all have some efficacy in the treatment of CRSwNP and asthma in patients with AERD. There are currently no head-to-head studies comparing ATAD vs respiratory biologic therapy, or specific respiratory biologics, for asthma and CRSwNP in patients with AERD. CONCLUSION Advances in our understanding of the fundamental drivers of the chronic respiratory inflammation in asthma and CRSwNP have led to the identification of several potential therapeutic targets for these diseases that can be used in patients with AERD. Further study of the use of ATAD and biologic therapy, independently and together, will help to inform future treatment algorithms for patients with AERD.
Collapse
Affiliation(s)
- Jyostna Mullur
- Department of Medicine, Duke University, Durham, North Carolina
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
7
|
Yanase Y, Matsubara D, Takahagi S, Tanaka A, Ozawa K, Hide M. Basophil Characteristics as a Marker of the Pathogenesis of Chronic Spontaneous Urticaria in Relation to the Coagulation and Complement Systems. Int J Mol Sci 2023; 24:10320. [PMID: 37373468 DOI: 10.3390/ijms241210320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic spontaneous urticaria (CSU) is a common skin disorder characterized by daily or almost daily recurring skin edema and flare with itch and pruritus anywhere on the body for more than 6 weeks. Although basophil- and mast cell-released inflammatory mediators, such as histamine, play important roles in the pathogenesis of CSU, the detailed underlying mechanism is not clear. Since several auto-antibodies, IgGs which recognize IgE or the high-affinity IgE receptor (FcεRI) and IgEs against other self-antigens, are detected in CSU patients, they are considered to activate both mast cells in the skin and basophils circulating in the blood. In addition, we and other groups demonstrated that the coagulation and complement system also contribute to the development of urticaria. Here, we summarized the behaviors, markers and targets of basophils in relation to the coagulation-complement system, and for the treatment of CSU.
Collapse
Affiliation(s)
- Yuhki Yanase
- Department of Pharmacotherapy, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Daiki Matsubara
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Shunsuke Takahagi
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Michihiro Hide
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
- Hiroshima City Hiroshima Citizens Hospital, Hiroshima 730-8518, Japan
| |
Collapse
|
8
|
Increased NMUR1 Expression in Mast Cells in the Synovial Membrane of Obese Osteoarthritis Patients. Int J Mol Sci 2022; 23:ijms231911237. [PMID: 36232539 PMCID: PMC9570196 DOI: 10.3390/ijms231911237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Obesity is a risk factor for knee osteoarthritis (KOA). Neuromedin U (NMU) and NMU receptors (NMUR1 and NMUR2) are associated with obesity-related disorders and found in mast cells (MCs), which are elevated in osteoarthritis. However, NMU/NMUR expression was not examined in the synovial membrane (SM) or synovial MCs of obese osteoarthritis patients. We compared expression of NMU, NMUR1, NMUR2, and the mast cell (MC) marker, CPA3, in the SM of KOA patients categorized as normal weight (NW; BMI < 25 kg/m2, n = 79), overweight (OW; BMI ≥ 25 and <30 kg/m2, n = 87), and obese (OB; ≥30 kg/m2, n = 40). To study NMU/NMUR expression in MCs, we compared the MC-rich fraction (MC-RF), CD88(+) MC-RF, and CD88(−) MC-RF, extracted using magnetic isolation, with the MC-poor fraction (MC-PF). While NMU and NMUR2 expression were comparable, NMUR1 was significantly elevated in OW and OB compared to NW. Moreover, CPA3 levels were significantly greater in OB than NW. NMUR1 and CPA3 expression were significantly higher in both the CD88(+) and CD88(−) MC-RF than MC-PF. Therefore, NMUR1 expression was elevated in the SM of OB KOA patients, and its expression was found in MCs. Further investigation to analyze the NMU/NMUR1 pathway in MC may provide a link between obesity and KOA pathology.
Collapse
|
9
|
West PW, Bulfone-Paus S. Mast cell tissue heterogeneity and specificity of immune cell recruitment. Front Immunol 2022; 13:932090. [PMID: 35967445 PMCID: PMC9374002 DOI: 10.3389/fimmu.2022.932090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells occupy a unique niche within tissues as long lived perpetrators of IgE mediated hypersensitivity and anaphylaxis, as well as other immune responses. However, mast cells are not identical in different tissues and the impact of this tissue heterogeneity on the interaction with other immune cells and on defined immune responses is still unclear. In this review, we synthesize the characteristics of mast cell heterogeneity in the gut and the skin. Furthermore, we attempt to connect mast cell heterogeneity with functional diversity by exploring differences in mast cell-induced immune cell recruitment in these two model organs. The differential expression of certain receptors on mast cells of different tissues, notably tissue-specific expression patterns of integrins, complement receptors and MRGPRX2, could indicate that tissue environment-dependent factors skew mast cell-immune cell interactions, for example by regulating the expression of these receptors.
Collapse
Affiliation(s)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
10
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Rönnberg E, Boey DZH, Ravindran A, Säfholm J, Orre AC, Al-Ameri M, Adner M, Dahlén SE, Dahlin JS, Nilsson G. Immunoprofiling Reveals Novel Mast Cell Receptors and the Continuous Nature of Human Lung Mast Cell Heterogeneity. Front Immunol 2022; 12:804812. [PMID: 35058936 PMCID: PMC8764255 DOI: 10.3389/fimmu.2021.804812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Immunohistochemical analysis of granule-associated proteases has revealed that human lung mast cells constitute a heterogeneous population of cells, with distinct subpopulations identified. However, a systematic and comprehensive analysis of cell-surface markers to study human lung mast cell heterogeneity has yet to be performed. Methods Human lung mast cells were obtained from lung lobectomies, and the expression of 332 cell-surface markers was analyzed using flow cytometry and the LEGENDScreen™ kit. Markers that exhibited high variance were selected for additional analyses to reveal whether they were correlated and whether discrete mast cell subpopulations were discernable. Results We identified the expression of 102 surface markers on human lung mast cells, 23 previously not described on mast cells, of which several showed high continuous variation in their expression. Six of these markers were correlated: SUSD2, CD49a, CD326, CD34, CD66 and HLA-DR. The expression of these markers was also correlated with the size and granularity of mast cells. However, no marker produced an expression profile consistent with a bi- or multimodal distribution. Conclusions LEGENDScreen analysis identified more than 100 cell-surface markers on mast cells, including 23 that, to the best of our knowledge, have not been previously described on human mast cells. The comprehensive expression profiling of the 332 surface markers did not identify distinct mast cell subpopulations. Instead, we demonstrate the continuous nature of human lung mast cell heterogeneity.
Collapse
Affiliation(s)
- Elin Rönnberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Daryl Zhong Hao Boey
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Avinash Ravindran
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Säfholm
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Charlotte Orre
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Mamdoh Al-Ameri
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joakim S Dahlin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Clinical relevance of inherited genetic differences in human tryptases: Hereditary alpha-tryptasemia and beyond. Ann Allergy Asthma Immunol 2021; 127:638-647. [PMID: 34400315 DOI: 10.1016/j.anai.2021.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To describe our current understanding of hereditary α-tryptasemia (HαT), how HαT fits into the evolutionary context of tryptases and contemporary framework of mast cell-associated disorders, and to discuss the future clinical and therapeutic landscape for symptomatic individuals with HαT. DATA SOURCES Primary peer-reviewed literature. STUDY SELECTIONS Basic, clinical, and translational studies describing tryptase gene composition, generation, secretion, and elevation and the associated clinical impacts of HαT and treatment of such individuals were reviewed. RESULTS HαT is a common autosomal dominant genetic trait caused by increased TPSAB1 copy number encoding α-tryptase. Approximately 1 in 20 White individuals have HαT, making it by far the most common cause for elevated basal serum tryptase levels. Although many individuals with HαT may not manifest associated symptoms, the prevalence of HαT is increased in patients with clonal and nonclonal mast cell-associated disorders wherein it is linked to more prevalent and/or severe anaphylaxis and increased mast cell mediator-associated symptoms. Increased generation of mature α/β-tryptase heterotetramers, and their unique physiochemical properties, may be responsible for some of these clinical findings. CONCLUSION HαT is a common modifier of mast cell-associated disorders and reactions. Nevertheless, whether HαT may be an independent cause of clinical phenotypes with which it has been associated remains unproven. Correct identification of HαT is critical to accurate interpretation of serum tryptase levels in the clinical evaluation of patients. Beyond HαT, we foresee tryptase genotyping as an important parameter in the standard workup of patients with mast cell-associated disorders and development of therapeutic modalities targeting these patients and associated clinical phenotypes.
Collapse
|
13
|
Roy S, Chompunud Na Ayudhya C, Thapaliya M, Deepak V, Ali H. Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. J Allergy Clin Immunol 2021; 148:293-308. [PMID: 33957166 PMCID: PMC8355064 DOI: 10.1016/j.jaci.2021.03.049] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Cutaneous mast cells (MCs) express Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse ortholog MrgprB2), which is activated by an ever-increasing number of cationic ligands. Antimicrobial host defense peptides (HDPs) generated by keratinocytes contribute to host defense likely by 2 mechanisms, one involving direct killing of microbes and the other via MC activation through MRGPRX2. However, its inappropriate activation may cause pseudoallergy and likely contribute to the pathogenesis of rosacea, atopic dermatitis, allergic contact dermatitis, urticaria, and mastocytosis. Gain- and loss-of-function missense single nucleotide polymorphisms in MRGPRX2 have been identified. The ability of certain ligands to serve as balanced or G protein-biased agonists has been defined. Small-molecule HDP mimetics that display both direct antimicrobial activity and activate MCs via MRGPRX2 have been developed. In addition, antibodies and reagents that modulate MRGPRX2 expression and signaling have been generated. In this article, we provide a comprehensive update on MrgprB2 and MRGPRX2 biology. We propose that harnessing MRGPRX2's host defense function by small-molecule HDP mimetics may provide a novel approach for the treatment of antibiotic-resistant cutaneous infections. In contrast, MRGPRX2-specific antibodies and inhibitors could be used for the modulation of allergic and inflammatory diseases that are mediated via this receptor.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Vishwa Deepak
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa.
| |
Collapse
|
14
|
Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells 2021; 10:cells10061270. [PMID: 34063789 PMCID: PMC8223777 DOI: 10.3390/cells10061270] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an underrecognized but very promising target for cancer immunotherapy. In this review, we discuss the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast cell mediators and their downstream effects. Finally, we discuss the importance of translational research using patient samples to advance the field of mast cell targeting to optimally improve patient outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical and translational studies targeting mast cells in different cancer contexts are now warranted.
Collapse
Affiliation(s)
- Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
15
|
Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2). Cells 2021; 10:cells10051033. [PMID: 33925682 PMCID: PMC8146469 DOI: 10.3390/cells10051033] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR expressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (FcεRI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reactions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE-mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 agonists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 an intriguing player in allergic diseases. In the present article, we reviewed the emerging role of MRGPRX2 as a non-IgE-mediated mechanism of mast cell activation in pseudo-allergic reactions. We have presented an overview of mast cells, their receptors, structural insight into MRGPRX2, MRGPRX2 agonists and antagonists, the crucial role of MRGPRX2 in pseudo-allergic reactions, current challenges, and the future research direction.
Collapse
|
16
|
Dwyer DF, Ordovas-Montanes J, Allon SJ, Buchheit KM, Vukovic M, Derakhshan T, Feng C, Lai J, Hughes TK, Nyquist SK, Giannetti MP, Berger B, Bhattacharyya N, Roditi RE, Katz HR, Nawijn MC, Berg M, van den Berge M, Laidlaw TM, Shalek AK, Barrett NA, Boyce JA. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci Immunol 2021; 6:eabb7221. [PMID: 33637594 PMCID: PMC8362933 DOI: 10.1126/sciimmunol.abb7221] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
Mast cells (MCs) play a pathobiologic role in type 2 (T2) allergic inflammatory diseases of the airway, including asthma and chronic rhinosinusitis with nasal polyposis (CRSwNP). Distinct MC subsets infiltrate the airway mucosa in T2 disease, including subepithelial MCs expressing the proteases tryptase and chymase (MCTC) and epithelial MCs expressing tryptase without chymase (MCT). However, mechanisms underlying MC expansion and the transcriptional programs underlying their heterogeneity are poorly understood. Here, we use flow cytometry and single-cell RNA-sequencing (scRNA-seq) to conduct a comprehensive analysis of human MC hyperplasia in CRSwNP, a T2 cytokine-mediated inflammatory disease. We link discrete cell surface phenotypes to the distinct transcriptomes of CRSwNP MCT and MCTC, which represent polarized ends of a transcriptional gradient of nasal polyp MCs. We find a subepithelial population of CD38highCD117high MCs that is markedly expanded during T2 inflammation. These CD38highCD117high MCs exhibit an intermediate phenotype relative to the expanded MCT and MCTC subsets. CD38highCD117high MCs are distinct from circulating MC progenitors and are enriched for proliferation, which is markedly increased in CRSwNP patients with aspirin-exacerbated respiratory disease, a severe disease subset characterized by increased MC burden and elevated MC activation. We observe that MCs expressing a polyp MCT-like effector program are also found within the lung during fibrotic diseases and asthma, and further identify marked differences between MCTC in nasal polyps and skin. These results indicate that MCs display distinct inflammation-associated effector programs and suggest that in situ MC proliferation is a major component of MC hyperplasia in human T2 inflammation.
Collapse
Affiliation(s)
- Daniel F Dwyer
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Samuel J Allon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marko Vukovic
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tahereh Derakhshan
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chunli Feng
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Juying Lai
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Travis K Hughes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sarah K Nyquist
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Matthew P Giannetti
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Lab and Department of Mathematics, MIT, Cambridge, MA, USA
| | - Neil Bhattacharyya
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Rachel E Roditi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Howard R Katz
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, Laboratory of Experimental Immunology and Respiratory Research (EXPIRE), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marijn Berg
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, Laboratory of Experimental Immunology and Respiratory Research (EXPIRE), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Nora A Barrett
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Nürge B, Schulz AL, Kaemmerer D, Sänger J, Evert K, Schulz S, Lupp A. Immunohistochemical identification of complement peptide C5a receptor 1 (C5aR1) in non-neoplastic and neoplastic human tissues. PLoS One 2021; 16:e0246939. [PMID: 33606748 PMCID: PMC7894821 DOI: 10.1371/journal.pone.0246939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/18/2022] Open
Abstract
The complement component C5a and its receptor C5aR1 are involved in the development of numerous inflammatory diseases. In addition to immune cells, C5aR1 is expressed in neoplastic cells of multiple tumour entities, where C5aR1 is associated with a higher proliferation rate, advanced tumour stage, and poor patient outcomes. The aim of the present study was to obtain a broad expression profile of C5aR1 in human non-neoplastic and neoplastic tissues, especially in tumour entities not investigated in this respect so far. For this purpose, we generated a novel polyclonal rabbit antibody, {5227}, against the carboxy-terminal tail of C5aR1. The antibody was initially characterised in Western blot analyses and immunocytochemistry using transfected human embryonic kidney (HEK) 293 cells. It was then applied to a large series of formalin-fixed, paraffin-embedded non-neoplastic and neoplastic human tissue samples. C5aR1 was strongly expressed by different types of immune cells in the majority of tissue samples investigated. C5aR1 was also present in alveolar macrophages, bronchial, gut, and bile duct epithelia, Kupffer cells, occasionally in hepatocytes, proximal renal tubule cells, placental syncytiotrophoblasts, and distinct stem cell populations of bone marrow. C5aR1 was also highly expressed in the vast majority of the 32 tumour entities investigated, where a hitherto unappreciated high prevalence of the receptor was detected in thyroid carcinomas, small-cell lung cancer, gastrointestinal stromal tumours, and endometrial carcinomas. In addition to confirming published findings, we found noticeable C5aR1 expression in many tumour entities for the first time. Here, it may serve as an interesting target for future therapies.
Collapse
Affiliation(s)
- Benjamin Nürge
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Alan Lennart Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Katja Evert
- Department of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
18
|
West PW, Bahri R, Garcia-Rodriguez KM, Sweetland G, Wileman G, Shah R, Montero A, Rapley L, Bulfone-Paus S. Interleukin-33 Amplifies Human Mast Cell Activities Induced by Complement Anaphylatoxins. Front Immunol 2021; 11:615236. [PMID: 33597949 PMCID: PMC7882629 DOI: 10.3389/fimmu.2020.615236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.
Collapse
Affiliation(s)
- Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Sweetland
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Wileman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajesh Shah
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Angeles Montero
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Laura Rapley
- Adaptive Immunity, GlaxoSmithKline, Stevenage, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Silvia Bulfone-Paus,
| |
Collapse
|
19
|
Elieh Ali Komi D, Shafaghat F, Kovanen PT, Meri S. Mast cells and complement system: Ancient interactions between components of innate immunity. Allergy 2020; 75:2818-2828. [PMID: 32446274 DOI: 10.1111/all.14413] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022]
Abstract
The emergence and evolution of the complement system and mast cells (MCs) can be traced back to sea urchins and the ascidian Styela plicata, respectively. Acting as a cascade of enzymatic reactions, complement is activated through the classical (CP), the alternative (AP), and the lectin pathway (LP) based on the recognized molecules. The system's main biological functions include lysis, opsonization, and recruitment of phagocytes. MCs, beyond their classic role as master cells of allergic reactions, play a role in other settings, as well. Thus, MCs are considered as extrahepatic producers of complement proteins. They express various complement receptors, including those for C3a and C5a. C3a and C5a not only activate the C3aR and C5aR expressing MCs but also act as chemoattractants for MCs derived from different anatomic sites, such as from the bone marrow, human umbilical cord blood, or skin in vitro. Cross talk between MCs and complement is facilitated by the production of complement proteins by MCs and their activation by the MC tryptase. The coordinated activity between MCs and the complement system plays a key role, for example, in a number of allergic, cutaneous, and vascular diseases. At a molecular level, MCs and complement system interactions are based on the production of several complement zymogens by MCs and their activation by MC-released proteases. Additionally, at a cellular level, MCs act as potent effector cells of complement activation by expressing receptors for C3a and C5a through which their chemoattraction and activation are mediated by anaphylatoxins in a paracrine and autocrine fashion.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | - Farzaneh Shafaghat
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology Immunobiology Research Program University of Helsinki Helsinki Finland
- HUSLAB Helsinki University Central Hospital Helsinki Finland
| |
Collapse
|
20
|
Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol 2020; 147:456-469. [PMID: 33071069 DOI: 10.1016/j.jaci.2020.08.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The Mas-related G protein-coupled receptor X2 (MRGPRX2) is a multiligand receptor responding to various exogenous and endogenous stimuli. Being highly expressed on skin mast cells, MRGPRX2 triggers their degranulation and release of proinflammatory mediators, and it promotes multicellular signaling cascades, such as itch induction and transmission in sensory neurons. The expression of MRGPRX2 by skin mast cells and the levels of the MRGPRX2 agonists (eg, substance P, major basic protein, eosinophil peroxidase) are upregulated in the serum and/or skin of patients with inflammatory and pruritic skin diseases, such as chronic spontaneous urticaria or atopic dermatitis. Therefore, MRGPRX2 and its agonists might be potential biomarkers for the progression of cutaneous inflammatory diseases and the response to treatment. In addition, they may represent promising targets for prevention and treatment of signs and symptoms in patients with skin diseases or drug reactions. To assess this possibility, this review explores the role and relevance of MRGPRX2 and its activators in cutaneous inflammatory disorders and chronic pruritus.
Collapse
Affiliation(s)
- Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia
| | - Magda Babina
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Düll
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jie Shen Fok
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Qingqing Jiao
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Martin Metz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
21
|
Local immunoglobulin production in nasal tissues: A key to pathogenesis in chronic rhinosinusitis with nasal polyps and aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2020; 126:127-134. [PMID: 33065294 DOI: 10.1016/j.anai.2020.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Local activation of B cells and antibody production are important for protective and pathogenic immune responses. Furthermore, there is evidence that local activation of B cells and antibody production are important for pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and a severe subset of CRSwNP, aspirin-exacerbated respiratory disease (AERD). This review summarizes these findings and the potential role of B cells and antibodies in disease pathogenesis. DATA SOURCES Published literature from PubMed searches. STUDY SELECTIONS Studies relevant to B cell development and the roles of B cells and antibodies in the pathogenesis of CRSwNP and AERD. RESULTS Formation of tertiary lymphoid structures plays a key role in the local activation of B cells and antibody production. This process is important for fighting infections, but it also contributes to autoimmune disease. Furthermore, there is evidence to support a role for local B cell activation and antibody production in a variety of allergic diseases. Nasal polyp tissues from patients with CRSwNP and AERD have elevated levels of activated B cell subsets and locally produced antibodies. These locally produced antibodies may contribute to disease pathogenesis in a variety of ways, including activation of innate effector cells, whereas locally activated B cells may contribute to pathogenesis through the activation of T cells. CONCLUSION More studies are needed to determine the role of B cells and antibodies in driving disease in these patients. However, targeting the processes that drive local B cell activation and antibody production may provide new therapeutic approaches and could help to reduce chronic inflammation.
Collapse
|
22
|
Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Am J Cancer Res 2020; 10:10743-10768. [PMID: 32929378 PMCID: PMC7482799 DOI: 10.7150/thno.46719] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
Collapse
|
23
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
24
|
Komi DEA, Khomtchouk K, Santa Maria PL. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin Rev Allergy Immunol 2020; 58:298-312. [PMID: 30729428 DOI: 10.1007/s12016-019-08729-w] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs), apart from their classic role in allergy, contribute to a number of biologic processes including wound healing. In particular, two aspects of their histologic distribution within the skin have attracted the attention of researchers to study their wound healing role; they represent up to 8% of the total number of cells within the dermis and their cutaneous versions are localized adjacent to the epidermis and the subdermal vasculature and nerves. At the onset of a cutaneous injury, the accumulation of MCs and release of proinflammatory and immunomodulatory mediators have been well documented. The role of MC-derived mediators has been investigated through the stages of wound healing including inflammation, proliferation, and remodeling. They contribute to hemostasis and clot formation by enhancing the expression of factor XIIIa in dermal dendrocytes through release of TNF-α, and contribute to clot stabilization. Keratinocytes, by secreting stem cell factor (SCF), recruit MCs to the site. MCs in return release inflammatory mediators, including predominantly histamine, VEGF, interleukin (IL)-6, and IL-8, that contribute to increase of endothelial permeability and vasodilation, and facilitate migration of inflammatory cells, mainly monocytes and neutrophils to the site of injury. MCs are capable of activating the fibroblasts and keratinocytes, the predominant cells involved in wound healing. MCs stimulate fibroblast proliferation during the proliferative phase via IL-4, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) to produce a new extracellular matrix (ECM). MC-derived mediators including fibroblast growth factor-2, VEGF, platelet-derived growth factor (PDGF), TGF-β, nerve growth factor (NGF), IL-4, and IL-8 contribute to neoangiogenesis, fibrinogenesis, or reepithelialization during the repair process. MC activation inhibition and targeting the MC-derived mediators are potential therapeutic strategies to improve wound healing through reduced inflammatory responses and scar formation.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kelly Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, 801 Welch Rd, Stanford, CA, 94305, USA
| | - Peter Luke Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, 801 Welch Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Jensen BM, Bartko EA, Baumann K, Skov PS. Measuring Histamine and Cytokine Release from Basophils and Mast Cells. Methods Mol Biol 2020; 2163:247-262. [PMID: 32766982 DOI: 10.1007/978-1-0716-0696-4_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Basophils and mast cells are known for their capability to release both preformed and newly synthesized inflammatory mediators. In this chapter, we describe how to stimulate and detect histamine released from basophils in whole blood, purified basophils, in vitro cultured mast cells, and in situ skin mast cells (the latter by microdialysis), using either a solid phase assay or flow cytometry. We also give an example of an activation protocol for basophil and mast cell cytokine release and discuss approaches for cytokine detection.
Collapse
Affiliation(s)
- Bettina M Jensen
- Laboratory for Medical Allergology, Herlev-Gentofte Hospital, 2900 Hellerup, Denmark.
| | - Ewa A Bartko
- Laboratory for Medical Allergology, Herlev-Gentofte Hospital, 2900 Hellerup, Denmark
| | - Katrine Baumann
- RefLab ApS, COBIS building, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Per S Skov
- RefLab ApS, COBIS building, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
26
|
McHale C, Mohammed Z, Gomez G. Human Skin-Derived Mast Cells Spontaneously Secrete Several Angiogenesis-Related Factors. Front Immunol 2019; 10:1445. [PMID: 31293594 PMCID: PMC6603178 DOI: 10.3389/fimmu.2019.01445] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cells are classically recognized as cells that cause IgE-mediated allergic reactions. However, their ability to store and secrete vascular endothelial growth factor (VEGF) suggests a role in vascular development and tumorigenesis. The current study sought to determine if other angiogenesis-related factors, in addition to VEGF, were also secreted by human tissue-derived mast cells. Using proteome array analysis and ELISA, we found that human skin-derived mast cells spontaneously secrete CXCL16, DPPIV, Endothelin-1, GM-CSF, IL-8, MCP-1, Pentraxin 3, Serpin E1, Serpin F1, TIMP-1, Thrombospondin-1, and uPA. We identified three groups based on their dependency for stem cell factor (SCF), which is required for mast cell survival: Endothelin-1, GM-CSF, IL-8, MCP-1, and VEGF (dependent); Pentraxin 3, Serpin E1, Serpin F1, TIMP-1, and Thrombospondin-1 (partly dependent); and CXCL16, DPPIV, and uPA (independent). Crosslinking of FcεRI with multivalent antigen enhanced the secretion of GM-CSF, Serpin E1, IL-8, and VEGF, and induced Amphiregulin and MMP-8 expression. Interestingly, FcεRI signals inhibited the spontaneous secretion of CXCL16, Endothelin-1, Serpin F1, Thrombospondin-1, MCP-1 and Pentraxin-3. Furthermore, IL-6, which we previously showed could induce VEGF, significantly enhanced MCP-1 secretion. Overall, this study identified several angiogenesis-related proteins that, in addition to VEGF, are spontaneously secreted at high concentrations from human skin-derived mast cells. These findings provide further evidence supporting an intrinsic role for mast cells in blood vessel formation.
Collapse
Affiliation(s)
- Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Zahraa Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
27
|
Pan D, Buchheit KM, Samuchiwal SK, Liu T, Cirka H, Raff H, Boyce JA. COX-1 mediates IL-33-induced extracellular signal-regulated kinase activation in mast cells: Implications for aspirin sensitivity. J Allergy Clin Immunol 2018; 143:1047-1057.e8. [PMID: 30017554 DOI: 10.1016/j.jaci.2018.06.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Classical FcεRI-induced mast cell (MC) activation causes synthesis of arachidonic acid (AA)-derived eicosanoids (leukotriene [LT] C4, prostaglandin [PG] D2, and thromboxane A2), which mediate vascular leak, bronchoconstriction, and effector cell chemotaxis. Little is known about the significance and regulation of eicosanoid generation in response to nonclassical MC activation mechanisms. OBJECTIVES We sought to determine the regulation and significance of MC-derived eicosanoids synthesized in response to IL-33, a cytokine critical to innate type 2 immunity. METHODS We used an ex vivo model of mouse bone marrow-derived mast cells and an IL-33-dependent in vivo model of aspirin-exacerbated respiratory disease (AERD). RESULTS IL-33 potently liberates AA and elicits LTC4, PGD2, and thromboxane A2 production by bone marrow-derived mast cells. Unexpectedly, the constitutive function of COX-1 is required for IL-33 to activate group IVa cytosolic phospholipase A2 with consequent AA release for synthesis of all eicosanoids, including CysLTs. In contrast, COX-1 was dispensable for FcεRI-driven CysLT production. Inhibition of COX-1 prevented IL-33-induced phosphorylation of extracellular signal-related kinase, an upstream effector of cytosolic phospholipase A2, which was restored by exogenous PGH2, implying that the effects of COX-1 required its catalytic function. Administration of a COX-1-selective antagonist to mice completely prevented the generation of both PGD2 and LTC4 in a model of AERD in which MC activation is IL-33 driven. CONCLUSIONS MC-intrinsic COX-1 amplifies IL-33-induced activation in the setting of innate type 2 immunity and might help explain the phenomenon of therapeutic desensitization to aspirin by nonselective COX inhibitors in patients with AERD.
Collapse
Affiliation(s)
- Dingxin Pan
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Sachin K Samuchiwal
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Tao Liu
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Haley Cirka
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Hannah Raff
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
28
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
29
|
Ali H. Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions. Adv Immunol 2017; 136:123-162. [PMID: 28950944 DOI: 10.1016/bs.ai.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are tissue-resident immune cells that contribute to host defense but are best known for their roles in allergic and inflammatory diseases. In humans, MCs are divided into two subtypes based on the protease content of their secretory granules. Thus, human lung MCs contain only tryptase and are known as MCT, whereas skin MCs contain both tryptase and chymase and are known as MCTC. Patients with severe asthma display elevated MCs in the lung, which undergo phenotypic change from MCT to MCTC. Although the human genome contains four Mas related G protein coupled receptor X (MRGPRX) genes, an important feature of MCTC is that they selectively express MRGPRX2. It is activated by antimicrobial host defense peptides such as human β-defensins and the cathelicidin LL-37 and likely contributes to host defense. MRGPRX2 is also a receptor for the neuropeptide substance P, major basic protein, eosinophil peroxidase, opioids, and many FDA-approved cationic drugs. Increased expression of MRGPRX2 or enhanced downstream signaling likely contributes to chronic inflammatory diseases such as rosacea, atopic dermatitis, chronic urticaria, and severe asthma. In this chapter, I will discuss the expression profile and function of MRGPRX1-4 and review the emerging roles of MRGPRX2 on host defense, chronic inflammatory diseases, and drug-induced pseudoallergic reactions. I will also examine the novel aspects of MRGPRX2 signaling in MCs as it related to degranulation and review the mechanisms of its regulation.
Collapse
Affiliation(s)
- Hydar Ali
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States.
| |
Collapse
|
30
|
Baba S, Kondo K, Suzukawa M, Ohta K, Yamasoba T. Distribution, subtype population, and IgE positivity of mast cells in chronic rhinosinusitis with nasal polyps. Ann Allergy Asthma Immunol 2017. [PMID: 28634018 DOI: 10.1016/j.anai.2017.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) has been categorized into 2 subtypes in the Asian population: eosinophilic chronic rhinosinusitis (ECRS; similar to CRSwNP in Western countries) and non-ECRS (characterized by inflammation dominated by T-helper cell type 1). The pathogenesis of CRSwNP and the role of mast cells are poorly understood. OBJECTIVE To investigate the distribution, phenotypes, and immunoglobulin E (IgE) positivity of mast cells in these 2 subtypes of CRSwNP. METHODS We collected nasal tissue from patients with CRSwNP and control subjects. The mRNA for mast cell proteases tryptase and chymase was measured using real-time polymerase chain reaction, and the distribution of each type of protease-positive mast cell was examined using immunohistochemistry and immunofluorescence. IgE distribution on mast cells was determined using double-immunofluorescent staining for IgE and tryptase. RESULTS Expression of tryptase mRNA was significantly increased in nasal polyps from patients with the 2 subtypes of CRSwNP compared with controls. Immunohistochemistry showed increased numbers of tryptase-positive mast cells in the epithelium, glands, and submucosa of ECRS polyps, whereas the number of tryptase- and chymase-positive mast cells was increased in the glands and submucosa of non-ECRS polyps. IgE-positive mast cells were abundant in the epithelial, glandular, and submucosal regions of ECRS polyps but few were detected in non-ECRS polyps. CONCLUSION The present study demonstrates that the distribution, subtype population, and IgE positivity of mast cells is different between ECRS and non-ECRS nasal polyps. Our results suggest a role for IgE-mediated mast cell activation in the pathogenesis of ECRS.
Collapse
Affiliation(s)
- Shintaro Baba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Otolaryngology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
| | - Kenji Kondo
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maho Suzukawa
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan; National Hospital Organization Tokyo National Hospital, Kiyose City, Tokyo, Japan
| | - Ken Ohta
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan; National Hospital Organization Tokyo National Hospital, Kiyose City, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
31
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
32
|
Saluja R, Kumar A, Jain M, Goel SK, Jain A. Role of Sphingosine-1-Phosphate in Mast Cell Functions and Asthma and Its Regulation by Non-Coding RNA. Front Immunol 2017; 8:587. [PMID: 28588581 PMCID: PMC5439123 DOI: 10.3389/fimmu.2017.00587] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Sphingolipid metabolites are emerging as important signaling molecules in allergic diseases specifically asthma. One of the sphingolipid metabolite, sphingosine-1-phosphate (S1P), is involved in cell differentiation, proliferation, survival, migration, and angiogenesis. In the allergic diseases, alteration of S1P levels influences the differentiation and responsiveness of mast cells (MCs). S1P is synthesized by two sphingosine kinases (SphKs), sphingosine kinase 1, and sphingosine kinase 2. Engagement of IgE to the FcεRI receptor induces the activation of both the SphKs and generates S1P. Furthermore, SphKs are also essential to FcεRI-mediated MC activation. Activated MCs export S1P into the extracellular space and causes inflammatory response and tissue remodeling. S1P signaling has dual role in allergic responses. Activation of SphKs and secretion of S1P are required for MC activation; however, S1P signaling plays a vital role in the recovery from anaphylaxis. Several non-coding RNAs have been shown to play a crucial role in controlling the MC-associated inflammatory and allergic responses. Thus, S1P signaling pathway and its regulation by non-coding RNA could be explored as an exciting potential therapeutic target for asthma and other MC-associated diseases.
Collapse
Affiliation(s)
- Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Manju Jain
- Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sudhir K Goel
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Aklank Jain
- Centre for Animal Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
33
|
Lewis A, MacGlashan DW, Suvarna SK, Peachell PT. Recovery from desensitization of IgE-dependent responses in human lung mast cells. Clin Exp Allergy 2017; 47:1022-1031. [PMID: 28236656 DOI: 10.1111/cea.12912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Clinical desensitization and oral food immunotherapy are therapeutic interventions that allow individuals who react adversely to an allergen (drug or food) to be made tolerant to the allergen. However, tolerance is brief, and allergen hypersensitivity can recur within days following allergen withdrawal. OBJECTIVE We hypothesize that the reason these treatments are temporary reflects rapid recovery of mast cells from a desensitized state. We sought to test this. METHODS Desensitization of IgE-mediated histamine release from human lung mast cells was explored by methods that partially replicate the pattern of treatment during clinical desensitization. Specific and non-specific desensitization and changes in surface IgE were examined following desensitization. Recovery from desensitization was also studied. RESULTS Desensitization of mast cell responses was readily induced with concentrations of antigen or anti-IgE that were suboptimal for secretion. There was little or no non-specific desensitization when lung mast cells were exposed to antigens. There was no loss of cell surface IgE following desensitization. Removing the desensitizing stimulus from the media following desensitization allowed the cells to recover with half-point of recovery of ~1.5 days and complete recovery after 5 days. Both the functional response and histamine content recovered within this time frame. The recovery appeared possible because both antigens and anti-IgE dissociated rapidly from cells after washing to remove excess stimulus. CONCLUSIONS AND CLINICAL RELEVANCE Human lung mast cells readily recover from a desensitized state following removal of desensitizing antigen. This finding provides a potential explanation for the ephemeral nature of clinical desensitization.
Collapse
Affiliation(s)
- A Lewis
- Academic Unit of Respiratory Medicine, University of Sheffield, The Medical School, Sheffield, UK
| | - D W MacGlashan
- Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA
| | - S K Suvarna
- Department of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
| | - P T Peachell
- Academic Unit of Respiratory Medicine, University of Sheffield, The Medical School, Sheffield, UK
| |
Collapse
|
34
|
Allergic airway inflammation induces migration of mast cell populations into the mouse airway. Cell Tissue Res 2017; 369:331-340. [PMID: 28343320 DOI: 10.1007/s00441-017-2597-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Mast cells (MCs) and airway nerves play an important role in allergic asthma. However, little is known about the MCs and their interaction with airway nerves during allergic airway inflammation. This study aims to investigate the distribution and proliferation of MC populations in different lung compartments, along with the association of mast cells with nerve endings, using a house dust mite (HDM) model for allergic airway inflammation. BALB/c mice were exposed to HDM extract intranasally (25 μg/50 μl) for 5 consecutive days a week over 7 weeks. Immunofluorescence and Edu stains were used to examine the colocalisation of MCs and nerves and the proliferation of MCs, respectively. HDM treatment caused an increased migration of MCs into bronchi, alveolar parenchyma and airway vessels. The proportions of tryptase-chymase expressing MC (MCTC) increased significantly in the bronchi and the alveolar parenchyma but not in the vascular tissues, by allergic airway inflammation. The association of MCs with nerves was found only in the bronchi and there were no changes in comparison of controls to HDM-treated animals. The present study shows a strong migration of tryptase expressing MC (MCT) and MCTC into the bronchi and the alveolar parenchyma, as well as of MCT in the vascular compartment under HDM treatment. This supports the hypothesis that these mast cell populations may contribute to allergic airway inflammation.
Collapse
|
35
|
Ali H. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases. JOURNAL OF IMMUNOBIOLOGY 2016; 1:115. [PMID: 28090599 PMCID: PMC5233413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Hydar Ali
- Department of Pathology, University of Pennsylvania School of Dental Medicine, 240 South 40 Street, Philadelphia, PA, 19104-6030
| |
Collapse
|
36
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
37
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
38
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
39
|
Novel six-week protocol for generating functional human connective tissue-type (MCTC) mast cells from buffy coats. Inflamm Res 2016; 66:25-37. [DOI: 10.1007/s00011-016-0989-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/16/2023] Open
|
40
|
Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res 2016; 174:60-76. [PMID: 26845625 DOI: 10.1016/j.trsl.2016.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes.
Collapse
Affiliation(s)
- Harvinder Virk
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
41
|
Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol 2016; 138:700-710. [PMID: 27448446 DOI: 10.1016/j.jaci.2016.04.051] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs), which are granulated tissue-resident cells of hematopoietic lineage, contribute to vascular homeostasis, innate/adaptive immunity, and wound healing. However, MCs are best known for their roles in allergic and inflammatory diseases, such as anaphylaxis, food allergy, rhinitis, itch, urticaria, atopic dermatitis, and asthma. In addition to the high-affinity IgE receptor (FcεRI), MCs express numerous G protein-coupled receptors (GPCRs), which are the largest group of membrane receptor proteins and the most common targets of drug therapy. Antimicrobial host defense peptides, neuropeptides, major basic protein, eosinophil peroxidase, and many US Food and Drug Administration-approved peptidergic drugs activate human MCs through a novel GPCR known as Mas-related G protein-coupled receptor X2 (MRGPRX2; formerly known as MrgX2). Unique features of MRGPRX2 that distinguish it from other GPCRs include their presence both on the plasma membrane and intracellular sites and their selective expression in MCs. In this article we review the possible roles of MRGPRX2 on host defense, drug-induced anaphylactoid reactions, neurogenic inflammation, pain, itch, and chronic inflammatory diseases, such as urticaria and asthma. We propose that host defense peptides that kill microbes directly and activate MCs through MRGPRX2 could serve as novel GPCR targets to modulate host defense against microbial infection. Furthermore, mAbs or small-molecule inhibitors of MRGPRX2 could be developed for the treatment of MC-dependent allergic and inflammatory disorders.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pa
| | - Kshitij Gupta
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pa
| | - Hydar Ali
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pa.
| |
Collapse
|
42
|
Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, Hoffmann HJ, Gibson P, Erjefält JS, Backer V. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation. Clin Exp Allergy 2016; 46:288-97. [DOI: 10.1111/cea.12609] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/16/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Affiliation(s)
- A. Sverrild
- University Hospital Bispebjerg; Copenhagen Denmark
| | - A. Bergqvist
- Respiratory Medicine and Allergology and Experimental Medical Science; Lund University; Lund Sweden
| | - K. J. Baines
- Centre for Asthma and Respiratory Disease; The University of Newcastle; Newcastle NSW Australia
| | - C. Porsbjerg
- University Hospital Bispebjerg; Copenhagen Denmark
| | - C. K. Andersson
- Respiratory Medicine and Allergology and Experimental Medical Science; Lund University; Lund Sweden
| | - S. F. Thomsen
- Department of Dermatology; Bispebjerg Hospital; Copenhagen Denmark
| | - H. J. Hoffmann
- Department of Pulmonary Medicine B; Institute for Clinical Medicine; Aarhus University; Aarhus Denmark
| | - P. Gibson
- Centre for Asthma and Respiratory Disease; The University of Newcastle; Newcastle NSW Australia
| | - J. S. Erjefält
- Respiratory Medicine and Allergology and Experimental Medical Science; Lund University; Lund Sweden
| | - V. Backer
- University Hospital Bispebjerg; Copenhagen Denmark
| |
Collapse
|
43
|
Shirley D, McHale C, Gomez G. Resveratrol preferentially inhibits IgE-dependent PGD2 biosynthesis but enhances TNF production from human skin mast cells. Biochim Biophys Acta Gen Subj 2016; 1860:678-85. [PMID: 26777630 DOI: 10.1016/j.bbagen.2016.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Resveratrol, a natural polyphenol found in the skin of red grapes, is reported to have anti-inflammatory properties including protective effects against aging. Consequently, Resveratrol is a common nutritional supplement and additive in non-prescription lotions and creams marketed as anti-aging products. Studies in mice and with mouse bone marrow-derived mast cells (BMMCs) have indicated anti-allergic effects of Resveratrol. However, the effects of Resveratrol on human primary mast cells have not been reported. METHODS Human mast cells were isolated and purified from normal skin tissue of different donors. The effect of Resveratrol on IgE-dependent release of allergic inflammatory mediators was determined using various immunoassays, Western blotting, and quantitative real-time PCR. RESULTS Resveratrol at low concentrations (≤10 μM) inhibited PGD2 biosynthesis but not degranulation. Accordingly, COX-2 expression was inhibited but phosphorylation of Syk, Akt, p38, and p42/44 (ERKs) remained intact. Surprisingly, TNF production was significantly enhanced with Resveratrol. At a high concentration (100 μM), Resveratrol significantly inhibited all parameters analyzed except Syk phosphorylation. CONCLUSIONS Here, we show that Resveratrol at low concentrations exerts its anti-inflammatory properties by preferentially targeting the arachidonic acid pathway. We also demonstrate a previously unrecognized pro-inflammatory effect of Resveratrol--the enhancement of TNF production from human mature mast cells following IgE-dependent activation. GENERAL SIGNIFICANCE These findings suggest that Resveratrol as a therapeutic agent could inhibit PGD2-mediated inflammation but would be ineffective against histamine-mediated allergic reactions. However, Resveratrol could potentially exacerbate or promote allergic inflammation by enhancing IgE-dependent TNF production from mast cells in human skin.
Collapse
Affiliation(s)
- Devon Shirley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
44
|
Pundir P, MacDonald CA, Kulka M. The Novel Receptor C5aR2 Is Required for C5a-Mediated Human Mast Cell Adhesion, Migration, and Proinflammatory Mediator Production. THE JOURNAL OF IMMUNOLOGY 2015; 195:2774-87. [PMID: 26283482 DOI: 10.4049/jimmunol.1401348] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/08/2015] [Indexed: 12/31/2022]
Abstract
C5a generated during complement activation possesses proinflammatory and immunoregulatory properties critical for the development and modulation of allergic immune responses. In immune cells, C5a mediates its effects through binding to two G protein-coupled receptors, C5aR1 and C5aR2. Mast cells are key effectors in allergic reactions, and decades of research have suggested that the majority of C5a effects on mast cells are mediated through C5aR1, whereas the expression and function of C5aR2 have not been explored. We demonstrated that the human mast cell line Laboratory of Allergic Diseases 2 (LAD2) expresses surface C5aR2 but not C5aR1, whereas CD34(+) cell-derived primary mast cells do not express surface C5aR1 or C5aR2. Stem cell factor and IL-4 upregulated C5aR2 expression on LAD2 cells. Furthermore, C5a caused internalization of LAD2 cell-surface C5aR2. We therefore used LAD2 cells as a model to study C5a/C5aR2-induced biological responses and signaling in human mast cells. We found that whereas C5a was unable to induce degranulation, it stimulated GM-CSF, TNF, CXCL10, and CCL2 production. C5a caused ERK phosphorylation, a signaling molecule important in cytokine and chemokine generation. In addition, C5a stimulated adhesion and chemotaxis of mast cells. Wortmannin, an inhibitor of PI3K, and small interfering RNA against β-arrestin-2 blocked C5a-induced adhesion. Silencing of C5aR2 using lentiviral short hairpin RNA rendered the cells unresponsive to C5a-induced adhesion, chemotaxis, and mediator release, as well as ERK phosphorylation. Overall, this study reveals a novel role for C5aR2 in C5a-mediated activation of mast cells and demonstrates that C5aR2 ligation initiates a β-arrestin-2-, PI3K-, and ERK-dependent signaling pathway in these cells.
Collapse
Affiliation(s)
- Priyanka Pundir
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Clayton A MacDonald
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada; and
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada; and Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
45
|
Mast cells in airway diseases and interstitial lung disease. Eur J Pharmacol 2015; 778:125-38. [PMID: 25959386 DOI: 10.1016/j.ejphar.2015.04.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease.
Collapse
|
46
|
Oskeritzian CA. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunol 2015; 63:104-12. [PMID: 24766823 PMCID: PMC4226394 DOI: 10.1016/j.molimm.2014.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/02/2023]
Abstract
Mast cells (MC) are found in all vascularized tissues at homeostasis and, until recently, were viewed only as effector cells of allergic reactions via degranulation, the canonical process through which MC release mediators, including histamine and pre-formed proteases and cytokines such as TNF. Cross-linking of IgE bound to surface high affinity receptors for IgE (FcɛRI) by a specific antigen (Ag) triggers signaling events leading to degranulation. We and others have reported the concomitant production and export of an influential multifaceted sphingolipid mediator, sphingosine-1-phosphate (S1P) transported outside of MC by ATP-binding cassettes (ABC) transporters, i.e., independently of degranulation. Indeed, the MC horizon expanded by the discovery of their unique ability to selectively release mediators depending upon the stimulus and receptors involved. Aside from degranulation and transporter usage, MC are also endowed with piecemeal degranulation, a slower process during which mediator release occurs with minor morphological changes. The broad spectrum of pro- and anti-inflammatory bioactive substances MC produce and release, their amounts and delivery pace render these cells bona fide fine-tuners of the immune response. In this viewpoint article, MC developmental, phenotypic and functional plasticity, its modulation by microRNAs and its relevance to immunity, inflammation and cancer will be discussed.
Collapse
Affiliation(s)
- Carole A Oskeritzian
- University of South Carolina School of Medicine, Department of Pathology, Microbiology and Immunology, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
47
|
Teodosio C, Mayado A, Sánchez-Muñoz L, Morgado JM, Jara-Acevedo M, Álvarez-Twose I, García-Montero AC, Matito A, Caldas C, Escribano L, Orfao A. The immunophenotype of mast cells and its utility in the diagnostic work-up of systemic mastocytosis. J Leukoc Biol 2014; 97:49-59. [PMID: 25381388 DOI: 10.1189/jlb.5ru0614-296r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SM comprises a heterogeneous group of disorders, characterized by an abnormal accumulation of clonal MCs in 1 or more tissues, frequently involving the skin and BM. Despite the fact that most adult patients (>90%) carry the same genetic lesion (D816V KIT mutation), the disease presents with multiple variants with very distinct clinical and biologic features, a diverse prognosis, and different therapeutic requirements. Recent advances in the standardization of the study of BM MC by MFC allowed reproducible identification and characterization of normal/reactive MCs and their precursors, as well as the establishment of the normal MC maturational profiles. Analysis of large groups of patients versus normal/reactive samples has highlighted the existence of aberrant MC phenotypes in SM, which are essential for the diagnosis of the disease. In turn, 3 clearly distinct and altered maturation-associated immunophenotypic profiles have been reported recently in SM, which provide criteria for the distinction between ISM patients with MC-restricted and multilineage KIT mutation; thus, immunphenotyping also contributes to prognostic stratification of ISM, particularly when analysis of the KIT mutation on highly purified BM cells is not routinely available in the diagnostic work-up of the disease.
Collapse
Affiliation(s)
- Cristina Teodosio
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Andrea Mayado
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Laura Sánchez-Muñoz
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - José M Morgado
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - María Jara-Acevedo
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Ivan Álvarez-Twose
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Andrés C García-Montero
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Almudena Matito
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Caldas Caldas
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Luis Escribano
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Alberto Orfao
- *Servicio General de Citometría, Centro de Investigación del Cáncer (Instituto de Biologia Molecular y Celular del Cancer-Consejo Superior de Investigaciones Cientificas/University of Salamanca and Instituto de Investigación Biomédica de Salamanca) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; and Centro de Estudios de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, Toledo, Spain
| |
Collapse
|
48
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
49
|
Gomez G, Nardone V, Lotfi-Emran S, Zhao W, Schwartz LB. Intracellular adenosine inhibits IgE-dependent degranulation of human skin mast cells. J Clin Immunol 2014; 33:1349-59. [PMID: 24122028 DOI: 10.1007/s10875-013-9950-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/03/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE Adenosine (ADO) can enhance and inhibit mast cell degranulation. Potentiation of degranulation occurs at relatively low concentrations of ADO (10−6–10−5 M) through triggering of A3AR, whereas, inhibition occurs at higher concentrations of ADO reportedly through triggering of A2aAR. However, the discrepancy in the concentration of ADO that inhibits degranulation and that required to trigger ADORs suggests a different mechanism. The purpose of this study is to determine the mechanism by which ADO inhibits human mast cell degranulation. METHODS We compare the effectiveness of A2aAR specific antagonist ZM241385 and equilibrative nucleoside transporter inhibitors Dipyridamole and NBMPR in preventing ADO-mediated inhibition of FcεRI-induced degranulation of human skin mast cells (hSMCs). Western blotting is done to analyze the effect of ADO on FcεRI-induced Syk phosphorylation. RESULTS Dipyridamole and NBMPR completely and dose-dependently prevented ADO from inhibiting FcεRI-induced degranulation in all hSMC preparations. In contrast, ZM241385 at 10−5 M was effective in only 3 of 10 hSMC preparations. Moreover, NBMPR was effective even in those hSMC preparations not responsive to ZM241385. ADO inhibited degranulation induced by FcεRI crosslinking, but not that induced by complement component 5a (C5a), Substance P or calcium ionophore. Accordingly, ADO significantly attenuated FcεRI-induced phosphorylation of Syk at the critical activating tyrosine (Y525). CONCLUSION Blocking the influx of ADO, but not A2aAR signals, is necessary and sufficient to prevent ADO from inhibiting FcεRI-induced mast cell degranulation. Thus, ADO specifically inhibits FcεRI-induced degranulation of hSMCs primarily by an intracellular mechanism that requires its influx via equilibrative nucleoside transporter 1 (ENT1).
Collapse
|
50
|
Jensen BM, Frandsen PM, Raaby EM, Schiøtz PO, Skov PS, Poulsen LK. Molecular and stimulus-response profiles illustrate heterogeneity between peripheral and cord blood-derived human mast cells. J Leukoc Biol 2014; 95:893-901. [DOI: 10.1189/jlb.0712354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|