1
|
Ehnold LI, Melderis S, Hagenstein J, Warkotsch MT, Laas V, Feindt FC, Wu H, Huber TB, Grahammer F, Steinmetz OM. Treg derived Amphiregulin protects from murine lupus nephritis via tissue reparative effects. Sci Rep 2025; 15:7776. [PMID: 40044779 PMCID: PMC11882795 DOI: 10.1038/s41598-025-91636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease that affects multiple organ systems. Among the most severe manifestations of SLE is lupus nephritis (LN), which causes particularly high morbidity. Recently, we identified amphiregulin (AREG), an epidermal growth factor receptor ligand, as a key mediator of LN via downregulation of pathogenic CD4+ T-cell responses. In human LN, AREG is mainly produced by regulatory T cells (Tregs) and monocytes/macrophages (M/M). Since AREG´s functions have been shown to vary considerably depending on the source, we aimed to clarify the cell-type-specific roles of AREG using the pristane model of LN. Conditional knockout mice lacking Treg- but not M/M-derived AREG showed worse LN outcome at 12 and 15 months with increased glomerular cell proliferation, apoptosis and renal tissue fibrosis. Interestingly, immune responses were not relevantly affected by the lack of AREG from either leukocyte source, indicating a different mechanism. In this respect, in vitro studies demonstrated improved wound healing of murine mesangium and tubulus cells and enhanced regeneration and sprouting of human glomerular endothelial cells after incubation with recombinant AREG. These findings underscore the importance of Treg-derived AREG in tissue regeneration and protection from fibrosis in LN, highlighting AREG as a potential therapeutic target.
Collapse
Affiliation(s)
- Laura-Isabell Ehnold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Melderis
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hagenstein
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias T Warkotsch
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viona Laas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederic C Feindt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hui Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver M Steinmetz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
3
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
4
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
5
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
6
|
Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J Cell Physiol 2021; 237:1143-1156. [PMID: 34698381 DOI: 10.1002/jcp.30615] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Amphiregulin (AREG), which acts as one of the ligands for epidermal receptor growth factor receptor (EGFR), plays a crucial role in tissue repair, inflammation, and immunity. AREG is synthesized as membrane-anchored pre-protein, and is excreted after proteolytic cleavage, and serves as an autocrine or paracrine factor. After engagement with the EGFR, AREG triggers a cascade of signaling events required for many cellular physiological processes including metabolism, cell cycle, and proliferation. Under different inflammatory and pathogenic conditions, AREG is expressed by various activated immune cells that orchestrate both tolerance and host resistance mechanisms. Several factors including xenobiotics, cytokines, and inflammatory lipids have been shown to trigger AREG gene expression and release. In this review, we discuss the structure, function, and regulation of AREG, its role in tissue repair, inflammation, and homeostasis as well as the potential of AREG as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Siddharth S Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi B Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian R Engwerda
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
8
|
Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Halwani R, Hamid Q, Hamoudi R. Blood and Salivary Amphiregulin Levels as Biomarkers for Asthma. Front Med (Lausanne) 2020; 7:561866. [PMID: 33195308 PMCID: PMC7659399 DOI: 10.3389/fmed.2020.561866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Background: Amphiregulin (AREG) expression in asthmatic airways and sputum was shown to increase and correlate with asthma. However, no studies were carried out to evaluate the AREG level in blood and saliva of asthmatic patients. Objective: To measure circulating AREG mRNA and protein concentrations in blood, saliva, and bronchial biopsies samples from asthmatic patients. Methods: Plasma and Saliva AREG protein concentrations were measured using ELISA while PBMCs, and Saliva mRNA expression was measured by RT qPCR in non-severe, and severe asthmatic patients compared to healthy controls. Primary asthmatic bronchial epithelial cells and fibroblasts were assessed for AREG mRNA expression and released soluble AREG in their conditioned media. Tissue expression of AREG was evaluated using immunohistochemistry of bronchial biopsies from asthmatic patients and healthy controls. Publicly available transcriptomic databases were explored for the global transcriptomic profile of bronchial epithelium, and PBMCs were explored for AREG expression in asthmatic vs. healthy controls. Results: Asthmatic patients had higher AREG protein levels in blood and saliva compared to control subjects. Higher mRNA expression in saliva and primary bronchial epithelial cells plus higher AREG immunoreactivity in bronchial biopsies were also observed. Both blood and saliva AREG levels showed positive correlations with allergic rhinitis status, atopy status, eczema status, plasma periostin, neutrophilia, Montelukast sodium use, ACT score, FEV1, and FEV1/FVC. In silico analysis showed that severe asthmatic bronchial epithelium with high AREG gene expression is associated with higher neutrophils infiltration. Conclusion: AREG levels measured in a minimally invasive blood sample and a non-invasive saliva sample are higher in non-allergic severe asthma. CLINICAL IMPLICATIONS This is the first report to show the higher level of AREG levels in blood and saliva of non-allergic severe asthma.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, UCL, London, United Kingdom
| |
Collapse
|
9
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
10
|
Hong L, Tang Y, Pan S, Xu M, Shi Y, Gao S, Sui C, He C, Zheng K, Tang R, Shi Z, Wang Q, Wang H. Interleukin 3-induced GITR promotes the activation of human basophils. Cytokine 2020; 136:155268. [PMID: 32889153 DOI: 10.1016/j.cyto.2020.155268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
Human basophils regulate allergic reactions by secreting histamine, interleukin 4 (IL-4) and IL-13 through key surface receptors FcεRI as well as IL-3R, which are constitutively expressed on basophils. IL-3/IL-3R signaling axis plays key roles in regulating the development and activation of basophils. We and others have shown that IL-3-induced surface receptors e.g. ST2, IL-17RB and IL-2 receptors regulate the biology of basophils. However, the expression and function of IL-3-induced surface proteins on human basophils remain to be elucidated. We in this study aimed to identify new basophil activation regulators by transcriptomic analysis of IL-3-stimulated basophils. Gene expression microarray analysis of IL-3-treated basophils revealed 2050 differentially expressed genes, of which 323 genes encoded surface proteins including GITR. We identified that GITR was preferentially induced by IL-3 rather than anti-IgE, IL-33, fMLP and C5a. IL-3-induced GITR was suppressed by inhibitors targeting JAK2, PI3K and MEK1/2. Stimulation of IL-3-treated basophils by GITR enhanced the expression of IL-4 and IL-13. Moreover, IgE-mediated degranulation was enhanced by GITRL in the presence of IL-3. This transcriptomic analysis of IL-3-activated basophils helps to identify novel activation regulator. IL-3-induced GITR promoted the activation of basophils, adding new evidence supporting GITR as an important player in Th2-associated immune responses.
Collapse
Affiliation(s)
- Li Hong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yangyang Tang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shuai Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meizhen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanbiao Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Sijia Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chao Sui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - KuiYang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhixu Shi
- Xuzhou Red Cross Blood Center, Xuzhou, Jiangsu 221400, China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
11
|
Marone G, Gambardella AR, Mattei F, Mancini J, Schiavoni G, Varricchi G. Basophils in Tumor Microenvironment and Surroundings. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:21-34. [PMID: 32036602 DOI: 10.1007/978-3-030-35723-8_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basophils represent approximately 1% of human peripheral blood leukocytes. Their effector functions were initially appreciated in the 1970s when basophils were shown to express the high-affinity receptor (FcεRI) for IgE and to release proinflammatory mediators (histamine and cysteinyl leukotriene C4) and immunoregulatory cytokines (i.e., IL-4 and IL-13). Basophils in the mouse were subsequently identified and immunologically characterized. There are many similarities but also several differences between human and mouse basophils. Basophil-deficient mice have enabled to examine the in vivo roles of basophils in several immune disorders and, more recently, in tumor immunity. Activated human basophils release several proangiogenic molecules such as vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor-B (VEGF-B), CXCL8, angiopoietin 1 (ANGPT1), and hepatocyte growth factor (HGF). On the other side, basophils can exert anti-tumorigenic effects by releasing granzyme B, TNF-α, and histamine. Circulating basophils have been associated with certain human hematologic (i.e., chronic myeloid leukemia) and solid tumors. Basophils have been found in tumor microenvironment (TME) of human lung adenocarcinoma and pancreatic cancer. Basophils played a role in melanoma rejection in basophil-deficient mouse model. By contrast, basophils appear to play a pro-tumorigenic role in experimental and human pancreatic cancer. In conclusion, the roles of basophils in experimental and human cancers have been little investigated and remain largely unknown. The elucidation of the roles of basophils in tumor immunity will demand studies on increasing complexity beyond those assessing basophil density and their microlocalization in TME. There are several fundamental questions to be addressed in experimental models and clinical studies before we understand whether basophils are an ally, adversary, or even innocent bystanders in cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Azienda Ospedaliera dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.
- WAO Center of Excellence, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
12
|
Hashimoto T, Satoh T, Karasuyama H, Yokozeki H. Amphiregulin from Basophils Amplifies Basophil-Mediated Chronic Skin Inflammation. J Invest Dermatol 2019; 139:1834-1837.e2. [DOI: 10.1016/j.jid.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
|
13
|
Awad AE, Ebrahim MA, Eissa LA, El-Shishtawy MM. Dickkopf-1 and Amphiregulin as Novel Biomarkers and Potential Therapeutic Targets in Hepatocellular Carcinoma. Int J Hematol Oncol Stem Cell Res 2019; 13:153-163. [PMID: 31649806 PMCID: PMC6801323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly fatal tumor which represents a major health problem worldwide. Due to asymptomatic nature of HCC, most patients present with the progressive stage of disease, so, unfortunately, there are no effective therapies. Existing techniques for HCC surveillance and diagnosis lack the required accuracy. Therefore, searching for new diagnostic and/or therapeutic tools could improve patient survival. This study aimed to estimate the diagnostic role of Dickkopf-1 (DKK1) and amphiregulin (AREG) and to find out their correlation with different clinicopathological parameters in HCC patients. Materials and Methods: Serum levels of DKK1 and AREG in 55 HCC patients, 20 cirrhotic patients, and 15 healthy subjects as control group were measured using the ELISA technique. Results: Both of DKK1 and AREG showed a significant increase in the HCC group compared to cirrhotic and healthy groups. DKK1 at a cutoff point of 8.92 ng/ml showed that the area under the curve (AUC) was 0.826 with 87.3% sensitivity and 82.9% specificity. DKK1 showed a significant correlation with tumor size, liver dysfunction, and poor performance status in HCC patients. AREG at a cutoff point of 8.74 pg/ml showed a sensitivity of 74.5% but low specificity (47.1%). AREG showed a significant correlation with portal vein thrombosis and tumor metastasis in HCC patients. Conclusion: Serum DKK1 could be a diagnostic biomarker for HCC. Both of DKK1 and AREG may play significant roles in tumor progression and may offer promising therapeutic targets in HCC patients.
Collapse
Affiliation(s)
- Abeer E. Awad
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed A. Ebrahim
- Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mamdouh M. El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
14
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
15
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
16
|
Emerging roles of basophils in allergic inflammation. Allergol Int 2017; 66:382-391. [PMID: 28506528 DOI: 10.1016/j.alit.2017.04.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/24/2022] Open
Abstract
Basophils have long been neglected in immunological studies because they were regarded as only minor relatives of mast cells. However, recent advances in analytical tools for basophils have clarified the non-redundant roles of basophils in allergic inflammation. Basophils play crucial roles in both IgE-dependent and -independent allergic inflammation, through their migration to the site of inflammation and secretion of various mediators, including cytokines, chemokines, and proteases. Basophils are known to produce large amounts of IL-4 in response to various stimuli. Basophil-derived IL-4 has recently been shown to play versatile roles in allergic inflammation by acting on various cell types, including macrophages, innate lymphoid cells, fibroblasts, and endothelial cells. Basophil-derived serine proteases are also crucial for the aggravation of allergic inflammation. Moreover, recent reports suggest the roles of basophils in modulating adaptive immune responses, particularly in the induction of Th2 differentiation and enhancement of humoral memory responses. In this review, we will discuss recent advances in understanding the roles of basophils in allergic inflammation.
Collapse
|
17
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
18
|
Chhiba KD, Hsu CL, Berdnikovs S, Bryce PJ. Transcriptional Heterogeneity of Mast Cells and Basophils upon Activation. THE JOURNAL OF IMMUNOLOGY 2017; 198:4868-4878. [PMID: 28476932 DOI: 10.4049/jimmunol.1601825] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/10/2017] [Indexed: 01/31/2023]
Abstract
Mast cells and basophils are developmentally related cells whose activation is a hallmark of allergy. Functionally, mast cells and basophils overlap in their ability to produce several mediators, including histamine and granule proteases, but studies have increasingly demonstrated nonredundant roles. To characterize the transcriptional heterogeneity of mast cells and basophils upon their activation, we performed large-scale comparative microarrays of murine bone marrow-derived mast cells and bone marrow-derived basophils (BMBs) at rest, upon an adaptive-type activation (IgE cross-linking), or upon an innate-type activation (IL-33 stimulation). Hierarchical clustering demonstrated that bone marrow-derived mast cells and BMBs shared specific activation-associated transcriptional signatures but differed in other signatures both between cell type and between activation mode. In bone marrow-derived mast cells, IgE cross-linking upregulated 785 genes, including Egr2, Ccl1, and Fxyd6, whereas IL-33 stimulation induced 823 genes, including Ccl1, Egr2, and Il1b. Focused bioinformatics pathway analysis demonstrated that IgE activation aligned with processes such as oxidative phosphorylation, angiogenesis, and the p53 pathway. The IL-33-activated transcriptome was enriched in genes commonly altered by NF-κB in response to TNF, by IL-6 via STAT3, and in response to IFN-γ. Furthermore, BMBs activated via IgE cross-linking selectively induced immune response genes Ccl1, Il3, and Il2 compared with IL-33-stimulated BMBs. Principal-component analysis revealed key cell- and activation-specific clustering. Overall, our data demonstrate that mast cells and basophils have cell- and activation-specific transcriptional responses and suggest that context-specific gene networks and pathways may shape how the immune system responds to allergens and innate cytokines.
Collapse
Affiliation(s)
- Krishan D Chhiba
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chia-Lin Hsu
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Paul J Bryce
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
19
|
Oetjen LK, Noti M, Kim BS. New insights into basophil heterogeneity. Semin Immunopathol 2016; 38:549-61. [PMID: 27178409 PMCID: PMC5010479 DOI: 10.1007/s00281-016-0567-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
Abstract
Basophils have become increasingly recognized as important innate immune cells that mediate antihelminth immunity and barrier inflammation. Recent discoveries have uncovered previously unrecognized heterogeneity in basophil populations. However, how diversity in basophil regulation and function impacts human disease remains poorly defined. The goal of the present review is to highlight how new insights into basophil heterogeneity can help us to better understand disease pathogenesis and inform the development of new therapeutics.
Collapse
Affiliation(s)
- Landon K Oetjen
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8123, St. Louis, MO, 63110, USA
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Noti
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8123, St. Louis, MO, 63110, USA.
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
Amphiregulin activates regulatory T lymphocytes and suppresses CD8+ T cell-mediated anti-tumor response in hepatocellular carcinoma cells. Oncotarget 2016; 6:32138-53. [PMID: 26451607 PMCID: PMC4741664 DOI: 10.18632/oncotarget.5171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cell-mediated immune response plays an important role in inhibiting progression of hepatocellular carcinoma (HCC). For strategic immunotherapy, it is critical to understand why some of the tumor cells escape from this immune attack. In this study, we investigated how HCC cells alter endogenous anti-tumor immunity and their related signaling pathways. We found that HCC cells, both in vitro and in vivo, substantially secret and express amphiregulin (AR). AR in turn activates immunosuppressive function of intratumoral CD4+Foxp3+ regulatory T cells (Tregs), a major inhibitor of CD8+ T cells. Using either lentiviral siRNA, or AR neutralizing antibody, we blocked the expression and function of AR to test the specificity of AR mediated activation of Tregs, Biochemical and cell biology studies were followed and confirmed that blocking of AR inhibited Tregs activation. In addition, we found that AR can trigger the activation of rapamycin complex 1(mTORC1) signaling in Tregs. The mTORC1 inhibitor rapamycin treatment led to compromise Treg function and resulted in enhancing anti-tumor function of CD8+ T cells. Blocking AR/EGFR signaling in Tregs with Gefitinib also enhanced anti-tumor immunity and decreased tumor size in a mouse xenograft tumor model. Taken together, our study suggested a novel mechanism of functional interaction between HCC and Tregs for regulating anti-tumor function of CD8+ T cells.
Collapse
|
21
|
Wang S, Zhang Y, Wang Y, Ye P, Li J, Li H, Ding Q, Xia J. Amphiregulin Confers Regulatory T Cell Suppressive Function and Tumor Invasion via the EGFR/GSK-3β/Foxp3 Axis. J Biol Chem 2016; 291:21085-21095. [PMID: 27432879 DOI: 10.1074/jbc.m116.717892] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/06/2022] Open
Abstract
Previous studies mainly focused on the role of the epidermal growth factor receptor (EGFR) in tumor cells, whereas the effects of the EGFR on immune responses has not been determined. Our study shows that the EGFR signaling pathway play a role in the regulation of regulatory T cells (Treg cells) in cancer patients. The EGF-like growth factor Amphiregulin (AREG) protein was frequently up-regulated in a tissue microarray, which was associated with worse overall survival. Additionally, in sera, tissue specimens, and effusions of lung or gastric cancer patients, up-regulated AREG protein enhanced the suppressive function of Treg cells. AREG maintained the Treg cell suppressive function via the EGFR/GSK-3β/Foxp3 axis in vitro and in vivo Furthermore, inhibition of EGFR by the tyrosine kinase inhibitor gefitinib restored the activity of GSK-3β and attenuated Treg cell function. β-TrCP was involved in GSK-3β-mediated Foxp3 degradation, and mass spectrometry identified Lys356 as the ubiquitination site of Foxp3 by β-TrCP. These findings demonstrate the posttranslational regulation of Foxp3 expression by AREG in cancer patients through AREG/EGFR/GSK-3β signaling, which could lead to Foxp3 protein degradation in Treg cells and a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Sihua Wang
- From the Departments of Thoracic Surgery
| | | | - Yan Wang
- the Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, and
| | - Ping Ye
- the Department of Cardiovascular Surgery, Central Hospital of Wuhan, Wuhan 430022, China
| | - Jun Li
- the Department of Cardiovascular Surgery, Central Hospital of Wuhan, Wuhan 430022, China
| | - Huabin Li
- the Department of Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Qingqing Ding
- the Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, and
| | - Jiahong Xia
- Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,
| |
Collapse
|
22
|
Carney K, Chang YMR, Wilson S, Calnan C, Reddy PS, Chan WY, Gilmartin T, Hernandez G, Schaffer L, Head SR, Morley J, de Mestre A, Affleck K, Garden OA. Regulatory T-cell-intrinsic amphiregulin is dispensable for suppressive function. J Allergy Clin Immunol 2016; 137:1907-1909. [PMID: 27040371 PMCID: PMC4889774 DOI: 10.1016/j.jaci.2016.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/15/2015] [Accepted: 01/15/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Katharine Carney
- Department of Clinical Science and Services, Immune Regulation Laboratory, Royal Veterinary College, London, United Kingdom
| | - Yu-Mei Ruby Chang
- Research Support Office, Royal Veterinary College, London, United Kingdom
| | - Stephen Wilson
- GlaxoSmithKline, Platform Technology and Science R&D, Stevenage, Hertfordshire, United Kingdom
| | - Clare Calnan
- Department of Clinical Science and Services, Immune Regulation Laboratory, Royal Veterinary College, London, United Kingdom
| | - Pala S Reddy
- Department of Clinical Science and Services, Immune Regulation Laboratory, Royal Veterinary College, London, United Kingdom
| | - Win-Yan Chan
- Department of Clinical Science and Services, Immune Regulation Laboratory, Royal Veterinary College, London, United Kingdom
| | | | | | | | | | - Joanne Morley
- GlaxoSmithKline, Respiratory R&D, Stevenage, Hertfordshire, United Kingdom
| | - Amanda de Mestre
- Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, United Kingdom
| | - Karen Affleck
- GlaxoSmithKline, Respiratory R&D, Stevenage, Hertfordshire, United Kingdom
| | - Oliver A Garden
- Department of Clinical Science and Services, Immune Regulation Laboratory, Royal Veterinary College, London, United Kingdom.
| |
Collapse
|
23
|
Dai K, Huang L, Sun X, Yang L, Gong Z. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection. J Leukoc Biol 2015; 98:1071-1080. [PMID: 26216935 DOI: 10.1189/jlb.4a0415-152r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus is a major cause of chronic liver inflammation worldwide. Innate and adaptive immune responses work together to restrain or eliminate hepatitis B virus in the liver. Compromised or failed adaptive immune response results in persistent virus replication and spread. How to promote antiviral immunity is a research focus for hepatitis B virus prevention and therapy. In this study, we investigated the role of macrophages in the regulation of antiviral immunity. We found that F4/80(+)CD206(+)CD80(lo/+) macrophages were a particular hepatic macrophage subset that expressed amphiregulin in our mouse hepatitis B virus infection model. CD206(+) macrophage-derived amphiregulin promoted the immunosuppressive activity of intrahepatic regulatory T cells, demonstrated by higher expression of CTLA-4, ICOS, and CD39, as well as stronger inhibition of antiviral function of CD8(+) T cells. Amphiregulin-neutralizing antibody diminished the effect of CD206(+) macrophages on regulatory T cells. In addition, we found that CD206(+) macrophage-derived amphiregulin activated mammalian target of rapamycin signaling in regulatory T cells, and this mammalian target of rapamycin activation was essential for promotion of regulatory T cell activity by CD206(+) macrophages. Adoptive transfer of CD206(+) macrophages into hepatitis B virus-infected mice increased cytoplasmic hepatitis B virus DNA in hepatocytes and also increased serum hepatitis B surface antigen. The antiviral activity of CD8(+) T cells was decreased after macrophage transfer. Therefore, our research indicated that amphiregulin produced by CD206(+) macrophages plays an important role in modulating regulatory T cell function and subsequently restrains the antiviral activity of CD8(+) T cells. Our study offers new insights into the immunomodulation in hepatitis B virus infection.
Collapse
Affiliation(s)
- Kai Dai
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Ling Huang
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Xiaomei Sun
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Lihua Yang
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Zuojiong Gong
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| |
Collapse
|
24
|
Ceafalan LC, Manole E, Tanase CP, Codrici E, Mihai S, Gonzalez A, Popescu BO. Interstitial Outburst of Angiogenic Factors During Skeletal Muscle Regeneration After Acute Mechanical Trauma. Anat Rec (Hoboken) 2015; 298:1864-79. [PMID: 26260512 DOI: 10.1002/ar.23254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/01/2015] [Accepted: 06/12/2015] [Indexed: 11/09/2022]
Abstract
Angiogenesis is a key event during tissue regeneration, but the intimate mechanisms controlling this process are still largely unclear. Therefore, the cellular and molecular interplay along normal tissue regeneration should be carefully unveiled. To this matter, we investigated by xMAP assay the dynamics of some angiogenic factors known to be involved in tissue repair, such as follistatin (FST), Placental Growth Factor-2 (PLGF-2), epidermal growth factor (EGF), betacellulin (BTC), and amphiregulin (AREG) using an animal model that mimics acute muscle contusion injuries. In situ immunofluorescence was used for the evaluation and tissue distribution of their cellular sources. Tissue levels of explored factors increased significantly during degeneration and inflammatory stage of regeneration, peaking first week postinjury. However, except for PLGF-2 and EGF, their levels remained significantly elevated after the inflammatory process started to fade. Serum levels were significantly increased only after 24 h for AREG and EGF. Though, for all factors except FST, the levels in injured samples did not correlate with serum or contralateral tissue levels, excluding the systemic influence. We found significant correlations between the levels of EGF and AREG, BTC, FST and FST and AREG in injured samples. Interstitial cells expressing these factors were highlighted by in situ immunolabeling and their number correlated with measured levels dynamics. Our study provides evidence of a dynamic level variation along the regeneration process and a potential interplay between selected angiogenic factors. They are synthesized, at least partially, by cell populations residing in skeletal muscle interstitium during regeneration after acute muscle trauma.
Collapse
Affiliation(s)
- Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Emilia Manole
- Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Cristiana Pistol Tanase
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Elena Codrici
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Simona Mihai
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Aldebarani Gonzalez
- Department of Cellular and Molecular Biology and Histology, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital-Colentina Research Center, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
25
|
Schwartz C, Eberle JU, Voehringer D. Basophils in inflammation. Eur J Pharmacol 2015; 778:90-5. [PMID: 25959388 DOI: 10.1016/j.ejphar.2015.04.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Basophils are functionally closely related to mast cells. Both cell types express the high-affinity IgE receptor (FcεRI) and rapidly release preformed mediator from intracellular stores upon IgE-mediated activation. However, in contrast to mast cells basophils finish their maturation in the bone marrow and have a lifespan of only 2-3 days. Basophil numbers increase in response to IL-3 or TSLP and migrate into tissues to promote type 2 immune responses. Here we review recent advances regarding the pro- and anti-inflammatory functions of basophils in murine models and human allergic inflammation of the skin, lung and intestine.
Collapse
Affiliation(s)
- Christian Schwartz
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Joerg U Eberle
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
26
|
Zaiss DMW, Gause WC, Osborne LC, Artis D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 2015; 42:216-226. [PMID: 25692699 DOI: 10.1016/j.immuni.2015.01.020] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 01/14/2023]
Abstract
Type 2 inflammatory responses can be elicited by diverse stimuli, including toxins, venoms, allergens, and infectious agents, and play critical roles in resistance and tolerance associated with infection, wound healing, tissue repair, and tumor development. Emerging data suggest that in addition to characteristic type 2-associated cytokines, the epidermal growth factor (EGF)-like molecule Amphiregulin (AREG) might be a critical component of type 2-mediated resistance and tolerance. Notably, numerous studies demonstrate that in addition to the established role of epithelial- and mesenchymal-derived AREG, multiple leukocyte populations including mast cells, basophils, group 2 innate lymphoid cells (ILC2s), and a subset of tissue-resident regulatory CD4(+) T cells can express AREG. In this review, we discuss recent advances in our understanding of the AREG-EGF receptor pathway and its involvement in infection and inflammation and propose a model for the function of this pathway in the context of resistance and tissue tolerance.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07101, USA.
| | - Lisa C Osborne
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
27
|
Basophil-Derived Amphiregulin Is Essential for UVB Irradiation–Induced Immune Suppression. J Invest Dermatol 2015; 135:222-228. [DOI: 10.1038/jid.2014.329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 11/09/2022]
|
28
|
Huber C, Odermatt A, Hagmann B, Dahinden CA, Fux M. In human basophils, IL-3 selectively induces RANKL expression that is modulated by IgER-dependent and IgER-independent stimuli. Allergy 2014; 69:1498-505. [PMID: 25069739 DOI: 10.1111/all.12497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Receptor activator of NF-κB ligand (RANKL) is expressed as either surface (hRANKL1, hRANKL2) or soluble (hRANKL3) form. RANKL is involved in multifaceted processes of immunoregulation and bone resorption such as they occur in rheumatoid arthritis (RA). Interestingly, activated basophils, which are effector cells in allergic inflammation, contribute to the progress of collagen-induced arthritis (CIA), a mouse model for RA. Here, we investigate under which conditions human basophils express RANKL. METHODS Among other stimuli, basophils were cultured with IL-3 alone. Alternatively, as a secondary stimulus, IgER-dependent or IgER-independent agents were added simultaneously either with IL-3 or after prolonged IL-3 culturing. Expression of RANKL protein and mRNA was analyzed by flow cytometry, ELISA, and real-time PCR. A coculture system was applied to investigate biological activity of basophil-derived RANKL. RESULTS We show that in human basophils, IL-3 but no other stimulus induces de novo expression of soluble and surface RANKL, of which the latter enhances survival of MoDC. Upon simultaneous stimulation, IgER cross-linking reduces surface RANKL expression, while IgER-independent stimuli have no effect. This is in contrast to consecutive stimulation, as triggering with both IgER-dependent and IgER-independent stimuli enhances RANKL expression, particularly in its soluble form. Real-time PCR analysis shows that RANKL expression is mainly regulated at the mRNA level. CONCLUSION This study identifies IL-3 as a potent inducer of RANKL expression in human basophils, suggesting them to interact with bone physiology and activation of immune cells. IgER-dependent and IgER-independent stimuli modulate the IL-3-mediated RANKL expression in a time- and stimulus-dependent fashion.
Collapse
Affiliation(s)
- C. Huber
- Institute of Immunology; University Hospital Bern; Inselspital, Bern Switzerland
| | - A. Odermatt
- Institute of Immunology; University Hospital Bern; Inselspital, Bern Switzerland
| | - B. Hagmann
- Institute of Immunology; University Hospital Bern; Inselspital, Bern Switzerland
| | - C. A. Dahinden
- Institute of Immunology; University Hospital Bern; Inselspital, Bern Switzerland
| | - M. Fux
- Institute of Immunology; University Hospital Bern; Inselspital, Bern Switzerland
| |
Collapse
|
29
|
Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol 2014; 28:31-41. [PMID: 24463227 DOI: 10.1016/j.semcdb.2014.01.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
30
|
Siracusa MC, Kim BS, Spergel JM, Artis D. Basophils and allergic inflammation. J Allergy Clin Immunol 2013; 132:789-801; quiz 788. [PMID: 24075190 DOI: 10.1016/j.jaci.2013.07.046] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/19/2022]
Abstract
Basophils were discovered by Paul Ehrlich in 1879 and represent the least abundant granulocyte population in mammals. The relative rarity of basophils and their phenotypic similarities with mast cells resulted in this cell lineage being historically overlooked, both clinically and experimentally. However, recent studies in human subjects and murine systems have shown that basophils perform nonredundant effector functions and significantly contribute to the development and progression of TH2 cytokine-mediated inflammation. Although the potential functions of murine and human basophils have provoked some controversy, recent genetic approaches indicate that basophils can migrate into lymphoid tissues and, in some circumstances, cooperate with other immune cells to promote optimal TH2 cytokine responses in vivo. This article provides a brief historical perspective on basophil-related research and discusses recent studies that have identified previously unappreciated molecules and pathways that regulate basophil development, activation, and function in the context of allergic inflammation. Furthermore, we highlight the unique effector functions of basophils and discuss their contributions to the development and pathogenesis of allergic inflammation in human disease. Finally, we discuss the therapeutic potential of targeting basophils in preventing or alleviating the development and progression of allergic inflammation.
Collapse
Affiliation(s)
- Mark C Siracusa
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | | | | | | |
Collapse
|
31
|
Zaiss DMW, van Loosdregt J, Gorlani A, Bekker CPJ, Gröne A, Sibilia M, van Bergen en Henegouwen PMP, Roovers RC, Coffer PJ, Sijts AJAM. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 2013; 38:275-84. [PMID: 23333074 PMCID: PMC3582723 DOI: 10.1016/j.immuni.2012.09.023] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/27/2012] [Indexed: 12/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3(+) regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, mast cell-derived AREG fully restored optimal Treg cell function. These findings reveal EGFR as a component in the regulation of local immune responses and establish a link between mast cells and Treg cells. Targeting of this immune regulatory mechanism may contribute to the therapeutic successes of EGFR-targeting treatments in cancer patients.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zaiss DMW, van Loosdregt J, Gorlani A, Bekker CPJ, Gröne A, Sibilia M, van Bergen en Henegouwen PMP, Roovers RC, Coffer PJ, Sijts AJAM. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 2013. [PMID: 23333074 DOI: 10.1016/j.immuni.2012.09.023.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3(+) regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, mast cell-derived AREG fully restored optimal Treg cell function. These findings reveal EGFR as a component in the regulation of local immune responses and establish a link between mast cells and Treg cells. Targeting of this immune regulatory mechanism may contribute to the therapeutic successes of EGFR-targeting treatments in cancer patients.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
van Beek AA, Knol EF, de Vos P, Smelt MJ, Savelkoul HFJ, van Neerven RJJ. Recent developments in basophil research: do basophils initiate and perpetuate type 2 T-helper cell responses? Int Arch Allergy Immunol 2012; 160:7-17. [PMID: 22948001 DOI: 10.1159/000341633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Basophils account for only 0.1-1% of all peripheral blood leukocytes. They were considered to be a redundant cell type for a long time. However, several findings show a non-redundant role for basophils in type 2 T-helper cell (Th2) immune responses in helminth infections, allergy and autoimmunity. Both immunoglobulin-E-dependent and -independent pathways have been described to contribute to basophil activation. In addition, several recent studies reported that basophils can function as antigen-presenting cells and are important in the initiation of Th2 immune responses. However, there are also conflicting studies that do not corroborate the importance of basophils in Th2 immune responses. This review discusses the role of basophils in Th2 immune responses in view of these recent findings.
Collapse
Affiliation(s)
- A A van Beek
- Top Institute Food and Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Qi Y, Operario DJ, Georas SN, Mosmann TR. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS One 2012; 7:e39072. [PMID: 22720031 PMCID: PMC3375254 DOI: 10.1371/journal.pone.0039072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/17/2012] [Indexed: 11/18/2022] Open
Abstract
Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses.
Collapse
Affiliation(s)
- Yilin Qi
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Darwin J. Operario
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Steve N. Georas
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Peterson EA, Shabbeer S, Kenny PA. Normal range of serum Amphiregulin in healthy adult human females. Clin Biochem 2012; 45:460-3. [PMID: 22306169 DOI: 10.1016/j.clinbiochem.2011.12.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/09/2011] [Accepted: 12/27/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Prior to large studies in breast cancer patients, we have sought to establish the normal range of a potential serum biomarker, Amphiregulin, in healthy women and to determine whether sampling during the menstrual cycle influences the detected Amphiregulin levels. DESIGN AND METHODS Serum Amphiregulin levels were quantified using a commercially available ELISA in 85 normal female donors. RESULTS The range of circulating Amphiregulin was 0-4467 pg/mL. The majority of women had no detectable circulating Amphiregulin (n=54), and only five women had levels exceeding 500 pg/mL. Serum Amphiregulin levels did not vary significantly during the menstrual cycle (n=7 women). CONCLUSIONS Detection of circulating Amphiregulin in a significant minority of healthy women suggests that it may not have the specificity necessary for a population screening tool; however its potential utility for monitoring response to treatment or disease progression should be examined in breast cancer cases.
Collapse
Affiliation(s)
- Esther A Peterson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
36
|
Abstract
After approximately 130 years since their discovery as rare granulocytes that circulate in blood, basophils are just now gaining respect as significant contributors in the pathogenesis underlying allergic inflammation and disease. While long known for secreting preformed and newly synthesized mediators and for selectively infiltrating tissue during immunoglobulin E (IgE)-mediated inflammation, their role has largely been viewed as redundant to that of tissue mast cells in functioning as effector cells. This line of thought has persisted even though it has been known in humans for approximately 20 years that basophils additionally produce relatively large quantities of cytokines, e.g. interleukin-4 (IL-4)/IL-13, that are central for the manifestations of allergic disease. Studies using novel IL-4 reporter mice have significantly added to the in vivo importance of basophils as IL-4 producing cells, with recent findings indicating that these cells also function as antigen-presenting cells essential in initiating T-helper 2 responses. If confirmed and translated to humans, these provocative findings will give new meaning to the role basophils have in allergic disease, and in immunology overall.
Collapse
Affiliation(s)
- John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Broide DH, Finkelman F, Bochner BS, Rothenberg ME. Advances in mechanisms of asthma, allergy, and immunology in 2010. J Allergy Clin Immunol 2011; 127:689-95. [PMID: 21377038 DOI: 10.1016/j.jaci.2011.01.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
2010 was marked by rapid progress in our understanding of the cellular and molecular mechanisms involved in the pathogenesis of allergic inflammation and asthma. Studies published in the Journal of Allergy and Clinical Immunology described advances in our knowledge of cells associated with allergic inflammation (mast cells, eosinophils, dendritic cells, and T cells), as well as IgE, cytokines, receptors, signaling molecules, and pathways. Studies used animal models, as well as human cells and tissues, to advance our understanding of mechanisms of asthma, eosinophilic esophagitis, food allergy, anaphylaxis and immediate hypersensitivity, mast cells and their disorders, atopic dermatitis, nasal polyposis, and hypereosinophilic syndromes. Additional studies provided novel information about the induction and regulation of allergic inflammation and the genetic contribution to allergic inflammation. Critical features of these studies and their potential effects on human atopic disorders are summarized here.
Collapse
Affiliation(s)
- David H Broide
- Department of Medicine, Section of Allergy and Immunology, University of California at San Diego, Calif, USA
| | | | | | | |
Collapse
|