1
|
Zhao D, Wang Y, Wang C, Xue Y, Lv H, Xu W, Han D, Sun Y, Li Q. Aberrant expression of messenger and small noncoding RNAomes in aged skin of rats. Mech Ageing Dev 2025; 223:112022. [PMID: 39710345 DOI: 10.1016/j.mad.2024.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The exact mechanisms and key functional molecules involved in skin ageing remain largely unknown. Studies linking the expression of messenger RNAs (mRNAs) and small noncoding RNAs (sncRNAs) to skin ageing are limited. In this study, we performed RNA sequencing to assess the effects of ageing on the expression of mRNAs and sncRNAs in rat skin. Our results revealed that 241 mRNAs, 109 microRNAs (miRNAs), 20 piwi-interacting RNAs (piRNAs), 45 small nucleolar RNAs (snoRNAs), and 7 small nuclear RNAs (snRNAs) were significantly differentially expressed in the skin of aged rats compared to their younger counterparts. Histological validation using RT-qPCR further verified the significant differential expression of 13 mRNAs, 7 miRNAs, 2 piRNAs, 15 snoRNAs, and 1 snRNA. Additionally, several sncRNAs showed differential expression across various tissues, suggesting that they may have broad correlations with ageing. After establishing cellular senescence in skin fibroblasts, we identified 4 mRNAs, 4 miRNAs, and 10 snoRNAs that may mediate skin ageing by modulating fibroblast senescence. Notably, overexpression or knockdown of some differentially expressed RNAs in fibroblasts influenced cellular senescence, indicating that these RNAs could play an important role in the skin ageing process. These findings highlight their potential significance for future treatments of age-related skin disorders.
Collapse
Affiliation(s)
- Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chuandong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Yaxin Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Hao Lv
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Wei Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China; Department of Pharmacology, Institute of ageing Medicine, Binzhou Medical University, Shandong, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China.
| |
Collapse
|
2
|
Vidal-Quist JC, Ortego F, Rombauts S, Hernández-Crespo P. The genome-wide response of Dermatophagoides pteronyssinus to cystatin A, a peptidase inhibitor from human skin, sheds light on its digestive physiology and allergenicity. INSECT MOLECULAR BIOLOGY 2024; 33:662-677. [PMID: 38878274 DOI: 10.1111/imb.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/19/2024] [Indexed: 11/06/2024]
Abstract
The digestive physiology of house dust mites (HDMs) is particularly relevant for their allergenicity since many of their allergens participate in digestion and are excreted into faecal pellets, a main source of exposure for allergic subjects. To gain insight into the mite dietary digestion, the genome of the HDM Dermatophagoides pteronyssinus was screened for genes encoding peptidases (n = 320), glycosylases (n = 77), lipases and esterases (n = 320), peptidase inhibitors (n = 65) and allergen-related proteins (n = 52). Basal gene expression and transcriptional responses of mites to dietary cystatin A, a cysteine endopeptidase inhibitor with previously shown antinutritional effect on mites, were analysed by RNAseq. The ingestion of cystatin A resulted in significant regulation of different cysteine endopeptidase and glycosylase genes. One Der p 1-like and two cathepsin B-like cysteine endopeptidase genes of high basal expression were induced, which suggests their prominent role in proteolytic digestion together with major allergen Der p 1. A number of genes putatively participating in the interaction of mites with their microbiota and acquired by horizontal gene transfer were repressed, including genes encoding the peptidase Der p 38, two 1,3-beta-glucanases, a lysozyme and a GH19 chitinase. Finally, the disruption of mite digestion resulted in the regulation of up to 17 allergen and isoallergen genes. Altogether, our results shed light on the putative role of specific genes in digestion and illustrate the connection between the digestive physiology of HDM and allergy.
Collapse
Affiliation(s)
- José Cristian Vidal-Quist
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Félix Ortego
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Stephane Rombauts
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Pedro Hernández-Crespo
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| |
Collapse
|
3
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, V: deciphering allergenicity. FRONTIERS IN ALLERGY 2024; 5:1454292. [PMID: 39552700 PMCID: PMC11565521 DOI: 10.3389/falgy.2024.1454292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are operative agents of allergy. It derived from observations that allergens are molecular elements of acarians or acarian foodstuffs. A corollary of The Hypothesis provides how acarian dietary elements are selected as allergens; namely, a pattern recognition receptor native to the acarian digestive tract complexes with dietary molecules problematic to the acarian. By virtue of its interspecies operability, the receptor then enables not only removal of the dietary elements by the acarian immune system, but also-should such a complex be inoculated into a human-production of an element-specific IgE. Because pattern recognition receptors bind to molecules problematic to the organism from which the receptors originate, it follows that molecules targeted by adaptive IgE, i.e., allergens, must be problematic to acarians. This claim is supported by evidence that host organisms, when infested by acarians, upregulate representative members of allergenic molecular families. Appreciation of the relationship between allergens and acarians provides insight well beyond allergy, shedding light also on the anti-acarian defenses of many living things, especially humans.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Peled A, Sprecher E. Proteolytic and Antiproteolytic Activity in the Skin: Gluing the Pieces Together. J Invest Dermatol 2024; 144:466-473. [PMID: 37865898 DOI: 10.1016/j.jid.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 10/23/2023]
Abstract
Epidermal differentiation is ultimately aimed at the formation of a functional barrier capable of protecting the organism from the environment while preventing loss of biologically vital elements. Epidermal differentiation entails a delicately regulated process of cell-cell junction formation and dissolution to enable upward cell migration and desquamation. Over the past two decades, the deciphering of the genetic basis of a number of inherited conditions has delineated the pivotal role played in this process by a series of proteases and protease inhibitors, including serpins, cathepsins, and cystatins, suggesting novel avenues for therapeutic intervention in both rare and common disorders of cornification.
Collapse
Affiliation(s)
- Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
6
|
Herrera C, Olejniczak N, Noël-Romas L, Plummer F, Burgener A. Pre-clinical evaluation of antiproteases as potential candidates for HIV-1 pre-exposure prophylaxis. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:998913. [DOI: 10.3389/frph.2022.998913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies on highly HIV-1-exposed, yet persistently seronegative women from the Punwami Sex Worker cohort in Kenya, have shed light on putative protective mechanisms, suggesting that mucosal immunological factors, such as antiproteases, could be mediating resistance to HIV-1 transmission in the female reproductive tract. Nine protease inhibitors were selected for this study: serpin B4, serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin B13, serpin B1 and α-2-macroglobulin-like-protein 1. We assessed in a pilot study, the activity of these antiproteases with cellular assays and an ex vivo HIV-1 challenge model of human ecto-cervical tissue explants. Preliminary findings with both models, cellular and tissue explants, established an order of inhibitory potency for the mucosal proteins as candidates for pre-exposure prophylaxis when mimicking pre-coital use. Combination of all antiproteases considered in this study was more active than any of the individual mucosal proteins. Furthermore, the migration of cells out of ecto-cervical explants was blocked indicating potential prevention of viral dissemination following amplification of the founder population. These findings constitute the base for further development of these mucosal protease inhibitors for prevention strategies.
Collapse
|
7
|
Liang W, Chen Q, Cheng S, Wei R, Li Y, Yao C, Ouyang Z, Kang D, Chen A, Liu Z, Li K, Bai X, Li Q, Huang B. Skin chronological aging drives age-related bone loss via secretion of cystatin-A. NATURE AGING 2022; 2:906-922. [PMID: 37118283 DOI: 10.1038/s43587-022-00285-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/25/2022] [Indexed: 04/30/2023]
Abstract
Although clinical evidence has indicated an association between skin atrophy and bone loss during aging, their causal relationship and the underlying mechanisms are unknown. Here we show that premature skin aging drives bone loss in mice. We further identify that cystatin-A (Csta), a keratinocyte-enriched secreted factor, mediates the effect of skin on bone. Keratinocyte-derived Csta binds the receptor for activated C-kinase 1 in osteoblast and osteoclast progenitors, thus promoting their proliferation but inhibiting osteoclast differentiation. Csta secretion decreases with skin aging in both mice and humans, thereby causing senile osteoporosis by differentially decreasing the numbers of osteoblasts and osteoclasts. In contrast, topical application of calcipotriol stimulates Csta production in the epidermis and alleviates osteoporosis. These results reveal a mode of endocrine regulation of bone metabolism in the skin, and identify Csta as an epidermally derived hormone linking skin aging to age-related bone loss. Enhancers of skin Csta levels could serve as a potential topical drug for treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Wenquan Liang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingjing Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shasha Cheng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ruiming Wei
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuejun Li
- Department of Orthopedics, The Second People's Hospital of Panyu District, Guangzhou, China
| | - Chenfeng Yao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhicong Ouyang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dawei Kang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ajuan Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Vidal-Quist JC, Ortego F, Hernández-Crespo P. Contribution of cysteine and serine proteases to proteolytic digestion in an allergy-eliciting house dust mite. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104285. [PMID: 34284041 DOI: 10.1016/j.jinsphys.2021.104285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The digestive physiology of house dust mites (HDM) is of interest to understand their allergenicity towards humans since many of their allergens are digestive enzymes and/or are excreted into airborne fecal pellets. The aim of this study is to provide insight on the biochemical basis of proteolytic digestion in Dermatophagoides pteronyssinus, the most widespread HDM species. First, assays using non-specific protein substrates on purified fecal and body extracts determined that body-associated activity is almost exclusively dependent on cysteine proteases, and specifically on major allergen Der p 1. By contrast, cysteine and serine proteases contributed similarly to the activity estimated on fecal extracts. Second, the screening of group-specific peptide-based protease inhibitors followed by ingestion bioassays revealed that the human skin-derived cysteine protease inhibitor cystatin A produces a significant reduction in mite feeding (i.e. excreted guanine), and triggers the overproduction of Der p 1 (3-fold increase by ELISA). Noteworthy, the inhibition of cysteine proteases by cystatin A also resulted in a reduction in three non-target serine protease activities. Further incubation of these extracts with exogenous Der p 1, but not with other commercial cysteine proteases, restored trypsin (Der p 3) and chymotrypsin (Der p 6) activities, indicating that Der p 1 is responsible for their activation in vivo. Finally, the role of serine proteases on the mite's digestive physiology is discussed based on their remarkable activity in fecal extracts and the autocoprophagic behavior reported in mites in this study.
Collapse
Affiliation(s)
- José Cristian Vidal-Quist
- Laboratorio de Entomología Aplicada a la Agricultura y la Salud, Centro de Investigaciones Biológicas Margarita Salas CSIC, Spain.
| | - Félix Ortego
- Laboratorio de Entomología Aplicada a la Agricultura y la Salud, Centro de Investigaciones Biológicas Margarita Salas CSIC, Spain
| | - Pedro Hernández-Crespo
- Laboratorio de Entomología Aplicada a la Agricultura y la Salud, Centro de Investigaciones Biológicas Margarita Salas CSIC, Spain
| |
Collapse
|
9
|
Epicutaneous vaccination with protease inhibitor-treated papain prevents papain-induced Th2-mediated airway inflammation without inducing Th17 in mice. Biochem Biophys Res Commun 2021; 546:192-199. [PMID: 33618285 DOI: 10.1016/j.bbrc.2020.12.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Environmental allergen sources such as house dust mites contain proteases, which are frequently allergens themselves. Inhalation with the exogenous proteases, such as a model of protease allergen, papain, to airways evokes release and activation of IL-33, which promotes innate and adaptive allergic airway inflammation and Th2 sensitization in mice. Here, we examine whether epicutaneous (e.c.) vaccination with antigens with and without protease activity shows prophylactic effect on the Th airway sensitization and Th2-medated airway inflammation, which are driven by exogenous or endogenous IL-33. E.c. vaccination with ovalbumin restrained ovalbumin-specific Th2 airway sensitization and/or airway inflammation on subsequent inhalation with ovalbumin plus papain or ovalbumin plus recombinant IL-33. E.c. vaccination with papain or protease inhibitor-treated papain restrained papain-specific Th2 and Th9 airway sensitization, eosinophilia, and infiltration of IL-33-responsive Th2 and group 2 innate lymphoid cells on subsequent inhalation with papain. However, e.c. vaccination with papain but not protease inhibitor-treated papain induced Th17 response in bronchial draining lymph node cells. In conclusions, we demonstrated that e.c. allergen vaccination via intact skin in mice restrained even protease allergen-activated IL-33-driven airway Th2 sensitization to attenuate allergic airway inflammation and that e.c. vaccination with protease allergen attenuated the airway inflammation similar to its derivative lacking the protease activity, although the former but not the latter promoted Th17 development. In addition, the present study suggests that modified allergens, of which Th17-inducing e.c. adjuvant activity such as the protease activity was eliminated, might be preferable for safer clinical applications of the e.c. allergen administration.
Collapse
|
10
|
Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. J Invest Dermatol 2021; 141:105-113.e14. [DOI: 10.1016/j.jid.2020.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
|
11
|
Murota H, Yamaga K, Ono E, Murayama N, Yokozeki H, Katayama I. Why does sweat lead to the development of itch in atopic dermatitis? Exp Dermatol 2019; 28:1416-1421. [PMID: 31152459 DOI: 10.1111/exd.13981] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 01/13/2023]
Abstract
Sweating plays an important role in maintaining temperature homeostasis in humans. However, under certain circumstances, sweat can cause itching. For example, when excessive sweat accumulates on the skin surface for a long period, miliaria can develop and cause itching. Subjects with dermatoses, such as atopic dermatitis (AD), suffer from itch when exposed to heat or psychological stresses, which are also known perspiration stimuli. Recently, some mechanisms of sweat-induced itch have been revealed. For instance, attenuated sweating ability is observed in subjects with AD, causing heat retention, skin dryness, and high susceptibility to itch. Furthermore, the decreased tight junction of the sweat gland in AD leads to sweat leakage in the dermis, which could be designated as a "sweat endocrine response" and may be the cause of tingling itch during sweating. Additionally, metabolomic analysis of sweat from patients with AD revealed that glucose concentration in sweat increases according to disease severity. Sweat with elevated glucose concentration retards the recovery of the damaged skin barrier and may promote itching. This viewpoint essay outlines the relationship between sweat and itch based on recent evidence.
Collapse
Affiliation(s)
- Hiroyuki Murota
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kosuke Yamaga
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emi Ono
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoya Murayama
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Ono E, Murota H, Mori Y, Yoshioka Y, Nomura Y, Munetsugu T, Yokozeki H, Katayama I. Sweat glucose and GLUT2 expression in atopic dermatitis: Implication for clinical manifestation and treatment. PLoS One 2018; 13:e0195960. [PMID: 29677207 PMCID: PMC5909908 DOI: 10.1371/journal.pone.0195960] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
Sweat includes active components and metabolites, which are needed to maintain skin homeostasis. Component changes in sweat derived from atopic dermatitis (AD) have been reported. To investigate the influence of sweat components on the pathogenesis of AD, we performed a multifaceted assessment, including nuclear magnetic resonance spectroscopy-based metabolomic analysis, and linked these features to clinical features of AD. Distinctive properties of AD sweat are the quite-variation in protein, anti-microbial peptides and glucose concentrations. pH, sodium, and other salt levels in sweat of AD were comparable to that of healthy subjects. Sweat from AD patients with acute inflammation had a more prominent increase in glucose concentration than sweat from healthy individuals or those with AD with chronic inflammation. Topical glucose application delayed recovery of transepidermal water loss in barrier-disrupted mice. Furthermore, the glucose transporter GLUT2 was highly expressed in the lumen of sweat glands from AD patients. AD patients with chronic inflammation had significantly increased GLUT2 mRNA expression and near normal sweat glucose levels. Despite the small sample size in our study, we speculate that the increased glucose levels might be affected by AD severity and phenotype. We hope that this report will bring novel insight into the impact of sweat components on the clinical manifestation of AD.
Collapse
Affiliation(s)
- Emi Ono
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Yuki Mori
- Biofunctional Imaging Lab, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yoshichika Yoshioka
- Biofunctional Imaging Lab, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yuko Nomura
- Nomura Dermatology Clinic, Yokohama, Kanagawa, Japan
| | - Takichi Munetsugu
- Department of Dermatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Shiba D, Terayama M, Yamada K, Hagiwara T, Oyama C, Tamura-Nakano M, Igari T, Yokoi C, Soma D, Nohara K, Yamashita S, Dohi T, Kawamura YI. Clinicopathological significance of cystatin A expression in progression of esophageal squamous cell carcinoma. Medicine (Baltimore) 2018; 97:e0357. [PMID: 29642180 PMCID: PMC5908574 DOI: 10.1097/md.0000000000010357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously conducted transcriptome analysis of a paired specimen of normal and esophageal squamous cell carcinoma (ESCC) tissues and found that mRNA expression of cystatin A (CSTA), a member of the cystatin superfamily, was perturbed in tumors compared with that in the background mucosa. However, little is known about the significance of CSTA expression in ESCC.The mRNA expression of CSTA was evaluated by qRT-PCR using 28 paired frozen samples of tumor and nontumor mucosae. The protein expression of CSTA was evaluated by the immunostaining of formalin-fixed, paraffin-embedded sections of ESCC samples from 59 patients who underwent surgery, and its relationship with clinical features was analyzed.The mRNA expression of CSTA was significantly decreased in ESCC compared with that in matched normal mucosa (P < .0001). The protein expression of CSTA was limited in stratum granulosum and stratum spinosum but not in stratum basal in normal esophageal mucosa. It was reduced in all ESCC tissue samples compared with normal tissues; however, CSTA expression levels in tumors showed considerable variation. Of the 59 samples, 20 did not express CSTA, whereas 39 clearly expressed it. The expression of CSTA in tumors was significantly associated with pT classification (deeper tumor invasions) (P = .0118) and advanced TNM stages (P = .0497). In CSTA-positive tumor samples, CSTA-expressing cancer cells often expressed Ki67, a proliferation marker, which was in sharp contrast to normal mucosa, where Ki67-expressing cells were limited to the basal layer and did not express CSTA. Furthermore, CSTA expression was observed in all 22 lymph node metastases analyzed.Relatively high levels of CSTA expression in tumors were correlated with tumor progression and advanced cancer stage, including lymph node metastasis.
Collapse
Affiliation(s)
- Daiki Shiba
- Department of Surgery, National Center for Global Health and Medicine, Tokyo
- Department of Anesthesiology, Jikei University School of Medicine, Tokyo, Japan
| | - Masayoshi Terayama
- Department of Surgery, National Center for Global Health and Medicine, Tokyo
| | - Kazuhiko Yamada
- Department of Surgery, National Center for Global Health and Medicine, Tokyo
| | - Teruki Hagiwara
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba
| | | | | | - Toru Igari
- Pathology Division of Clinical Laboratory
| | - Chizu Yokoi
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine
| | - Daisuke Soma
- Department of Surgery, National Center for Global Health and Medicine, Tokyo
| | - Kyoko Nohara
- Department of Surgery, National Center for Global Health and Medicine, Tokyo
| | - Satoshi Yamashita
- Department of Surgery, National Center for Global Health and Medicine, Tokyo
| | - Taeko Dohi
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba
| | - Yuki I. Kawamura
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba
| |
Collapse
|
14
|
Zi M, Xu Y. Involvement of cystatin C in immunity and apoptosis. Immunol Lett 2018; 196:80-90. [PMID: 29355583 PMCID: PMC7112947 DOI: 10.1016/j.imlet.2018.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
As an abundantly expressed cysteine protease inhibitor widely distributed in the organisms, cystatin C is involved in various physiological processes. Due to its relatively small molecular weight and easy detection, cystatin C is commonly used as a measure for glomerular filtration rate. In pathological conditions, however, growing evidences suggest that cystatin C is associated with various immune responses against either exogenous or endogenous antigens, which ultimately result in inflammatory autoimmune diseases or tumor development if not properly controlled. Thus the fluctuation of cystatin C levels might have more clinical implications than a reflection of kidney functions. Here, we summarize the latest development of studies on the pathophysiological functions of cystatin C, with focus on its immune regulatory roles at both cellular and molecular levels including antigen presentation, secretion of cytokines, synthesis of nitric oxide, as well as apoptosis. Finally, we discuss the clinical implications and therapeutic potentials of what this predominantly expressed protease inhibitor can bring to us.
Collapse
Affiliation(s)
- Mengting Zi
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
15
|
Zaafouri S, Pichery M, Huchenq A, Valentin F, Oji V, Mazereeuw-Hautier J, Serre G, Jonca N. Transcriptomic Analysis of Two Cdsn-Deficient Mice Shows Gene Signatures Biologically Relevant for Peeling Skin Disease. J Invest Dermatol 2017; 138:1431-1435. [PMID: 29277537 DOI: 10.1016/j.jid.2017.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sarra Zaafouri
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Mélanie Pichery
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Anne Huchenq
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Frederic Valentin
- Department of Dermatology, Muenster University Hospital, Muenster, Germany
| | - Vinzenz Oji
- Department of Dermatology, Muenster University Hospital, Muenster, Germany
| | - Juliette Mazereeuw-Hautier
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France; Department of Dermatology, Reference Centre for Rare Skin Disease, Toulouse University Hospital, Toulouse, France
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France
| | - Nathalie Jonca
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056 Inserm-Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, Toulouse, France.
| |
Collapse
|
16
|
Scorza BM, Wacker MA, Messingham K, Kim P, Klingelhutz A, Fairley J, Wilson ME. Differential Activation of Human Keratinocytes by Leishmania Species Causing Localized or Disseminated Disease. J Invest Dermatol 2017; 137:2149-2156. [PMID: 28647347 PMCID: PMC5786447 DOI: 10.1016/j.jid.2017.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 11/23/2022]
Abstract
All Leishmania species parasites are introduced into mammalian skin through a sand fly bite, but different species cause distinct clinical outcomes. Mouse studies suggest that early responses are critical determinants of subsequent adaptive immunity in leishmaniasis, yet few studies address the role of keratinocytes, the most abundant cell in the epidermis. We hypothesized that Leishmania infection causes keratinocytes to produce immunomodulatory factors that influence the outcome of infection. Incubation of primary or immortalized human keratinocytes with Leishmania infantum or Leishmania major, which cause visceral or cutaneous leishmaniasis, respectively, elicited dramatically different responses. Keratinocytes incubated with L. infantum significantly increased expression of proinflammatory genes for IL-6, IL-8, tumor necrosis factor, and IL-1B, whereas keratinocytes exposed to several L. major isolates did not. Furthermore, keratinocyte-monocyte co-incubation studies across a 4 µM semipermeable membrane suggested that L. infantum-exposed keratinocytes release soluble factors that enhance monocyte control of intracellular L. infantum replication (P < 0.01). L. major-exposed keratinocytes had no comparable effect. These data suggest that L. infantum and L. major differentially activate keratinocytes to release factors that limit infection in monocytes. We propose that keratinocytes initiate or withhold a proinflammatory response at the site of infection, generating a microenvironment uniquely tailored to each Leishmania species that may affect the course of disease.
Collapse
Affiliation(s)
- Breanna M Scorza
- University of Iowa, Interdisciplinary Graduate Program in Immunology, Iowa City, Iowa, USA
| | - Mark A Wacker
- University of Iowa, Department of Internal Medicine, Iowa City, Iowa, USA
| | - Kelly Messingham
- University of Iowa, Department of Dermatology, Iowa City, Iowa, USA
| | - Peter Kim
- University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Janet Fairley
- University of Iowa, Department of Dermatology, Iowa City, Iowa, USA; Veterans' Affairs Medical Center, Iowa City, Iowa, USA
| | - Mary E Wilson
- University of Iowa, Interdisciplinary Graduate Program in Immunology, Iowa City, Iowa, USA; University of Iowa, Department of Internal Medicine, Iowa City, Iowa, USA; University of Iowa, Department of Microbiology, Iowa City, Iowa, USA; Veterans' Affairs Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
17
|
Vidal-Quist JC, Ortego F, Rombauts S, Castañera P, Hernández-Crespo P. Dietary shifts have consequences for the repertoire of allergens produced by the European house dust mite. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:272-280. [PMID: 28429373 DOI: 10.1111/mve.12234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
Products manufactured from mass-cultured house dust mites, currently commercialized for the diagnosis and immunotherapy of allergy, are heterogeneous in terms of allergen composition and thus present concerns to regulatory authorities. The most abundant species, Dermatophagoides pteronyssinus (Trouessart) (Astigmata: Pyroglyphidae), produces 19 allergenic proteins. Many of these are putatively involved in mite digestive physiology and metabolism. This study aimed to evaluate the effects of mite-rearing media on allergen production. Mites were adapted to feed on culture media supplemented with proteins, lipids, carbohydrates or beard shavings, and collected to quantify major allergens (Der p 1 and 2) by immunodetection, transcription of allergen genes by real-time quantitative polymerase chain reaction, and allergen-related enzymatic activities. All culture media significantly affected the content of major allergens. Modification of macronutrients in the diet produced minor effects on the transcription of allergen genes, but significantly altered mite allergen-related activities. The most remarkable impacts were detected in mites feeding on beard shavings and were reflected in reductions in the content of major allergens, alterations in the transcription of nine allergen genes, and changes in eight allergen-related activities. These results demonstrate the importance of culture media to the quality and consistency of mite extracts used for pharmaceuticals, and highlight the need to further elucidate allergen production by mites in the laboratory and in domestic environments.
Collapse
Affiliation(s)
- J C Vidal-Quist
- Laboratory of Insect-Plant Interaction, Department of Environmental Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - F Ortego
- Laboratory of Insect-Plant Interaction, Department of Environmental Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - S Rombauts
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - P Castañera
- Laboratory of Insect-Plant Interaction, Department of Environmental Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - P Hernández-Crespo
- Laboratory of Insect-Plant Interaction, Department of Environmental Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
18
|
Kouzaki H, Matsumoto K, Kikuoka H, Kato T, Tojima I, Shimizu S, Kita H, Shimizu T. Endogenous Protease Inhibitors in Airway Epithelial Cells Contribute to Eosinophilic Chronic Rhinosinusitis. Am J Respir Crit Care Med 2017; 195:737-747. [PMID: 27779422 DOI: 10.1164/rccm.201603-0529oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Cystatin A and SPINK5 are endogenous protease inhibitors (EPIs) that may play key roles in epithelial barrier function. OBJECTIVES To investigate the roles of EPIs in the pathogenesis of chronic rhinosinusitis (CRS). METHODS We examined the expression of cystatin A and SPINK5 in the nasal epithelial cells of patients with CRS. Additionally, the in vitro effects of recombinant EPIs on the secretion of the epithelial-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin in airway epithelial cells, and the in vivo effects of recombinant EPIs in the nasal epithelium of mice exposed to multiple airborne allergens (MAA) were examined. MEASUREMENTS AND MAIN RESULTS Compared with control subjects and patients with noneosinophilic CRS, patients with eosinophilic CRS showed significantly lower protein and mRNA expression of cystatin A and SPINK5 in the nasal epithelium. Allergen-induced production of IL-25, IL-33, and thymic stromal lymphopoietin in normal human bronchial epithelial cells was inhibited by treatment with recombinant cystatin A or SPINK5. Conversely, the production of these cytokines was increased when cystatin A or SPINK5 were knocked down with small interfering RNA. Chronic MAA exposure induced goblet cell metaplasia and epithelial disruption in mouse nasal epithelium and decreased the tissue expression and nasal lavage levels of cystatin A and SPINK5. Intranasal instillations of recombinant EPIs attenuated this MAA-induced pathology. CONCLUSIONS Cystatin A and SPINK5 play an important role in protecting the airway epithelium from exogenous proteases. The preservation of EPIs may have a therapeutic benefit in intractable airway inflammation, such as eosinophilic CRS.
Collapse
Affiliation(s)
- Hideaki Kouzaki
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Koji Matsumoto
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Hirotaka Kikuoka
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Tomohisa Kato
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Ichiro Tojima
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Shino Shimizu
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Hirohito Kita
- 2 Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Takeshi Shimizu
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| |
Collapse
|
19
|
Identification of Proteases and Protease Inhibitors in Allergenic and Non-Allergenic Pollen. Int J Mol Sci 2017; 18:ijms18061199. [PMID: 28587253 PMCID: PMC5486022 DOI: 10.3390/ijms18061199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Pollen is one of the most common causes of allergy worldwide, making the study of their molecular composition crucial for the advancement of allergy research. Despite substantial efforts in this field, it is not yet clear why some plant pollens strongly provoke allergies while others do not. However, proteases and protease inhibitors from allergen sources are known to play an important role in the development of pollen allergies. In this study, we aim to uncover differences in the transcriptional pattern of proteases and protease inhibitors in Betula verrucosa and Pinus sylvestris pollen as models for high and low allergenic potential, respectively. We applied RNA sequencing to Betula verrucosa and Pinus sylvestris pollen. After de-novo assembly we derived general functional profiles of the protein coding transcripts. By utilization of domain based functional annotation we identified potential proteases and protease inhibitors and compared their expression in the two types of pollen. Functional profiles are highly similar between Betula verrucosa and Pinus sylvestris pollen. Both pollen contain proteases and inhibitors from 53 and 7 Pfam families, respectively. Some of the members comprised within those families are implicated in facilitating allergen entry, while others are known allergens themselves. Our work revealed several candidate proteins which, with further investigation, represent exciting new leads in elucidating the process behind allergic sensitization.
Collapse
|
20
|
Gutowska-Owsiak D, Ogg GS. Therapeutic vaccines for allergic disease. NPJ Vaccines 2017; 2:12. [PMID: 29263869 PMCID: PMC5604746 DOI: 10.1038/s41541-017-0014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are highly prevalent worldwide and affect all age groups, contributing to a high personal and socioeconomic burden. Treatment with an “allergy vaccine” or allergen immunotherapy aims to provide long-lasting benefits by inducing unresponsiveness to the relevant antigen. The consequences of the therapy are considered disease modifying and range from dampening of the immediate immune responses to the reduction of secondary tissue remodeling. Furthermore, allergen immunotherapy interventions have a potential to slow or cease the development of additional allergic manifestations with a long-term overall effect on morbidity and quality of life. Here, we review proposed mechanisms underlying the therapeutic effects of immunotherapy for allergic diseases. Further, we discuss both standard and novel approaches and possible future directions in the development of allergen immunotherapy.
Collapse
Affiliation(s)
- Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Ngcungcu T, Oti M, Sitek JC, Haukanes BI, Linghu B, Bruccoleri R, Stokowy T, Oakeley EJ, Yang F, Zhu J, Sultan M, Schalkwijk J, van Vlijmen-Willems IMJJ, von der Lippe C, Brunner HG, Ersland KM, Grayson W, Buechmann-Moller S, Sundnes O, Nirmala N, Morgan TM, van Bokhoven H, Steen VM, Hull PR, Szustakowski J, Staedtler F, Zhou H, Fiskerstrand T, Ramsay M. Duplicated Enhancer Region Increases Expression of CTSB and Segregates with Keratolytic Winter Erythema in South African and Norwegian Families. Am J Hum Genet 2017; 100:737-750. [PMID: 28457472 DOI: 10.1016/j.ajhg.2017.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals.
Collapse
Affiliation(s)
- Thandiswa Ngcungcu
- Division of Human Genetics, School of Pathology and the Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Martin Oti
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6525 GA, the Netherlands; Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jan C Sitek
- Department of Dermatology, Oslo University Hospital, Oslo 0424, Norway; Centre for Rare Disorders, Oslo University Hospital, Oslo 0424, Norway
| | - Bjørn I Haukanes
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Bolan Linghu
- Computational Biomedicine, WRD Genome Sciences & Technologies, Pfizer Worldwide R&D, Cambridge, MA 02139, USA
| | - Robert Bruccoleri
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA; Congenomics, Glastonbury, CT 06033, USA
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen 5020, Norway
| | - Edward J Oakeley
- Novartis Institutes for BioMedical Research, Basel 4056, Switzerland
| | - Fan Yang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jiang Zhu
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Marc Sultan
- Novartis Institutes for BioMedical Research, Basel 4056, Switzerland
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - Han G Brunner
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands; Maastricht UMC, Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht 6202 AZ, the Netherlands
| | - Kari M Ersland
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5021, Norway; Department of Clinical Science, University of Bergen, Bergen 5020, Norway
| | - Wayne Grayson
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and Ampath National Laboratories, Johannesburg 2193, South Africa
| | | | - Olav Sundnes
- Department of Dermatology, Oslo University Hospital, Oslo 0424, Norway; Laboratory for Immunohistochemistry and Immunopathology, Department of Pathology, Oslo University Hospital, Oslo 0424, Norway
| | - Nanguneri Nirmala
- Institute for Clinical Research and Policy Studies, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Thomas M Morgan
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Vidar M Steen
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5021, Norway; Department of Clinical Science, University of Bergen, Bergen 5020, Norway
| | - Peter R Hull
- Division of Clinical Dermatology and Cutaneous Science, Dalhousie University, Halifax, NS B3H 1V7, Canada
| | | | - Frank Staedtler
- Novartis Institutes for BioMedical Research, Basel 4056, Switzerland
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6525 GA, the Netherlands; Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Torunn Fiskerstrand
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5021, Norway; Department of Clinical Science, University of Bergen, Bergen 5020, Norway.
| | - Michele Ramsay
- Division of Human Genetics, School of Pathology and the Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.
| |
Collapse
|
22
|
Ochi H, Takai T, Shimura S, Maruyama N, Nishioka I, Kamijo S, Iida H, Nakae S, Ogawa H, Okumura K, Ikeda S. Skin Treatment with Detergent Promotes Protease Allergen-Dependent Epicutaneous Sensitization in a Manner Different from Tape Stripping in Mice. J Invest Dermatol 2017; 137:1578-1582. [PMID: 28259686 DOI: 10.1016/j.jid.2017.02.970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Hirono Ochi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Sakiko Shimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Natsuko Maruyama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Izumi Nishioka
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideo Iida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Murota H, Katayama I. Exacerbating factors of itch in atopic dermatitis. Allergol Int 2017; 66:8-13. [PMID: 27863904 DOI: 10.1016/j.alit.2016.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Atopic dermatitis (AD) displays different clinical symptoms, progress, and response to treatment during early infancy and after childhood. After the childhood period, itch appears first, followed by formation of well-circumscribed plaque or polymorphous dermatoses at the same site. When accompanied with dermatitis and dry skin, treatment of skin lesions should be prioritized. When itch appears first, disease history, such as causes and time of appearance of itch should be obtained by history taking. In many cases, itch increases in the evening when the sympathetic nerve activity decreased. Treatment is provided considering that hypersensitivity to various external stimulations can cause itch. Heat and sweating are thought to especially exacerbate itch. Factors causing itch, such as cytokines and chemical messengers, also induce itch mainly by stimulating the nerve. Scratching further aggravates dermatitis. Skin hypersensibility, where other non-itch senses, such as pain and heat, are felt as itch, sometimes occurs in AD. Abnormal elongation of the sensory nerve into the epidermis, as well as sensitizing of the peripheral/central nerve, are possible causes of hypersensitivity, leading to itch. To control itch induced by environmental factors such as heat, treatment for dermatitis is given priority. In the background of itch exacerbated by sweating, attention should be given to the negative impact of sweat on skin homeostasis due to 1) leaving excess sweat on the skin, and 2) heat retention due to insufficient sweating. Excess sweat on the skin should be properly wiped off, and dermatitis should be controlled so that appropriate amount of sweat can be produced. Not only stimulation from the skin surface, but also visual and auditory stimulation can induce new itch. This "contagious itch" can be notably observed in patients with AD. This article reviews and introduces causes of aggravation of itch and information regarding how to cope with such causes.
Collapse
|
24
|
Cavusoglu N, Delattre C, Donovan M, Bourassa S, Droit A, El Rawadi C, Jourdain R, Bernard D. iTRAQ-based quantitative proteomics of stratum corneum of dandruff scalp reveals new insights into its aetiology and similarities with atopic dermatitis. Arch Dermatol Res 2016; 308:631-642. [PMID: 27600510 DOI: 10.1007/s00403-016-1681-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022]
Abstract
The study aimed at detecting differentially expressed proteins in the stratum corneum of dandruff versus non-dandruff scalps to better understand dandruff aetiology. iTRAQ-based quantitative proteomic analysis revealed a total of 68 differentially expressed biomarkers. A detailed analysis of their known physiological functions provided new insights into the affected metabolic pathways of a dandruff scalp. Dandruff scalp showed (1) profound changes in the expression and maturation of structural and epidermal differentiation related proteins, that are responsible for the integrity of the skin, (2) altered relevant factors that regulate skin hydration, and (3) an imbalanced physiological protease-protease inhibitor ratio. Stratum corneum proteins with antimicrobial activity, mainly those derived from sweat and sebaceous glands were also found modified. Comparing our data with those reported for atopic dermatitis revealed that about 50 % of the differentially expressed proteins in the superficial layers of the stratum corneum from dandruff and atopic dermatitis are identical.
Collapse
Affiliation(s)
- Nükhet Cavusoglu
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France.
| | - Caroline Delattre
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Mark Donovan
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Sylvie Bourassa
- Centre de recherche du CHU de Québec, Plate-forme protéomique, 2705, Boulevard Laurier, QC, Canada
| | - Arnaud Droit
- Centre de recherche du CHU de Québec, Plate-forme protéomique, 2705, Boulevard Laurier, QC, Canada
| | - Charles El Rawadi
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Roland Jourdain
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| | - Dominique Bernard
- L'Oreal Research and Innovation, 1 Avenue Eugène Schueller, 93600, Aulnay-Sous-Bois, France
| |
Collapse
|
25
|
Shimura S, Takai T, Iida H, Maruyama N, Ochi H, Kamijo S, Nishioka I, Hara M, Matsuda A, Saito H, Nakae S, Ogawa H, Okumura K, Ikeda S. Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice. J Invest Dermatol 2016; 136:1408-1417. [DOI: 10.1016/j.jid.2016.02.810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 02/01/2023]
|
26
|
Tanei R, Hasegawa Y. Atopic dermatitis in older adults: A viewpoint from geriatric dermatology. Geriatr Gerontol Int 2016; 16 Suppl 1:75-86. [DOI: 10.1111/ggi.12771] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Ryoji Tanei
- Department of Dermatology; Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Itabashi Tokyo Japan
| | - Yasuko Hasegawa
- Department of Geriatric Pathology; Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Itabashi Tokyo Japan
| |
Collapse
|
27
|
Kamijo S, Suzuki M, Hara M, Shimura S, Ochi H, Maruyama N, Matsuda A, Saito H, Nakae S, Suto H, Ichikawa S, Ikeda S, Ogawa H, Okumura K, Takai T. Subcutaneous Allergic Sensitization to Protease Allergen Is Dependent on Mast Cells but Not IL-33: Distinct Mechanisms between Subcutaneous and Intranasal Routes. THE JOURNAL OF IMMUNOLOGY 2016; 196:3559-69. [PMID: 27001956 DOI: 10.4049/jimmunol.1500717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
Protease activity of papain, a plant-derived occupational allergen homologous to mite major allergens, is essential to IgE/IgG1 production and lung eosinophilia induced by intranasal papain administration in mice, and IL-33 contributes to these responses. In this work, we investigate skin and Ab responses induced by s.c. papain administration into ear lobes and responses induced by subsequent airway challenge with papain. Subcutaneous papain injection induced swelling associated with increased epidermal thickness, dermal inflammation, serum IgE/IgG1 responses, and Th2 cytokine production in draining lymph node cells restimulated in vitro. These responses were markedly less upon s.c. administration of protease inhibitor-treated papain. Results obtained by using mast cell-deficient mice and reconstitution of tissue mast cells suggested the contribution of mast cells to papain-specific IgE/IgG1 responses and eosinophil infiltration. The responses were equivalent between wild-type and IL-33(-/-) mice. After the subsequent airway challenge, the s.c. presensitized wild-type mice showed more severe lung eosinophilia than those without the presensitization. The presensitized IL-33(-/-) mice showed modest lung eosinophilia, which was absent without the presensitization, but its severity and IgE boost by the airway challenge were markedly less than the presensitized wild-type mice, in which protease activity of inhaled papain contributed to the responses. The results suggest that mechanisms for the protease-dependent sensitization differ between skin and airway and that cooperation of mast cell-dependent, IL-33-independent initial sensitization via skin and protease-induced, IL-33-mediated mechanism in re-exposure via airway to protease allergens maximizes the magnitude of the transition from skin inflammation to asthma in natural history of progression of allergic diseases.
Collapse
Affiliation(s)
- Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mayu Suzuki
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Sakiko Shimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hirono Ochi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Natsuko Maruyama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; and Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hajime Suto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Saori Ichikawa
- Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| |
Collapse
|
28
|
Muttardi K, Nitoiu D, Kelsell DP, O'Toole EA, Batta K. Acral peeling skin syndrome associated with a novelCSTAgene mutation. Clin Exp Dermatol 2015; 41:394-8. [DOI: 10.1111/ced.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 11/27/2022]
Affiliation(s)
- K. Muttardi
- Department of Dermatology; Watford General Hospital; Watford Hertfordshire UK
| | - D. Nitoiu
- Centre for Cell Biology and Cutaneous Research; Blizard Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - D. P. Kelsell
- Centre for Cell Biology and Cutaneous Research; Blizard Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - E. A. O'Toole
- Centre for Cell Biology and Cutaneous Research; Blizard Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - K. Batta
- Department of Dermatology; Watford General Hospital; Watford Hertfordshire UK
| |
Collapse
|
29
|
Moosbrugger-Martinz V, Jalili A, Schossig AS, Jahn-Bassler K, Zschocke J, Schmuth M, Stingl G, Eckl KM, Hennies HC, Gruber R. Epidermal barrier abnormalities in exfoliative ichthyosis with a novel homozygous loss-of-function mutation in CSTA. Br J Dermatol 2015; 172:1628-1632. [PMID: 25400170 DOI: 10.1111/bjd.13545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2014] [Indexed: 01/13/2023]
Abstract
Autosomal recessive exfoliative ichthyosis (AREI) results from mutations in CSTA, encoding cysteine protease inhibitor A (cystatin A). We present a 25-year-old man from Iran with consanguineous parents, who presented with congenital erythroderma, hyperhidrosis and diffuse hyperkeratosis with coarse palmoplantar peeling of the skin, aggravated by exposure to water and by occlusion. Candidate gene analysis revealed a previously unknown homozygous loss-of-function mutation c.172C>T (p.Arg58Ter) in CSTA, and immunostaining showed absence of epidermal cystatin A, confirming the diagnosis of AREI. Ultrastructural analysis by transmission electron microscopy showed normal degradation of corneodesmosomes, mild intercellular oedema in the spinous layer but not in the basal layer, normal-appearing desmosomes, and prominent keratin filaments within basal keratinocytes. Thickness of cornified envelopes was reduced, lamellar lipid bilayers were disturbed, lamellar body secretion occurred prematurely and processing of secreted lamellar body contents was delayed. These barrier abnormalities were reminiscent of (albeit less severe than in) Netherton syndrome, which results from a deficiency of the serine protease inhibitor LEKTI. This work describes ultrastructural findings with evidence of epidermal barrier abnormalities in AREI.
Collapse
Affiliation(s)
- V Moosbrugger-Martinz
- Department of Dermatology and Venereology, Medical University Innsbruck, Innsbruck, Austria
| | - A Jalili
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - A S Schossig
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - K Jahn-Bassler
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - J Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - M Schmuth
- Department of Dermatology and Venereology, Medical University Innsbruck, Innsbruck, Austria
| | - G Stingl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - K M Eckl
- Center for Dermatogenetics, Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - H C Hennies
- Center for Dermatogenetics, Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - R Gruber
- Department of Dermatology and Venereology, Medical University Innsbruck, Innsbruck, Austria.,Center for Dermatogenetics, Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Discovery in genetic skin disease: the impact of high throughput genetic technologies. Genes (Basel) 2014; 5:615-34. [PMID: 25093584 PMCID: PMC4198921 DOI: 10.3390/genes5030615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 11/21/2022] Open
Abstract
The last decade has seen considerable advances in our understanding of the genetic basis of skin disease, as a consequence of high throughput sequencing technologies including next generation sequencing and whole exome sequencing. We have now determined the genes underlying several monogenic diseases, such as harlequin ichthyosis, Olmsted syndrome, and exfoliative ichthyosis, which have provided unique insights into the structure and function of the skin. In addition, through genome wide association studies we now have an understanding of how low penetrance variants contribute to inflammatory skin diseases such as psoriasis vulgaris and atopic dermatitis, and how they contribute to underlying pathophysiological disease processes. In this review we discuss strategies used to unravel the genes underlying both monogenic and complex trait skin diseases in the last 10 years and the implications on mechanistic studies, diagnostics, and therapeutics.
Collapse
|
31
|
Iida H, Takai T, Hirasawa Y, Kamijo S, Shimura S, Ochi H, Nishioka I, Maruyama N, Ogawa H, Okumura K, Ikeda S. Epicutaneous administration of papain induces IgE and IgG responses in a cysteine protease activity-dependent manner. Allergol Int 2014; 63:219-26. [PMID: 24662805 DOI: 10.2332/allergolint.13-oa-0621] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/17/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Epicutaneous sensitization to allergens is important in the pathogenesis of not only skin inflammation such as atopic dermatitis but also "atopic march" in allergic diseases such as asthma and food allergies. We here examined antibody production and skin barrier dysfunction in mice epicutaneously administered papain, a plant-derived occupational allergen belonging to the same family of cysteine proteases as mite major group 1 allergens. METHODS Papain and Staphylococcus aureus V8 protease were patched on the backs of hairless mice. Transepidermal water loss was measured to evaluate the skin barrier dysfunction caused by the proteases. Papain or that treated with an irreversible inhibitor specific to cysteine proteases, E64, was painted onto the ear lobes of mice of an inbred strain C57BL/6. Serum total IgE levels and papain-specific IgE and IgG antibodies were measured by ELISA. RESULTS Papain and V8 protease patched on the backs of hairless mice caused skin barrier dysfunction and increased serum total IgE levels, and papain induced the production of papain-specific IgG1, IgG2a, and IgG2b. Papain painted onto the ear lobes of C57BL/6 mice induced papain-specific IgE, IgG1, IgG2c, and IgG2b, whereas papain treated with E64 did not. IgG1 was the most significantly induced papain-specific IgG subclass among those measured. CONCLUSIONS We demonstrated that the epicutaneous administration of protease not only disrupted skin barrier function, but also induced IgE and IgG responses in a manner dependent on its protease activity. These results suggest that protease activity contained in environmental sources contributes to sensitization through an epicutaneous route.
Collapse
Affiliation(s)
- Hideo Iida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Hirasawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sakiko Shimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirono Ochi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Izumi Nishioka
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Natsuko Maruyama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Gender Equality Promotion Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
de Veer SJ, Furio L, Harris JM, Hovnanian A. Proteases: common culprits in human skin disorders. Trends Mol Med 2014; 20:166-78. [DOI: 10.1016/j.molmed.2013.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022]
|
33
|
Abstract
Scabies is an infectious disease that is endemic in poorly resourced communities, and also common in industrialized countries. Although the disease, which is caused by infestation of Sarcoptes scabiei, is generally mild, the need for a vaccine against S. scabiei is proposed. The immunological mechanisms that control S. scabiei infection are discussed and the current status of scabies vaccine development reviewed. Future directions for scabies vaccine development are also addressed.
Collapse
|
34
|
Batyrshina SV, Khaertdinova LA, Malanicheva TG, Khalilova RG. Atopic dermatitis: optimizing the topical therapy. VESTNIK DERMATOLOGII I VENEROLOGII 2013. [DOI: 10.25208/vdv630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Goal. Determination of the skin microbiocenosis in patients with atopic dermatitis (AtD) and evaluation of the treatment efficacy for AtD patients using isoconazole nitrate and diflucortolone valerate. Materials and methods. The authors assessed skin microflora in 168 AtD patients. Skin scrapes were obtained for further microscopy, and inoculation tests were performed. As many as 59 secondary AtD patients were treated with a combination of isoconazole nitrate and diflucortolone valerate as well as methylprednisolone aceponate, drugs from the DARDIA line. The treatment efficacy was evaluated clinically based on the SCORAD index as well as skin microrelief assessed with the use of the Visioscan BW30 video camera. After the treatment with Travocort, the nature and degree of skin colonization with AtD microorganisms were also assessed. Results. The efficacy of topical administration of isoconazole nitrate and diflucortolone valerate as well as methylprednisolone aceponate, drugs from the DARDIA line, was confirmed for the treatment of secondary AtD patients. Conclusion. Making antibiotics and antimycotic agents a part of the complex therapy of secondary AtD patients seems to be expedient for eliminating pathogenic microorganisms.
Collapse
|
35
|
Traupe H. Ichthyosis keeps surprising us. ACTAS DERMO-SIFILIOGRAFICAS 2013; 104:267-9. [DOI: 10.1016/j.ad.2012.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 10/17/2012] [Indexed: 12/15/2022] Open
|
36
|
Ichthyosis keeps surprising us. ACTAS DERMO-SIFILIOGRAFICAS 2013. [DOI: 10.1016/j.adengl.2012.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Gandhi VD, Davidson C, Asaduzzaman M, Nahirney D, Vliagoftis H. House Dust Mite Interactions with Airway Epithelium: Role in Allergic Airway Inflammation. Curr Allergy Asthma Rep 2013; 13:262-70. [DOI: 10.1007/s11882-013-0349-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Kamijo S, Takeda H, Tokura T, Suzuki M, Inui K, Hara M, Matsuda H, Matsuda A, Oboki K, Ohno T, Saito H, Nakae S, Sudo K, Suto H, Ichikawa S, Ogawa H, Okumura K, Takai T. IL-33-mediated innate response and adaptive immune cells contribute to maximum responses of protease allergen-induced allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4489-99. [PMID: 23547117 DOI: 10.4049/jimmunol.1201212] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How the innate and adaptive immune systems cooperate in the natural history of allergic diseases has been largely unknown. Plant-derived allergen, papain, and mite allergens, Der f 1 and Der p 1, belong to the same family of cysteine proteases. We examined the role of protease allergens in the induction of Ab production and airway inflammation after repeated intranasal administration without adjuvants and that in basophil/mast cell stimulation in vitro. Papain induced papain-specific IgE/IgG1 and lung eosinophilia. Der f 1 induced Der f 1-specific IgG1 and eosinophilia. Although papain-, Der f 1-, and Der p 1-stimulated basophils expressed allergy-inducing cytokines, including IL-4 in vitro, basophil-depleting Ab and mast cell deficiency did not suppress the papain-induced in vivo responses. Protease inhibitor-treated allergens and a catalytic site mutant did not induce the responses. These results indicate that protease activity is essential to Ab production and eosinophilia in vivo and basophil activation in vitro. IL-33-deficient mice lacked eosinophilia and had reduced papain-specific IgE/IgG1. Coadministration of OVA with papain induced OVA-specific IgE/IgG1, which was reduced in IL-33-deficient mice. We demonstrated IL-33 release, subsequent IL-33-dependent IL-5/IL-13 release, and activation of T1/ST2-expressing lineage(-)CD25(+)CD44(+) innate lymphoid cells in the lung after papain inhalation, suggesting the contribution of the IL-33-type 2 innate lymphoid cell-IL-5/IL-13 axis to the papain-induced airway eosinophilia. Rag2-deficient mice, which lack adaptive immune cells, showed significant, but less severe, eosinophilia. Collectively, these results suggest cooperation of adaptive immune cells and IL-33-responsive innate cells in protease-dependent allergic airway inflammation.
Collapse
Affiliation(s)
- Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Klimov PB, OConnor B. Is permanent parasitism reversible?--critical evidence from early evolution of house dust mites. Syst Biol 2013; 62:411-23. [PMID: 23417682 DOI: 10.1093/sysbio/syt008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-term specialization may limit the ability of a species to respond to new environmental conditions and lead to a higher likelihood of extinction. For permanent parasites and other symbionts, the most intriguing question is whether these organisms can return to a free-living lifestyle and, thus, escape an evolutionary "dead end." This question is directly related to Dollo's law, which stipulates that a complex trait (such as being free living vs. parasitic) cannot re-evolve again in the same form. Here, we present conclusive evidence that house dust mites, a group of medically important free-living organisms, evolved from permanent parasites of warm-blooded vertebrates. A robust, multigene topology (315 taxa, 8942 nt), ancestral character state reconstruction, and a test for irreversible evolution (Dollo's law) demonstrate that house dust mites have abandoned a parasitic lifestyle, secondarily becoming free living, and then speciated in several habitats. Hence, as exemplified by this model system, highly specialized permanent parasites may drastically de-specialize to the extent of becoming free living and, thus escape from dead-end evolution. Our phylogenetic and historical ecological framework explains the limited cross-reactivity between allergens from the house dust mites and "storage" mites and the ability of the dust mites to inhibit host immune responses. It also provides insights into how ancestral features related to parasitism (frequent ancestral shifts to unrelated hosts, tolerance to lower humidity, and pre-existing enzymes targeting skin and keratinous materials) played a major role in reversal to the free-living state. We propose that parasitic ancestors of pyroglyphids shifted to nests of vertebrates. Later the nest-inhabiting pyroglyphids expanded into human dwellings to become a major source of allergens.
Collapse
Affiliation(s)
- Pavel B Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1079, USA.
| | | |
Collapse
|
40
|
Maeda S, Maeda S, Ohno K, Kaji N, Hori M, Fujino Y, Tsujimoto H. Protease-activated receptor-2 induces proinflammatory cytokine and chemokine gene expression in canine keratinocytes. Vet Immunol Immunopathol 2013; 153:17-25. [PMID: 23465358 DOI: 10.1016/j.vetimm.2013.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/15/2013] [Accepted: 01/21/2013] [Indexed: 11/15/2022]
Abstract
Although the molecular basis of the allergenicity remains to be fully elucidated, the ability of allergens to elicit allergic responses is at least partly attributed to their proteolytic activity. Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is activated by site-specific proteolysis by serine proteases and is known to mediate inflammatory processes in various tissues. In this study, we investigated the effects of trypsin, a major serine protease, and a human PAR-2 agonist peptide (SLIGKV-NH2) on proinflammatory cytokine and chemokine gene expression in the canine keratinocyte cell line CPEK. The expression of PAR-2 mRNA and protein in CPEK cells was detected by RT-PCR and Western blotting, respectively. The localization of PAR-2 in CPEK was examined by immunofluorescence. The mRNA expression levels of proinflammatory cytokines and chemokines were quantified by real-time RT-PCR. The free intracellular Ca(2+) concentration was measured using the Ca(2+)-sensitive fluorescent dye. CPEK cells constitutively expressed PAR-2 mRNA and protein. Stimulation of CPEK cells with trypsin induced significant upregulation of the mRNA expression levels of tumor necrosis factor alpha (TNF-α, P<0.05), granulocyte-macrophage colony-stimulating factor (GM-CSF, P<0.01), thymus and activation regulated chemokine (TARC/CCL17, P<0.01), and interleukin 8 (IL-8/CXCL8, P<0.01). Similarly, the PAR-2 agonist peptide increased the mRNA expression levels of TNF-α (P<0.05), GM-CSF (P<0.05), TARC/CCL17 (P<0.05), and IL-8/CXCL8 (P<0.05) in CPEK cells. Both trypsin and the PAR-2 agonist peptide increased the intracellular Ca(2+) concentration and PAR-2 internalization. These results suggest that PAR-2 activation can augment inflammatory cytokine and chemokine expression in canine keratinocytes, and it may initiate allergic inflammation through the proteolytic activity of allergens in canine atopic dermatitis.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Brocklehurst K, Philpott MP. Cysteine proteases: mode of action and role in epidermal differentiation. Cell Tissue Res 2013; 351:237-44. [PMID: 23344364 DOI: 10.1007/s00441-013-1557-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
Abstract
Desquamation or cell shedding in mammalian skin is known to involve serine proteases, aspartic proteases and glycosidases. In addition, evidence continues to accumulate that papain-like cysteine proteases and an inhibitor cystatin M/E largely confined to the cutaneous epithelia also play key roles in the process. This involves the complete proteolysis of cell adhesive structures of the stratum corneum, the corneodesmosomes and notably of the desmogleins. Continual cell replacement in the epidermis is the result of the balance between the loss of the outer squames and mitosis of the cells in the basal cell layer. This article provides a brief account of the salient features of the characteristics and catalytic mechanism of cysteine proteases, followed by a discussion of the relevant epidermal biology. The proteases include the asparaginyl endopeptidase legumain, which exerts a strict specificity for the hydrolysis of asparaginyl bonds, cathepsin-V and cathepsin-L. The control of these enzymes by cystatin M/E regulates the processing of transglutaminases and is crucial in the biochemical pathway responsible for regulating the cross-linking and desquamation of the stratum corneum. In addition, caspase-14 has now been shown to play a major part in epidermal maturation. Uncontrolled proteolytic activity leads to abnormal hair follicle formation and deleterious effects on the skin barrier function.
Collapse
Affiliation(s)
- Keith Brocklehurst
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
42
|
Abstract
Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion.
Collapse
Affiliation(s)
- Spela Magister
- 1. Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
| | | |
Collapse
|
43
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
44
|
Brooke MA, Nitoiu D, Kelsell DP. Cell-cell connectivity: desmosomes and disease. J Pathol 2011; 226:158-71. [PMID: 21989576 DOI: 10.1002/path.3027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/12/2023]
Abstract
Cell-cell connectivity is an absolute requirement for the correct functioning of cells, tissues and entire organisms. At the level of the individual cell, direct cell-cell adherence and communication is mediated by the intercellular junction complexes: desmosomes, adherens, tight and gap junctions. A broad spectrum of inherited, infectious and auto-immune diseases can affect the proper function of intercellular junctions and result in either diseases affecting specific individual tissues or widespread syndromic conditions. A particularly diverse group of diseases result from direct or indirect disruption of desmosomes--a consequence of their importance in tissue integrity, their extensive distribution, complex structure, and the wide variety of functions their components accomplish. As a consequence, disruption of desmosomal assembly, structure or integrity disrupts not only their intercellular adhesive function but also their functions in cell communication and regulation, leading to such diverse pathologies as cardiomyopathy, epidermal and mucosal blistering, palmoplantar keratoderma, woolly hair, keratosis, epidermolysis bullosa, ectodermal dysplasia and alopecia. Here, as well as describing the importance of the other intercellular junctions, we focus primarily on the desmosome, its structure and its role in disease. We will examine the various pathologies that result from impairment of desmosome function and thereby demonstrate the importance of desmosomes to tissues and to the organism as a whole.
Collapse
Affiliation(s)
- Matthew A Brooke
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
45
|
Blaydon DC, Nitoiu D, Eckl KM, Cabral RM, Bland P, Hausser I, van Heel DA, Rajpopat S, Fischer J, Oji V, Zvulunov A, Traupe H, Hennies HC, Kelsell DP. Mutations in CSTA, encoding Cystatin A, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. Am J Hum Genet 2011; 89:564-71. [PMID: 21944047 DOI: 10.1016/j.ajhg.2011.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/26/2011] [Accepted: 09/02/2011] [Indexed: 11/30/2022] Open
Abstract
Autosomal-recessive exfoliative ichthyosis presents shortly after birth as dry, scaly skin over most of the body with coarse peeling of nonerythematous skin on the palms and soles, which is exacerbated by excessive moisture and minor trauma. Using whole-genome homozygosity mapping, candidate-gene analysis and deep sequencing, we have identified loss-of-function mutations in the gene for protease inhibitor cystatin A (CSTA) as the underlying genetic cause of exfoliative ichthyosis. We found two homozygous mutations, a splice-site and a nonsense mutation, in two consanguineous families of Bedouin and Turkish origin. Electron microscopy of skin biopsies from affected individuals revealed that the level of detachment occurs in the basal and lower suprabasal layers. In addition, in vitro modeling suggests that in the absence of cystatin A protein, there is a cell-cell adhesion defect in human keratinocytes that is particularly prominent when cells are subject to mechanical stress. We show here evidence of a key role for a protease inhibitor in epidermal adhesion within the lower layers of the human epidermis.
Collapse
Affiliation(s)
- Diana C Blaydon
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Burgess STG, Nisbet AJ, Kenyon F, Huntley JF. Generation, analysis and functional annotation of expressed sequence tags from the ectoparasitic mite Psoroptes ovis. Parasit Vectors 2011; 4:145. [PMID: 21781297 PMCID: PMC3154158 DOI: 10.1186/1756-3305-4-145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/22/2011] [Indexed: 01/18/2023] Open
Abstract
Background Sheep scab is caused by Psoroptes ovis and is arguably the most important ectoparasitic disease affecting sheep in the UK. The disease is highly contagious and causes and considerable pruritis and irritation and is therefore a major welfare concern. Current methods of treatment are unsustainable and in order to elucidate novel methods of disease control a more comprehensive understanding of the parasite is required. To date, no full genomic DNA sequence or large scale transcript datasets are available and prior to this study only 484 P. ovis expressed sequence tags (ESTs) were accessible in public databases. Results In order to further expand upon the transcriptomic coverage of P. ovis thus facilitating novel insights into the mite biology we undertook a larger scale EST approach, incorporating newly generated and previously described P. ovis transcript data and representing the largest collection of P. ovis ESTs to date. We sequenced 1,574 ESTs and assembled these along with 484 previously generated P. ovis ESTs, which resulted in the identification of 1,545 unique P. ovis sequences. BLASTX searches identified 961 ESTs with significant hits (E-value < 1E-04) and 584 novel P. ovis ESTs. Gene Ontology (GO) analysis allowed the functional annotation of 880 ESTs and included predictions of signal peptide and transmembrane domains; allowing the identification of potential P. ovis excreted/secreted factors, and mapping of metabolic pathways. Conclusions This dataset currently represents the largest collection of P. ovis ESTs, all of which are publicly available in the GenBank EST database (dbEST) (accession numbers FR748230 - FR749648). Functional analysis of this dataset identified important homologues, including house dust mite allergens and tick salivary factors. These findings offer new insights into the underlying biology of P. ovis, facilitating further investigations into mite biology and the identification of novel methods of intervention.
Collapse
Affiliation(s)
- Stewart T G Burgess
- Division of Parasitology, Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, UK.
| | | | | | | |
Collapse
|
47
|
Abstract
Preparation of high quality allergen extracts is essential for the diagnosis and immunotherapy of allergic disorders. Standardization of allergen extracts concerns determination of the allergen unit, development of reference material and measurement of the overall IgE binding capacity of an allergen extract. Recently, quantification of individual allergens has been the main focus of allergen standardization because the allergenicity of most allergen extracts is known to be mainly dependent on the content of a small number of allergen molecules. Therefore, characterization of major allergens will facilitate the standardization of allergens. In this article, we review the current state of allergen standardization. In addition, we briefly summarize the components of allergen extracts that should be under control for the optimization of allergen standardization, since its adjuvant-like activities could play an important role in allergic reactions even though the molecule itself does not bind to the IgE antibodies from subjects.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Chein-Soo Hong
- Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Shil Lee
- Center for Immunology and Pathology, Korea National Institute of Health, Osong, Korea
| | - Jung-Won Park
- Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Takai T, Ikeda S. Barrier dysfunction caused by environmental proteases in the pathogenesis of allergic diseases. Allergol Int 2011; 60:25-35. [PMID: 21173566 DOI: 10.2332/allergolint.10-rai-0273] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Indexed: 12/13/2022] Open
Abstract
Skin barrier dysfunction has emerged as a critical driving force in the initiation and exacerbation of atopic dermatitis and the "atopic march" in allergic diseases. The genetically determined barrier deficiency and barrier disruption by environmental and endogenous proteases in skin and epithelium are considered to increase the risk of sensitization to allergens and contribute to the exacerbation of allergic diseases. Sources of allergens such as mites, cockroaches, fungi, and pollen, produce or contain proteases, which are frequently themselves allergens. Staphylococcus aureus, which heavily colonizes the lesions of atopic dermatitis patients and is known to trigger a worsening of the disease, also produces extracellular proteases. Environmental proteases can cause barrier breakdown in the skin, not only in the epithelium, and stimulate various types of cells through IgE-independent mechanisms. Endogenous protease inhibitors control the functions of environmental and endogenous proteases. In this review, we focus on the barrier dysfunction caused by environmental proteases and roles of endogenous protease inhibitors in the pathogenesis of allergic diseases. Additionally, we examine the subsequent innate response to Th2-skewed adaptive immune reactions.
Collapse
Affiliation(s)
- Toshiro Takai
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan. t−
| | | |
Collapse
|
49
|
Takai T, Kato T, Hatanaka H, Inui K, Nakazawa T, Ichikawa S, Mitsuishi K, Ogawa H, Okumura K. Modulation of Allergenicity of Major House Dust Mite Allergens Der f 1 and Der p 1 by Interaction with an Endogenous Ligand. THE JOURNAL OF IMMUNOLOGY 2009; 183:7958-65. [DOI: 10.4049/jimmunol.0713276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Kamijo S, Takai T, Kuhara T, Tokura T, Ushio H, Ota M, Harada N, Ogawa H, Okumura K. Cupressaceae pollen grains modulate dendritic cell response and exhibit IgE-inducing adjuvant activity in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 183:6087-94. [PMID: 19864594 DOI: 10.4049/jimmunol.0901039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pollen is considered a source of not only allergens but also immunomodulatory substances, which could play crucial roles in sensitization and/or the exacerbation of allergies. We investigated how allergenic pollens from different plant species (Japanese cedar and Japanese cypress, which belong to the Cupressaceae family, and birch, ragweed, and grass) modulate murine bone marrow-derived dendritic cell (DC) responses and examined the effect of Cupressaceae pollen in vivo using mice. DCs were stimulated with pollen extracts or grains in the presence or absence of LPS. Cell maturation and cytokine production in DCs were analyzed by flow cytometry, ELISA, and/or quantitative PCR. Pollen extracts suppressed LPS-induced IL-12 production and the effect was greatest for birch and grass. Without LPS, pollen grains induced DC maturation and cytokine production without IL-12 secretion and the response, for which TLR 4 was dispensable, was greatest for the Cupressaceae family. Intranasal administration of Cupressaceae pollen in mice induced an elevation of serum IgE levels and airway eosinophil infiltration. Coadministration of ovalbumin with Cupressaceae pollen grains induced ovalbumin-specific IgE responses associated with eosinophil infiltration. The results suggest that modulation of DC responses by pollen differs among the plant families via (1) the promotion of DC maturation and cytokine production by direct contact and/or (2) the inhibition of IL-12 production by soluble factors. The strong DC stimulatory activity in vitro and IgE-inducing activity in mice support the clinical relevance of Cupressaceae pollen to allergies in humans.
Collapse
Affiliation(s)
- Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|