1
|
Huang YJ. The Microbiome in Asthma Heterogeneity: The Role of Multi-Omic Investigations. Immunol Rev 2025; 330:e70015. [PMID: 40072031 PMCID: PMC11899502 DOI: 10.1111/imr.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Asthma is one of the most prevalent and extensively studied chronic respiratory conditions, yet the heterogeneity of asthma remains biologically puzzling. Established factors like exogenous exposures and treatment adherence contribute to variability in asthma risk and clinical outcomes. It is also clear that the endogenous factors of genetics and immune system response patterns play key roles in asthma. Despite significant existing knowledge in the above, divergent clinical trajectories and outcomes are still observed, even among individuals with similar risk profiles, biomarkers, and optimal medical management. This suggests uncaptured biological interactions that contribute to asthma's heterogeneity, for which the role of host microbiota has lately attracted much research attention. This review will highlight recent evidence in this area, focusing on bedside-to-bench investigations that have leveraged omic technologies to uncover microbiome links to asthma outcomes and immunobiology. Studies centered on the respiratory system and the use of multi-omics are noted in particular. These represent a new generation of reverse-translational investigations revealing potential functional crosstalk in host microbiomes that may drive phenotypic heterogeneity in chronic diseases like asthma. Multi-omic data offer a wide lens into ecosystem interactions within a host. This informs new hypotheses and experimental work to elucidate mechanistic pathways for unresolved asthma endotypes. Further incorporation of multi-omics into patient-centered investigations can yield new insights that hopefully lead to even more precise, microbiome-informed strategies to reduce asthma burden.
Collapse
Affiliation(s)
- Yvonne J. Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
2
|
Zhu J, He M, Li S, Lei Y, Xiang X, Guo Z, Wang Q. Shaping oral and intestinal microbiota and the immune system during the first 1,000 days of life. Front Pediatr 2025; 13:1471743. [PMID: 39906673 PMCID: PMC11790674 DOI: 10.3389/fped.2025.1471743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
The first 1, 000 days of life, from the fetal stage of a woman's pregnancy to 2 years of age after the baby is born, is a critical period for microbial colonization of the body and development of the immune system. The immune system and microbiota exhibit great plasticity at this stage and play a crucial role in subsequent development and future health. Two-way communication and interaction between immune system and microbiota is helpful to maintain human microecological balance and immune homeostasis. Currently, there is a growing interest in the important role of the microbiota in the newborn, and it is believed that the absence or dysbiosis of human commensal microbiota early in life can have lasting health consequences. Thus, this paper summarizes research advances in the establishment of the oral and intestinal microbiome and immune system in early life, emphasizing the substantial impact of microbiota diversity in the prenatal and early postnatal periods, and summarizes that maternal microbes, mode of delivery, feeding practices, antibiotics, probiotics, and the environment shape the oral and intestinal microbiota of infants in the first 1, 000 days of life and their association with the immune system.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Bhutta NK, Xu X, Jian C, Wang Y, Liu Y, Sun J, Han B, Wu S, Javeed A. Gut microbiota mediated T cells regulation and autoimmune diseases. Front Microbiol 2024; 15:1477187. [PMID: 39749132 PMCID: PMC11694513 DOI: 10.3389/fmicb.2024.1477187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Gut microbiota regulates the immune system, the development and progression of autoimmune diseases (AIDs) and overall health. Recent studies have played a crucial part in understanding the specific role of different gut bacterial strains and their metabolites in different AIDs. Microbial signatures in AIDs are revealed by advanced sequencing and metabolomics studies. Microbes such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Anaerostipes caccae, Bacteroides sp., Roseburia sp., Blautia sp., Blautia faecis, Clostridium lavalense, Christensenellaceae sp., Coprococcus sp., Firmicutes sp., Ruminococcaceae sp., Lachnospiraceae sp., Megamonas sp., Monoglobus sp., Streptococcus pneumoniae and Bifidobacterium sp. help maintain immune homeostasis; whereas, Prevotella copri, Ruminococcus gnavus, Lactobacillus salivarius, Enterococcus gallinarum, Elizabeth menigoseptica, Collinsella sp., Escherichia sp., Fusobacterium sp., Enterobacter ludwigii, Enterobacteriaceae sp., Proteobacteria, Porphyromonas gingivalis, Porphyromonas nigrescens, Dorea sp., and Clostridium sp. cause immuno-pathogenesis. A complex web of interactions is revealed by understanding the influence of gut microbiota on immune cells and various T cell subsets such as CD4+ T cells, CD8+ T cells, natural killer T cells, γδ T cells, etc. Certain AIDs, including rheumatoid arthritis, diabetes mellitus, atopic asthma, inflammatory bowel disease and non-alcoholic fatty liver disease exhibit a state of dysbiosis, characterized by alterations in microbial diversity and relative abundance of specific taxa. This review summarizes recent developments in understanding the role of certain microbiota composition in specific AIDs, and the factors affecting specific regulatory T cells through certain microbial metabolites and also focuses the potential application and therapeutic significance of gut microbiota-based interventions as novel adjunctive therapies for AIDs. Further research to determine the precise association of each gut bacterial strain in specific diseases is required.
Collapse
Affiliation(s)
- Nabeel Khalid Bhutta
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiujin Xu
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cuiqin Jian
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifan Wang
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Jinlyu Sun
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Department of Allergy, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingnan Han
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Ansar Javeed
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Pinot de Moira A, Custovic A. Social inequalities in childhood asthma. World Allergy Organ J 2024; 17:101010. [PMID: 39698162 PMCID: PMC11652773 DOI: 10.1016/j.waojou.2024.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Asthma is a complex, heterogeneous condition, broadly characterized by chronic airway inflammation with variable expiratory airflow limitation, but with several subtypes underpinned by different (although likely overlapping) pathological mechanisms. It is one of the most common chronic diseases of childhood and represents a significant cost for healthcare systems and affected families. Evidence suggests that a disproportionate proportion of this burden falls on families from disadvantaged socioeconomic circumstances (SECs). In this review, we describe the extent to which growing up in disadvantaged SECs is associated with an increased risk of childhood asthma diagnosis and asthma outcomes, including how this differs geographically and across different asthma subtypes. We also discuss the complex and interdependent mediating pathways that may link disadvantaged SECs with childhood asthma and asthma-related outcomes. In high-income countries (HICs), there is a fairly consistent association between growing up in disadvantaged SECs and increased prevalence of childhood asthma. However, evidence suggests that this social patterning differs across different asthma subtypes, with asthma phenotypes associated with disadvantaged SECs being less likely to be associated with atopy and more likely to begin in infancy and persist into adolescence. Disadvantaged SECs are also associated with worse asthma outcomes, which may contribute to the persistence of symptoms among disadvantaged children. In low- and middle-income countries (LMICs), the patterns are more variable and data more limited, but there is some evidence that disadvantaged SECs and atopic asthma are similarly negatively associated. There are also clear disparities in asthma outcomes, with LMICs having disproportionately high asthma-related morbidity and mortality, despite having lower asthma prevalence. A lack of accessibility to essential medication and appropriate care no doubt contributes to these disparities. The pathways leading to social inequalities in asthma are complex and interdependent, and as yet not fully understood. There is a clear need for further research into the relative importance of potential mediating pathways, including how these vary across the life course and across asthma subtypes. A stronger understanding of these pathways will help identify the most effective policy entry points for intervention, ultimately reducing inequalities across the life course.
Collapse
Affiliation(s)
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Herman K, Brough HA, Pier J, Venter C, Järvinen KM. Prevention of IgE-Mediated Food Allergy: Emerging Strategies Through Maternal and Neonatal Interventions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1686-1694. [PMID: 38677585 PMCID: PMC11420814 DOI: 10.1016/j.jaip.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Whereas the early introduction of highly allergenic foods has been shown to be effective at preventing the onset of food allergy (FA) in high-risk infants, sensitization to food antigens can occur prior to complementary food introduction, and thus, additional earlier FA prevention strategies are urgently needed. Currently, aside from early introduction of peanut and egg, no therapies are strongly recommended by international professional allergy societies for the primary prevention of FA. This review focuses on maternal- and neonatal-directed interventions that are being actively investigated and developed, including maternal dietary factors and supplementation, specific elimination diets, breastfeeding, cow's milk formula supplementation, microbiome manipulations, bacterial lysate therapy, and skin barrier therapies. Evaluating how these factors and various prenatal/early life environmental exposures may impact the development of FA is crucial for accurately counseling caregivers in the prevention of FA.
Collapse
Affiliation(s)
- Katherine Herman
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| | - Helen A Brough
- Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, Children's Allergy Service. King's College London, Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, London, UK
| | - Jennifer Pier
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| | - Carina Venter
- Section of Pediatric Allergy and Immunology, Children's Hospital Colorado/University of Colorado, Denver, Colo
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
6
|
Warren CM, Bartell TR. Sociodemographic inequities in food allergy: Insights on food allergy from birth cohorts. Pediatr Allergy Immunol 2024; 35:e14125. [PMID: 38656700 DOI: 10.1111/pai.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
A large and growing corpus of epidemiologic studies suggests that the population-level burden of pediatric FA is not equitably distributed across major sociodemographic groups, including race, ethnicity, household income, parental educational attainment, and sex. As is the case for more extensively studied allergic disease states such as asthma and atopic dermatitis epidemiologic data suggest that FA may be more prevalent among certain populations experiencing lower socioeconomic status (SES), particularly those with specific racial and ethnic minority backgrounds living in highly urbanized regions. Emerging data also indicate that these patients may also experience more severe FA-related physical health, psychosocial, and economic outcomes relating to chronic disease management. However, many studies that have identified sociodemographic inequities in FA burden are limited by cross-sectional designs that are subject to numerous biases. Compared with cross-sectional study designs or cohorts established later in life, birth cohorts offer advantages relative to other study designs when investigators seek to understand causal relationships between exposures occurring during the prenatal or postnatal period and the atopic disease status of individuals later in life. Numerous birth cohorts have been established across recent decades, which include evaluation of food allergy-related outcomes, and a subset of these also have measured sociodemographic variables that, together, have the potential to shed light on the existence and possible etiology of sociodemographic inequities in food allergy. This manuscript reports the findings of a comprehensive survey of the current state of this birth cohort literature and draws insights into what is currently known, and what further information can potentially be gleaned from thoughtful examination and further follow-up of ongoing birth cohorts across the globe.
Collapse
Affiliation(s)
- Christopher M Warren
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tami R Bartell
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Leduc L, Costa M, Leclère M. The Microbiota and Equine Asthma: An Integrative View of the Gut-Lung Axis. Animals (Basel) 2024; 14:253. [PMID: 38254421 PMCID: PMC10812655 DOI: 10.3390/ani14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Both microbe-microbe and host-microbe interactions can have effects beyond the local environment and influence immunological responses in remote organs such as the lungs. The crosstalk between the gut and the lungs, which is supported by complex connections and intricate pathways, is defined as the gut-lung axis. This review aimed to report on the potential role of the gut-lung gut-lung axis in the development and persistence of equine asthma. We summarized significant determinants in the development of asthma in horses and humans. The article discusses the gut-lung axis and proposes an integrative view of the relationship between gut microbiota and asthma. It also explores therapies for modulating the gut microbiota in horses with asthma. Improving our understanding of the horse gut-lung axis could lead to the development of techniques such as fecal microbiota transplants, probiotics, or prebiotics to manipulate the gut microbiota specifically for improving the management of asthma in horses.
Collapse
Affiliation(s)
- Laurence Leduc
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Marcio Costa
- Veterinary Department of Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Mathilde Leclère
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
8
|
Reuter S, Raspe J, Taube C. Microbes little helpers and suppliers for therapeutic asthma approaches. Respir Res 2024; 25:29. [PMID: 38218816 PMCID: PMC10787474 DOI: 10.1186/s12931-023-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Bronchial asthma is a prevalent and increasingly chronic inflammatory lung disease affecting over 300 million people globally. Initially considered an allergic disorder driven by mast cells and eosinophils, asthma is now recognized as a complex syndrome with various clinical phenotypes and immunological endotypes. These encompass type 2 inflammatory endotypes characterized by interleukin (IL)-4, IL-5, and IL-13 dominance, alongside others featuring mixed or non-eosinophilic inflammation. Therapeutic success varies significantly based on asthma phenotypes, with inhaled corticosteroids and beta-2 agonists effective for milder forms, but limited in severe cases. Novel antibody-based therapies have shown promise, primarily for severe allergic and type 2-high asthma. To address this gap, novel treatment strategies are essential for better control of asthma pathology, prevention, and exacerbation reduction. One promising approach involves stimulating endogenous anti-inflammatory responses through regulatory T cells (Tregs). Tregs play a vital role in maintaining immune homeostasis, preventing autoimmunity, and mitigating excessive inflammation after pathogenic encounters. Tregs have demonstrated their ability to control both type 2-high and type 2-low inflammation in murine models and dampen human cell-dependent allergic airway inflammation. Furthermore, microbes, typically associated with disease development, have shown immune-dampening properties that could be harnessed for therapeutic benefits. Both commensal microbiota and pathogenic microbes have demonstrated potential in bacterial-host interactions for therapeutic purposes. This review explores microbe-associated approaches as potential treatments for inflammatory diseases, shedding light on current and future therapeutics.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany.
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| |
Collapse
|
9
|
Lunjani N, Ambikan AT, Hlela C, Levin M, Mankahla A, Heldstab‐Kast JI, Boonpiyathad T, Tan G, Altunbulakli C, Gray C, Nadeau KC, Neogi U, Akdis CA, O'Mahony L. Rural and urban exposures shape early life immune development in South African children with atopic dermatitis and nonallergic children. Allergy 2024; 79:65-79. [PMID: 37534631 PMCID: PMC10952395 DOI: 10.1111/all.15832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Immunological traits and functions have been consistently associated with environmental exposures and are thought to shape allergic disease susceptibility and protection. In particular, specific exposures in early life may have more significant effects on the developing immune system, with potentially long-term impacts. METHODS We performed RNA-Seq on peripheral blood mononuclear cells (PBMCs) from 150 children with atopic dermatitis and healthy nonallergic children in rural and urban settings from the same ethnolinguistic AmaXhosa background in South Africa. We measured environmental exposures using questionnaires. RESULTS A distinct PBMC gene expression pattern was observed in those children with atopic dermatitis (132 differentially expressed genes [DEGs]). However, the predominant influences on the immune cell transcriptome were related to early life exposures including animals, time outdoors, and types of cooking and heating fuels. Sample clustering revealed two rural groups (Rural_1 and Rural_2) that separated from the urban group (3413 and 2647 DEGs, respectively). The most significantly regulated pathways in Rural_1 children were related to innate activation of the immune system (e.g., TLR and cytokine signaling), changes in lymphocyte polarization (e.g., TH17 cells), and immune cell metabolism (i.e., oxidative phosphorylation). The Rural_2 group displayed evidence for ongoing lymphocyte activation (e.g., T cell receptor signaling), with changes in immune cell survival and proliferation (e.g., mTOR signaling, insulin signaling). CONCLUSIONS This study highlights the importance of the exposome on immune development in early life and identifies potentially protective (e.g., animal) exposures and potentially detrimental (e.g., pollutant) exposures that impact key immunological pathways.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Division of DermatologyUniversity of Cape TownCape TownSouth Africa
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Anoop T. Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska Institute, ANA FuturaStockholmSweden
| | - Carol Hlela
- Division of DermatologyUniversity of Cape TownCape TownSouth Africa
| | - Michael Levin
- Division of Paediatric Allergy, Department of Paediatrics and Child HealthUniversity of Cape TownCape TownSouth Africa
| | - Avumile Mankahla
- The Division of Dermatology, Department of Medicine and PharmacologyWalter Sisulu UniversityMthathaEastern CapeSouth Africa
| | | | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Clive Gray
- Division of ImmunologyUniversity of Cape TownCape TownSouth Africa
| | - Kari C. Nadeau
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska Institute, ANA FuturaStockholmSweden
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| |
Collapse
|
10
|
Clemente-Suárez VJ, Mielgo-Ayuso J, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Navarro Jimenez E, Redondo-Flórez L, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Basis of preventive and non-pharmacological interventions in asthma. Front Public Health 2023; 11:1172391. [PMID: 37920579 PMCID: PMC10619920 DOI: 10.3389/fpubh.2023.1172391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Asthma is one of the most common atopic disorders in all stages of life. Its etiology is likely due to a complex interaction between genetic, environmental, and lifestyle factors. Due to this, different non-pharmacological interventions can be implemented to reduce or alleviate the symptoms caused by this disease. Thus, the present narrative review aimed to analyze the preventive and non-pharmacological interventions such as physical exercise, physiotherapy, nutritional, ergonutritional, and psychological strategies in asthma treatment. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Asthma is an immune-mediated inflammatory condition characterized by increased responsiveness to bronchoconstrictor stimuli. Different factors have been shown to play an important role in the pathogenesis of asthma, however, the treatments used to reduce its incidence are more controversial. Physical activity is focused on the benefits that aerobic training can provide, while physiotherapy interventions recommend breathing exercises to improve the quality of life of patients. Nutritional interventions are targeted on implement diets that prioritize the consumption of fruits and vegetables and supplementation with antioxidants. Psychological interventions have been proposed as an essential non-pharmacological tool to reduce the emotional problems associated with asthma.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, Universidad Camilo José Cela, Madrid, Spain
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| |
Collapse
|
11
|
Abstract
Allergic diseases typically begin in early life and can impose a heavy burden on children and their families. Effective preventive measures are currently unavailable but may be ushered in by studies on the "farm effect", the strong protection from asthma and allergy found in children born and raised on traditional farms. Two decades of epidemiologic and immunologic research have demonstrated that this protection is provided by early and intense exposure to farm-associated microbes that target primarily innate immune pathways. Farm exposure also promotes timely maturation of the gut microbiome, which mediates a proportion of the protection conferred by the farm effect. Current research seeks to identify allergy-protective compounds from traditional farm environments, but standardization and regulation of such substances will likely prove challenging. On the other hand, studies in mouse models show that administration of standardized, pharmacological-grade lysates of human airway bacteria abrogates allergic lung inflammation by acting on multiple innate immune targets, including the airway epithelium/IL-33/ILC2 axis and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming is sufficient for asthma protection in adoptive transfer models. To the extent that these bacterial lysates mimic the protective effects of natural exposure to microbe-rich environments, these agents might provide an effective tool for prevention of allergic disease.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma & Airway Disease Research Center, The BIO5 Institute, and The Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
12
|
What Have Mechanistic Studies Taught Us About Childhood Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:684-692. [PMID: 36649800 DOI: 10.1016/j.jaip.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Childhood asthma is a chronic heterogeneous syndrome consisting of different disease entities or phenotypes. The immunologic and cellular processes that occur during asthma development are still not fully understood but represent distinct endotypes. Mechanistic studies have examined the role of gene expression, protein levels, and cell types in early life development and the manifestation of asthma, many under the influence of environmental stimuli, which can be both protective and risk factors for asthma. Genetic variants can regulate gene expression, controlled partly by different epigenetic mechanisms. In addition, environmental factors, such as living space, nutrition, and smoking, can contribute to these mechanisms. All of these factors produce modifications in gene expression that can alter the development and function of immune and epithelial cells and subsequently different trajectories of childhood asthma. These early changes in a partially immature immune system can have dramatic effects (e.g., causing dysregulation), which in turn contribute to different disease endotypes and may help to explain differential responsiveness to asthma treatment. In this review, we summarize published studies that have aimed to uncover distinct mechanisms in childhood asthma, considering genetics, epigenetics, and environment. Moreover, a discussion of new, powerful tools for single-cell immunologic assays for phenotypic and functional analysis is included, which promise new mechanistic insights into childhood asthma development and therapeutic and preventive strategies.
Collapse
|
13
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Frei R, Heye K, Roduit C. Environmental influences on childhood allergies and asthma - The Farm effect. Pediatr Allergy Immunol 2022; 33:e13807. [PMID: 35754122 PMCID: PMC9327508 DOI: 10.1111/pai.13807] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Asthma and allergies are major health problems and exert an enormous socioeconomic burden. Besides genetic predisposition, environmental factors play a crucial role in the development of these diseases in childhood. Multiple worldwide epidemiological studies have shown that children growing up on farms are immune to allergic diseases and asthma. Farm-related exposures shape children's immune homeostasis, via mediators such as N-glycolylneuraminic acid or arabinogalactan, or by diverse environmental microbes. Moreover, nutritional factors, such as breastfeeding or farm milk and food diversity, inducing short-chain fatty acids-producing bacteria in the intestine, contribute to farm-related effects. All farm-related exposures induce an anti-inflammatory response of the innate immunity and increase the differentiation of regulatory T cells and T helper cell type 1. A better understanding of the components of the farm environment, that are protective to the development of allergy and asthma, and their underlying mechanisms, will help to develop new strategies for the prevention of allergy and asthma.
Collapse
Affiliation(s)
- Remo Frei
- Division of Paediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Bern, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kristina Heye
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Caroline Roduit
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St Gallen, Switzerland.,University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
de Klerk JN, Robinson PA. Drivers and hazards of consumption of unpasteurised bovine milk and milk products in high-income countries. PeerJ 2022; 10:e13426. [PMID: 35646485 PMCID: PMC9135038 DOI: 10.7717/peerj.13426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The consumption of dairy products contributes to health, nutrition, and livelihoods globally. However, dairy products do not come without microbiological food safety risks for consumers. Despite this risk, common hygiene measures in high-income countries, particularly pasteurisation, ensures that milk is safe, and is indeed frequently mandated by law. Nevertheless, over the past two decades, there has been a global increase in the number of consumers in high-income developed countries actively seeking out unpasteurised milk in liquid and product forms for perceived nutritional and health benefits, and improved taste. The often-anecdotal claims upon which consumers make such choices are not all supported by scientific evidence; however, some recent research studies have investigated (and in some cases demonstrated) the positive impact of unpasteurised milk consumption on the prevalence of asthma, atopy, rectal cancer and respiratory illness. Methods To investigate the significance of unpasteurised milk and milk product consumption for human health in high-income countries, outbreak data between the years 2000 and 2018 were obtained for the United States of America, Canada, the European Union, the United Kingdom, Japan, New Zealand and Australia, which were then categorized into three World Health Organisation subregions: AMR A, EUR A and WPR A. Outbreak dynamic variables such as pathogens, the place of consumption, numbers of outbreaks and deaths per million capita, the average number of cases per outbreak and regulations were described and analysed using R Studio. To provide an overview of unpasteurised milk-related disease outbreaks, a rapid evidence review was also undertaken to establish an overview of what is known in the current literature about hazards and drivers of consumption. Results Foodborne outbreaks associated with unpasteurised dairy consumption have risen in high-income countries over the period 2000 to 2018, with Campylobacter spp. being the most common aetiological agent responsible, followed by Escherichia coli and Salmonella spp. The most common places of consumption are on farms or in households, indicating individuals choose to drink unpasteurised milk, rather than a widespread distribution of the product, for example, at social events and in schools. Further study is needed to better understand contributing factors, such as cultural differences in the consumption of dairy products. Conclusion There are several observable health benefits linked to consuming raw milk, but outbreaks associated with unpasteurised milk and milk products are on the rise. It cannot be definitively concluded whether the benefits outweigh the risks, and ultimately the decision lies with the individual consumer. Nevertheless, many countries have regulations in place to protect consumer health, acknowledging the definite risks to human health that unpasteurised dairy foods may pose, particularly from microbial hazards.
Collapse
Affiliation(s)
- Joanna N. de Klerk
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Philip A. Robinson
- Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport, Shropshire, United Kingdom
| |
Collapse
|
16
|
The extended farm effect: The milk protein β-lactoglobulin in stable dust protects against allergies. Allergol Select 2022; 6:111-117. [PMID: 35392214 PMCID: PMC8982089 DOI: 10.5414/alx02246e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background: The allergy- and asthma-protective farm effect is mediated by numerous factors. Especially dust from cattle stables and raw cow’s milk show beneficial properties, suggesting a bovine protein to be involved. As a major milk protein and member of the lipocalin family, β-lactoglobulin (BLG) binds small, hydrophobic ligands and thereby modulates the immune response. Empty BLG promotes allergy development, whereas BLG in association with ligands shows allergy-preventive as well as allergy-reducing effects in vivo and in vitro. Results: BLG has been identified as a major protein in stable dust (therein bound to zinc) as well as in the air around cattle stables. This association with zinc favors an allergy-protective immune profile. Conclusion: Its immune-modulating, allergy-protective characteristics together with its presence in raw cow’s milk as well as in stable dust and ambient air render BLG an essential contributor to the farm effect.
Collapse
|
17
|
Wisgrill L, Fyhrquist N, Ndika J, Paalanen L, Berger A, Laatikainen T, Karisola P, Haahtela T, Alenius H. Bet v 1 triggers antiviral-type immune signaling in birch pollen allergic individuals. Clin Exp Allergy 2022; 52:929-941. [PMID: 35147263 PMCID: PMC9540660 DOI: 10.1111/cea.14108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
Background In allergic patients, clinical symptoms caused by pollen remind of symptoms triggered by viral respiratory infections, which are also the main cause of asthmatic exacerbations. In patients sensitized to birch pollen, Bet v 1 is the major symptom‐causing allergen. Immune mechanisms driving Bet v 1‐related responses of human blood cells have not been fully characterized. Objective To characterize the immune response to Bet v 1 in peripheral blood in patients allergic to birch pollen. Methods The peripheral blood mononuclear cells of birch‐allergic (n = 24) and non‐allergic (n = 47) adolescents were stimulated ex‐vivo followed by transcriptomic profiling. Systems‐biology approaches were employed to decipher disease‐relevant gene networks and deconvolution of associated cell populations. Results Solely in birch‐allergic patients, co‐expression analysis revealed activation of networks of innate immunity and antiviral signalling as the immediate response to Bet v 1 stimulation. Toll‐like receptors and signal transducer transcription were the main drivers of gene expression patterns. Macrophages and dendritic cells were the main cell subsets responding to Bet v 1. Conclusions and clinical relevance In birch‐pollen‐allergic patients, the activated innate immune networks seem to be, in part, the same as those activated during viral infections. This tendency of the immune system to read pollens as viruses may provide new insight to allergy prevention and treatment.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Joseph Ndika
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Paalanen
- National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tiina Laatikainen
- National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Piia Karisola
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Langer S, Klee B, Gottschick C, Mikolajczyk R. Birth cohort studies using symptom diaries for assessing respiratory diseases-a scoping review. PLoS One 2022; 17:e0263559. [PMID: 35143524 PMCID: PMC8830678 DOI: 10.1371/journal.pone.0263559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Respiratory infections are the most frequent health problem in childhood leading to morbidity and socioeconomic burden. Studying symptoms of respiratory infections in home based settings requires dedicated prospective cohort studies using diaries. However, no information is available on which birth cohort studies using symptom diary data. A review of birth cohort studies with available symptom diary data, follow-up data, and bio samples is needed to support research collaborations and create potential synergies. METHODS We conducted a scoping review of birth cohort studies using diaries for the collection of respiratory symptoms. The scoping review was conducted in accordance with the PRISMA Extension. We searched the electronic databases PubMed, Embase, Web of science and CINAHL (last search November 2020) resulting in 5872 records (based on title and abstract screening) eligible for further screening. RESULTS We examined 735 records as full text articles and finally included 57 according to predefined inclusion criteria. We identified 22 birth cohort studies that collect(ed) data on respiratory symptoms using a symptom diary starting at birth. Numbers of participants ranged from 129 to 8677. Eight studies collected symptom diary information only for the first year of life, nine for the first two years or less and six between three and six years. Most of the cohorts collected biosamples (n = 18) and information on environmental exposures (n = 19). CONCLUSION Information on respiratory symptoms with daily resolution was collected in several birth cohorts, often including related biosamples, and these data and samples can be used to study full spectrum of infections, particularly including those which did not require medical treatment.
Collapse
Affiliation(s)
- Susan Langer
- Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
19
|
Lunjani N, Tan G, Dreher A, Sokolowska M, Groeger D, Warwyzniak M, Altunbulakli C, Westermann P, Basera W, Hobane L, Botha M, Gray C, Mankahla A, Gray C, Nadeau KC, Hlela C, Levin M, O'Mahony L, Akdis CA. Environment-dependent alterations of immune mediators in urban and rural South African children with atopic dermatitis. Allergy 2022; 77:569-581. [PMID: 34086351 DOI: 10.1111/all.14974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In order to improve targeted therapeutic approaches for children with atopic dermatitis (AD), novel insights into the molecular mechanisms and environmental exposures that differentially contribute to disease phenotypes are required. We wished to identify AD immunological endotypes in South African children from rural and urban environments. METHODS We measured immunological, socio-economic and environmental factors in healthy children (n = 74) and children with AD (n = 78), in rural and urban settings from the same ethno-linguistic AmaXhosa background in South Africa. RESULTS Circulating eosinophils, monocytes, TARC, MCP-4, IL-16 and allergen-specific IgE levels were elevated, while IL-17A and IL-23 levels were reduced, in children with AD regardless of their location. Independent of AD, children living in a rural environment had the highest levels of TNFα, TNFβ, IL-1α, IL-6, IL-8, IL-21, MCP-1, MIP-1α, MIP-1β, MDC, sICAM1, sVCAM1, VEGFA, VEGFD and Tie2, suggesting a generalized microinflammation or a pattern of trained immunity without any specific TH polarization. In contrast, IL-15, IL-22, Flt1, PIGF and βFGF were highest in urban children. Rural healthy children had the lowest levels of food allergen-specific IgG4. Early life nutritional factors, medications, animal exposures, indoor environment, sunlight exposure, household size, household income and parental education levels were associated with differences in circulating cytokine levels. CONCLUSIONS This study highlights the immunological impact of environmental exposures and socio-economic status in the manifestation of immune endotypes in children with AD living in urban and rural areas, which are important in selecting appropriately matched immunological therapies for treatment of AD.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Department of Dermatology, University of Cape Town, Cape Town, South Africa.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Anita Dreher
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - David Groeger
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,PrecisionBiotics Ltd, Cork, Ireland
| | - Marcin Warwyzniak
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Wisdom Basera
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Lelani Hobane
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Claudia Gray
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Avumile Mankahla
- The Division of Dermatology, Department of Medicine and Pharmacology, Walter Sisulu University, Eastern Cape, South Africa
| | - Clive Gray
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
20
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
21
|
Stampfli M, Frei R, Divaret-Chauveau A, Schmausser-Hechfellner E, Karvonen AM, Pekkanen J, Riedler J, Schaub B, von Mutius E, Lauener R, Roduit C. Inverse associations between food diversity in the second year of life and allergic diseases. Ann Allergy Asthma Immunol 2021; 128:39-45. [PMID: 34648974 DOI: 10.1016/j.anai.2021.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The influence of diet in early childhood on later allergic diseases is currently a highly debated research topic. We and others have suggested that an increased diet diversity in the first year of life has a protective effect on the development of allergic diseases. OBJECTIVE This follow-up study aimed to investigate associations between diet in the second year of life and later allergic diseases. METHODS A total of 1014 children from rural areas in 5 European countries (the Protection against Allergy: Study in Rural Environments or PASTURE birth cohort) were included. Information on feeding practices in their second year of life and allergic diseases were collected up to age 6 years. Multivariate logistic regressions were performed with different models considering reverse causality, such as excluding children with a positive sensitization to egg and those with a positive sensitization to cow's milk at the age of 1 year. RESULTS An increased food diversity score during the second year of life was negatively associated with the development of asthma. Consumption of dairy products and eggs in the second year of life found an inverse association with reported allergic outcomes. Consumption of butter was strongly associated with protection against asthma and food sensitization. Egg was inversely associated with atopic dermatitis (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.04-0.77). Yogurt and cow's milk were inversely associated with food allergy (OR for yogurt, 0.05; 95% CI, 0.01-0.55; OR for cow's milk, 0.31; 95% CI, 0.11-0.89). CONCLUSION Increased food diversity in the second year of life is inversely associated with the development of asthma, and consumption of dairy products might have a protective effect on allergic diseases.
Collapse
Affiliation(s)
- Martha Stampfli
- Department of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Remo Frei
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Division of Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, University Hospital of Nancy, Nancy, France; EA3450 Développement Adaptation et Handicap (DevAH), University of Lorraine, Nancy, France; Unité de Mixte de Recherche (UMR) 6249 Chrono-environment, Centre National De La Recherche Scientifique (CNRS) and University of Franche-Comté, Besançon, France
| | - Elisabeth Schmausser-Hechfellner
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute for Asthma and Allergy Prevention, Neuherberg, Germany
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Josef Riedler
- Children's Hospital Schwarzach, Kardinal Schwarzenbergplatz 1, Schwarzach, Austria; Teaching Hospital of Paracelsus Medical Private University Salzburg, Salzburg, Austria
| | - Bianca Schaub
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Erika von Mutius
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute for Asthma and Allergy Prevention, Neuherberg, Germany; Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Caroline Roduit
- Department of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland.
| | | |
Collapse
|
22
|
Seppo AE, Choudhury R, Pizzarello C, Palli R, Fridy S, Rajani PS, Stern J, Martina C, Yonemitsu C, Bode L, Bu K, Tamburini S, Piras E, Wallach DS, Allen M, Looney RJ, Clemente JC, Thakar J, Järvinen KM. Traditional Farming Lifestyle in Old Older Mennonites Modulates Human Milk Composition. Front Immunol 2021; 12:741513. [PMID: 34707611 PMCID: PMC8545059 DOI: 10.3389/fimmu.2021.741513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
Background In addition to farming exposures in childhood, maternal farming exposures provide strong protection against allergic disease in their children; however, the effect of farming lifestyle on human milk (HM) composition is unknown. Objective This study aims to characterize the maternal immune effects of Old Order Mennonite (OOM) traditional farming lifestyle when compared with Rochester (ROC) families at higher risk for asthma and allergic diseases using HM as a proxy. Methods HM samples collected at median 2 months of lactation from 52 OOM and 29 ROC mothers were assayed for IgA1 and IgA2 antibodies, cytokines, endotoxin, HM oligosaccharides (HMOs), and targeted fatty acid (FA) metabolites. Development of early childhood atopic diseases in children by 3 years of age was assessed. In addition to group comparisons, systems level network analysis was performed to identify communities of multiple HM factors in ROC and OOM lifestyle. Results HM contains IgA1 and IgA2 antibodies broadly recognizing food, inhalant, and bacterial antigens. OOM HM has significantly higher levels of IgA to peanut, ovalbumin, dust mites, and Streptococcus equii as well TGF-β2, and IFN-λ3. A strong correlation occurred between maternal antibiotic use and levels of several HMOs. Path-based analysis of HMOs shows lower activity in the path involving lactoneohexaose (LNH) in the OOM as well as higher levels of lacto-N-neotetraose (LNnT) and two long-chain FAs C-18OH (stearic acid) and C-23OH (tricosanoic acid) compared with Rochester HM. OOM and Rochester milk formed five different clusters, e.g., butyrate production was associated with Prevotellaceae, Veillonellaceae, and Micrococcaceae cluster. Development of atopic disease in early childhood was more common in Rochester and associated with lower levels of total IgA, IgA2 to dust mite, as well as of TSLP. Conclusion Traditional, agrarian lifestyle, and antibiotic use are strong regulators of maternally derived immune and metabolic factors, which may have downstream implications for postnatal developmental programming of infant's gut microbiome and immune system.
Collapse
Affiliation(s)
- Antti E. Seppo
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children’s Hospital, Rochester, NY, United States
| | - Rakin Choudhury
- Department of Microbiology and Immunology and Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Catherine Pizzarello
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children’s Hospital, Rochester, NY, United States
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Sade Fridy
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children’s Hospital, Rochester, NY, United States
| | - Puja Sood Rajani
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children’s Hospital, Rochester, NY, United States
| | - Jessica Stern
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children’s Hospital, Rochester, NY, United States
| | - Camille Martina
- Department of Public Health Sciences & Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Chloe Yonemitsu
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lars Bode
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States,Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, United States
| | - Kevin Bu
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Precision Immunology Institue, Icahn School of Medicine at Mount Sinai, New York, New York, NY, United States
| | - Sabrina Tamburini
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Precision Immunology Institue, Icahn School of Medicine at Mount Sinai, New York, New York, NY, United States
| | - Enrica Piras
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Precision Immunology Institue, Icahn School of Medicine at Mount Sinai, New York, New York, NY, United States
| | - David S. Wallach
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Precision Immunology Institue, Icahn School of Medicine at Mount Sinai, New York, New York, NY, United States
| | - Maria Allen
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - R. John Looney
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Precision Immunology Institue, Icahn School of Medicine at Mount Sinai, New York, New York, NY, United States
| | - Juilee Thakar
- Department of Microbiology and Immunology and Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Kirsi M. Järvinen
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children’s Hospital, Rochester, NY, United States,Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States,*Correspondence: Kirsi M. Järvinen,
| |
Collapse
|
23
|
Deckers J, Marsland BJ, von Mutius E. Protection against allergies: Microbes, immunity, and the farming effect. Eur J Immunol 2021; 51:2387-2398. [PMID: 34415577 DOI: 10.1002/eji.202048938] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
The prevalence of asthma and other allergic diseases has rapidly increased in "Westernized" countries over recent decades. This rapid increase suggests the involvement of environmental factors, behavioral changes or lifestyle, rather than genetic drift. It has become increasingly clear that the microbiome plays a key role in educating the host immune system and, thus, regulation of disease susceptibility. This review will focus on recent advances uncovering immunological and microbial mechanisms that protect against allergies, in particular, within the context of a farming environment. A whole body of epidemiological data disclosed the nature of the protective exposures in a farm. Current evidence points toward an important role of the host microbiome in setting an immunological equilibrium that determines progression toward, or protection against allergic diseases. Conclusive mechanistic insights on how microbial exposures prevent from developing allergic diseases in humans are still lacking but findings from experimental models reveal plausible immunological mechanisms. Gathering further knowledge on these mechanisms and confirming their relevance in humans is of great importance to develop preventive strategies for children at risk of developing allergies.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Erika von Mutius
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research, München, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
24
|
Noel JC, Berin MC. Role of innate immunity and myeloid cells in susceptibility to allergic disease. Ann N Y Acad Sci 2021; 1499:42-53. [PMID: 34159612 DOI: 10.1111/nyas.14654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Allergic diseases, including asthma, food allergy, eczema, and allergic rhinitis, are common diseases increasing in prevalence. Allergy, a failure of immune tolerance to innocuous environmental allergens, is characterized by allergen-specific immune responses, including IgE antibodies and T helper and T follicular helper cells producing type 2 cytokines. Despite the central role of adaptive immunity in pathophysiology of allergy, there is a growing body of evidence indicating an important role for the innate immune system in allergic disease. In this review, we focus on epithelial-mononuclear phagocyte communication in the control of allergy and tolerance. We discuss studies on early life environmental exposures and allergy susceptibility, and the evidence for innate training of mononuclear phagocytes as the mechanistic link between exposure and health or disease.
Collapse
Affiliation(s)
- Justine C Noel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - M Cecilia Berin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
25
|
Pivniouk V, Gimenes Junior JA, Honeker LK, Vercelli D. The role of innate immunity in asthma development and protection: Lessons from the environment. Clin Exp Allergy 2021; 50:282-290. [PMID: 31581343 DOI: 10.1111/cea.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Asthma, a complex, chronic disease characterized by airway inflammation, hyperresponsiveness and remodelling, affects over 300 million people worldwide. While the disease is typically associated with exaggerated allergen-induced type 2 immune responses, these responses are strongly influenced by environmental exposures that stimulate innate immune pathways capable of promoting or protecting from asthma. The dual role played by innate immunity in asthma pathogenesis offers multiple opportunities for both research and clinical interventions and is the subject of this review.
Collapse
Affiliation(s)
- Vadim Pivniouk
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Linnea K Honeker
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Donata Vercelli
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Hose AJ, Pagani G, Karvonen AM, Kirjavainen PV, Roduit C, Genuneit J, Schmaußer-Hechfellner E, Depner M, Frei R, Lauener R, Riedler J, Schaub B, Fuchs O, von Mutius E, Divaret-Chauveau A, Pekkanen J, Ege MJ. Excessive Unbalanced Meat Consumption in the First Year of Life Increases Asthma Risk in the PASTURE and LUKAS2 Birth Cohorts. Front Immunol 2021; 12:651709. [PMID: 33986744 PMCID: PMC8111016 DOI: 10.3389/fimmu.2021.651709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
A higher diversity of food items introduced in the first year of life has been inversely related to subsequent development of asthma. In the current analysis, we applied latent class analysis (LCA) to systematically assess feeding patterns and to relate them to asthma risk at school age. PASTURE (N=1133) and LUKAS2 (N=228) are prospective birth cohort studies designed to evaluate protective and risk factors for atopic diseases, including dietary patterns. Feeding practices were reported by parents in monthly diaries between the 4th and 12th month of life. For 17 common food items parents indicated frequency of feeding during the last 4 weeks in 4 categories. The resulting 153 ordinal variables were entered in a LCA. The intestinal microbiome was assessed at the age of 12 months by 16S rRNA sequencing. Data on feeding practice with at least one reported time point was available in 1042 of the 1133 recruited children. Best LCA model fit was achieved by the 4-class solution. One class showed an elevated risk of asthma at age 6 as compared to the other classes (adjusted odds ratio (aOR): 8.47, 95% CI 2.52–28.56, p = 0.001) and was characterized by daily meat consumption and rare consumption of milk and yoghurt. A refined LCA restricted to meat, milk, and yoghurt confirmed the asthma risk effect of a particular class in PASTURE and independently in LUKAS2, which we thus termed unbalanced meat consumption (UMC). The effect of UMC was particularly strong for non-atopic asthma and asthma irrespectively of early bronchitis (aOR: 17.0, 95% CI 5.2–56.1, p < 0.001). UMC fostered growth of iron scavenging bacteria such as Acinetobacter (aOR: 1.28, 95% CI 1.00-1.63, p = 0.048), which was also related to asthma (aOR: 1.55, 95% CI 1.18-2.03, p = 0.001). When reconstructing bacterial metabolic pathways from 16S rRNA sequencing data, biosynthesis of siderophore group nonribosomal peptides emerged as top hit (aOR: 1.58, 95% CI 1.13-2.19, p = 0.007). By a data-driven approach we found a pattern of overly meat consumption at the expense of other protein sources to confer risk of asthma. Microbiome analysis of fecal samples pointed towards overgrowth of iron-dependent bacteria and bacterial iron metabolism as a potential explanation.
Collapse
Affiliation(s)
- Alexander J Hose
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Giulia Pagani
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Caroline Roduit
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Immunology, Children's Hospital, University of Zürich, Zürich, Switzerland.,Department of Allergology, Childrens Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.,Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Elisabeth Schmaußer-Hechfellner
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Depner
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Remo Frei
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Pediatric Pulmonology, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Roger Lauener
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Allergology, Childrens Hospital of Eastern Switzerland, St. Gallen, Switzerland.,Department of Allergology, University of Zurich, Zurich, Switzerland.,School of Medicine, University of St Gallen, St Gallen, Switzerland
| | - Josef Riedler
- Department of Pediatric and Adolescent Medicine, Children's Hospital, Schwarzach, Austria
| | - Bianca Schaub
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center (CPCM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Fuchs
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Erika von Mutius
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Comprehensive Pneumology Center (CPCM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, Children's Hospital, University Hospital of Nancy, Vandoeuvre les Nancy, France.,EA 3450 DevAH, Faculty of Medecine, University of Lorraine, Vandoeuvre les Nancy, France.,Department of Respiratory Disease, UMR/CNRS 6249 Chrono-environnement, University Hospital of Besançon, Besançon, France
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.,Department of Public Health, University of Helsinki, University of Helsinki, Helsinki, Finland
| | - Markus J Ege
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center (CPCM), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
27
|
Lynch SV, Vercelli D. Microbiota, Epigenetics, and Trained Immunity. Convergent Drivers and Mediators of the Asthma Trajectory from Pregnancy to Childhood. Am J Respir Crit Care Med 2021; 203:802-808. [PMID: 33493428 DOI: 10.1164/rccm.202010-3779pp] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California; and
| | - Donata Vercelli
- Department of Cellular and Molecular Medicine & Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
28
|
Atopy risk among school-aged children in relation to early exposures to a farm environment: A systematic review. Respir Med 2021; 186:106378. [PMID: 34252858 DOI: 10.1016/j.rmed.2021.106378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Childhood atopy is a complex condition with both a genetic and an environmental component. This systematic review will explore the current understanding of the importance of early life exposures to a farm in the development of atopy measured by objective markers of skin prick testing, and specific IgE measurements in school age children. METHODS A systematic review was performed. RESULTS Among 7285 references identified, 14 studies met the inclusion criteria (13 cross-sectional studies and 1 case-control study). The results were fairly consistent in that early farm-related exposures can protect children from becoming atopic at school age. In general, there was heterogeneity in the assessment of outcomes and exposures. CONCLUSIONS Early-life farm exposures are associated with a protective effect on childhood atopy as assessed by objective markers. Future work should focus on understanding specific farm exposures that may important in these associations between atopy and farm exposures in children.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To perform a nonsystematic review of the literature on the role of breastfeeding as primary prevention tool for allergic diseases. RECENT FINDINGS Human milk contains vast amounts of biologically active components that have a significant impact on the development of the gut microbiota. Exclusively breastfed infants show a different microbiota, with a predominance of Bifidobacterium species in their intestines.The mechanisms underlying the antiallergic effects of human milk are most probably complex, as human milk contains not only nutritional substances but also functional molecules including polysaccharides, cytokines, proteins, and other components which can produce an epigenetic modulation of the innate and adaptive immune responses of the infant in very early life. SUMMARY Currently, there is not sufficient strong evidence to guarantee its effectiveness in allergy prevention and therefore the main international scientific societies still do not count it among the recognized primary prevention strategies of allergy.
Collapse
Affiliation(s)
- Maurizio Mennini
- Multifactorial and Systemic Diseases Research Area, Predictive and Preventive Medicine Research Unit, Division of Allergy Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | |
Collapse
|
30
|
Eapen AA, Kim H. The Phenotype of the Food-Allergic Patient. Immunol Allergy Clin North Am 2021; 41:165-175. [PMID: 33863477 DOI: 10.1016/j.iac.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food allergy's increasing prevalence across the globe has initiated research into risk factors associated with the disease and coexistence with other allergic diseases. Longitudinal birth cohorts have identified food allergy phenotypes of patients based on genetic background, racial diversity, and environmental factors. Identifying food sensitization patterns and coexistence of other allergic diseases allows physicians to provide appropriate care for food allergy and personalized anticipatory guidance for the appearance of other allergic diseases. The authors seek to detail key findings of 4 longitudinal allergy birth cohorts that investigate food allergy and other allergic diseases to further characterize food allergy phenotypes.
Collapse
Affiliation(s)
- Amy A Eapen
- Division of Allergy and Clinical Immunology, Henry Ford Health System, 1 Ford Place, Detroit, MI 48202, USA.
| | - Haejin Kim
- Division of Allergy and Clinical Immunology, Henry Ford Health System, 1 Ford Place, Detroit, MI 48202, USA
| |
Collapse
|
31
|
The intersect of genetics, environment, and microbiota in asthma-perspectives and challenges. J Allergy Clin Immunol 2021; 147:781-793. [PMID: 33678251 DOI: 10.1016/j.jaci.2020.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
In asthma, a significant portion of the interaction between genetics and environment occurs through microbiota. The proposed mechanisms behind this interaction are complex and at times contradictory. This review covers recent developments in our understanding of this interaction: the "microbial hypothesis" and the "farm effect"; the role of endotoxin and genetic variation in pattern recognition systems; the interaction with allergen exposure; the additional involvement of host gut and airway microbiota; the role of viral respiratory infections in interaction with the 17q21 and CDHR3 genetic loci; and the importance of in utero and early-life timing of exposures. We propose a unified framework for understanding how all these phenomena interact to drive asthma pathogenesis. Finally, we point out some future challenges for continued research in this field, in particular the need for multiomic integration, as well as the potential utility of asthma endotyping.
Collapse
|
32
|
Steiman CA, Evans MD, Lee KE, Lasarev MR, Gangnon RE, Olson BF, Barnes KL, Bendixsen CG, Seroogy CM, Gern JE. Patterns of farm exposure are associated with reduced incidence of atopic dermatitis in early life. J Allergy Clin Immunol 2020; 146:1379-1386.e6. [PMID: 32650021 PMCID: PMC7721989 DOI: 10.1016/j.jaci.2020.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Farm exposures may reduce the risk of atopic dermatitis (AD) in children, but this is controversial and US data are limited. OBJECTIVE This study was conducted to identify patterns of farm exposure in Wisconsin family farms that modify AD incidence and prevalence in early childhood. METHODS Environmental exposures, health history, and clinical outcomes were prospectively recorded for 111 farm families and 129 non-farm families enrolled in the Wisconsin Infant Study Cohort birth cohort study. Exposures from the prenatal and early postnatal (2-month) visits were evaluated together with parental report of AD diagnosis by a health care provider through age 24 months. Latent class analysis was performed with prenatal and early postnatal farm-exposure variables to assign farm children to 3 classes. RESULTS Overall, children of farm families had reduced AD incidence (P = .03). Within farm families, exposures including poultry (3% vs 28%; P = .003), pig (4% vs 25%; P = .04), feed grain (13% vs 34%; P = .02), and number of animal species were inversely associated with AD incidence. Among the latent class groups, children in families with diverse or more intense farm exposures (classes A and B) had reduced AD incidence, whereas low-exposure (class C) infants had AD incidence similar to that in nonfarm children. CONCLUSIONS Infants in Wisconsin farm families had reduced AD incidence, and patterns of farm exposures further defined AD risk. These findings suggest that exposure to diverse farm animals, feed, and bedding during the prenatal period and in early infancy reduce the risk of early-onset AD, a phenotype associated with multiple other atopic diseases.
Collapse
Affiliation(s)
- Cheryl A Steiman
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael D Evans
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Kristine E Lee
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael R Lasarev
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Ronald E Gangnon
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Brent F Olson
- Marshfield Clinic Research Institute, National Farm Medicine Center, Marshfield, Wis
| | - Kathrine L Barnes
- Marshfield Clinic Research Institute, National Farm Medicine Center, Marshfield, Wis
| | - Casper G Bendixsen
- Marshfield Clinic Research Institute, National Farm Medicine Center, Marshfield, Wis
| | | | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| |
Collapse
|
33
|
van Esch BCAM, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, van Neerven RJJ. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol 2020; 11:2141. [PMID: 33193294 PMCID: PMC7641638 DOI: 10.3389/fimmu.2020.02141] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Specific and adequate nutrition during pregnancy and early life is an important factor in avoiding non-communicable diseases such as obesity, type 2 diabetes, cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic and experimental studies have shown that nutrition is important at all stages of life, it is especially important in prenatal and the first few years of life. During the last decade, there has been a growing interest in the potential role of epigenetic mechanisms in the increasing health problems associated with allergic disease. Epigenetics involves several mechanisms including DNA methylation, histone modifications, and microRNAs which can modify the expression of genes. In this study, we focus on the effects of maternal nutrition during pregnancy, the effects of the bioactive components in human and bovine milk, and the environmental factors that can affect early life (i.e., farming, milk processing, and bacterial exposure), and which contribute to the epigenetic mechanisms underlying the persistent programming of immune functions and allergic diseases. This knowledge will help to improve approaches to nutrition in early life and help prevent allergies in the future.
Collapse
Affiliation(s)
- Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Mojtaba Porbahaie
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- John Paul II Hospital, Krakow, Poland
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
34
|
Ubags NDJ, Alejandre Alcazar MA, Kallapur SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert NL, Rottier RJ, Smits HH, de Steenhuijsen Piters WAA, Strickland DH, Collins JJP. Early origins of lung disease: towards an interdisciplinary approach. Eur Respir Rev 2020; 29:29/157/200191. [PMID: 33004528 DOI: 10.1183/16000617.0191-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).
Collapse
Affiliation(s)
- Niki D J Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland.,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| | - Miguel A Alejandre Alcazar
- Dept of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Paediatrics, Experimental Pulmonology, University of Cologne, Cologne, Germany.,Centre of Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Suhas G Kallapur
- Neonatal-Perinatal Medicine, Dept of Pediatrics, David Geffen School of Medicine, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Sylvia Knapp
- Dept of Medicine I/Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.,CeMM, Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Clare M Lloyd
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Rory E Morty
- Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Dept of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Centre, Member of the German Centre for Lung Research, Giessen, Germany
| | - Céline Pattaroni
- Dept of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Niki L Reynaert
- Dept of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robbert J Rottier
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Jennifer J P Collins
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands .,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| |
Collapse
|
35
|
Lajqi T, Pöschl J, Frommhold D, Hudalla H. The Role of Microbiota in Neutrophil Regulation and Adaptation in Newborns. Front Immunol 2020; 11:568685. [PMID: 33133082 PMCID: PMC7550463 DOI: 10.3389/fimmu.2020.568685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Newborns are highly susceptible to infections and mainly rely on innate immune functions. Reduced reactivity, delayed activation and subsequent failure to resolve inflammation however makes the neonatal immune system a very volatile line of defense. Perinatal microbiota, nutrition and different extra-uterine factors are critical elements that define long-term outcomes and shape the immune system during the neonatal period. Neutrophils are first responders and represent a vital component of the immune system in newborns. They have long been regarded as merely executive immune cells, however this notion is beginning to shift. Neutrophils are shaped by their surrounding and adaptive elements have been described. The role of “innate immune memory” and the main triangle connection microbiome—neutrophil—adaptation will be discussed in this review.
Collapse
Affiliation(s)
- Trim Lajqi
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Johannes Pöschl
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, Memmingen, Germany
| | - Hannes Hudalla
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| |
Collapse
|
36
|
Bawany F, Beck LA, Järvinen KM. Halting the March: Primary Prevention of Atopic Dermatitis and Food Allergies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:860-875. [PMID: 32147139 PMCID: PMC7355223 DOI: 10.1016/j.jaip.2019.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin conditions, affecting 15% to 30% of children and 2% to 10% of adults. Population-based studies suggest that having AD is associated with subsequent development of other atopic diseases, in what is known as the "atopic march." We will provide an overview of studies that investigate primary prevention strategies for the first 2 diseases in the march, namely, AD and food allergies (FA). These strategies include emollients, breastfeeding, microbial exposures, probiotics, vitamin D and UV light, water hardness, and immunotherapy. Some studies, including randomized controlled trials on emollients and microbial supplementation, have found encouraging results; however, the evidence remains limited and contradictory. With regard to breastfeeding, microbial and lifestyle exposures, vitamin D and UV light, water hardness, and immunotherapy, the lack of randomized controlled trials makes it difficult to draw definitive conclusions. Current American Academy of Pediatrics guidelines support the idea that breastfeeding for 3 to 4 months can decrease AD incidence in children less than 2 years old. Recommendations regarding a direct relationship between breastfeeding on FA, however, cannot be made because of insufficient data. Regarding microbial supplementation, most guidelines do not recommend probiotics or prebiotics for the purpose of preventing allergic diseases because of limited evidence. Before definitive conclusions can be made regarding these interventions, more well-designed, longitudinal, and randomized controlled trials, particularly in at-risk populations, are required.
Collapse
Affiliation(s)
- Fatima Bawany
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY.
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology & Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
37
|
Decrue F, Gorlanova O, Usemann J, Frey U. Lung functional development and asthma trajectories. Semin Immunopathol 2020; 42:17-27. [PMID: 31989229 DOI: 10.1007/s00281-020-00784-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Early life environmental risk factors are associated with chronic respiratory morbidity in child- and adulthood. A possible mechanism for this sustained effect is their influence on early life lung functional growth and development, a susceptible phase of rapid lung growth with increased plasticity. We summarize evidence of hereditary and environmental ante-, peri-, and early postnatal factors on lung functional development, such as air pollution, tobacco exposure, nutrition, intrauterine growth retardation, prematurity, early life infections, microbiome, and allergies and their effect on lung functional trajectories. While some of the factors (e.g., prematurity) directly impair lung growth, the influence of many environmental factors is mediated through inflammatory processes (e.g., recurrent infections or oxidative stress). The timing and nature of these influences and their impact result in degrees of impaired maximal lung functional capacity in early adulthood; and they potentially impact future long-term respiratory morbidity such as chronic asthma or chronic obstructive airway disease (COPD). We discuss possibilities to prevent or modify such early abnormal lung functional growth trajectories and the need for future studies and prevention programs.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Jakob Usemann
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.,Division of Respiratory Medicin, University Children's Hospital Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.
| |
Collapse
|
38
|
Phillips JT, Stahlhut RW, Looney RJ, Järvinen KM. Food allergy, breastfeeding, and introduction of complementary foods in the New York Old Order Mennonite Community. Ann Allergy Asthma Immunol 2020; 124:292-294.e2. [PMID: 31923545 DOI: 10.1016/j.anai.2019.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Jonathan T Phillips
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children's Hospital, Rochester, New York
| | - Richard W Stahlhut
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Richard J Looney
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology and Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry and Golisano Children's Hospital, Rochester, New York.
| |
Collapse
|
39
|
Abstract
Over the last few decades, advances in our understanding of microbial ecology have allowed us to appreciate the important role of microbial communities in maintaining human health. While much of this research has focused on gut microbes, microbial communities in other body sites and from the environment are increasingly recognized in human disease. Here, we discuss recent advances in our understanding of host-microbiota interactions in the development and manifestation of asthma focusing on three distinct microbial compartments. First, environmental microbes originating from house dust, pets, and farm animals have been linked to asthma pathogenesis, which is often connected to their production of bioactive molecules such as lipopolysaccharide. Second, respiratory microbial communities, including newly appreciated populations of microbes in the lung have been associated with allergic airway inflammation. Current evidence suggests that the presence of particular microbes, especially Streptococcus, Haemophilus, and Morexella species within the airway may shape local immune responses and alter the severity and manifestations of airway inflammation. Third, the gut microbiota has been implicated in both experimental models and clinical studies in predisposing to asthma. There appears to be a "critical window" of colonization that occurs during early infancy in which gut microbial communities shape immune maturation and confer susceptibility to allergic airway inflammation. The mechanisms by which gut microbial communities influence lung immune responses and physiology, the "gut-lung axis," are still being defined but include the altered differentiation of immune cell populations important in asthma and the local production of metabolites that affect distal sites. Together, these findings suggest an intimate association of microbial communities with host immune development and the development of allergic airway inflammation. Improved understanding of these relationships raises the possibility of microbiota-directed therapies to improve or prevent asthma.
Collapse
Affiliation(s)
- Aaron Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Planer
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Vuitton D, Divaret-Chauveau A, Dalphin ML, Laplante JJ, von Mutius E, Dalphin JC. Protection contre l’allergie par l’environnement de la ferme : en 15 ans, qu’avons-nous appris de la cohorte européenne « PASTURE » ? BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2019. [DOI: 10.1016/j.banm.2019.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Pulvirenti G, Parisi GF, Giallongo A, Papale M, Manti S, Savasta S, Licari A, Marseglia GL, Leonardi S. Lower Airway Microbiota. Front Pediatr 2019; 7:393. [PMID: 31612122 PMCID: PMC6776601 DOI: 10.3389/fped.2019.00393] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
During the last several years, the interest in the role of microbiota in human health has grown significantly. For many years, the lung was considered a sterile environment, and only recently, with the use of more sophisticated techniques, has it been demonstrated that colonization by a complex population of microorganisms in lower airways also occurs in healthy subjects; a predominance of some species of Proteobacteria, Firmicutes, and Bacteroidetes phyla and with a peculiar composition in some disease conditions, such as asthma, have been noted. Lung microbiota derives mainly from the higher airways microbiota. Although we have some information about the role of gut microbiota in modulation of immune system, less it is known about the connection between lung microbiota and local and systemic immunity. There is a correlation between altered microbiota composition and some diseases or chronic states; however, despite this correlation, it has not been clearly demonstrated whether the lung microbiota dysbiosis could be a consequence or a cause of these diseases. We are far from a scientific approach to the therapeutic use of probiotics in airway diseases, but we are only at the starting point of a knowledge process in this fascinating field that could reveal important surprises, and randomized prospective studies in future could reveal more about the clinical possibilities for controlling lung microbiota. This review was aimed at updating the current knowledge in the field of airway microbiota.
Collapse
Affiliation(s)
- Giulio Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Fabio Parisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Giallongo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Papale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sara Manti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Salvatore Savasta
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Deckers J, Lambrecht BN, Hammad H. How a farming environment protects from atopy. Curr Opin Immunol 2019; 60:163-169. [PMID: 31499321 DOI: 10.1016/j.coi.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
It is now well established that the exposure to certain environments such as farms has the potential to protect from the development of allergies later in life. This protection is achieved when repeated exposure to the farming environment occurs early in life, but persists when children spend sufficient amount of time in contact with livestock and hay, and drink unpasteurized milk. The capacity of farm dust to protect from allergy development lies, amongst others, in the microbe composition in the farm. These protective microbes release various metabolites and cell wall components that change farmers' home dust composition, when compared to urbanized home dust. Additionally, they can colonize various barrier sites (skin, lung, intestine) in farmers' children, leading to persistent changes in the way their immune system and their barrier cells respond to environmental allergens.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
van Neerven RJJ, Savelkoul HFJ. The Two Faces of Cow's Milk and Allergy: Induction of Cow's Milk Allergy vs. Prevention of Asthma. Nutrients 2019; 11:E1945. [PMID: 31430905 PMCID: PMC6722535 DOI: 10.3390/nu11081945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cow's milk has been consumed by humans for over 5000 years and contributed to a drastic change in lifestyle form nomadic to settled communities. As the composition of cow's milk is relatively comparable to breast milk, it has for a very long time been used as an alternative to breastfeeding. Today, cow's milk is typically introduced into the diet of infants around 6 months, except when breastfeeding is not an option. In that case, most often cow's milk based infant formulas are given. Some children will develop cow's milk allergy (CMA) during the first year of life. However, epidemiological evidence also suggests that consumption of unprocessed, "raw" cow's milk is associated with a lowered prevalence of other allergies. This Special Issue of Nutrients on "Cow's Milk and Allergy" (https://www.mdpi.com/journal/nutrients/special_issues/milk_allergy) is dedicated to these two different sides of cow's milk and allergy, ranging from epidemiology of CMA, clinical presentation and sensitization patterns, treatment and prevention, effects of milk processing, and current management guidelines for CMA, but also the epidemiological evidence linking cow's milk to lower asthma prevalence as well as the tolerance-inducing effect of raw cow's milk in food allergy models. In this editorial, we discuss these issues by highlighting the contributions in this Special Issue.
Collapse
Affiliation(s)
- R J Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands.
- FrieslandCampina, 3818 LE, Amersfoort, The Netherlands.
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands
- Allergy Consortium Wageningen, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
44
|
Rychlik KA, Sillé FCM. Environmental exposures during pregnancy: Mechanistic effects on immunity. Birth Defects Res 2019; 111:178-196. [PMID: 30708400 DOI: 10.1002/bdr2.1469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In human studies, it is well established that exposures during embryonic and fetal development periods can influence immune health. Coupled with genetic predisposition, these exposures can alter lifetime chronic and infectious disease trajectory, and, ultimately, life expectancy. Fortunately, as research advances, mechanisms governing long-term effects of prenatal exposures are coming to light and providing the opportunity for intervention and risk reduction. For instance, human association studies have provided a foundation for the association of prenatal exposure to particulate matter with early immunosuppression and later allergic disease in the offspring. Only recently, the mechanisms mediating this response have been revealed and there is much we have yet to discover. Although cellular immune response is understood for many exposure scenarios, molecular pathways are still unidentified. This review will provide commentary and synthesis of the current literature regarding environmental exposures during pregnancy and mechanisms determining immune outcomes. Shared mechanistic features and current gaps in the state of the science are identified and discussed. To such purpose, we address exposures by their immune effect type: immunosuppression, autoimmunity, inflammation and tissue damage, hypersensitivity, and general immunomodulation.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
45
|
Raw Cow's Milk and Its Protective Effect on Allergies and Asthma. Nutrients 2019; 11:nu11020469. [PMID: 30813365 PMCID: PMC6413174 DOI: 10.3390/nu11020469] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Living on a farm and having contact with rural exposures have been proposed as one of the most promising ways to be protected against allergy and asthma development. There is a significant body of epidemiological evidence that consumption of raw milk in childhood and adulthood in farm but also nonfarm populations can be one of the most effective protective factors. The observation is even more intriguing when considering the fact that milk is one of the most common food allergens in childhood. The exact mechanisms underlying this association are still not well understood, but the role of raw milk ingredients such as proteins, fat and fatty acids, and bacterial components has been recently studied and its influence on the immune function has been documented. In this review, we present the current understanding of the protective effect of raw milk on allergies and asthma.
Collapse
|
46
|
Sozańska B. Microbiome in the primary prevention of allergic diseases and bronchial asthma. Allergol Immunopathol (Madr) 2019; 47:79-84. [PMID: 29980403 DOI: 10.1016/j.aller.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 12/27/2022]
Abstract
Tremendous progress in the ability to identify and test the function of microorganisms in recent years has led to a much better understanding of the role of environmental and host microbiome in the development of immune function, allergic sensitization and asthma. In this review, the most recent findings on the relationships between environmental microbiota, respiratory, intestinal microbiome, the consequences of early-life microbial exposure type and gut-lung microbial axis and the development of asthma and atopy are summarized. The current perspective on gut and airway microbiome manipulation for the primary prevention of allergic diseases and asthma is also discussed.
Collapse
|
47
|
Lau MYZ, Dharmage SC, Burgess JA, Win AK, Lowe AJ, Lodge CJ, Perret J, Hui J, Thomas PS, Giles G, Thompson BR, Abramson MJ, Walters EH, Matheson MC. Early-life exposure to sibling modifies the relationship between CD14 polymorphisms and allergic sensitization. Clin Exp Allergy 2018; 49:331-340. [PMID: 30288821 DOI: 10.1111/cea.13290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/03/2017] [Accepted: 08/08/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Markers of microbial exposure are thought to be associated with risk of allergic sensitization; however, the associations are inconsistent and may be related to gene-environment interactions. OBJECTIVE To examine the relationship between polymorphisms in the CD14 gene and allergic sensitization and whether sibling exposure, as a marker of microbial exposure, modified this relationship. METHODS We used data from the Tasmanian Longitudinal Health Study and the Melbourne Atopy Cohort Study. Two CD14 polymorphisms were genotyped. Allergic sensitization was defined by a positive response to a skin prick test. Sibling exposure was measured as cumulative exposure to siblings before age 6 months, 2 and 4 years. Logistic regression and multi-level mixed-effects logistic regression were used to examine the associations. Effect estimates across the cohorts were pooled using random-effects meta-analysis. RESULTS CD14 SNPs were not individually associated with allergic sensitization in either cohort. In TAHS, cumulative sibling exposure before age 6 months, 2 and 4 years was each associated with a reduced risk of allergic sensitization at age 45 years. A similar effect was observed in MACS. Meta-analysis across the two cohorts showed consistent evidence of an interaction between cumulative sibling exposure before 6 months and the rs5744455-SNP (P = 0.001) but not with the rs2569190-SNP (P = 0.60). The pooled meta-analysis showed that the odds of sensitization with increasing cumulative exposure to sibling before 6 months of age was 20.9% smaller in those with the rs5744455-C-allele than the T-allele (OR = 0.83 vs 1.05, respectively). CONCLUSION AND CLINICAL RELEVANCE Cumulative sibling exposure reduced the risk of sensitization from childhood to middle age in genetically susceptible individuals.
Collapse
Affiliation(s)
- Melisa Y Z Lau
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Aung K Win
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Jennifer Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Jennie Hui
- School of Population Health, University of Western Australia, Perth, Western Australia, Australia
| | - Paul S Thomas
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Graham Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Bruce R Thompson
- Allergy Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|
48
|
Korhonen L, Seiskari T, Lehtonen J, Puustinen L, Surcel H, Haapala A, Niemelä O, Virtanen SM, Honkanen H, Karjalainen M, Ilonen J, Veijola R, Knip M, Lönnrot M, Hyöty H. Enterovirus infection during pregnancy is inversely associated with atopic disease in the offspring. Clin Exp Allergy 2018; 48:1698-1704. [DOI: 10.1111/cea.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/12/2018] [Accepted: 09/01/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Laura Korhonen
- Department of Virology Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
- Department of Dermatology Tampere University Hospital Tampere Finland
- Allergy Centre Tampere University Hospital Tampere Finland
| | - Tapio Seiskari
- Department of Clinical Microbiology Fimlab Laboratories Ltd Tampere Finland
| | - Jussi Lehtonen
- Department of Virology Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
| | - Leena Puustinen
- Department of Virology Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
| | - Heljä‐Marja Surcel
- National Institute for Health and Welfare Oulu Finland
- Biobank Borealis of Northern Finland Oulu University Hospital Oulu Finland
| | - Anna‐Maija Haapala
- Department of Clinical Microbiology Fimlab Laboratories Ltd Tampere Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit Seinäjoki Central Hospital and University of Tampere Seinäjoki Finland
| | - Suvi M. Virtanen
- Unit of Nutrition National Institute for Health and Welfare Helsinki Finland
- Faculty of Social Sciences/Health Sciences University of Tampere Tampere Finland
- Center for Child Health Research University of Tampere Tampere University Hospital Tampere Finland
- The Science Center Pirkanmaa Hospital District Tampere Finland
| | - Hanna Honkanen
- Department of Virology Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
| | - Mira Karjalainen
- Department of Pediatrics PEDEGO Research Unit Medical Research Center Oulu University Hospital and University of Oulu Oulu Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory Institute of Biomedicine University of Turku Turku Finland
- Clinical Microbiology Turku University Hospital Turku Finland
| | - Riitta Veijola
- Department of Pediatrics PEDEGO Research Unit Medical Research Center Oulu University Hospital and University of Oulu Oulu Finland
| | - Mikael Knip
- Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Programs Unit, Diabetes and Obesity University of Helsinki Helsinki Finland
- Folkhälsan Research Center Helsinki Finland
- Department of Pediatrics Tampere University Hospital Tampere Finland
| | - Maria Lönnrot
- Department of Virology Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
- Department of Dermatology Tampere University Hospital Tampere Finland
- Allergy Centre Tampere University Hospital Tampere Finland
| | - Heikki Hyöty
- Department of Virology Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Ltd Tampere Finland
| |
Collapse
|
49
|
Whitehead J, Lake B. Recent Trends in Unpasteurized Fluid Milk Outbreaks, Legalization, and Consumption in the United States. PLOS CURRENTS 2018; 10. [PMID: 30279996 PMCID: PMC6140832 DOI: 10.1371/currents.outbreaks.bae5a0fd685616839c9cf857792730d1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction: Determining the potential risk of foodborne illness has become critical for informing policy decisions, due to the increasing availability and popularity of unpasteurized (raw) milk. Methods: Trends in foodborne illnesses reported to the Centers for Disease Control in the United States from 2005 to 2016 were analyzed, with comparison to state legal status and to consumption, as estimated by licensing records. Results: The rate of unpasteurized milk-associated outbreaks has been declining since 2010, despite increasing legal distribution. Controlling for growth in population and consumption, the outbreak rate has effectively decreased by 74% since 2005. Discussion: Studies of the role of on-farm food safety programs to promote the further reduction of unpasteurized milk outbreaks should be initiated, to investigate the efficacy of such risk management tools.
Collapse
Affiliation(s)
- Joanne Whitehead
- Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Bryony Lake
- Meta+ Research and Analysis, British Columbia, Canada
| |
Collapse
|
50
|
Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol 2018; 9:1027. [PMID: 29867994 PMCID: PMC5963123 DOI: 10.3389/fimmu.2018.01027] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease that is influenced by the interplay between genetic factors and exposure to environmental allergens, microbes, or microbial products where toll-like receptors (TLRs) play a pivotal role. TLRs recognize a wide range of microbial or endogenous molecules as well as airborne environmental allergens and act as adjuvants that influence positively or negatively allergic sensitization. TLRs are qualitatively and differentially expressed on hematopoietic and non-hematopoietic stromal or structural airway cells that when activated by TLRs agonists exert an immune-modulatory role in asthma development. Therefore, understanding mechanisms and pathways by which TLRs orchestrate asthma outcomes may offer new strategies to control the disease. Here, we aim to review and critically discuss the role of TLRs in human asthma and murine models of allergic airway inflammation, highlighting the complexity of TLRs function in development, exacerbation, or control of airway allergic inflammation.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|