1
|
Sahnoon L, Bajbouj K, Mahboub B, Hamoudi R, Hamid Q. Targeting IL-13 and IL-4 in Asthma: Therapeutic Implications on Airway Remodeling in Severe Asthma. Clin Rev Allergy Immunol 2025; 68:44. [PMID: 40257546 PMCID: PMC12011922 DOI: 10.1007/s12016-025-09045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Asthma is a chronic respiratory disorder affecting individuals across all age groups. It is characterized by airway inflammation and remodeling and leads to progressive airflow restriction. While corticosteroids remain a mainstay therapy, their efficacy is limited in severe asthma due to genetic and epigenetic alterations, as well as elevated pro-inflammatory cytokines interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), which drive structural airway changes including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. This underscores the critical need for biologically targeted therapies. This review systematically examines the roles of IL-4 and IL-13, key drivers of type-2 inflammation, in airway remodeling and their potential as therapeutic targets. IL-4 orchestrates eosinophil recruitment, immunoglobulin class switching, and Th2 differentiation, whereas IL-13 directly modulates structural cells, including fibroblasts and epithelial cells, to promote mucus hypersecretion and extracellular matrix (ECM) deposition. Despite shared signaling pathways, IL-13 emerges as the dominant cytokine in remodeling processes including mucus hypersecretion, fibrosis and smooth muscle hypertrophy. While IL-4 primarily amplifies inflammatory cascades by driving IgE switching, promoting Th2 cell polarization that sustain cytokine release, and inducing chemokines to recruit eosinophils. In steroid-resistant severe asthma, biologics targeting IL-4/IL-13 show promise in reducing exacerbations and eosinophilic inflammation. However, their capacity to reverse established remodeling remains inconsistent, as clinical trials prioritize inflammatory biomarkers over long-term structural outcomes. This synthesis highlights critical gaps in understanding the durability of IL-4/IL-13 inhibition on airway structure and advocates for therapies combining biologics with remodeling-specific strategies. Through the integration of mechanistic insights and clinical evidence, this review emphasizes the need for long-term studies utilizing advanced imaging, histopathological techniques, and patient-reported outcomes to evaluate how IL-4/IL-13-targeted therapies alter airway remodeling and symptom burden, thereby informing more effective treatment approaches for severe, steroid-resistant asthma.
Collapse
Affiliation(s)
- Lina Sahnoon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health, 4545, Dubai, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
2
|
Brown AC, Carroll OR, Mayall JR, Zounemat-Kermani N, Vinzenz SLE, Gomez HM, Mills EF, Kim RY, Donovan C, Baines KJ, Williams EJ, Berthon BS, Wynne K, Scott HA, Pinkerton JW, Guo Y, Hansbro PM, Foster PS, Wark PAB, Dahlen SE, Adcock IM, Wood LG, Horvat JC. Female sex hormones and the oral contraceptive pill modulate asthma severity through GLUT-1. Mucosal Immunol 2025:S1933-0219(25)00024-8. [PMID: 40021011 DOI: 10.1016/j.mucimm.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Females are disproportionately affected by asthma. An increased understanding of how female sex hormones influence key pathophysiological processes that underpin asthma may identify new, more effective asthma therapies, particularly for females with severe, poorly controlled asthma. We assessed the effects of oral ethinylestradiol/levonorgestrel (representing OCP use) and depot-medroxyprogesterone acetate (DMPA) and estradiol injections on key features of experimental asthma, and determined their effects on glucose transporter-1 (GLUT-1). The effects of OCP use on clinical asthma outcomes, and the relationships between estrogen receptors and type 2 (T2), non-T2, and GLUT-1 responses, in clinical asthma were also determined. OCP and DMPA reduce T2 responses, disease features, and lung expression of GLUT-1, whereas estradiol increases lung expression of GLUT-1, and results in severe, corticosteroid-insensitive, neutrophil-enriched disease, in experimental asthma. OCP use is associated with reduced T2 cytokine and GLUT-1 responses in clinical asthma. GLUT-1 expression is increased in sputum of severe asthmatics, and positively correlates with estrogen receptor expression and both T2 and non-T2 inflammatory responses. Significantly, OCP or GLUT-1 inhibition protects against obesity-associated or estradiol-induced, severe, experimental asthma, respectively. Together, these data show how female sex hormones and the OCP likely modulate asthma severity by modifying GLUT-1 responses in the airways.
Collapse
Affiliation(s)
- Alexandra C Brown
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Olivia R Carroll
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jemma R Mayall
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | | | - Samantha L E Vinzenz
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Ed F Mills
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Richard Y Kim
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia; Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Chantal Donovan
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia; Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Katherine J Baines
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Evan J Williams
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bronwyn S Berthon
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Katie Wynne
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Hayley A Scott
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - James W Pinkerton
- Respiratory Pharmacology & Toxicology Group, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Hong Kong University of Science and Technology, Hong Kong
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Paul S Foster
- Woolcock Institute of Medical Research and Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter A B Wark
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sven-Erik Dahlen
- Clinical Lung and Allergy Research Unit, Department of Medicine Huddinge, Karolinska Institutet, and, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, and Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- The Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Lisa G Wood
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.
| |
Collapse
|
3
|
Jude JA, Panettieri RA. Bronchomotor tone imbalance evokes airway hyperresponsiveness. Expert Rev Respir Med 2024; 18:835-841. [PMID: 39435484 PMCID: PMC11580617 DOI: 10.1080/17476348.2024.2419543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Obstructive airway diseases asthma and COPD represent a significant healthcare burden. Airway hyperresponsiveness (AHR), a salient feature of these two diseases, remains the main therapeutic target. Airway smooth muscle (ASM) cell is pivotal for bronchomotor tone and development of AHR in airway diseases. The contractile and relaxation processes in ASM cells maintain a homeostatic bronchomotor tone. It is critical to understand the molecular mechanisms that disrupt the homeostasis to identify novel therapeutic strategies for AHR. AREAS COVERED Based on review of literature and published findings from our laboratory, we describe intrinsic and extrinsic factors - disease phenotype, toxicants, inflammatory/remodeling mediators- that amplify excitation-contraction (E-C) coupling and ASM shortening and or diminish relaxation to alter bronchomotor homeostasis. We posit that an understanding of the ASM mechanisms involved in bronchomotor tone imbalance will provide platforms to develop novel therapeutic approaches to treat AHR in asthma and COPD. EXPERT OPINION Contractile and relaxation processes in ASM cell are modulated by intrinsic and extrinsic factors to elicit bronchomotor tone imbalance. Innovative experimental approaches will serve as essential tools for elucidating the imbalance mechanisms and to identify novel therapeutic targets for AHR.
Collapse
Affiliation(s)
- Joseph A. Jude
- Rutgers Institute for Translational Medicine and Science, Child Health
Institute of New Jersey, Rutgers, The State University of New Jersey, 89 French
Street, Suite 4210, New Brunswick, NJ 08901, United States
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health
Institute of New Jersey, Rutgers, The State University of New Jersey, 89 French
Street, Suite 4210, New Brunswick, NJ 08901, United States
| |
Collapse
|
4
|
Ishmael L, Casale T, Cardet JC. Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma. BIOLOGY 2024; 13:583. [PMID: 39194521 DOI: 10.3390/biology13080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Asthma is a chronic inflammatory lung disease. Refractory asthma poses a significant challenge in management due to its resistance to standard therapies. Key molecular pathways of refractory asthma include T2 inflammation mediated by Th2 and ILC2 cells, eosinophils, and cytokines including IL-4, IL-5, and IL-13. Additionally, non-T2 mechanisms involving neutrophils, macrophages, IL-1, IL-6, and IL-17 mediate a corticosteroid resistant phenotype. Mediators including alarmins (IL-25, IL-33, TSLP) and OX40L have overlap between T2 and non-T2 inflammation and may signify unique pathways of asthma inflammation. Therapies that target these pathways and mediators have proven to be effective in reducing exacerbations and improving lung function in subsets of severe asthma patients. However, there are patients with severe asthma who do not respond to approved therapies. Small molecule inhibitors, such as JAK-inhibitors, and monoclonal antibodies targeting mast cells, IL-1, IL-6, IL-33, TNFα, and OX40L are under investigation for their potential to modulate inflammation involved in refractory asthma. Understanding refractory asthma heterogeneity and identifying mediators involved are essential in developing therapeutic interventions for patients unresponsive to currently approved biologics. Further investigation is needed to develop personalized treatments based on these molecular insights to potentially offer more effective treatments for this complex disease.
Collapse
Affiliation(s)
- Leah Ishmael
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thomas Casale
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Mohamed MME, Amrani Y. Obesity Enhances Non-Th2 Airway Inflammation in a Murine Model of Allergic Asthma. Int J Mol Sci 2024; 25:6170. [PMID: 38892358 PMCID: PMC11172812 DOI: 10.3390/ijms25116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Obese patients with asthma present with aggravated symptoms that are also harder to treat. Here, we used a mouse model of allergic asthma sensitised and challenged to house dust mite (HDM) extracts to determine whether high-fat-diet consumption would exacerbate the key features of allergic airway inflammation. C57BL/6 mice were intranasally sensitised and challenged with HDM extracts over a duration of 3 weeks. The impact of high-fat-diet (HFD) vs. normal diet (ND) chow was studied on HDM-induced lung inflammation and inflammatory cell infiltration as well as cytokine production. HFD-fed mice had greater inflammatory cell infiltration around airways and blood vessels, and an overall more severe degree of inflammation than in the ND-fed mice (semiquantitative blinded evaluation). Quantitative assessment of HDM-associated Th2 responses (numbers of lung CD4+ T cells, eosinophils, serum levels of allergen-specific IgE as well as the expression of Th2 cytokines (Il5 and Il13)) did not show significant changes between the HFD and ND groups. Interestingly, the HFD group exhibited a more pronounced neutrophilic infiltration within their lung tissues and an increase in non-Th2 cytokines (Il17, Tnfa, Tgf-b, Il-1b). These findings provide additional evidence that obesity triggered by a high-fat-diet regimen may exacerbate asthma by involving non-Th2 and neutrophilic pathways.
Collapse
Affiliation(s)
| | - Yassine Amrani
- Department of Respiratory Sciences, Clinical Sciences, Glenfield Hospital, University of Leicester, Leicester LE3 9QP, UK;
| |
Collapse
|
7
|
Hussain M, Liu G. Eosinophilic Asthma: Pathophysiology and Therapeutic Horizons. Cells 2024; 13:384. [PMID: 38474348 PMCID: PMC10931088 DOI: 10.3390/cells13050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Asthma is a prevalent chronic non-communicable disease, affecting approximately 300 million people worldwide. It is characterized by significant airway inflammation, hyperresponsiveness, obstruction, and remodeling. Eosinophilic asthma, a subtype of asthma, involves the accumulation of eosinophils in the airways. These eosinophils release mediators and cytokines, contributing to severe airway inflammation and tissue damage. Emerging evidence suggests that targeting eosinophils could reduce airway remodeling and slow the progression of asthma. To achieve this, it is essential to understand the immunopathology of asthma, identify specific eosinophil-associated biomarkers, and categorize patients more accurately based on the clinical characteristics (phenotypes) and underlying pathobiological mechanisms (endotypes). This review delves into the role of eosinophils in exacerbating severe asthma, exploring various phenotypes and endotypes, as well as biomarkers. It also examines the current and emerging biological agents that target eosinophils in eosinophilic asthma. By focusing on these aspects, both researchers and clinicians can advance the development of targeted therapies to combat eosinophilic pathology in severe asthma.
Collapse
Affiliation(s)
- Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Abrami M, Biasin A, Tescione F, Tierno D, Dapas B, Carbone A, Grassi G, Conese M, Di Gioia S, Larobina D, Grassi M. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int J Mol Sci 2024; 25:1933. [PMID: 38339210 PMCID: PMC10856136 DOI: 10.3390/ijms25031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Fabiana Tescione
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| |
Collapse
|
9
|
An J, Jeong S, Park K, Jin H, Park J, Shin E, Lee JH, Song WJ, Kwon HS, Cho YS, Lee JE, Won S, Kim TB. Blood transcriptome differentiates clinical clusters for asthma. World Allergy Organ J 2024; 17:100871. [PMID: 38317769 PMCID: PMC10839776 DOI: 10.1016/j.waojou.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Background In previous studies, several asthma phenotypes were identified using clinical and demographic parameters. Transcriptional phenotypes were mainly identified using sputum and bronchial cells. Objective We aimed to investigate asthma phenotypes via clustering analysis using clinical variables and compare the transcription levels among clusters using gene expression profiling of the blood. Methods Clustering analysis was performed using 6 parameters: age of asthma onset, body mass index, pack-years of smoking, forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity, and blood eosinophil counts. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples and RNA was extracted from selected PBMCs. Transcriptional profiles were generated (Illumina NovaSeq 6000) and analyzed using the reference genome and gene annotation files (hg19.refGene.gft). Pathway enrichment analysis was conducted using GO, KEGG, and REACTOME databases. Results In total, 355 patients with asthma were included in the analysis, of whom 72 (20.3%) had severe asthma. Clustering of the 6 parameters revealed 4 distinct subtypes. Cluster 1 (n = 63) had lower predicted FEV1 % and higher pack-years of smoking and neutrophils in sputum. Cluster 2 (n = 43) had a higher proportion and number of eosinophils in sputum and blood, and severe airflow limitation. Cluster 3 (n = 110) consisted of younger subjects with atopic features. Cluster 4 (n = 139) included features of late-onset mild asthma. Differentially expressed genes between clusters 1 and 2 were related to inflammatory responses and cell activation. Th17 cell differentiation and interferon gamma-mediated signaling pathways were related to neutrophilic inflammation in asthma. Conclusion Four clinical clusters were differentiated based on clinical parameters and blood eosinophils in adult patients with asthma form the Cohort for Reality and Evolution of Adult Asthma in Korea (COREA) cohort. Gene expression profiling and molecular pathways are novel means of classifying asthma phenotypes.
Collapse
Affiliation(s)
- Jin An
- Department of Pulmonary, Allergy and Critical Care Medicine, College of Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Seungpil Jeong
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
| | | | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Zhan W, Luo W, Zhang Y, Xiang K, Chen X, Shen S, Huang C, Xu T, Ding W, Chen Y, Lin M, Pan X, Lai K. Sputum Transcriptomics Reveals FCN1+ Macrophage Activation in Mild Eosinophilic Asthma Compared to Non-Asthmatic Eosinophilic Bronchitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:55-70. [PMID: 38262391 PMCID: PMC10823142 DOI: 10.4168/aair.2024.16.1.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/08/2023] [Accepted: 08/05/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Eosinophilic asthma (EA) and non-asthmatic eosinophilic bronchitis (EB) share similar eosinophilic airway inflammation. Unlike EA, EB did not present airway hyperresponsiveness or airflow obstruction. We aimed to compare the mechanism underlying the different manifestations between EA and EB via sputum transcriptomics analysis. METHODS Induced-sputum cells from newly physician-diagnosed EA, EB patients, and healthy controls (HCs) were collected for RNA sequencing. RESULTS Bulk RNA sequencing was performed using sputum cells from patients with EA (n = 18), EB (n = 15) and HCs (n = 28). Principal component analysis revealed similar gene expression patterns in EA and EB. The most differentially expressed genes in EB compared with HC were also shared by EA, including IL4, IL5 IL13, CLC, CPA3, and DNASE1L3. However, gene set enrichment analysis showed that the signatures regulating macrophage activation were enriched in EA compared to EB. Sputum cells were profiled using single-cell RNA sequencing. FABP4+ macrophages, SPP1+ macrophages, FCN1+ macrophages, dendritic cells, T cells, B cells, mast cells, and epithelial cells were identified based on gene expression profiling. Analysis of cell-cell communication revealed that interactions between FCN1+ macrophages and other cells were higher in EA than in EB. A wealth of transforming growth factor beta (TGF-β) and vascular endothelial growth factor (VEGF) interactions between FCN1+ macrophages and other cells have been shown in EA. The gene expression levels of EREG, TGFBI, and VEGFA in FCN1+ macrophages of EA were significantly higher than those of EB. Furthermore, signatures associated with the response to TGF-β, cellular response to VEGF stimulus and developmental cell growth were enriched in FCN1+ macrophages of EA compared to those of EB. CONCLUSIONS FCN1+ macrophage activation associated with airway remodeling processes was upregulated in EA compared to that in EB, which may contribute to airway hyperresponsiveness and airflow obstruction.
Collapse
Affiliation(s)
- Wenzhi Zhan
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Keheng Xiang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuirong Shen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqing Huang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tingting Xu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenbin Ding
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuehan Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingtong Lin
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Kefang Lai
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Pathak MP, Patowary P, Chattopadhyay P, Barbhuiyan PA, Islam J, Gogoi J, Wankhar W. Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and Possible Pharmacological Interventions. Endocr Metab Immune Disord Drug Targets 2024; 24:1053-1068. [PMID: 37957906 DOI: 10.2174/0118715303256440231028072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Obesity is rapidly becoming a global health problem affecting about 13% of the world's population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.
Collapse
Affiliation(s)
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | | | | | - Johirul Islam
- Department of Pharmaceutical Sciences, School of Health Sciences, Assam Kaziranga University, Jorhat, India
| | - Jyotchna Gogoi
- Department of Biochemistry, Faculty of Science, Assam Down Town University, Guwahati, India
| | - Wankupar Wankhar
- Department of Dialysis, Faculty of Paramedical Science, Assam Down Town University, Guwahati, India
| |
Collapse
|
12
|
Pain P, Spinelli F, Gherardi G. Mitochondrial Cation Signalling in the Control of Inflammatory Processes. Int J Mol Sci 2023; 24:16724. [PMID: 38069047 PMCID: PMC10706693 DOI: 10.3390/ijms242316724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are the bioenergetic organelles responsible for the maintenance of cellular homeostasis and have also been found to be associated with inflammation. They are necessary to induce and maintain innate and adaptive immune cell responses, acting as signalling platforms and mediators in effector responses. These organelles are also known to play a pivotal role in cation homeostasis as well, which regulates the inflammatory responses through the modulation of these cation channels. In particular, this review focuses on mitochondrial Ca2+ and K+ fluxes in the regulation of inflammatory response. Nevertheless, this review aims to understand the interplay of these inflammation inducers and pathophysiological conditions. In detail, we discuss some examples of chronic inflammation such as lung, bowel, and metabolic inflammatory diseases caused by a persistent activation of the innate immune response due to a dysregulation of mitochondrial cation homeostasis.
Collapse
Affiliation(s)
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (P.P.); (F.S.)
| |
Collapse
|
13
|
Kidwai S, Barbiero P, Meijerman I, Tonda A, Perez‐Pardo P, Lio ´ P, van der Maitland‐Zee AH, Oberski DL, Kraneveld AD, Lopez‐Rincon A. A robust mRNA signature obtained via recursive ensemble feature selection predicts the responsiveness of omalizumab in moderate-to-severe asthma. Clin Transl Allergy 2023; 13:e12306. [PMID: 38006387 PMCID: PMC10655633 DOI: 10.1002/clt2.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Not being well controlled by therapy with inhaled corticosteroids and long-acting β2 agonist bronchodilators is a major concern for severe-asthma patients. The current treatment option for these patients is the use of biologicals such as anti-IgE treatment, omalizumab, as an add-on therapy. Despite the accepted use of omalizumab, patients do not always benefit from it. Therefore, there is a need to identify reliable biomarkers as predictors of omalizumab response. METHODS Two novel computational algorithms, machine-learning based Recursive Ensemble Feature Selection (REFS) and rule-based algorithm Logic Explainable Networks (LEN), were used on open accessible mRNA expression data from moderate-to-severe asthma patients to identify genes as predictors of omalizumab response. RESULTS With REFS, the number of features was reduced from 28,402 genes to 5 genes while obtaining a cross-validated accuracy of 0.975. The 5 responsiveness predictive genes encode the following proteins: Coiled-coil domain- containing protein 113 (CCDC113), Solute Carrier Family 26 Member 8 (SLC26A), Protein Phosphatase 1 Regulatory Subunit 3D (PPP1R3D), C-Type lectin Domain Family 4 member C (CLEC4C) and LOC100131780 (not annotated). The LEN algorithm found 4 identical genes with REFS: CCDC113, SLC26A8 PPP1R3D and LOC100131780. Literature research showed that the 4 identified responsiveness predicting genes are associated with mucosal immunity, cell metabolism, and airway remodeling. CONCLUSION AND CLINICAL RELEVANCE Both computational methods show 4 identical genes as predictors of omalizumab response in moderate-to-severe asthma patients. The obtained high accuracy indicates that our approach has potential in clinical settings. Future studies in relevant cohort data should validate our computational approach.
Collapse
Affiliation(s)
- Sarah Kidwai
- Division of PharmacologyUtrecht Institute for Pharmaceutical ScienceFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Pietro Barbiero
- Department of Computer Science and TechnologyUniversity of CambridgeCambridgeUK
| | - Irma Meijerman
- Division of PharmacologyUtrecht Institute for Pharmaceutical ScienceFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | | | - Paula Perez‐Pardo
- Division of PharmacologyUtrecht Institute for Pharmaceutical ScienceFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Pietro Lio ´
- Department of Computer Science and TechnologyUniversity of CambridgeCambridgeUK
| | | | - Daniel L. Oberski
- Department of Data ScienceUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Aletta D. Kraneveld
- Division of PharmacologyUtrecht Institute for Pharmaceutical ScienceFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Alejandro Lopez‐Rincon
- Division of PharmacologyUtrecht Institute for Pharmaceutical ScienceFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Data ScienceUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
14
|
Cho H, Park NJY, Ko J, Lee CW, Lee JK, Maeng YI, Go H. Pellino-1 expression is associated with epidermal proliferation and enhanced Th17 cell infiltration in psoriatic lesions. Exp Dermatol 2023; 32:1476-1484. [PMID: 37291939 DOI: 10.1111/exd.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Pellino-1 plays a crucial role in cellular proliferation and regulates inflammatory processes. This study investigated Pellino-1 expression patterns and their relationship with CD4+ T-cell subsets in psoriasis patients. Group 1 comprised primarily biopsied psoriasis lesions from 378 patients, multiplex-immunostained for Pellino-1, CD4 and representative T helper (Th) cells (T-bet [Th1], GATA3 [Th2], and RORγt [Th17] and regulatory T cell [FoxP3] markers). Ki-67 labeling was evaluated in the epidermis. Group 2 comprised 43 Pellino-1-positive cases immunostained for Pellino-1 in both lesion and non-lesion skin biopsy samples. Five normal skin biopsies served as controls. Among 378 psoriasis cases, 293 (77.5%) were positive for Pellino-1 in the epidermis. Pellino-1-positivity was higher in psoriasis lesions than in non-lesions and normal skin (52.55% vs. 40.43% vs. 3.48%, p < 0.001; H-score, 72.08 vs. 47.55 vs. 4.40, p < 0.001, respectively). Pellino-1-positive cases also had a significantly higher Ki-67 labeling index (p < 0.001). Epidermal Pellino1-positivity was significantly associated with higher RORγt+ (p = 0.001) and FoxP3+ (p < 0.001) CD4+ T cell ratios but not T-bet+ and GATA3+ CD4+ T cell ratios. Among the CD4+ Pellino-1+ T-cell subsets, the CD4+ Pellino-1+ RORγt+ ratio was significantly associated with epidermal Pellinio-1 expression (p < 0.001). Pellino-1 expression is thus increased in psoriasis lesions and associated with increased epidermal proliferation and CD4+ T-cell subset infiltration, especially Th17 cells. This suggests that Pellino-1 could be a therapeutic target that simultaneously regulates psoriasis epidermal proliferation and immune interactions.
Collapse
Affiliation(s)
- Haeyon Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Research Institute, Curogen Co., Ltd., Suwon, Republic of Korea
| | - Jin-Kwan Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Research Institute, Curogen Co., Ltd., Suwon, Republic of Korea
| | - Young-In Maeng
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Zhang C, Xu H, Netto KG, Sokulsky LA, Miao Y, Mo Z, Meng Y, Du Y, Wu C, Han L, Zhang L, Liu C, Zhang G, Li F, Yang M. Inhibition of γ-glutamyl transferase suppresses airway hyperresponsiveness and airway inflammation in a mouse model of steroid resistant asthma exacerbation. Front Immunol 2023; 14:1132939. [PMID: 37377967 PMCID: PMC10292800 DOI: 10.3389/fimmu.2023.1132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Despite recent advances, there are limited treatments available for acute asthma exacerbations. Here, we investigated the therapeutic potential of GGsTop, a γ-glutamyl transferase inhibitor, on the disease with a murine model of asthma exacerbation. Methods GGsTop was administered to mice that received lipopolysaccharide (LPS) and ovalbumin (OVA) challenges. Airway hyperresponsiveness (AHR), lung histology, mucus hypersecretion, and collagen deposition were analyzed to evaluate the hallmark features of asthma exacerbation. The level of proinflammatory cytokines and glutathione were determined with/without GGsTop. The transcription profiles were also examined. Results GGsTop attenuates hallmark features of the disease with a murine model of LPS and OVA driven asthma exacerbation. Airway hyperresponsiveness (AHR), mucus hypersecretion, collagen deposition, and expression of inflammatory cytokines were dramatically inhibited by GGsTop treatment. Additionally, GGsTop restored the level of glutathione. Using RNA-sequencing and pathway analysis, we demonstrated that the activation of LPS/NFκB signaling pathway in airway was downregulated by GGsTop. Interestingly, further analysis revealed that GGsTop significantly inhibited not only IFNγ responses but also the expression of glucocorticoid-associated molecules, implicating that GGsTop profoundly attenuates inflammatory pathways. Conclusions Our study suggests that GGsTop is a viable treatment for asthma exacerbation by broadly inhibiting the activation of multiple inflammatory pathways.
Collapse
Affiliation(s)
- Cancan Zhang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huisha Xu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keilah G. Netto
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Leon A. Sokulsky
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yiyan Miao
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Mo
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Meng
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Du
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chengyong Wu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liyou Han
- Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, Japan
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguang Li
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
16
|
Alqarni SA, Ahmad SF, Alqahtani F, Al-Harbi NO, Alshehri S, Ibrahim KE, Alfardan AS, Attia SM, Nadeem A. Inhibition of non-receptor tyrosine kinase LCK partially mitigates mixed granulocytic airway inflammation in a murine model of asthma. Int Immunopharmacol 2023; 119:110225. [PMID: 37119678 DOI: 10.1016/j.intimp.2023.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Asthma affects millions of people worldwide and is one of the most common inflammatory airway diseases. Asthma phenotypes are quite complex and categorized as eosinophilic, mixed granulocytic (presence of both eosinophils and neutrophils in the airways) and neutrophilic. Mixed granulocytic asthma requires large doses of inhaled corticosteroids, which are often insufficient in controlling airway inflammation. Therefore, there is a medical need to test newer therapies to control granulocytic inflammation. Lymphocyte specific protein tyrosine kinase (LCK) signaling has gained momentum in recent years as a molecular target in inflammatory diseases such as asthma. LCK is expressed in lymphocytes and is required for inflammatory intracellular signaling in response to antigenic stimulation. Therefore, efficacy of LCK inhibitor, A770041 was tested in cockroach (CE)-induced corticosteroid insensitive murine model of asthma. The effect of LCK inhibitor was investigated on granulocytic airway inflammation, mucus production, p-LCK and downstream signaling molecules such as p-PLCγ, GATA3, p-STAT3 in CD4+ T cells. Moreover, its effects were also studied on Th2/Th17 related cytokines and oxidative stress parameters (iNOS/nitrotyrosine) in neutrophils/macrophages. Our study shows that CE-induced p-LCK levels are concomitant with increased neutrophilic/eosinophilic inflammation and mucus hypersecretion which are significantly mitigated by A770041 treatment. A770041 also caused marked attenuation of CE-induced pulmonary levels of IL-17A levels but not completely. However, A770041 in combination with dexamethasone caused complete downregulation of mixed granulocytic airway inflammation as well as Th2/Th17 related immune responses. These results suggest that combination of LCK inhibition along with corticosteroids may be pursued as an alternative strategy to completely treat mixed granulocytic asthma.
Collapse
Affiliation(s)
- Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Feng Y, Liu X, Wang Y, Du R, Mao H. Delineating asthma according to inflammation phenotypes with a focus on paucigranulocytic asthma. Chin Med J (Engl) 2023:00029330-990000000-00572. [PMID: 37185590 DOI: 10.1097/cm9.0000000000002456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 05/17/2023] Open
Abstract
ABSTRACT Asthma is characterized by chronic airway inflammation and airway hyper-responsiveness. However, the differences in pathophysiology and phenotypic symptomology make a diagnosis of "asthma" too broad hindering individualized treatment. Four asthmatic inflammatory phenotypes have been identified based on inflammatory cell profiles in sputum: eosinophilic, neutrophilic, paucigranulocytic, and mixed-granulocytic. Paucigranulocytic asthma may be one of the most common phenotypes in stable asthmatic patients, yet it remains much less studied than the other inflammatory phenotypes. Understanding of paucigranulocytic asthma in terms of phenotypic discrimination, distribution, stability, surrogate biomarkers, underlying pathophysiology, clinical characteristics, and current therapies is fragmented, which impedes clinical management of patients. This review brings together existing knowledge and ongoing research about asthma phenotypes, with a focus on paucigranulocytic asthma, in order to present a comprehensive picture that may clarify specific inflammatory phenotypes and thus improve clinical diagnoses and disease management.
Collapse
Affiliation(s)
- Yinhe Feng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyin Liu
- West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yubin Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Mao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Nadeem A, Alshehri S, Al-Harbi NO, Ahmad SF, Albekairi NA, Alqarni SA, Ibrahim KE, Alfardan AS, Alshamrani AA, Bin Salman SB, Attia SM. Bruton's tyrosine kinase inhibition suppresses neutrophilic inflammation and restores histone deacetylase 2 expression in myeloid and structural cells in a mixed granulocytic mouse model of asthma. Int Immunopharmacol 2023; 117:109920. [PMID: 36827920 DOI: 10.1016/j.intimp.2023.109920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Asthmatic inflammation is not a single homogenous inflammation but may be categorized into several phenotypes/endotypes. Severe asthma is characterized by mixed granulocytic inflammation in which there is increased presence of neutrophilic numbers and unresponsiveness to corticosteroids. Neutrophilic oxidative stress and histone deacetylase 2 (HDAC2) dysregulation in the pulmonary compartment are thought to lead to corticosteroid insensitivity in severe asthma with mixed granulocytic inflammation. Bruton's tyrosine kinase (BTK) is a no-receptor tyrosine kinase which is expressed in innate immune cells such as neutrophils and dendritic cells (DCs) where it is incriminated in balancing of inflammatory signaling. We hypothesized in this study that BTK inhibition strategy could be utilized to restore corticosteroid responsiveness in mixed granulocytic asthma. Therefore, combined therapy of BTK inhibitor (ibrutinib) and corticosteroid, dexamethasone was administered in cockroach allergen extract (CE)-induced mixed granulocyte airway inflammation model in mice. Our data show that CE-induced neutrophilic inflammation was concomitant with HDAC2 expression and upregulation of p-NFkB expression in airway epithelial cells (AECs), myeloid cells and pulmonary tissue. Further, there were increased expression/release of inflammatory and oxidative mediators such as MUC5AC, TNF-α, GM-CSF, MCP-1, iNOS, nitrotyrosine, MPO, lipid peroxides in AECs/myeloid cells/pulmonary tissue. Dexamethasone alone significantly attenuated eosinophilic inflammation and inflammatory cytokines but was not able to control oxidative inflammation. Ibrutinib alone markedly reduced neutrophilic infiltration and oxidative inflammation, and restored HDAC2 without having any significant effect on eosinophilic inflammation. These data suggest that BTK inhibition strategy may be used in conjunction with dexamethasone to treat both neutrophilic and eosinophilic inflammation, i.e. mixed granulocytic asthma.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Samiyah Alshehri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaild E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami B Bin Salman
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Lin H, Li H. How does cigarette smoking affect airway remodeling in asthmatics? Tob Induc Dis 2023; 21:13. [PMID: 36741543 PMCID: PMC9881586 DOI: 10.18332/tid/156047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 01/30/2023] Open
Abstract
Asthma is a prevalent chronic airway inflammatory disease involving multiple cells, and the prolonged course of the disease can cause airway remodeling, resulting in irreversible or partial irreversible airflow limitation and persistent airway hyperresponsiveness (AHR) in asthmatics. Therefore, we must ascertain the factors that affect the occurrence and development of airway remodeling in asthmatics. Smokers are not uncommon in asthmatics. However, there is no systematic description of how smoking promotes airway remodeling in asthmatics. This narrative review summarizes the effects of smoking on airway remodeling in asthmatics, and the progress of the methods for evaluating airway remodeling.
Collapse
Affiliation(s)
- Huihui Lin
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
20
|
Drake LY, Koloko Ngassie ML, Roos BB, Teske JJ, Prakash YS. Asthmatic lung fibroblasts promote type 2 immune responses via endoplasmic reticulum stress response dependent thymic stromal lymphopoietin secretion. Front Physiol 2023; 14:1064822. [PMID: 36760534 PMCID: PMC9907026 DOI: 10.3389/fphys.2023.1064822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Lung fibroblasts contribute to asthma pathology partly through modulation of the immune environment in the airway. Tumor necrosis factor-α (TNFα) expression is upregulated in asthmatic lungs. How asthmatic lung fibroblasts respond to TNFα stimulation and subsequently regulate immune responses is not well understood. Endoplasmic reticulum (ER) stress and unfolded protein responses (UPR) play important roles in asthma, but their functional roles are still under investigation. In this study, we investigated TNFα-induced cytokine production in primary lung fibroblasts from asthmatic vs. non-asthmatic human subjects, and downstream effects on type 2 immune responses. TNFα significantly upregulated IL-6, IL-8, C-C motif chemokine ligand 5 (CCL5), and thymic stromal lymphopoietin (TSLP) mRNA expression and protein secretion by lung fibroblasts. Asthmatic lung fibroblasts secreted higher levels of TSLP which promoted IL-33-induced IL-5 and IL-13 production by peripheral blood mononuclear cells. TNFα exposure enhanced expression of ER stress/UPR pathways in both asthmatic and non-asthmatic lung fibroblasts, especially inositol-requiring protein 1α in asthmatics. ER stress/UPR inhibitors decreased IL-6, CCL5, and TSLP protein secretion by asthmatic lung fibroblasts. Our data suggest that TNFα and lung fibroblasts form an important axis in asthmatic lungs to promote asthmatic inflammation that can be attenuated by inhibiting ER stress/UPR pathway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,*Correspondence: Li Y. Drake,
| | - Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
21
|
Britt RD, Porter N, Grayson MH, Gowdy KM, Ballinger M, Wada K, Kim HY, Guerau-de-Arellano M. Sterols and immune mechanisms in asthma. J Allergy Clin Immunol 2023; 151:47-59. [PMID: 37138729 PMCID: PMC10151016 DOI: 10.1016/j.jaci.2022.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The field of sterol and oxysterol biology in lung disease has recently gained attention, revealing a unique need for sterol uptake and metabolism in the lung. The presence of cholesterol transport, biosynthesis, and sterol/oxysterol-mediated signaling in immune cells suggests a role in immune regulation. In support of this idea, statin drugs that inhibit the cholesterol biosynthesis rate-limiting step enzyme, hydroxymethyl glutaryl coenzyme A reductase, show immunomodulatory activity in several models of inflammation. Studies in human asthma reveal contradicting results, whereas promising retrospective studies suggest benefits of statins in severe asthma. Here, we provide a timely review by discussing the role of sterols in immune responses in asthma, analytical tools to evaluate the role of sterols in disease, and potential mechanistic pathways and targets relevant to asthma. Our review reveals the importance of sterols in immune processes and highlights the need for further research to solve critical gaps in the field.
Collapse
Affiliation(s)
- Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Department of Pediatrics, The Ohio State University, Columbus
| | - Ned Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mitchell H. Grayson
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, Columbus
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Megan Ballinger
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Kara Wada
- Department of Otolaryngology, Wexner Medical Center, Columbus
| | - Hye-Young Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Columbus
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
- Department of Neuroscience, The Ohio State University, Columbus
| |
Collapse
|
22
|
Suzukawa M, Ohta K, Fukutomi Y, Hashimoto H, Endo T, Abe M, Kamide Y, Yoshida M, Kikuchi Y, Kita T, Chibana K, Tanimoto Y, Hyodo K, Takata S, Inui T, Yasui M, Harada Y, Sato T, Sakakibara Y, Minakata Y, Inoue Y, Tamaki S, Shinohara T, Takami K, Tsubakihara M, Oki M, Wakamatsu K, Horiba M, Ideura G, Hidaka K, Saito AM, Kobayashi N, Taniguchi M. Classifications of moderate to severe asthma phenotypes in Japan and analysis of serum biomarkers: A Nationwide Cohort Study in Japan (NHOM Asthma Study). Allergol Int 2023; 72:63-74. [PMID: 35791991 DOI: 10.1016/j.alit.2022.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease, and phenotyping can facilitate understanding of disease pathogenesis and direct appropriate asthma treatment. This nationwide cohort study aimed to phenotype asthma patients in Japan and identify potential biomarkers to classify the phenotypes. METHODS Adult asthma patients (n = 1925) from 27 national hospitals in Japan were enrolled and divided into Global Initiative for Asthma (GINA) steps 4 or 5 (GINA 4, 5) and GINA Steps 1, 2, or 3 (GINA 1-3) for therapy. Clinical data and questionnaires were collected. Biomarker levels among GINA 4, 5 patients were measured. Ward's minimum variance hierarchical clustering method and tree analysis were performed for phenotyping. Analysis of variance, the Kruskal-Wallis, and chi-square tests were used to compare cluster differences. RESULTS The following five clusters were identified: 1) late-onset, old, less-atopic; 2) late-onset, old, eosinophilic, low FEV1; 3) early-onset, long-duration, atopic, poorly controlled; 4) early-onset, young, female-dominant, atopic; and 5) female-dominant, T1/T2-mixed, most severe. Age of onset, disease duration, blood eosinophils and neutrophils, asthma control questionnaire Sum 6, number of controllers, FEV1, body mass index (BMI), and hypertension were the phenotype-classifying variables determined by tree analysis that assigned 79.5% to the appropriate cluster. Among the cytokines measured, IL-1RA, YKL40/CHI3L1, IP-10/CXCL10, RANTES/CCL5, and TIMP-1 were useful biomarkers for classifying GINA 4, 5 phenotypes. CONCLUSIONS Five distinct phenotypes were identified for moderate to severe asthma and may be classified using clinical and molecular variables (Registered in UMIN-CTR; UMIN000027776.).
Collapse
Affiliation(s)
- Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, Tokyo, Japan.
| | - Yuma Fukutomi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Hiroya Hashimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeo Endo
- National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Masahiro Abe
- National Hospital Organization Ehime Medical Center, Ehime, Japan
| | - Yosuke Kamide
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Makoto Yoshida
- National Hospital Organization Fukuoka National Hospital, Fukuoka, Japan
| | | | - Toshiyuki Kita
- National Hospital Organization Kanazawa Medical Center, Ishikawa, Japan
| | - Kenji Chibana
- National Hospital Organization Okinawa National Hospital, Okinawa, Japan
| | - Yasushi Tanimoto
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Kentaro Hyodo
- National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
| | - Shohei Takata
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Toshiya Inui
- National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Masahide Yasui
- National Hospital Organization Nanao National Hospital, Ishikawa, Japan
| | - Yoshinori Harada
- Department of Rheumatology & Allergology, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Toshio Sato
- National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Yumi Sakakibara
- Federation of National Public Service Personnel Mutual Aid Associations Hiratsuka Kyosai Hospital, Kanagawa, Japan
| | | | - Yoshikazu Inoue
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Shinji Tamaki
- National Hospital Organization Nara Medical Center, Nara, Japan
| | - Tsutomu Shinohara
- National Hospital Organization Kochi National Hospital, Kochi, Japan
| | - Kazutaka Takami
- Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
| | | | - Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Kentaro Wakamatsu
- National Hospital Organization Omuta National Hospital, Fukuoka, Japan
| | - Masahide Horiba
- Division of Respiratory Medicine, National Hospital Organization Higashisaitama National Hospital, Saitama, Japan
| | - Gen Ideura
- National Hospital Organization Shinshu Ueda Medical Center, Nagano, Japan
| | - Koko Hidaka
- National Hospital Organization Kokura Medical Center, Fukuoka, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Nobuyuki Kobayashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan; Fureai Machida Hospital, Tokyo, Japan
| | - Masami Taniguchi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan; Shonan Kamakura General Hospital, Kanagawa, Japan
| |
Collapse
|
23
|
Negewo NA, Gibson PG, Simpson JL, McDonald VM, Baines KJ. Severity of Lung Function Impairment Drives Transcriptional Phenotypes of COPD and Relates to Immune and Metabolic Processes. Int J Chron Obstruct Pulmon Dis 2023; 18:273-287. [PMID: 36942279 PMCID: PMC10024507 DOI: 10.2147/copd.s388297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Purpose This study sought to characterize transcriptional phenotypes of COPD through unsupervised clustering of sputum gene expression profiles, and further investigate mechanisms underlying the characteristics of these clusters. Patients and methods Induced sputum samples were collected from patients with stable COPD (n = 72) and healthy controls (n = 15). Induced sputum was collected for inflammatory cell counts, and RNA extracted. Transcriptional profiles were generated (Illumina Humanref-8 V2) and analyzed by GeneSpring GX14.9.1. Unsupervised hierarchical clustering and differential gene expression analysis were performed, and gene alterations validated in the ECLIPSE dataset (GSE22148). Results We identified 2 main clusters (Cluster 1 [n = 35] and Cluster 2 [n = 37]), which further divided into 4 sub-clusters (Sub-clusters 1.1 [n = 14], 1.2 [n = 21], 2.1 [n = 20] and 2.2 [n = 17]). Compared with Cluster 1, Cluster 2 was associated with significantly lower lung function (p = 0.014), more severe disease (p = 0.009) and breathlessness (p = 0.035), and increased sputum neutrophils (p = 0.031). Sub-cluster 1.1 had significantly higher proportion of people with comorbid cardiovascular disease compared to the other 3 sub-clusters (92.5% vs 57.1%, 50% and 52.9%, p < 0.013). Through supervised analysis we determined that degree of airflow limitation (GOLD stage) was the predominant factor driving gene expression differences in our transcriptional clusters. There were 452 genes (adjusted p < 0.05 and ≥2 fold) altered in GOLD stage 3 and 4 versus 1 and 2, of which 281 (62%) were also found to be significantly expressed between these GOLD stages in the ECLIPSE data set (GSE22148). Differentially expressed genes were largely downregulated in GOLD stages 3 and 4 and connected in 5 networks relating to lipoprotein and cholesterol metabolism; metabolic processes in oxidation/reduction and mitochondrial function; antigen processing and presentation; regulation of complement activation and innate immune responses; and immune and metabolic processes. Conclusion Severity of lung function drives 2 distinct transcriptional phenotypes of COPD and relates to immune and metabolic processes.
Collapse
Affiliation(s)
- Netsanet A Negewo
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Peter G Gibson
- Centre of Excellence in Treatable Traits, University of Newcastle, New Lambton Heights, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Centre, New Lambton Heights, NSW, Australia
| | - Jodie L Simpson
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vanessa M McDonald
- Centre of Excellence in Treatable Traits, University of Newcastle, New Lambton Heights, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Centre, New Lambton Heights, NSW, Australia
- School of Nursing and Midwifery, The University of Newcastle, Callaghan, NSW, Australia
| | - Katherine J Baines
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Correspondence: Katherine J Baines, Hunter Medical Research Institute, Level 2 East Wing, Locked Bag 1000, New Lambton Heights, NSW, 2305, Australia, Tel +61 2 40420090, Fax +61 2 40420046, Email
| |
Collapse
|
24
|
Kumar R, Gaur S, Agarwal M, Menon B, Goel N, Mrigpuri P, Spalgais S, Priya A, Kumar K, Meena R, Sankararaman N, Verma A, Gupta V, Sonal, Prakash A, Safwan MA, Behera D, Singh A, Arora N, Prasad R, Padukudru M, Kant S, Janmeja A, Mohan A, Jain V, Nagendra Prasad K, Nagaraju K, Goyal M. Indian Guidelines for diagnosis of respiratory allergy. INDIAN JOURNAL OF ALLERGY, ASTHMA AND IMMUNOLOGY 2023. [DOI: 10.4103/0972-6691.367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Ray A, Das J, Wenzel SE. Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning. Cell Rep Med 2022; 3:100857. [PMID: 36543110 PMCID: PMC9798025 DOI: 10.1016/j.xcrm.2022.100857] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
There is unprecedented opportunity to use machine learning to integrate high-dimensional molecular data with clinical characteristics to accurately diagnose and manage disease. Asthma is a complex and heterogeneous disease and cannot be solely explained by an aberrant type 2 (T2) immune response. Available and emerging multi-omics datasets of asthma show dysregulation of different biological pathways including those linked to T2 mechanisms. While T2-directed biologics have been life changing for many patients, they have not proven effective for many others despite similar biomarker profiles. Thus, there is a great need to close this gap to understand asthma heterogeneity, which can be achieved by harnessing and integrating the rich multi-omics asthma datasets and the corresponding clinical data. This article presents a compendium of machine learning approaches that can be utilized to bridge the gap between predictive biomarkers and actual causal signatures that are validated in clinical trials to ultimately establish true asthma endotypes.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, MUH 628 NW, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, MUH 628 NW, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Environmental Medicine and Occupational Health, School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Nannapaneni P, Sundh J, Prast-Nielsen S, Rhedin S, Örtqvist Å, Naucler P, Henriques-Normark B. Metatranscriptomics of Nasopharyngeal Microbiota and Host Distinguish between Pneumonia and Health. Am J Respir Crit Care Med 2022; 206:1564-1567. [PMID: 35947760 PMCID: PMC9757092 DOI: 10.1164/rccm.202203-0463le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | | | | | - Samuel Rhedin
- Karolinska InstitutetStockholm, Sweden,Sachs Children and Youth HospitalStockholm, Sweden
| | | | | | - Birgitta Henriques-Normark
- Karolinska InstitutetStockholm, Sweden,Karolinska University Hospital, SolnaStockholm, Sweden,Corresponding author (e-mail: )
| |
Collapse
|
27
|
Wang Y, Wan R, Peng W, Zhao X, Bai W, Hu C. Quercetin alleviates ferroptosis accompanied by reducing M1 macrophage polarization during neutrophilic airway inflammation. Eur J Pharmacol 2022; 938:175407. [PMID: 36417973 DOI: 10.1016/j.ejphar.2022.175407] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Ferroptosis is a kind of regulated cell death, supporting the pathological process of lung inflammation, including asthma. Quercetin (QCT), a kind of natural dietary flavonoid, exerts anti-inflammatory and anti-ferroptosis effects in various diseases. However, the role of QCT in ferroptosis-associated airway inflammation of neutrophilic asthma remains to be described. Our study aimed to investigate the therapeutic effects of QCT on neutrophilic airway inflammation of asthma. Ferrostatin-1 (Fer-1), as a kind of ferroptosis inhibitor, was used to demonstrate whether neutrophilic airway inflammation of asthma relied on ferroptosis. In our study, the alleviation effect of QCT on neutrophilic airway inflammation was similar to Fer-1. Moreover, the significantly decreased levels of ferroptosis anti-oxidant protein (GPX4 and SLC7A11), increased malondialdehyde (MDA) levels, upregulated levels of 4-hydroxynonenal (4-HNE) expression by immunohistochemistry, and distorted mitochondria morphological changes in the lung tissues suggested lung ferroptosis in neutrophilic airway inflammation, which could be reversed by QCT treatment. In vitro experiments showed that QCT reduced LPS-induced ferroptosis through upregulating cell viability and levels of ferroptosis anti-oxidant protein (SLC7A11 and GPX4), reducing inflammatory cytokines, and decreasing the levels of MDA. Furthermore, ferroptosis was accompanied by enhancing M1 phenotype in neutrophilic airway inflammation, and QCT suppressed ferroptosis by inhibiting the pro-inflammatory M1 profile in vitro and in vivo, just as Fer-1 did. In conclusion, our study found that QCT ameliorated ferroptosis-associated neutrophilic airway inflammation accompanied by inhibiting M1 macrophage polarization. QCT may be a promising ferroptosis inhibitor for neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Rongjun Wan
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wang Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xincheng Zhao
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Wenxuan Bai
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
28
|
Ackland J, Barber C, Heinson A, Azim A, Cleary DW, Christodoulides M, Kurukulaaratchy RJ, Howarth P, Wilkinson TMA, Staples KJ. Nontypeable Haemophilus influenzae infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. Allergy 2022; 77:2961-2973. [PMID: 35570583 PMCID: PMC9796932 DOI: 10.1111/all.15375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nontypeable Haemophilus influenzae (NTHi) is a respiratory tract pathobiont that chronically colonizes the airways of asthma patients and is associated with severe, neutrophilic disease phenotypes. The mechanism of NTHi airway persistence is not well understood, but accumulating evidence suggests NTHi can persist within host airway immune cells such as macrophages. We hypothesized that NTHi infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. METHODS Bronchoalveolar lavage (BAL) samples from 25 severe asthma patients were assessed by fluorescence in situ hybridisation to quantify NTHi presence. Weighted gene correlation network analysis (WGCNA) was performed on RNASeq data from NTHi-infected monocyte-derived macrophages to identify transcriptomic networks associated with NTHi infection. RESULTS NTHi was detected in 56% of BAL samples (NTHi+) and was associated with longer asthma duration (34 vs 22.5 years, p = .0436) and higher sputum neutrophil proportion (67% vs 25%, p = .0462). WGCNA identified a transcriptomic network of immune-related macrophage genes significantly associated with NTHi infection, including upregulation of T17 inflammatory mediators and neutrophil chemoattractants IL1B, IL8, IL23 and CCL20 (all p < .05). Macrophage network genes SGPP2 (p = .0221), IL1B (p = .0014) and GBP1 (p = .0477) were more highly expressed in NTHi+ BAL and moderately correlated with asthma duration (IL1B; rho = 0.41, p = .041) and lower prebronchodilator FEV1/FVC% (GBP1; rho = -0.43, p = .046 and IL1B; rho = -0.42, p = .055). CONCLUSIONS NTHi persistence with pulmonary macrophages may contribute to chronic airway inflammation and T17 responses in severe asthma, which can lead to decreased lung function and reduced steroid responsiveness. Identifying therapeutic strategies to reduce the burden of NTHi in asthma could improve patient outcomes.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Clair Barber
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Ashley Heinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Adnan Azim
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - David W. Cleary
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Myron Christodoulides
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Peter Howarth
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Tom M. A. Wilkinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | - Karl J. Staples
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | | |
Collapse
|
29
|
Sun J, Li Y. Pyroptosis and respiratory diseases: A review of current knowledge. Front Immunol 2022; 13:920464. [PMID: 36248872 PMCID: PMC9561627 DOI: 10.3389/fimmu.2022.920464] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a relatively newly discovered programmed cell death accompanied by an inflammatory response. In the classical view, pyroptosis is mediated by caspases-1,-4,-5,-11 and executed by GSDMD, however, recently it was demonstrated that caspase-3 and-8 also participate in the process of pyroptosis, by cleaving GSDMD/E and GSDMD respectively. Different from autophagy and apoptosis, many pores are formed on the cell membrane during pyroptosis, which makes the cell membrane lose its integrity, eventually leading to the release of cytokines interleukin(IL)-1β and IL-18. When the body is infected with pathogens or exposed to some stimulations, pyroptosis could play an immune defense role. It is found that pyroptosis exists widely in infectious and inflammatory respiratory diseases such as acute lung injury, bronchial dysplasia, chronic obstructive pulmonary disease, and asthma. Excessive pyroptosis may accompany airway inflammation, tissue injury, and airway damage, and induce an inflammatory reaction, leading to more serious damage and poor prognosis of respiratory diseases. This review summarizes the relationship between pyroptosis and related respiratory diseases.
Collapse
|
30
|
Formation and activity of NLRP3 inflammasome and histopathological changes in the lung of corpses with COVID-19. J Mol Histol 2022; 53:883-890. [PMID: 36100803 PMCID: PMC9470508 DOI: 10.1007/s10735-022-10101-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 09/02/2022] [Indexed: 12/03/2022]
Abstract
COVID-19 is a contagious disease that attacks many organs but the lungs are the main organs affected. The inflammasome activation results in the exacerbation of inflammatory response in infectious disease. The aim of this study is to investigate the formation and activity of the NLRP3 inflammasome complex and the histopathological changes caused by the coronavirus in the lung of deceased persons with COVID-19. In total, 10 corpses; 5 corpses with no history of any infectious diseases and COVID-19 and 5 corpses with the cause of death of COVID-19 were included in this study. Lung tissue samples were harvested during autopsy under safe conditions. Fresh tissues in each group were used to measure the genes expression and proteins level of NLRP3, ASC, Caspase-1, IL-1β, IL-6 and TNF-α and a routine hematoxylin and eosin staining was performed for histological assessment. Data are represented as the means ± SD. Statistical significance difference was accepted at a p-value less than 5%. The NLRP3, ASC, Caspase-1, IL-1β, IL-6 and TNF-α genes expression and proteins level were elevated in the lung of the COVID-19 group in comparison with the control group. Histological findings presented the increasing number of polymorphonuclear leukocytes, macrophages and also pulmonary fibrosis in the lungs of corpses with the cause of death of COVID-19. High expression of NLRP3 inflammasome components and its relation with the pathophysiology of the coronavirus-infected lung suggested that targeting the NLRP3 inflammasome could be helpful in achieving a more effective treatment in patients with COVID-19.
Collapse
|
31
|
Arellano-Orden E, Calero Acuña C, Sánchez-López V, López Ramírez C, Otero-Candelera R, Marín-Hinojosa C, López Campos J. Cellular mechanisms involved in the pathogenesis of airway remodeling in chronic lung disease. Eur Clin Respir J 2022; 9:2097377. [PMID: 35832729 PMCID: PMC9272929 DOI: 10.1080/20018525.2022.2097377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- E. Arellano-Orden
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Calero Acuña
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - V. Sánchez-López
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. López Ramírez
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - R. Otero-Candelera
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Marín-Hinojosa
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jl López Campos
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Porpodis K, Tsiouprou I, Apostolopoulos A, Ntontsi P, Fouka E, Papakosta D, Vliagoftis H, Domvri K. Eosinophilic Asthma, Phenotypes-Endotypes and Current Biomarkers of Choice. J Pers Med 2022; 12:jpm12071093. [PMID: 35887589 PMCID: PMC9316404 DOI: 10.3390/jpm12071093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Asthma phenotyping and endotyping are constantly evolving. Currently, several biologic agents have been developed towards a personalized approach to asthma management. This review will focus on different eosinophilic phenotypes and Th2-associated endotypes with eosinophilic inflammation. Additionally, airway remodeling is analyzed as a key feature of asthmatic eosinophilic endotypes. In addition, evidence of biomarkers is examined with a predictive value to identify patients with severe, uncontrolled asthma who may benefit from new treatment options. Finally, there will be a discussion on the results from clinical trials regarding severe eosinophilic asthma and how the inhibition of the eosinophilic pathway by targeted treatments has led to the reduction of recurrent exacerbations.
Collapse
Affiliation(s)
- Konstantinos Porpodis
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Ioanna Tsiouprou
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Apostolos Apostolopoulos
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Polyxeni Ntontsi
- 2nd University Department of Respiratory Medicine, Attikon Hospital, 12462 Athens, Greece;
| | - Evangelia Fouka
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Despoina Papakosta
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Harissios Vliagoftis
- Department of Medicine, University of Alberta, 567 HMRC, Edmonton, AB T6G 2S2, Canada;
| | - Kalliopi Domvri
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
- Laboratory of Histology-Embryology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2313307258
| |
Collapse
|
33
|
Sánchez‐Ovando S, Pavlidis S, Kermani NZ, Baines KJ, Barker D, Gibson PG, Wood LG, Adcock IM, Chung KF, Simpson JL, Wark PA. Pathways linked to unresolved inflammation and airway remodelling characterize the transcriptome in two independent severe asthma cohorts. Respirology 2022; 27:730-738. [PMID: 35673765 PMCID: PMC9540453 DOI: 10.1111/resp.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Background and objective Severe asthma (SA) is a heterogeneous disease. Transcriptomic analysis contributes to the understanding of pathogenesis necessary for developing new therapies. We sought to identify and validate mechanistic pathways of SA across two independent cohorts. Methods Transcriptomic profiles from U‐BIOPRED and Australian NOVocastrian Asthma cohorts were examined and grouped into SA, mild/moderate asthma (MMA) and healthy controls (HCs). Differentially expressed genes (DEGs), canonical pathways and gene sets were identified as central to SA mechanisms if they were significant across both cohorts in either endobronchial biopsies or induced sputum. Results Thirty‐six DEGs and four pathways were shared across cohorts linking to tissue remodelling/repair in biopsies of SA patients, including SUMOylation, NRF2 pathway and oxidative stress pathways. MMA presented a similar profile to HCs. Induced sputum demonstrated IL18R1 as a shared DEG in SA compared with healthy subjects. We identified enrichment of gene sets related to corticosteroid treatment; immune‐related mechanisms; activation of CD4+ T cells, mast cells and IL18R1; and airway remodelling in SA. Conclusion Our results identified differentially expressed pathways that highlight the role of CD4+ T cells, mast cells and pathways linked to ongoing airway remodelling, such as IL18R1, SUMOylation and NRF2 pathways, as likely active mechanisms in the pathogenesis of SA. Transcriptome analysis from endobronchial biopsies and induced sputum from two independent cohorts of adults with severe asthma (SA) (U‐BIOPRED and Australian NOVocastrian Asthma cohort) demonstrated shared differentially expressed pathways previously linked to persistent unresolved inflammation and novel mechanisms of airway remodelling, which may represent potential novel mechanistic pathways involved in the pathogenesis of SA. See relatededitorial
Collapse
Affiliation(s)
- Stephany Sánchez‐Ovando
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | | | | | - Katherine Joanne Baines
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Daniel Barker
- Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| | - Lisa G. Wood
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- National Heart and Lung Institute Imperial College London London UK
| | - Jodie Louise Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| |
Collapse
|
34
|
Watchorn D, Menzies-Gow A. Investigational approaches for unmet need in severe asthma. Expert Rev Respir Med 2022; 16:661-678. [PMID: 35786146 DOI: 10.1080/17476348.2022.2096593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Molecular antibodies (mAb) targeting inflammatory mediators are effective in T2-high asthma. The recent approval of Tezepelumab presents a novel mAb therapeutic option for those with T2-low asthma. AREAS COVERED We discuss a number of clinical problems pertinent to severe asthma that are less responsive to current therapies, such as persistent airflow obstruction and airway hyperresponsiveness. We discuss selected investigational approaches, including a number of candidate therapies under investigation in two adaptive platform trials currently in progress, with particular reference to this unmet need, as well as their potential in phenotypes such as neutrophilic asthma and obese asthma, which may or may not overlap with a T2-high phenotype. EXPERT OPINION The application of discrete targeting approaches to T2-low molecular phenotypes, including those phenotypes in which inflammation may not arise within the airway, has yielded variable results to date. Endotypes associated with T2-low asthma are likely to be diverse but await validation. Investigational therapeutic approaches must, likewise, be diverse if the goal of remission is to become attainable for all those living with asthma.
Collapse
Affiliation(s)
- David Watchorn
- Lung Division, Royal Brompton & Harefield Hospitals,London,UK
| | | |
Collapse
|
35
|
Paucigranulocytic Asthma: Potential Pathogenetic Mechanisms, Clinical Features and Therapeutic Management. J Pers Med 2022; 12:jpm12050850. [PMID: 35629272 PMCID: PMC9145917 DOI: 10.3390/jpm12050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Asthma is a heterogeneous disease usually characterized by chronic airway inflammation, in which several phenotypes have been described, related to the age of onset, symptoms, inflammatory characteristics and treatment response. The identification of the inflammatory phenotype in asthma is very useful, since it allows for both the recognition of the asthmatic triggering factor as well as the optimization of treatment The paucigranulocytic phenotype of asthma (PGA) is characterized by sputum eosinophil levels <1−3% and sputum neutrophil levels < 60%. The precise characteristics and the pathobiology of PGA are not fully understood, and, in some cases, it seems to represent a previous eosinophilic phenotype with a good response to anti-inflammatory treatment. However, many patients with PGA remain uncontrolled and experience asthmatic symptoms and exacerbations, irrespective of the low grade of airway inflammation. This observation leads to the hypothesis that PGA might also be either a special phenotype driven by different kinds of cells, such as macrophages or mast cells, or a non-inflammatory phenotype with a low grade of eosinophilic inflammation. In this review, we aim to describe the special characteristics of PGA and the potential therapeutic interventions that could be offered to these patients.
Collapse
|
36
|
Beeraka NM, Zhou R, Wang X, Vikram P R H, Kumar TP, Liu J, Greeshma MV, Mandal SP, Gurupadayya BM, Fan R. Immune Repertoire and Advancements in Nanotherapeutics for the Impediment of Severe Steroid Resistant Asthma (SSR). Int J Nanomedicine 2022; 17:2121-2138. [PMID: 35592101 PMCID: PMC9112344 DOI: 10.2147/ijn.s364693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Severe steroid-resistant asthma (SSR) patients do not respond to the corticosteroid therapies due to the heterogeneity, and genome-wide variations. However, there are very limited reports pertinent to the molecular signaling underlying SSR and making pharmacologists, and formulation scientists to identify the effective therapeutic targets in order to produce novel therapies using novel drug delivery systems (NDDS). We have substantially searched literature for the peer-reviewed and published reports delineating the role of glucocorticoid-altered gene expression, and the mechanisms responsible for SSR asthma, and NDDS for treating SSR asthma using public databases PubMed, National Library of Medicine (NLM), google scholar, and medline. Subsequently, we described reports underlying the SSR pathophysiology through several immunological and inflammatory phenotypes. Furthermore, various therapeutic strategies and the role of signaling pathways such as mORC1-STAT3-FGFBP1, NLRP3 inflammasomes, miR-21/PI3K/HDAC2 axis, PI3K were delineated and these can be considered as the therapeutic targets for mitigating the pathophysiology of SSR asthma. Finally, the possibility of nanomedicine-based formulation and their applications in order to enhance the long term retention of several antioxidant and anti-asthmatic drug molecules as a significant therapeutic modality against SSR asthma was described vividly.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Human Anatomy, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Runze Zhou
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Hemanth Vikram P R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, Karnataka, 570015, India
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - B M Gurupadayya
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Correspondence: Ruitai Fan, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
37
|
Niessen NM, Fricker M, McDonald VM, Gibson PG. T2-low: what do we know?: Past, present, and future of biologic therapies in noneosinophilic asthma. Ann Allergy Asthma Immunol 2022; 129:150-159. [PMID: 35487388 DOI: 10.1016/j.anai.2022.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
T2-low asthma is an often severe asthma subtype with limited treatment options and biologic therapeutics are lacking. Several monoclonal antibodies (mAbs) targeting non-T2 cytokines were previously reported to be ineffective in asthma. These trials often investigated heterogeneous asthma populations and negative outcomes could be related to unsuitable study cohorts. More tailored approaches in selecting participants based on specific biomarkers have been beneficial in treating severe T2-high asthma. Similarly, mAbs previously deemed ineffective bear the potential to be useful when administered to the correct target population. Here, we review individual clinical trials conducted between 2005 and 2021 and assess the suitability of the selected cohorts, whether study end points were met, and whether outcome measures were appropriate to investigate the effectiveness of the respective drug. We discuss potential target groups within the T2-low asthma population and suggest biomarkers that may predict a treatment response. Furthermore, we assess whether biomarker-guided approaches or subgroup analyses were associated with more positive study outcomes. The mAbs directed against alarmins intervene early in the inflammatory cascade and are the first mAbs found to have efficacy in T2-low asthma. Several randomized controlled trials performed predefined subgroup analyses that included T2-low asthma. Subgroup analyses were associated with positive outcomes and were able to reveal a stronger response in at least 1 subgroup. A better understanding of T2-low subgroups and specific biomarkers is necessary to identify the most responsive target population for a given mAb.
Collapse
Affiliation(s)
- Natalie M Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Nursing and Midwifery, The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
38
|
Fricker M, Qin L, Sánchez‐Ovando S, Simpson JL, Baines KJ, Riveros C, Scott HA, Wood LG, Wark PAB, Kermani NZ, Chung KF, Gibson PG. An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy 2022; 77:1204-1215. [PMID: 34510493 PMCID: PMC9541696 DOI: 10.1111/all.15087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022]
Abstract
Background Neutrophilic asthma (NA) is a clinically important asthma phenotype, the cellular and molecular basis of which is not completely understood. Airway macrophages are long‐lived immune cells that exert important homeostatic and inflammatory functions which are dysregulated in asthma. Unique transcriptomic programmes reflect varied macrophage phenotypes in vitro. We aimed to determine whether airway macrophages are transcriptomically altered in NA. Methods We performed RNASeq analysis on flow cytometry‐isolated sputum macrophages comparing NA (n = 7) and non‐neutrophilic asthma (NNA, n = 13). qPCR validation of RNASeq results was performed (NA n = 13, NNA n = 23). Pathway analysis (PANTHER, STRING) of differentially expressed genes (DEGs) was performed. Gene set variation analysis (GSVA) was used to test for enrichment of NA macrophage transcriptomic signatures in whole sputum microarray (cohort 1 ‐ controls n = 16, NA n = 29, NNA n = 37; cohort 2 U‐BIOPRED ‐ controls n = 16, NA n = 47, NNA n = 57). Results Flow cytometry‐sorting significantly enriched sputum macrophages (99.4% post‐sort, 44.9% pre‐sort, p < .05). RNASeq analysis confirmed macrophage purity and identified DEGs in NA macrophages. Selected DEGs (SLAMF7, DYSF, GPR183, CSF3, PI3, CCR7, all p < .05 NA vs. NNA) were confirmed by qPCR. Pathway analysis of NA macrophage DEGs was consistent with responses to bacteria, contribution to neutrophil recruitment and increased expression of phagocytosis and efferocytosis factors. GSVA demonstrated neutrophilic macrophage gene signatures were significantly enriched in whole sputum microarray in NA vs. NNA and controls in both cohorts. Conclusions We demonstrate a pathophysiologically relevant sputum macrophage transcriptomic programme in NA. The finding that there is transcriptional activation of inflammatory programmes in cell types other than neutrophils supports the concept of NA as a specific endotype.
Collapse
Affiliation(s)
- Michael Fricker
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Ling Qin
- Department of Respiratory Medicine Department of Pulmonary and Critical Care Medicine Xiangya Hospital Central South University Changsha China
| | - Stephany Sánchez‐Ovando
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Jodie L. Simpson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Katherine J. Baines
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Carlos Riveros
- Statistical services (CReDITSS) Hunter Medical Research Institute Newcastle NSW Australia
| | - Hayley A. Scott
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Lisa G. Wood
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Peter AB. Wark
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Nazanin Z. Kermani
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Peter G. Gibson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| |
Collapse
|
39
|
Du L, Xu C, Zeng Z, Chen F, Tang K, Liang Y, Guo Y. Exploration of induced sputum BIRC3 levels and clinical implications in asthma. BMC Pulm Med 2022; 22:86. [PMID: 35287655 PMCID: PMC8922789 DOI: 10.1186/s12890-022-01887-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Baculoviral IAP repeat-containing 3 (BIRC3) which encodes a member of the IAP family of proteins upregulated in the asthma expression profile dataset. However, there was few research on studying the clinical implication of BIRC3 in asthma. OBJECTIVE To validate BIRC3 expression and its clinical implications in induced sputum of asthma. METHODS Based on the GSE76262 (118 asthma cases and 21 healthy controls) dataset, differentially expressed genes were screened using R software. Subsequently, BIRC3 mRNA and protein were clinically verified in induced sputum samples through quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Besides, the correlations between BIRC3 expression and asthmatic eosinophilic/allergic inflammation indicators (FeNO, IgE, and EOS%), pulmonary function (FEV1, FEV1% pred, FVC% pred, and FEV1/FVC), and inflammatory cytokines (IL-4, IL-5, IL-13, IL-25, IL-10, IL-33, and TSLP) were analyzed. Finally, BIRC3 mRNA was detected in human primary bronchial epithelial cells stimulated by cytokines (IL-4 or IL-13). RESULTS BIRC3 was screened as a candidate gene in the GSE76262, which was highly expressed in asthma. Highly expressed BIRC3 was positively correlated with eosinophilic and allergic indicators, including FeNO, blood eosinophil, and serum IgE. Moreover, BIRC3 protein was positively associated with inflammation cytokines, like IL-4, IL-5, IL-13, IL-25, IL-10, IL-33, and TSLP, while negatively correlated with FEV1, FEV1%pred, FVC% pred, and FEV1/FVC. Furthermore, the expression of BIRC3 could be induced in primary bronchial epithelial cells treated by cytokines IL-4 or IL-13. CONCLUSIONS BIRC3 significantly increased in induced sputum of asthma and positively correlated with airway eosinophilic and peripheral blood allergic inflammation, type 2 cytokines, and airway obstruction. Increased BIRC3 might be involved in the pathogenesis of asthma by affecting the eosinophilic and allergic inflammation.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Changyi Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Zhimin Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Fengjia Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Kun Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yuxia Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China. .,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China. .,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
40
|
Wei Y, Yang L, Pandeya A, Cui J, Zhang Y, Li Z. Pyroptosis-Induced Inflammation and Tissue Damage. J Mol Biol 2022; 434:167301. [PMID: 34653436 PMCID: PMC8844146 DOI: 10.1016/j.jmb.2021.167301] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell deaths are pathways involving cells playing an active role in their own destruction. Depending on the signaling system of the process, programmed cell death can be divided into two categories, pro-inflammatory and non-inflammatory. Pyroptosis is a pro-inflammatory form of programmed cell death. Upon cell death, a plethora of cytokines are released and trigger a cascade of responses from the neighboring cells. The pyroptosis process is a double-edged sword, could be both beneficial and detrimental in various inflammatory disorders and disease conditions. A physiological outcome of these responses is tissue damage, and sometimes death of the host. In this review, we focus on the inflammatory response triggered by pyroptosis, and resulting tissue damage in selected organs.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA.
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Jian Cui
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Yan Zhang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou,China
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
41
|
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13:34-54. [PMID: 35189051 DOI: 10.1515/bmc-2022-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED Atherosclerosis is an important medical and social problem, and the keys to solving this problem are still largely unknown. A common situation in real clinical practice is the comorbid course of atherosclerosis with chronic obstructive pulmonary disease (COPD). Diseases share some common risk factors and may be closely linked pathogenetically. METHODS Bioinformatics analysis of datasets from Gene Expression Omnibus (GEO) was performed to examine the gene ontology (GO) of common differentially expressed genes (DEGs) in COPD and peripheral arterial atherosclerosis. DEGs were identified using the limma R package with the settings p < 0.05, corrected using the Benjamini & Hochberg algorithm and ǀlog 2FCǀ > 1.0. The GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) network analysis were performed with the detected DEGs. RESULTS The biological processes and signaling pathways involving common DEGs from airway epithelial datasets in COPD and tissue in peripheral atherosclerosis were identified. A total of 15 DEGs were identified, comprising 12 upregulated and 3 downregulated DEGs. The GO enrichment analysis demonstrated that the upregulated hub genes were mainly involved in the inflammatory response, reactive oxygen species metabolic process, cell adhesion, lipid metabolic process, regulation of angiogenesis, icosanoid biosynthetic process, and cellular response to a chemical stimulus. The KEGG pathway enrichment analysis demonstrated that the common pathways were Toll-like receptor signaling pathway, NF-kappa B signaling pathway, lipid and atherosclerosis, and cytokine-cytokine receptor interaction. CONCLUSIONS Biological processes and signaling pathways associated with the immune response may link the development and progression of COPD and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026, Ryazan, Russian Federation
| |
Collapse
|
42
|
Tan YY, Zhou HQ, Lin YJ, Yi LT, Chen ZG, Cao QD, Guo YR, Wang ZN, Chen SD, Li Y, Wang DY, Qiao YK, Yan Y. FGF2 is overexpressed in asthma and promotes airway inflammation through the FGFR/MAPK/NF-κB pathway in airway epithelial cells. Mil Med Res 2022; 9:7. [PMID: 35093168 PMCID: PMC8800304 DOI: 10.1186/s40779-022-00366-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Airway inflammation is the core pathological process of asthma, with the key inflammatory regulators incompletely defined. Recently, fibroblast growth factor 2 (FGF2) has been reported to be an inflammatory regulator; however, its role in asthma remains elusive. This study aimed to investigate the immunomodulatory role of FGF2 in asthma. METHODS First, FGF2 expression was characterised in clinical asthma samples and the house dust mite (HDM)-induced mouse chronic asthma model. Second, recombinant mouse FGF2 (rm-FGF2) protein was intranasally delivered to determine the effect of FGF2 on airway inflammatory cell infiltration. Third, human airway epithelium-derived A549 cells were stimulated with either HDM or recombinant human interleukin-1β (IL-1β) protein combined with or without recombinant human FGF2. IL-1β-induced IL-6 or IL-8 release levels were determined using enzyme-linked immunosorbent assay, and the involved signalling transduction was explored via Western blotting. RESULTS Compared with the control groups, the FGF2 protein levels were significantly upregulated in the bronchial epithelium and alveolar areas of clinical asthma samples (6.70 ± 1.79 vs. 16.32 ± 2.40, P = 0.0184; 11.20 ± 2.11 vs. 21.00 ± 3.00, P = 0.033, respectively) and HDM-induced asthmatic mouse lung lysates (1.00 ± 0.15 vs. 5.14 ± 0.42, P < 0.001). Moreover, FGF2 protein abundance was positively correlated with serum total and anti-HDM IgE levels in the HDM-induced chronic asthma model (R2 = 0.857 and 0.783, P = 0.0008 and 0.0043, respectively). Elevated FGF2 protein was mainly expressed in asthmatic bronchial epithelium and alveolar areas and partly co-localised with infiltrated inflammatory cell populations in HDM-induced asthmatic mice. More importantly, intranasal instillation of rm-FGF2 aggravated airway inflammatory cell infiltration (2.45 ± 0.09 vs. 2.88 ± 0.14, P = 0.0288) and recruited more subepithelial neutrophils after HDM challenge [(110.20 ± 29.43) cells/mm2 vs. (238.10 ± 42.77) cells/mm2, P = 0.0392] without affecting serum IgE levels and Th2 cytokine transcription. In A549 cells, FGF2 was upregulated through HDM stimulation and promoted IL-1β-induced IL-6 or IL-8 release levels (up to 1.41 ± 0.12- or 1.44 ± 0.14-fold change vs. IL-1β alone groups, P = 0.001 or 0.0344, respectively). The pro-inflammatory effect of FGF2 is likely mediated through the fibroblast growth factor receptor (FGFR)/mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) pathway. CONCLUSION Our findings suggest that FGF2 is a potential inflammatory modulator in asthma, which can be induced by HDM and acts through the FGFR/MAPK/NF-κB pathway in the airway epithelial cells.
Collapse
Affiliation(s)
- Yuan-Yang Tan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hui-Qin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yu-Jing Lin
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Liu-Tong Yi
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qing-Dong Cao
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yan-Rong Guo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhao-Ni Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Shou-Deng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Singapore
| | | | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
43
|
Li M, Zhu W, Saeed U, Sun S, Fang Y, Wang C, Luo Z. Identification of the molecular subgroups in asthma by gene expression profiles: airway inflammation implications. BMC Pulm Med 2022; 22:29. [PMID: 35000593 PMCID: PMC8742931 DOI: 10.1186/s12890-022-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background Asthma is a heterogeneous disease and different phenotypes based on clinical parameters have been identified. However, the molecular subgroups of asthma defined by gene expression profiles of induced sputum have been rarely reported. Methods We re-analyzed the asthma transcriptional profiles of the dataset of GSE45111. A deep bioinformatics analysis was performed. We classified 47 asthma cases into different subgroups using unsupervised consensus clustering analysis. Clinical features of the subgroups were characterized, and their biological function and immune status were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single sample Gene Set Enrichment Analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) and protein–protein interaction (PPI) network were performed to identify key gene modules and hub genes. Results Unsupervised consensus clustering of gene expression profiles in asthma identified two distinct subgroups (Cluster I/II), which were significantly associated with eosinophilic asthma (EA) and paucigranulocytic asthma (PGA). The differentially expressed genes (DEGs) between the two subgroups were primarily enriched in immune response regulation and signal transduction. The ssGSEA suggested the different immune infiltration and function scores between the two clusters. The WGCNA and PPI analysis identified three hub genes: THBS1, CCL22 and CCR7. ROC analysis further suggested that the three hub genes had a good ability to differentiate the Cluster I from the Cluster II. Conclusions Based on the gene expression profiles of the induced sputum, we identified two asthma subgroups, which revealed different clinical characteristics, gene expression patterns, biological functions and immune status. The transcriptional classification confirms the molecular heterogeneity of asthma and provides a framework for more in-depth research on the mechanisms of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01824-3.
Collapse
Affiliation(s)
- Min Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Wenye Zhu
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Ummair Saeed
- Department of Dermatology, National Orthopedic and General Hospital, Bahawalpur, Pakistan
| | - Shibo Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Chu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Zhuang Luo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China.
| |
Collapse
|
44
|
Gautam Y, Johansson E, Mersha TB. Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm. J Pers Med 2022; 12:jpm12010066. [PMID: 35055381 PMCID: PMC8778153 DOI: 10.3390/jpm12010066] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Asthma is a complex multifactorial and heterogeneous respiratory disease. Although genetics is a strong risk factor of asthma, external and internal exposures and their interactions with genetic factors also play important roles in the pathophysiology of asthma. Over the past decades, the application of high-throughput omics approaches has emerged and been applied to the field of asthma research for screening biomarkers such as genes, transcript, proteins, and metabolites in an unbiased fashion. Leveraging large-scale studies representative of diverse population-based omics data and integrating with clinical data has led to better profiling of asthma risk. Yet, to date, no omic-driven endotypes have been translated into clinical practice and management of asthma. In this article, we provide an overview of the current status of omics studies of asthma, namely, genomics, transcriptomics, epigenomics, proteomics, exposomics, and metabolomics. The current development of the multi-omics integrations of asthma is also briefly discussed. Biomarker discovery following multi-omics profiling could be challenging but useful for better disease phenotyping and endotyping that can translate into advances in asthma management and clinical care, ultimately leading to successful precision medicine approaches.
Collapse
|
45
|
Rosenkranz MA, Esnault S, Gresham L, Davidson RJ, Christian BT, Jarjour NN, Busse WW. Role of amygdala in stress-induced upregulation of airway IL-1 signaling in asthma. Biol Psychol 2022; 167:108226. [PMID: 34800561 PMCID: PMC9426565 DOI: 10.1016/j.biopsycho.2021.108226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
Psychological stress, an important contributor to asthma morbidity, potentiates the immune response to allergen, but the brain mechanisms mediating this response are not fully understood. The amygdala is likely to play an important role, given its sensitivity to threat and connectivity with descending immune modulatory pathways. In this study, we recruited thirty asthmatic participants and examined glucose metabolism in the amygdala, using [F-18]fluorodeoxyglucose positron emission tomography, during a laboratory stressor. Stress hormone and airway inflammatory measurements were also acquired. Results showed that activity in the amygdala was significantly increased during the stressor, compared to a matched control task (p < .05 corrected). Moreover, the increase in amygdala activity was associated with a greater increase in sputum IL-1R1 mRNA and alpha amylase response (p < .05 corrected), which were also positively correlated (p = .01). These findings suggest that heightened amygdala reactivity may contribute to asthma morbidity via descending proinflammatory sympathetic signaling pathways.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison, 625 W. Washington Ave., Madison, WI 53703, USA.
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin School of Medicine and Public Health-Madison, 600 Highland Ave, Madison, WI 53792, USA
| | - Lauren Gresham
- Center for Healthy Minds, University of Wisconsin-Madison, 625 W. Washington Ave., Madison, WI 53703, USA
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison, 625 W. Washington Ave., Madison, WI 53703, USA; Department of Psychology, University of Wisconsin-Madison, 1202 W. Johnson St., Madison, WI 53706, USA
| | - Bradley T Christian
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Department of Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, USA; Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53792, USA
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health-Madison, 600 Highland Ave, Madison, WI 53792, USA
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health-Madison, 600 Highland Ave, Madison, WI 53792, USA
| |
Collapse
|
46
|
Multiomics Analysis Identifies BIRC3 as a Novel Glucocorticoid Response-Associated Gene. J Allergy Clin Immunol 2021; 149:1981-1991. [PMID: 34971648 DOI: 10.1016/j.jaci.2021.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inhaled corticosteroid (ICS) response among patients with asthma is influenced by genetics, but biologically actionable insights based on associations have not been found. Various glucocorticoid response omics datasets are available to interrogate their biological effects. OBJECTIVE We sought to identify functionally relevant ICS response genetic associations by integrating complementary multiomics datasets. METHODS Variants with p-values<10-4 from a previous ICS response genome-wide association study were re-ranked based on integrative scores determined from: i) glucocorticoid receptor (GR)- and ii) RNA polymerase II (RNAP II)-binding regions inferred from ChIP-Seq data for three airway cell types, iii) glucocorticoid response element (GRE) motifs, iv) differentially expressed genes in response to glucocorticoid exposure according to 20 transcriptomic datasets, and v) expression quantitative trait loci (eQTLs) from GTEx. Candidate variants were tested for association with ICS response and asthma in six independent studies. RESULTS Four variants had significant (q-value<0.05) multiomics integrative scores. These variants were in a locus consisting of 52 variants in high LD (r2≥0.8) near GR-binding sites by the gene BIRC3. Variants were also BIRC3 eQTLs in lung, and two were within/near putative GRE motifs. BIRC3 had increased RNAP II occupancy and gene expression with glucocorticoid exposure in two ChIP-Seq and 13 transcriptomic datasets. Some BIRC3 variants in the 52-variant locus were associated (p-value<0.05) with ICS response in three independent studies and others with asthma in one study. CONCLUSION BIRC3 should be prioritized for further functional studies of ICS response. CLINICAL IMPLICATION Genetic variation near BIRC3 may influence ICS response in people with asthma.
Collapse
|
47
|
Li M, Zhu W, Wang C, Zheng Y, Sun S, Fang Y, Luo Z. Weighted gene co-expression network analysis to identify key modules and hub genes associated with paucigranulocytic asthma. BMC Pulm Med 2021; 21:343. [PMID: 34727921 PMCID: PMC8565058 DOI: 10.1186/s12890-021-01711-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Asthma is a heterogeneous disease that can be divided into four inflammatory phenotypes: eosinophilic asthma (EA), neutrophilic asthma (NA), mixed granulocytic asthma (MGA), and paucigranulocytic asthma (PGA). While research has mainly focused on EA and NA, the understanding of PGA is limited. In this study, we aimed to identify underlying mechanisms and hub genes of PGA. Methods Based on the dataset from Gene Expression Omnibus(GEO), weighted gene coexpression network analysis (WGCNA), differentially expressed genes (DEGs) analysis and protein–protein interaction (PPI) network analysis were conducted to construct a gene network and to identify key gene modules and hub genes. Functional enrichment analyses were performed to investigate the biological process, pathways and immune status of PGA. The hub genes were validated in a separate dataset. Results Compared to non-PGA, PGA had a different gene expression pattern, in which 449 genes were differentially expressed. One gene module significantly associated with PGA was identified. Intersection between the differentially expressed genes (DEGs) and the genes from the module that were most relevant to PGA were mainly enriched in inflammation and immune response regulation. The single sample Gene Set Enrichment Analysis (ssGSEA) suggested a decreased immune infiltration and function in PGA. Finally six hub genes of PGA were identified, including ADCY2, CXCL1, FPRL1, GPR109B, GPR109A and ADCY3, which were validated in a separate dataset of GSE137268. Conclusions Our study characterized distinct gene expression patterns, biological processes and immune status of PGA and identified hub genes, which may improve the understanding of underlying mechanism and provide potential therapeutic targets for PGA. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01711-3.
Collapse
Affiliation(s)
- Min Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, The People's Republic of China.,Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China
| | - Wenye Zhu
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China
| | - Chu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China
| | - Yuanyuan Zheng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China
| | - Shibo Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China
| | - Zhuang Luo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China.
| |
Collapse
|
48
|
Olgac M, Guler SD, Demir S, Unal D, Ertek B, Ozseker ZF, Colakoglu B, Issever H, Coskun R, Gelincik A, Alatlı FC, Buyukozturk S. Paucigranulocytic asthma: Do sputum macrophages matter? Allergy Asthma Proc 2021; 42:530-536. [PMID: 34871161 DOI: 10.2500/aap.2021.42.210060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Although paucigranulocytic asthma (PGA) is the most common phenotype of stable asthma, its features have not been adequately studied. In this study, we aimed to display the characteristics of PGA. Method: A total of 116 non-smoking adult patients with asthma (80% women; mean ± standard deviation age, 39 ± 12.9 years) admitted to three tertiary centers were included. Their demographic and clinical features, allergy status, biochemical results, scores of Asthma Control Test (ACT), spirometry, and exhaled nitric oxide (FeNO) measurements were obtained. Induced sputum cytometry was performed. Results: Four phenotypes, according to induced sputum cell counts, were detected: eosinophilic asthma (EA) (22.4%), mixed granulocytic asthma (MGA) (6.9%), neutrophilic (NA) (7.8%), and PGA (62.9%). In the sputum, macrophages were higher in the PGA group compared with the other groups (PGA versus NA and PGA versus MGA, p < 0.001; and PGA versus EA, p =0 .030). The atopy rate between phenotypes was the same. Although the forced expiratory volume in the first second of expiration (FEV1) was similar in four groups, the ratio of FEV1 to the forced vital capacity ratio was higher (p = 0.013) and FEV1 reversibility was lower in the patients with PGA than the corresponding values in other phenotypes (p = 0.015). Low reversibility was comparable both in patients with PGA who were inhaled corticosteroid (ICS) naive and in patients on ICS treatment. Although insignificant, the FeNO values and blood eosinophil counts were higher in the MGA and EA groups, whereas these were the lowest in the PGA group. The uncontrolled asthma ratio was low in PGA (16%), whereas it was 11% for NA, 25% for MG, and 23% in EA. Conclusion: Macrophages are predominant in sputum of patients with PGA. Besides a lower uncontrolled asthma ratio, lower FEV1 reversibility is a prominent characteristic of this phenotype.
Collapse
Affiliation(s)
- Muge Olgac
- From the Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Dolek Guler
- Department of Oncologic Cytology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Semra Demir
- From the Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Derya Unal
- Division of Immunology and Allergic Diseases, Hospital of University of Health Sciences, Istanbul, Turkey
| | - Belkıs Ertek
- From the Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Z Ferhan Ozseker
- Division of Immunology and Allergic Diseases, Yedikule Chest Surgery and Chest Diseases Hospital, Istanbul, Turkey; and
| | - Bahauddin Colakoglu
- From the Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Halim Issever
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Raif Coskun
- From the Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aslı Gelincik
- From the Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - F Canan Alatlı
- Department of Oncologic Cytology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Suna Buyukozturk
- From the Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
49
|
Manuel SS, Luis GM. Nutrition, Obesity and Asthma Inception in Children. The Role of Lung Function. Nutrients 2021; 13:nu13113837. [PMID: 34836093 PMCID: PMC8624093 DOI: 10.3390/nu13113837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is an important public health problem. WHO estimates that about 39 million children younger than 5 years of age are overweighted or obese. On the other hand, asthma is the most prevalent chronic disease in childhood, and thus, many children share those two conditions. In the present paper we review the epidemiology of children with asthma and obesity, as well as the consequences of being obese on the respiratory system. On the one hand obesity produces an underlying T-helper 2 (TH2) low inflammation state in which numerous cytokines, which could have an impact in the respiratory system play, a role. On the other hand, some respiratory changes have been described in obese children and, specially, the development of the so called “dysanapsis” (the disproportionate scaling of airway dimensions to lung volume) which seems to be common during the first stages of life, probably related to the early development of this condition. Finally, this review deals with the role of adipokines and insulin resistance in the inception and worsening of asthma in the obese child.
Collapse
Affiliation(s)
- Sanchez-Solís Manuel
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, El Palmar, 30120 Murcia, Spain;
- IMIB Bio-health Research Institute, El Palmar, 30120 Murcia, Spain
- ARADyAL Allergy Network, El Palmar, 30120 Murcia, Spain
| | - García-Marcos Luis
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, El Palmar, 30120 Murcia, Spain;
- IMIB Bio-health Research Institute, El Palmar, 30120 Murcia, Spain
- ARADyAL Allergy Network, El Palmar, 30120 Murcia, Spain
- Correspondence:
| |
Collapse
|
50
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|