1
|
Sutanto H, Elisa E, Rachma B, Fetarayani D. Gut Microbiome Modulation in Allergy Treatment: The Role of Fecal Microbiota Transplantation. Am J Med 2025; 138:769-777.e3. [PMID: 39855612 DOI: 10.1016/j.amjmed.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of allergic diseases has been rising, paralleling lifestyle changes and environmental exposures that have altered human microbiome composition. This review article examines the intricate relationship between the gut microbiome and allergic diseases, emphasizing the potential of fecal microbiota transplantation as a promising novel treatment approach. It explains how reduced microbial exposure in modern societies contributes to immune dysregulation and the increasing incidence of allergies. The discussion also addresses immune homeostasis and its modulation by the gut microbiome, highlighting the shift from eubiosis to dysbiosis in allergic conditions. Furthermore, this article reviews existing studies and emerging research on the role of fecal microbiota transplantation in restoring microbial balance, providing insights into its mechanisms, efficacy, and safety.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Elisa Elisa
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Betty Rachma
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
2
|
Chen X, Yang F, Bai T, Wu Y, Zheng S, Tong P, Chen H, Li X. 2'-FL in Dairy Matrices Attenuates Allergic Symptoms in Mice by Reducing BLG Hypersensitivity and Modulating Gut Microecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9606-9617. [PMID: 40231542 DOI: 10.1021/acs.jafc.4c11606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
2'-Fucosyllactose (2'-FL), an industrial breast milk oligosaccharide, is approved for use in infant formula and may reduce cow's milk protein allergenicity. To investigate whether glycosylation products of 2'-FL in dairy products (2'-FL-β-LG) increase its sensitization, we cross-linked β-LG with 2'-FL and used it to sensitize Balb/c mice, comparing it with nonglycosylated β-LG. Both 2'-FL-β-LG sensitization and oral 2'-FL intervention reduced allergic symptoms, specific antibodies (IgE, IgG, and IgG2a), inflammatory cytokine levels, and intestinal damage. 2'-FL also shifted T-cell differentiation, reduced cell surface expression of DC receptors, and enhanced gut microbial diversity. Oral 2'-FL showed the greatest efficacy, suggesting its potential for lowering milk allergenicity in formula.
Collapse
Affiliation(s)
- Xintong Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Fan Yang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Shuangyan Zheng
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| |
Collapse
|
3
|
Pan Z, Zhang S, Cen S, Hou C, Li M, Ye J, Hu J. The association between allergy and risk of brain tumors: Evidence from 40 observational studies. Acta Neurochir (Wien) 2025; 167:111. [PMID: 40259050 PMCID: PMC12011909 DOI: 10.1007/s00701-025-06499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025]
Abstract
PURPOSE The potential association between the medical history of allergic conditions and brain tumors have been investigated. However, the agreement has not been reached. The aim of this meta-analysis was to explore the possible association between allergic disease and brain tumor risk. METHODS A comprehensive search was conducted and eligible studies were identified. Random-effects model was applied to meta-analyze the data. RESULTS In accordance with the retrieval strategy, 40 articles with 31 case-control studies and 9 cohort studies were enrolled in the present meta-analysis. The results suggested that history of allergy was associated with a decreased risk of brain tumor (OR 0.78, 95% CI 0.71-0.86). Compared to individuals with 1 allergic condition (OR 0.78, 95% CI 0.71-0.85), those with at least 2 allergic conditions (OR 0.65, 95% CI 0.58-0.73) may have a potentially lower brain tumor risk. Moreover, decreased brain tumor risk was found in both adults (OR 0.75, 95% CI 0.69-0.81) and children/adolescents (OR 0.78, 95% CI 0.62-0.97). Allergy history is associated with a decreased risk of glioma (OR 0.71. 95% CI 0.61-0.81). Besides, glioma risk is negatively associated with asthma (OR 0.82, 95% CI 0.74-0.91) and eczema (OR 0.84, 95% CI 0.72-0.98). There is a tendency that allergy is associated with decreased risk of meningioma (OR 0.89, 95% CI 0.74-1.07). CONCLUSIONS Allergy should be considered as a protective factor for brain tumors, especially glioma. Further prospective cohort studies are needed to provide a higher level of evidence.
Collapse
Affiliation(s)
- Zhihua Pan
- Department of Medical Oncology, The First People's Hospital of Foshan, Foshan, 518100, People's Republic of China
| | - Senxin Zhang
- Department of Neurosurgery, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology; The Second Clinical Medical College of Jinan University; Guangdong Engineering Technological Research Center for nervous anatomy and Related Clinical Applications), 518020, Shenzhen, People's Republic of China
| | - Siyi Cen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Chongxian Hou
- Department of Neurosurgery, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology; The Second Clinical Medical College of Jinan University; Guangdong Engineering Technological Research Center for nervous anatomy and Related Clinical Applications), 518020, Shenzhen, People's Republic of China
| | - Maoxiang Li
- Department of Neurosurgery, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology; The Second Clinical Medical College of Jinan University; Guangdong Engineering Technological Research Center for nervous anatomy and Related Clinical Applications), 518020, Shenzhen, People's Republic of China.
| | - Jing'an Ye
- Department of Neurosurgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong Province, People's Republic of China.
| | - Jiliang Hu
- Department of Neurosurgery, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology; The Second Clinical Medical College of Jinan University; Guangdong Engineering Technological Research Center for nervous anatomy and Related Clinical Applications), 518020, Shenzhen, People's Republic of China.
| |
Collapse
|
4
|
Tamaș TP, Ciurariu E. Allergen Immunotherapy: Pitfalls, Perks and Unexpected Allies. Int J Mol Sci 2025; 26:3535. [PMID: 40332034 PMCID: PMC12027104 DOI: 10.3390/ijms26083535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Allergen immunotherapy (AIT) is a well-established treatment aimed at reducing allergen sensitivity by gradually exposing the immune system to increasing doses of allergens. This promotes desensitization and immune tolerance through multiple mechanisms. AIT offers long-term immune modulation and is considered a potentially curative certain forms of allergic diseases. Altered antibody responses is a key mechanism of AIT in the production of allergen-specific IgG4 antibodies, which act as blocking antibodies to prevent allergen binding to IgE on mast cells (MCs) and basophils. However, IgG4 responses are sometimes ineffective due to variations in antibody affinity and epitope targeting. Reverse class switching from IgE to IgG4 and selective depletion of IgE-producing B cells represent potential strategies to improve AIT efficacy. Tregs play a central role in AIT by suppressing Th2-driven allergic responses and promoting immune tolerance through anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. However, genetic and environmental factors may impair Treg function, leading to AIT failure. AIT reduces MC and basophil activation, leading to long-term suppression of allergic inflammation. It modulates IgE-FcεRI interactions and cytokine signaling pathways, but in some cases, anaphylactic reactions or resistance to MC desensitization may occur. Discussion and conclusions: While AIT is a highly effective allergy treatment, variability in immune responses can impact its success. Advances in biologic therapies offer potential synergies with AIT. Understanding these interactions will help refine AIT strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Tudor Paul Tamaș
- Discipline of Immunology and Allergology, Biology, Department of Functional Sciences III, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania;
- Discipline of Physiology, Department of Functional Sciences III, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Elena Ciurariu
- Discipline of Immunology and Allergology, Biology, Department of Functional Sciences III, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania;
- Discipline of Physiology, Department of Functional Sciences III, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
| |
Collapse
|
5
|
Kotsubo Y, Hara A, Hayashi R, Iwasa Y. Age-dependence of food allergy due to decreased supply of naïve T cells. J Theor Biol 2025; 602-603:112060. [PMID: 39929322 DOI: 10.1016/j.jtbi.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Food allergies to eggs and cow's milk are common during infancy but often undergo desensitization during childhood. To investigate the age dependence of food allergies, we develop a simple mathematical model focusing on T helper 2 cells (Th2) causing allergies and induced regulatory T cells (iTreg) suppressing them. We assume as follows: Both types of cells differentiate from naïve T cells reactive to specific food allergens, with the rate of supply from the thymus decreasing with age. Naïve T cells are activated by allergens in peripheral tissues, differentiating into both Th2 and iTreg cells. The activation rate of Th2 cells is reduced by iTreg cells. Th2 cells promote allergies while iTreg cells help mitigate them. Analyses show that food allergies may develop at one age and resolve at a later age. Negative selection in the thymus reduces the number of naïve T cells that react to proteins resembling components of the body. As a result, allergies to these substances tend to start and resolve earlier in life than those to dissimilar materials. Food allergy starting at an older age tends to have a longer duration if the rate of naïve T cell supply decreases according to a hyperbolic (instead of exponential) function of age.
Collapse
Affiliation(s)
- Yuna Kotsubo
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akane Hara
- School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City 930-0194, Japan.
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Fang C, Jiang Z, Su X, Fan W. The association between body mass index and asthma in children: a cross‑sectional study from NHANES 1999 to 2020. Sci Rep 2025; 15:9448. [PMID: 40108226 PMCID: PMC11923108 DOI: 10.1038/s41598-025-92619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
The relationship between body mass index (BMI) and the risk of asthma in the pediatric population is not fully understood. This study aimed to investigate the association between BMI and asthma in a large nationally representative sample. The study included 35,603 pediatric participants from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2020. The association between BMI and asthma was examined using various statistical models, including logistic regression, piece-wise linear regression, and subgroup analyses, adjusting for potential confounding factors. When analyzing BMI as a continuous variable, a one-unit increase in BMI was associated with a 4% higher odds of asthma. A clear dose-response relationship was observed, where individuals in the higher BMI quartiles had progressively higher odds of asthma compared to those in the lowest quartile. Smooth curve fitting revealed a not entirely linear relationship, with a steeper increase in asthma risk at lower BMIs (below an inflection point of 21 kg/m²) compared to higher BMIs. Subgroup analyses consistently showed a positive association between BMI and asthma across different age, gender, race, socioeconomic, and smoking-related factors. Sensitivity analyses, including multiple imputation for missing data and alternative BMI metrics, confirmed the stability of the results. This study provides robust evidence for a positive and not entirely linear association between BMI and the risk of asthma in the pediatric population. These findings enhance the existing literature and underscore the necessity of considering BMI in both asthma research and clinical practice.
Collapse
Affiliation(s)
- Cuiyun Fang
- Department of Nursing, Liyang People's Hospital, Liyang, China
| | - Zhongli Jiang
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| | - Xiaoxue Su
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| | - Wei Fan
- Department of Pediatrics, Liyang People's Hospital, Liyang, China.
| |
Collapse
|
7
|
Huang Y, Hu Y, Liu J, Liu H. A Comparison of the Structural Changes and IgG Immunobinding Activity of Parvalbumin in Salangid Icefish ( Neosalanx taihuensis) After Glycation and Ultra-High Pressure Treatment. Foods 2025; 14:856. [PMID: 40077559 PMCID: PMC11898409 DOI: 10.3390/foods14050856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this study was to compare the effects of glycation and ultra-high pressure (UHP) treatment on the structure and IgG immunobinding activity of Salangidae icefish PV. The Circular Dichroism (CD) and Fluorescence Spectroscopy (FS) findings indicated that the glycation significantly affected both the secondary and tertiary structures of PV. However, the impact of UHP processing on the structure of PV was found to be less significant compared to the glycation. Western Blot analysis also revealed that the glycation markedly reduced the antigen specificity of PV. Conversely, UHP treatments at 300 MPa and 400 MPa slightly decreased the antigen specificity, whereas lower or excessively high pressures did not have a substantial impact. This research contributes valuable insights into strategies for reducing the allergenic potential of Salangid icefish.
Collapse
Affiliation(s)
| | | | | | - Haiying Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Y.H.); (J.L.)
| |
Collapse
|
8
|
Zhou X, Dunham D, Sindher SB, Long A, Fernandes A, Chang I, Assa’ad A, Pongracic J, Spergel JM, Tam J, Tilles S, Wang J, Boyd SD, Chinthrajah RS, Nadeau KC. HLA-DR + regulatory T cells and IL-10 are associated with success or failure of desensitization outcomes. Allergy 2025; 80:762-774. [PMID: 39291303 PMCID: PMC11893263 DOI: 10.1111/all.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Omalizumab (XOLAIR®)-assisted multi-food oral immunotherapy (mOIT) has been shown to safely, effectively, and rapidly desensitize patients with multiple food allergies. In our clinical trial (NCT02626611) on omalizumab-assisted mOIT, different desensitization outcomes (success or failure of desensitization) were observed following a period of either continued or discontinued mOIT. However, the association between the immunological changes induced by omalizumab-assisted mOIT and desensitization outcomes has not yet been fully elucidated. In this study, due to the key roles of regulatory T (Treg) cells and the type 2 helper T cell (Th2) pathway in immune tolerance to food allergens, we aimed to characterize their association with the desensitization outcomes of omalizumab-assisted mOIT. METHODS Mass cytometry and multiplex cytokine assays were performed on blood samples obtained from participants with allergies to peanut, cashew, or milk in our phase 2 clinical study (NCT02626611). Comprehensive statistical and bioinformatic analyses were conducted on high-dimensional cytometry-based single-cell data and high-throughput multiplex cytokine data. RESULTS Our results demonstrated that the frequency of HLA-DR+ Treg cells, and the production of Th2 cytokines (IL-4, IL-5, IL-13, and IL-9) as well as the immunoregulatory cytokine IL-10 by peripheral blood mononuclear cells (PBMCs) was significantly increased in cultures with allergen compared to cultures with media alone at baseline (Week 0). We also observed increased frequency of allergen responsive HLA-DR+ Treg cells and enhanced production of IL-10 by PBMCs in participants who achieved successful desensitization compared to those with failure of desensitization. However, the production of Th2 cytokines by PBMCs did not show significant differences between participants with different desensitization outcomes (success vs. failure of desensitization), despite omalizumab-assisted mOIT inducing a significant reduction in the production of Th2 cytokines. CONCLUSIONS We demonstrated that the frequency of HLA-DR+ Treg cells and IL-10 cytokine production by PBMCs are associated with desensitization outcomes of omalizumab-assisted mOIT. These findings suggest potential immunological parameters that could be targeted to enhance desensitization success rates.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane Dunham
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Long
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea Fernandes
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amal Assa’ad
- Division of Allergy and Immunology, Cincinnati Children’s Medical Center, Cincinnati, OH, USA
| | - Jacqueline Pongracic
- Division of Allergy and Immunology, the Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Jonathan M Spergel
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Tam
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Stephen Tilles
- Seattle Allergy and Asthma Research Institute, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - R. Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Zemelka-Wiacek M. The Interaction Among Effector, Regulatory, and Tγδ Cells Determines the Development of Allergy or Tolerance to Chromium. J Clin Med 2025; 14:1370. [PMID: 40004900 PMCID: PMC11856200 DOI: 10.3390/jcm14041370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Chromium, a common environmental and occupational sensitizer, frequently induces allergic contact dermatitis (ACD). This study investigates the role of CD4+ (T helper), CD8+ (T cytotoxic), regulatory (Tregs: CD4+CD25+ and CD8+CD25+), and gamma delta (Tγδ) T cells in chromium tolerance versus hypersensitivity. Methods: Six chromium-allergic patients and six healthy controls were recruited, confirmed via patch testing. Peripheral blood mononuclear cells (PBMCs) were isolated and cultured, with chromium exposure and proliferation assays conducted. Specific T cell subtypes were isolated and analyzed for chromium-specific proliferative responses, cytokine production, and metabolic activity. Results: Chromium-allergic individuals exhibited broad proliferation across PBMC and T cell subsets, contrasting with restricted responses in controls. Treg cells in healthy subjects effectively suppressed T cell proliferation in response to chromium, while allergic individuals showed unmodulated T cell activity, indicative of impaired regulatory function. Cytokine analysis revealed elevated IL-2 and TNF-α but absent IL-10 in allergic patients. Metabolic assessments showed higher glycolytic activity in Tregs of healthy controls, suggesting enhanced regulatory potential. Conclusions: These findings highlight the importance of balanced effector and regulatory T cell interactions for chromium tolerance. Dysregulated Treg and Tγδ cell functions in allergic individuals may contribute to hypersensitivity, with implications for targeted therapeutic strategies to restore immune balance and reduce allergic responses in chromium-sensitive patients.
Collapse
Affiliation(s)
- Magdalena Zemelka-Wiacek
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
10
|
Lai CL, Santner-Nanan B, Maltese PJ, Ong CKS, Palmer DJ, Campbell DE, Makrides M, Gold M, Nanan R, Prescott SL, Hsu PS. Impaired calcium influx underlies skewed T helper cell differentiation in children with IgE-mediated food allergies. Allergy 2025; 80:513-524. [PMID: 39250135 DOI: 10.1111/all.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Reasons for Th2 skewing in IgE-mediated food allergies remains unclear. Clinical observations suggest impaired T cell activation may drive Th2 responses evidenced by increased atopic manifestations in liver transplant patients on tacrolimus (a calcineurin inhibitor). We aimed to assess differentiation potential, T cell activation and calcium influx of naïve CD4+ T cells in children with IgE-mediated food allergies. METHODS Peripheral blood mononuclear cells from infants in the Starting Time for Egg Protein (STEP) Trial were analyzed by flow cytometry to assess Th1/Th2/Treg development. Naïve CD4+ T cells from children with and without food allergies were stimulated for 7 days to assess Th1/Th2/Treg transcriptional factors and cytokines. Store operated calcium entry (SOCE) was measured in children with and without food allergies. The effect of tacrolimus on CD4+ T cell differentiation was assessed by treating stimulated naïve CD4+ T cells from healthy volunteers with tacrolimus for 7 days. RESULTS Egg allergic infants had impaired development of IFNγ+ Th1 cells and FoxP3+ transitional CD4+ T cells compared with non-allergic infants. This parallels reduced T-bet, IFNγ and FoxP3 expression in naïve CD4+ T cells from food allergic children after in vitro culture. SOCE of naïve CD4+ T cells was impaired in food allergic children. Naïve CD4+ T cells treated with tacrolimus had reduced IFNγ, T-bet, and FoxP3, but preserved IL-4 expression. CONCLUSIONS In children with IgE-mediated food allergies, dysregulation of T helper cell development is associated with impaired SOCE, which underlies an intrinsic impairment in Th1 and Treg differentiation. Along with tacrolimus-induced Th2 skewing, this highlights an important role of SOCE/calcineurin pathway in T helper cell differentiation.
Collapse
Affiliation(s)
- C L Lai
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - B Santner-Nanan
- Sydney Medical School Nepean and Charles Perkins Centre Nepean, The University of Sydney, Kingswood, New South Wales, Australia
| | - P J Maltese
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - C K S Ong
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - D J Palmer
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - D E Campbell
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - M Makrides
- South Australian Health and Medical Research Institute, SAHMRI Women and Kids, Adelaide, South Australia, Australia
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Gold
- Discipline of Paediatrics, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - R Nanan
- Sydney Medical School Nepean and Charles Perkins Centre Nepean, The University of Sydney, Kingswood, New South Wales, Australia
| | - S L Prescott
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- The ORIGINS Project, Telethon Kids Institute, The University of Western Australia, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Nova Institute for Health, Baltimore, Maryland, USA
| | - P S Hsu
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Food Allergy Research (CFAR), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Cui Q, Cheng J, Guo M. Mechanisms of reduced sensitization by extensive hydrolysis of milk protein concentrate: Impact on the immune response of Th1/Th2 and Treg/Th17 cells in mice. J Dairy Sci 2025; 108:1227-1241. [PMID: 39662801 DOI: 10.3168/jds.2024-25709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Extensively hydrolyzed protein products not only provide sufficient nutrition but also effectively reduce the allergenicity of milk proteins. However, there was limited information about the sensitization of extensive hydrolysate of milk protein concentrate (EMPH). In this study, the mechanism by which EMPH reduce sensitization was studied by constructing a milk protein concentrate (MPC) sensitization evaluation animal model. The results demonstrated that the serum levels of the specific IgE, IgG, and IgG1 antibodies in the EMPH group (one-step alcalase-protamex [O-AX] and two-step alcalase-protamex [T-AX]) were significantly decreased (P < 0.01). In addition, compared with the MPC group (19.29%), the expression of CD3+CD4+ T cells in the O-AX (16.61%) and T-AX groups (15.94%) was significantly reduced (P < 0.05). This indicated an imbalance of Th1/Th2 in the MPC group, which was confirmed by the results of cytokines and transcription factors in the spleen. The mice in the control MPC group highly expressed FcεRI+CD117+ mast cells (22.25%), peripheral blood B cells (2.91%), and CD3+CD8+ T cells (8.65%). The results indicated that EMPH did not cause an imbalance of Th1/Th2 cells and Treg/Th17 cells in mice and had lower sensitization.
Collapse
Affiliation(s)
- Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
12
|
Gurram RK, Li P, Oh J, Chen X, Spolski R, Yao X, Lin JX, Roy S, Liao MJ, Liu C, Yu ZX, Levine SJ, Zhu J, Leonard WJ. TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation. Sci Immunol 2025; 10:eadk0073. [PMID: 39792638 DOI: 10.1126/sciimmunol.adk0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (Teffs), which drive the immune response, and regulatory T cells (Tregs), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on Teffs versus Tregs to balance type 2 immunity. As expected, deletion of TSLP receptor (TSLPR) on all T cells (Cd4CreCrlf2fl/fl mice) resulted in lower numbers of T helper 2 (TH2) cells and diminished ovalbumin-induced airway inflammation, but selective deletion of TSLPR on Tregs (Foxp3YFP-Cre/YCrlf2fl/fl mice) resulted in increased interleukin-5 (IL-5)- and IL-13-secreting TH2 cells and lung eosinophilia. Moreover, TSLP augmented the expression of factors that stabilize Tregs. During type 2 immune responses, TSLPR-deficient Tregs acquired TH2-like properties, with augmented GATA3 expression and secretion of IL-13. TSLP not only is a driver of TH2 effector cells but also acts in a negative feedback loop, thus promoting the ability of Tregs to limit allergic inflammation.
Collapse
Affiliation(s)
- Rama K Gurram
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xianglan Yao
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suyasha Roy
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Matthew J Liao
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Stewart J Levine
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Zhao Y, Ding Y, Wang Z, Wang Q, Ye D, Luan Z. Therapeutic and continuative effects of human umbilical cord-derived mesenchymal stromal cells in food-allergic mice. Cell Transplant 2025; 34:9636897251326899. [PMID: 40145495 PMCID: PMC11951882 DOI: 10.1177/09636897251326899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to investigate the impact of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) on food allergy (FA) mice induced by ovalbumin. The percentage of regulatory T cells (Tregs) was assessed by administering hUC-MSCs intravenously to FA mouse models with oral challenges, allergic responses and levels of related allergic cytokines. The phenotypes of hUC-MSCs were analysed using flow cytometric analysis. Immunohistochemistry was used for histology observation. Real-time polymerase chain reaction (PCR) was used for gene expression. Jejunum tissue was analysed by transcriptome sequencing. Our results demonstrated that in the current FA model, hUC-MSC therapy significantly alleviated allergic responses and diarrhoea. Levels of immunoglobulin E (IgE), as well as cytokines, such as interleukin (IL)-6 and tumour necrosis factor-α associated with T helper 2 cells, were reduced. Conversely, transforming growth factor (TGF)-β levels increased with hUC-MSC therapy. In addition, enhanced TGF-β expression along with IL-10 messenger ribonucleic acid levels and an increased percentage of CD4+Foxp3+ Tregs were observed. In long-term FA mice models, hUC-MSC therapy exhibited sustained effects in mitigating rectal temperature decrease and mortality rates while reducing the levels of IgE, IL-6 and proportion of IgE+ cells; it also elevated TGF-β levels. Furthermore, hUC-MSC therapy attenuated pathological injury in both current and long-term FA mouse models. Transcriptome sequencing showed that upregulated differentially expressed genes were mainly concentrated in neural activation-ligand interaction, the cyclic guanosine monophosphate-protein kinase G signalling pathway and the TGF-β signalling pathway. The hUC-MSC therapy holds promise for alleviating both immediate and persistent FA conditions; targeting TGF-β and IL-10 secreted by hUC-MSCs may be a potential approach for treating FA.
Collapse
Affiliation(s)
- Yuan Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Neonatology, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, China
| | - Yabing Ding
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoyan Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dou Ye
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zuo Luan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Zhou S, Xiao H, Gao M, Wang M, He W, Shu Y, Wang X. Causal role of immune cells in asthma: a Mendelian randomization study. J Asthma 2025; 62:84-90. [PMID: 39087928 DOI: 10.1080/02770903.2024.2387758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Immune cells may have a significant role in the pathophysiology of asthma, according to increasing evidence, although it is yet unclear how immune cells cause asthma. Therefore, we aimed to use Mendelian randomization (MR) methods to investigate this causal relationship. METHODS This study explored the causal effects between immune cells and asthma using a two-sample MR technique. Using publicly available genetic data, the causal connection between asthma risk and 731 immune cell phenotypes was investigated. Sensitivity analysis guaranteed the results' stability. To further evaluate the existence of reverse causality, we employed reverse MR analysis. RESULTS According to the inverse-variance weighted (IVW) method, five immune cell phenotypes were found to be statistically significantly associated with asthma risk (p < 0.001). Among them, TCRgd %T cell (OR = 0.968, 95%CI = 0.951 - 0.986), TCRgd %lymphocyte (OR = 0.978, 95%CI = 0.965 - 0.991), HLA DR + NK AC (OR = 0.966, 95% CI = 0.947 - 0.986) and CD3 on CD4 Treg (OR = 0.956, 95%CI= 0.931 - 0.981), four phenotypes that resulted in a decreased risk of asthma. CD25 on transitional (OR = 1.033, 95%CI = 1.014 - 1.052) resulted in an increased risk of asthma. Reverse MR analysis revealed that asthma increases HLA DR + NK AC levels (p < 0.05). CONCLUSION The results of MR analysis showed a causal relationship between immune cell phenotype and asthma risk, which provides a direction for future asthma treatment.
Collapse
Affiliation(s)
- Siding Zhou
- Department of Medical College of Yangzhou University, Yangzhou, China
| | - Hongbi Xiao
- Department of Medical College of Yangzhou University, Yangzhou, China
| | - Mingjun Gao
- Department of Dalian Medical University, Dalian, China
| | - Mengmeng Wang
- Department of Dalian Medical University, Dalian, China
| | - Wenbo He
- Department of Medical College of Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Leung Y, Yip TC, Wong GL, Wong VW, Hui VW, Mok TS, Chan HL, Chan SL, Lui RN. Concomitant Usage of H1-Antihistamines and Immune Checkpoint Inhibitors on Cancer Patient Survival. Cancer Med 2025; 14:e70583. [PMID: 39791941 PMCID: PMC11719706 DOI: 10.1002/cam4.70583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/24/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE Recent research (Li et al. 2021) suggests an upregulated expression and activation of H1 receptors on macrophages in the tumor microenvironment, and concomitant H1-antihistamine use is associated with improved overall survival in patients with lung and skin cancers receiving immunotherapy. Therefore, we retrospectively evaluated the impacts of H1-antihistamine use in cancer patients during immunotherapy. METHODS All patients who had received at least one dose of immune checkpoint inhibitors (ICIs) from July 1, 2014 to October 31, 2019 were identified from Hong Kong's territory-wide database, with this date defined as the baseline. A 1-month landmark analysis was conducted with follow-for up to 6 months, including an exposure period of 1 month before and after the baseline date. Patients were grouped according to the types of primary cancer and the percentages of daily H1-antihistamine usage within the exposure period. The primary outcome was overall survival. RESULTS A total of 1740 (65.1% male, mean age 61.9 years) were included in the landmark analysis, of which 529 (30.4%) and 307 (17.6%) had primary lung and liver malignancies. The multivariable Cox regression model estimated statistically significant improvement in overall survival of intermediate use in patients with primary lung malignancies (adjusted hazard ratio [aHR] 0.223, 95% confidence interval [CI] 0.052-0.958, p = 0.044), but not with primary liver maligancies. Similar frequency-dependent effects were identified in Kaplan-Meier analysis. CONCLUSION The benefits of adjunctive use of H1-antihistamines may be generation- and tumor-dependent. Further clinical and mechanistic studies are required to confirm the findings.
Collapse
Affiliation(s)
- Yin Leung
- Medical Data Analytics CentreThe Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Terry Cheuk‐Fung Yip
- Medical Data Analytics CentreThe Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Institute of Digestive DiseaseThe Chinese University of Hong KongHong Kong SARChina
| | - Grace Lai‐Hung Wong
- Medical Data Analytics CentreThe Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Institute of Digestive DiseaseThe Chinese University of Hong KongHong Kong SARChina
| | - Vincent Wai‐Sun Wong
- Medical Data Analytics CentreThe Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Institute of Digestive DiseaseThe Chinese University of Hong KongHong Kong SARChina
| | - Vicki Wing‐Ki Hui
- Medical Data Analytics CentreThe Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Institute of Digestive DiseaseThe Chinese University of Hong KongHong Kong SARChina
| | - Tony Shu‐Kam Mok
- State Key Laboratory of Translational Oncology, Department of Clinical OncologyThe Chinese University of Hong KongHong Kong SARChina
| | - Henry Lik‐Yuen Chan
- Medical Data Analytics CentreThe Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Institute of Digestive DiseaseThe Chinese University of Hong KongHong Kong SARChina
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Department of Clinical OncologyThe Chinese University of Hong KongHong Kong SARChina
| | - Rashid Nok‐Shun Lui
- Medical Data Analytics CentreThe Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Institute of Digestive DiseaseThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
16
|
Inoue M, Tsuji Y, Shibata S, Okuda M, Najima C, Yamasaki H, Tsunoda SI. Ovalbumin-induced food allergy suppression via regulatory T cell expansion mediated by a TNFR2 agonist in mice. Biochem Biophys Res Commun 2024; 737:150909. [PMID: 39489111 DOI: 10.1016/j.bbrc.2024.150909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Food allergies represent a growing health concern worldwide, characterized by abnormal immune responses to specific dietary antigens. This condition is often associated with a dysregulation of immune tolerance, especially within the intestinal mucosa. Regulatory T cells (Tregs), a crucial subset of lymphocytes, play a central role in maintaining peripheral immune tolerance and are abundant in the intestinal lamina propria. Recent studies have highlighted Treg dysfunction in patients with food allergies, suggesting a potential connection between impaired Treg function and allergy onset. Therefore, strategies to adequately control and activate Tregs could offer new avenues for the prevention and treatment of food allergies. Our research focuses on targeting the regulatory molecule, tumor necrosis factor receptor type 2 (TNFR2), a key modulator of Treg function. We have developed a TNFR2 agonist, scR2agoTNF-Fc, characterized by high TNFR2-stimulating activity and enhanced blood retention in vivo for Treg expansion. In this study, we utilized an ovalbumin (OVA)-induced food allergy mouse model to verify the therapeutic potential of scR2agoTNF-Fc in modulating allergic responses and restoring immune balance. The results showed that scR2agoTNF-Fc promoted the expansion of Treg population in vivo in mice. In addition, scR2agoTNF-Fc reduced diarrhea caused by the food allergy. This was consistent with the molecular mechanisms of suppression of blood immunoglobulins and Th2 cells. Therefore, it was shown that quantitative and functional enhancement of Tregs by the TNFR2 agonist, scR2agoTNF-Fc, may be effective in treating food allergies.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Saya Shibata
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Mei Okuda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Chihiro Najima
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Honoka Yamasaki
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan; Laboratory of Cellular and Molecular Physiology, The Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
17
|
Rong Y, Tang M, Liu L, Ma X, Liu M, Qu L, Liao X, Jiang Q, Zhang N, Xu X. Artemisia argyi essential oil alleviates asthma by regulating 5-LOX-CysLTs and IDO-1-KYN pathways: Insights from metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118458. [PMID: 38871010 DOI: 10.1016/j.jep.2024.118458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi essential oil (AAEO) is a traditional herbal remedy for asthma. However, the potential effect of AAEO on asthma has not been elucidated. AIM OF THE STUDY To investigate the protective properties of AAEO upon asthma and elucidate its mechanism. MATERIALS AND METHODS The effects of AAEO in asthma were assessed by histology and biochemical analysis. Then, we integrated real-time reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry and metabolomics analysis to reveal its mechanism. RESULTS In vivo, AAEO reduced the counts of white blood cells (WBCs) and cytokines in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues, and inhibited secretion of OVA-sIgE and muc5ac. Metabolomics results showed that AAEO can exert therapeutic effects on asthmatic mice by regulating disordered arachidonic acid metabolism and tryptophan metabolism. Further studies shown that AAEO inhibited the expression of 5-LOX and reduced the accumulation of CysLTs in mice. Meanwhile, AAEO promoted the activity of IDO-1, facilitated the conversion of tryptophan to kynurenine, and regulated the imbalance of Treg/Th17 immunity. Immunohistochemical results showed that AAEO promoted the expression of IDO-1. RT-qPCR results showed that AAEO promoted the expression of IL-10 and Foxp3 mRNA, and inhibited the expression of IL-17A and RORγt mRNA, thus regulated the imbalance of Treg/Th17 immunity and exerted its therapeutic effects. CONCLUSION AAEO treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating lung tissue metabolism. The anti-asthmatic activity of AAEO may be achieved by reprogramming 5-LOX-CysLTs and IDO-1-KYN pathways.
Collapse
Affiliation(s)
- Ying Rong
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Mengqi Tang
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Luyao Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xiaoge Ma
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Mengge Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lingbo Qu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xinglin Liao
- Nanyang LANHAISENYUAN Medical Technology Ltd.,CO, Nanyang, Henan, 473000, PR China
| | - Qiman Jiang
- Nanyang LANHAISENYUAN Medical Technology Ltd.,CO, Nanyang, Henan, 473000, PR China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xia Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
18
|
Kumar A, Sun R, Habib B, Bencivenga-Barry NA, Ivanov II, Tamblyn R, Goodman AL. Impacts of Medications on Microbiome-mediated Protection against Enteric Pathogens. RESEARCH SQUARE 2024:rs.3.rs-5199936. [PMID: 39483881 PMCID: PMC11527249 DOI: 10.21203/rs.3.rs-5199936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The majority of people in the U.S. manage health through at least one prescription drug. Drugs classified as non-antibiotics can adversely affect the gut microbiome and disrupt intestinal homeostasis. Here, we identified medications associated with an increased risk of GI infections across a population cohort of more than 1 million individuals monitored over 15 years. Notably, the cardiac glycoside digoxin and other drugs identified in this epidemiological study are sufficient to alter microbiome composition and risk of Salmonella enterica subsp. Typhimurium (S. Tm) infection in mice. The impact of digoxin treatment on S. Tm infection is transmissible via the microbiome, and characterization of this interaction highlights a digoxin-responsive β-defensin that alters microbiome composition and consequent immune surveillance of the invading pathogen. Combining epidemiological and experimental approaches thus provides an opportunity to uncover drug-host-microbiome-pathogen interactions that increase infection risk in humans.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Ruizheng Sun
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bettina Habib
- Clinical and Health Informatics Research Group, McGill University, Montreal, Canada
| | - Natasha A. Bencivenga-Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Diseases Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robyn Tamblyn
- Clinical and Health Informatics Research Group, McGill University, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Department of Medicine, McGill University Health Center, Montreal, Canada
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Georgia AN, Claudine NE, Carole SN, Loveline NN, Abel L, Flaurent TT, Martin S, Waffo AB, Okeke M, Esimone C, Park CG, Vittorio C, François-Xavier E, Godwin NW. Regulatory T cells modulate monocyte functions in immunocompetent antiretroviral therapy naive HIV-1 infected people. BMC Immunol 2024; 25:68. [PMID: 39402453 PMCID: PMC11472541 DOI: 10.1186/s12865-024-00654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
We previously demonstrated that the overall number of regulatory T (Treg) cells decrease proportionately with helper CD4+ T cells and their frequencies increase in antiretroviral therapy (ART)-naive human immunodeficiency virus type-1 (HIV-1) infected individuals. The question now is whether the discrepancies in Treg cell numbers and frequencies are synonymous to an impairment of their functions. To address this, we purified Treg cells and assessed their ability to modulate autologous monocytes functions. We observed that Treg cells were able to down modulate autologous monocytes activation as well as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production during stimulation with polyinosinic-polycytidylic acid stabilized with poly-L-lysine and carboxymethylcellulose (poly-ICLC). This activity of Treg cells has been shown to be influenced by immunocompetence including but not limited to helper CD4+ T cell counts, in individuals with HIV-1 infection. Compared to immunosuppressed participants (CD4 < 500 cells/µL), immunocompetent participants (CD4 ≥ 500 cells/µL) showed significantly higher levels of transforming growth factor beta (TGF-β) and IL-10 (p < 0.001 and p < 0.05, respectively), key cytokines used by Treg cells to exert their immunosuppressive functions. Our findings suggest the contribution of both TGF-β and IL-10 in the suppressive activity of Treg cells.
Collapse
Affiliation(s)
- Ambada N Georgia
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.
| | - Ntsama E Claudine
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Sake N Carole
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Ngu N Loveline
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lissom Abel
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Faculty of Science, Department of Biological Science, University of Bamenda, Bamenda, Cameroon
| | - Tchouangeu T Flaurent
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Sosso Martin
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
| | - Alain Bopda Waffo
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Malachy Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, Yola, PMB, 2250, Nigeria
| | - Charles Esimone
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Chae Gyu Park
- Laboratory of Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Nchinda W Godwin
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
20
|
Loeb L, Cangemi DC, Squire JD, Lacy BE. Clarifying the Hazy Concepts of Food Allergies and Sensitivities. Gastroenterol Hepatol (N Y) 2024; 20:524-531. [PMID: 39483998 PMCID: PMC11523085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Food allergies, food sensitivities, and adverse reactions to food represent common reasons for gastroenterology and allergy referral. The epidemiology of these disorders is changing; food allergies are more common than previously thought, and there is a heightened sense of awareness about food sensitivities. Symptoms do not always accurately predict the underlying pathophysiology nor distinguish the underlying etiology. This may lead to unnecessary testing, which is often unrewarding and expensive. Myths and misconceptions about food allergies and sensitivities are common and may lead to unwarranted treatment using untested therapies. Importantly, a missed diagnosis of a true food allergy can have serious consequences. This article discusses the differences between food allergies and sensitivities, including their epidemiology, underlying pathophysiology, key symptoms, and diagnostic criteria, as well as their treatment options.
Collapse
Affiliation(s)
- Lauren Loeb
- Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida
| | - David C. Cangemi
- Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida
| | | | - Brian E. Lacy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
21
|
Demirkale ZH, Alpkıray MF, Engin A, Sönmez AD, Yücel E, Tamay Z, Özdemir C, Deniz G, Aktaş EÇ. Comparison of Immune Checkpoint Molecule Expression in Different Years of House Dust Mite Subcutaneous Immunotherapy on CD4 + T and Treg Cells in Children with Allergic Rhinitis. Balkan Med J 2024; 41:387-395. [PMID: 39239953 PMCID: PMC11588924 DOI: 10.4274/balkanmedj.galenos.2024.2024-6-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Background Allergen-specific immunotherapy, a unique inducer of tolerance, may result in T cell exhaution. Aims To investigate how the duration of house dust mite (HDM) subcutaneous immunotherapy (SCIT) affects the expression of major immune checkpoint (ICP) molecules on the surface of CD4+ T-helper and regulatory T (Treg) cells. Study Design Cross-sectional study. Methods We enrolled 28 children with HDM-induced allergic rhinitis (AR) and six controls. The study participants were divided into six groups: one group each of patients in their first, second, and third years of HDM-SCIT; one group each comprising those in the first year following HDM-SCIT and those on pharmacotherapy; and the control group. The expression of ICPs on CD4+ T and Treg cells was determined using flow cytometry, and plasma levels of soluble ICPs were estimated by ELISA. Results Our results revealed a significant increase in the expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and lymphocyte activation gene 3 (LAG-3) on CD4+ T cells during the second and third years of SCIT, respectively. Additionally, a strong correlation was observed between the expression of CTLA-4 and T cell immunoglobulin and mucin domain containing molecule-3 in CD4+ T cells. Furthermore, we observed a significant correlation between the expressions of programmed cell death protein-1, CTLA-4, T cell Immunoreceptor with Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibitory Motif domain, and LAG-3 on both CD4+ T and Treg cells. A robust correlation was observed between the plasma levels of soluble ICPs. Conclusion HDM-SCIT induces CD4+ T cell exhaution, which may contribute to tolerance induction in children with AR.
Collapse
Affiliation(s)
- Zeynep Hızlı Demirkale
- Department of Immunology İstanbul University, Aziz Sancar Institute of Experimental Medicine, İstanbul, Türkiye
- İstanbul University Institute of Graduate Studies in Health Sciences, İstanbul, Türkiye
- Department of Pediatrics Division of Pediatric Allergy and Immunology, İstanbul University, İstanbul Faculty of Medicine, İstanbul, Türkiye
| | - Mehmet Fatih Alpkıray
- Department of Pediatrics İstanbul University, İstanbul Faculty of Medicine, İstanbul, Türkiye
| | - Ayşe Engin
- Department of Immunology İstanbul University, Aziz Sancar Institute of Experimental Medicine, İstanbul, Türkiye
| | - Aybars Deniz Sönmez
- Department of Immunology İstanbul University, Aziz Sancar Institute of Experimental Medicine, İstanbul, Türkiye
| | - Esra Yücel
- Department of Pediatrics Division of Pediatric Allergy and Immunology, İstanbul University, İstanbul Faculty of Medicine, İstanbul, Türkiye
| | - Zeynep Tamay
- Department of Pediatrics Division of Pediatric Allergy and Immunology, İstanbul University, İstanbul Faculty of Medicine, İstanbul, Türkiye
| | - Cevdet Özdemir
- Department of Pediatrics Division of Pediatric Allergy and Immunology, İstanbul University, İstanbul Faculty of Medicine, İstanbul, Türkiye
- Department of Pediatric Basic Sciences İstanbul University, Institute of Child Health, İstanbul, Türkiye
| | - Günnur Deniz
- Department of Immunology İstanbul University, Aziz Sancar Institute of Experimental Medicine, İstanbul, Türkiye
| | - Esin Çetin Aktaş
- Department of Immunology İstanbul University, Aziz Sancar Institute of Experimental Medicine, İstanbul, Türkiye
| |
Collapse
|
22
|
Frischmeyer-Guerrerio PA, Young FD, Aktas ON, Haque T. Insights into the clinical, immunologic, and genetic underpinnings of food allergy. Immunol Rev 2024; 326:162-172. [PMID: 39034662 PMCID: PMC11436304 DOI: 10.1111/imr.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The last few decades have seen striking changes in the field of food allergy. The prevalence of the disease has risen dramatically in many parts of the globe, and management of the condition has undergone major revision. While delayed introduction of common allergenic foods during infancy was advised for many years, the learning early about peanut allergy (LEAP) trial and other studies led to a major shift in infant feeding practices, with deliberate early introduction of these foods now recommended. Additionally, the Food and Drug Administration approved the first treatment for food allergy in 2020-a peanut oral immunotherapy (OIT) product that likely represents just the beginning of new immunotherapy-based and other treatments for food allergy. Our knowledge of the environmental and genetic factors contributing to the pathogenesis of food allergy has also undergone transformational advances. Here, we will discuss our efforts to improve the clinical care of patients with food allergy and our understanding of the immunological mechanisms contributing to this common disease.
Collapse
Affiliation(s)
- Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fernanda D Young
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozge N Aktas
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Kenney HM, Battaglia J, Herman K, Beck LA. Atopic dermatitis and IgE-mediated food allergy: Common biologic targets for therapy and prevention. Ann Allergy Asthma Immunol 2024; 133:262-277. [PMID: 38908432 DOI: 10.1016/j.anai.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE To highlight common mechanistic targets for the treatment of atopic dermatitis (AD) and IgE-mediated food allergy (IgE-FA) with potential to be effective for both diseases and prevent atopic progression. DATA SOURCES Data sources were PubMed searches or National Clinical Trials (NCT)-registered clinical trials related to AD, IgE-FA, and other atopic conditions, especially focused on the pediatric population. STUDY SELECTIONS Human seminal studies and/or articles published in the past decade were emphasized with reference to preclinical models when relevant. NCT-registered clinical trials were filtered by inclusion of pediatric subjects younger than 18 years with special focus on children younger than 12 years as a critical period when AD and IgE-FA diseases may often be concurrent. RESULTS AD and IgE-FA share several pathophysiologic features, including epithelial barrier dysfunction, innate and adaptive immune abnormalities, and microbial dysbiosis, which may be critical for the clinical progression between these diseases. Revolutionary advances in targeted biologic therapies have shown the benefit of inhibiting type 2 immune responses, using dupilumab (anti-interleukin-4Rα) or omalizumab (anti-IgE), to potentially reduce symptom burden for both diseases in pediatric populations. Although the potential for biologics to promote disease remission (AD) or sustained unresponsiveness (IgE-FA) remains unclear, the refinement of biomarkers to predict infants at risk for atopic disorders provides promise for prevention through timely intervention. CONCLUSION AD and IgE-FA exhibit common features that may be leveraged to develop biologic therapeutic strategies to treat both conditions and even prevent atopic progression. Future studies should be designed with consistent age stratification in the pediatric population and standardized regimens of adjuvant oral immunotherapy or dose escalation (IgE-FA) to improve cross-study interpretation.
Collapse
Affiliation(s)
- H Mark Kenney
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jennifer Battaglia
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Katherine Herman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Division of Allergy and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
24
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Bastyte D, Tamasauskiene L, Stakaitiene I, Briede K, Ugenskiene R, Valiukeviciene S, Gradauskiene B. Relation of T Cell Profile with Vitamin D Receptor and Vitamin D-Binding Protein Gene Polymorphisms in Atopy. Int J Mol Sci 2024; 25:9021. [PMID: 39201708 PMCID: PMC11354884 DOI: 10.3390/ijms25169021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Atopic diseases, including atopic dermatitis (AD) and allergic asthma (AA), are characterized by complex immune responses involving various T cells subsets and their cytokine profiles. It is assumed that single nucleotide polymorphisms (SNPs) in the Vitamin D receptor (VDR) gene and the Vitamin D-binding protein (GC) gene are related to the action of Vitamin D and, consequently, play a role in regulating the immune response. However, there is not enough data to unequivocally support the hypothesis about the relationship between T cells profile and VDR or GC SNPs. Two hundred sixty-six subjects (aged > 18 years) were involved in the study: 100 patients with mild or moderate AD, 85 patients with mild or moderate AA, and 81 healthy individuals. Blood cell counts were determined by standard methods. Flow cytometric analysis was used to evaluate CD4+ T-helper (Th) cell subtypes: Th2, Th1, Th17, and T regulatory (Treg) cells in peripheral blood. Measurements of cytokines, total immunoglobulin E (IgE), and Vitamin D levels in serum were evaluated by ELISA. Significantly higher levels of Th1, Th2, and Th17 cells, along with lower levels of Tregs, were found in patients with atopic diseases compared to healthy individuals. Additionally, higher serum levels of interleukin (IL) 5, IL-17A, and transforming growth factor-β1 (TGF-β1), as well as lower levels of IL-10, were observed in patients with atopic diseases than in control. The study established associations between VDR SNPs and immune profiles: the AA genotype of rs731236 was associated with increased Th2 and Th17 cells and a higher Th1/Th2 ratio; the GG genotype of rs731236 was linked to decreased serum IL-10 and TGF-β1 levels; and the TT genotype of rs11168293 was associated with increased IL-10 levels. Additionally, the GG genotype of GC gene SNP rs4588 was associated with reduced Th2 and Th17 lymphocytes, while the TT genotype of rs4588 was linked to decreased IL-10 levels. Furthermore, the CC genotype of rs7041 was associated with higher levels of Th2, Th17, IL-10, and IL-35, as well as reduced levels of TGF-β1, while the GG genotype of rs3733359 was associated with reduced IL-10 levels. In conclusion, our study demonstrates that the Vitamin D receptor gene single nucleotide polymorphisms rs731236 and rs11168293, along with polymorphisms in the Vitamin D-binding protein gene (rs4588, rs7041, rs3733359), are significantly associated with variations in T cell profiles in atopy. These variations may play a crucial role in promoting inflammation and provide insight into the genetic factors contributing to the pathogenesis of atopy.
Collapse
Affiliation(s)
- Daina Bastyte
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (D.B.); (L.T.)
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (D.B.); (L.T.)
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Ieva Stakaitiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Kamilija Briede
- Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Skaidra Valiukeviciene
- Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (D.B.); (L.T.)
| |
Collapse
|
26
|
Jheng MJ, Kita H. Control of Asthma and Allergy by Regulatory T Cells. Int Arch Allergy Immunol 2024; 186:87-102. [PMID: 39154634 PMCID: PMC11729466 DOI: 10.1159/000540407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Epithelial barriers, such as the lungs and skin, face the challenge of providing the tissues' physiological function and maintaining tolerance to the commensal microbiome and innocuous environmental factors while defending the host against infectious microbes. Asthma and allergic diseases can result from maladaptive immune responses, resulting in exaggerated and persistent type 2 immunity and tissue inflammation. SUMMARY Among the diverse populations of tissue immune cells, CD4+ regulatory T cells (Treg cells) are central to controlling immune responses and inflammation and restoring tissue homeostasis. Humans and mice that are deficient in Treg cells experience extensive inflammation in their mucosal organs and skin. During past decades, major progress has been made toward understanding the immunobiology of Treg cells and the molecular and cellular mechanisms that control their differentiation and function. It is now clear that Treg cells are not a single cell type and that they demonstrate diversity and plasticity depending on their differentiation stages and tissue environment. They could also take on a proinflammatory phenotype in certain conditions. KEY MESSAGES Treg cells perform distinct functions, including the induction of immune tolerance, suppression of inflammation, and promotion of tissue repair. Subsets of Treg cells in mucosal tissues are regulated by their differentiation stage and tissue inflammatory milieu. Treg cell dysfunction likely plays roles in persistent immune responses and tissue inflammation in asthma and allergic diseases.
Collapse
Affiliation(s)
- Min-Jhen Jheng
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Arizona, Scottsdale, AZ
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
27
|
Karwig L, Moore PF, Alber G, Eschke M. Distinct characteristics of unique immunoregulatory canine non-conventional TCRαβ pos CD4 negCD8α neg double-negative T cell subpopulations. Front Immunol 2024; 15:1439213. [PMID: 39185407 PMCID: PMC11341405 DOI: 10.3389/fimmu.2024.1439213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional CD4pos regulatory T (Treg) cells characterized by expression of the key transcription factor forkhead box P3 (FoxP3) are crucial to control immune responses, thereby maintaining homeostasis and self-tolerance. Within the substantial population of non-conventional T cell receptor (TCR)αβpos CD4negCD8αneg double-negative (dn) T cells of dogs, a novel FoxP3pos Treg-like subset was described that, similar to conventional CD4pos Treg cells, is characterized by high expression of CD25. Noteworthy, human and murine TCRαβpos regulatory dn T cells lack FoxP3. Immunosuppressive capacity of canine dn T cells was hypothesized based on expression of inhibitory molecules (interleukin (IL)-10, cytotoxic T-lymphocyte associated protein 4, CTLA4). Here, to verify their regulatory function, the dnCD25pos (enriched for FoxP3pos Treg-like cells) and the dnCD25neg fraction, were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells (PBMC) of Beagle dogs and analyzed in an in vitro suppression assay in comparison to conventional CD4posCD25pos Treg cells (positive control) and CD4posCD25neg T cells (negative control). Canine dnCD25pos T cells suppressed the Concanavalin A-driven proliferation of responder PBMC to a similar extent as conventional CD4posCD25pos Treg cells. Albeit to a lesser extent than FoxP3-enriched dn and CD4posCD25pos populations, even dnCD25neg T cells reduced the proliferation of responder cells. This is remarkable, as dnCD25neg T cells have a FoxP3neg phenotype comparable to non-suppressive CD4posCD25neg T cells. Both, CD25pos and CD25neg dn T cells, can mediate suppression independent of cell-cell contact and do not require additional signals from CD4posCD25neg T cells to secrete inhibitory factors in contrast to CD4posCD25pos T cells. Neutralization of IL-10 completely abrogated the suppression by dnCD25pos and CD4posCD25pos Treg cells in a Transwell™ system, while it only partially reduced suppression by dnCD25neg T cells. Taken together, unique canine non-conventional dnCD25pos FoxP3pos Treg-like cells are potent suppressor cells in vitro. Moreover, inhibition of proliferation of responder T cells by the dnCD25neg fraction indicates suppressive function of a subset of dn T cells even in the absence of FoxP3. The identification of unique immunoregulatory non-conventional dn T cell subpopulations of the dog in vitro is of high relevance, given the immunotherapeutic potential of manipulating regulatory T cell responses in vivo.
Collapse
Affiliation(s)
- Laura Karwig
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
28
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
29
|
Risemberg EL, Smeekens JM, Cruz Cisneros MC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to anaphylaxis severity following oral peanut challenge in CC027 mice. J Allergy Clin Immunol 2024; 154:387-397. [PMID: 38670234 PMCID: PMC11323216 DOI: 10.1016/j.jaci.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Johanna M Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Marta C Cruz Cisneros
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Orgel
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - A Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
30
|
Wang Y, Li J, Nakahata S, Iha H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int J Mol Sci 2024; 25:7346. [PMID: 39000453 PMCID: PMC11242872 DOI: 10.3390/ijms25137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
| | - Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
31
|
Eom JE, Shin DU, Kim GD, Yoon JH, Shin HS, Lee SY. Pediococcus pentosaceus KF159 alleviates house dust mite-induced atopic dermatitis by promoting IL10 production and regulatory T cell induction. Food Funct 2024; 15:6975-6987. [PMID: 38853660 DOI: 10.1039/d4fo00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atopic dermatitis (AD) is a chronic immune disease that requires long-term management owing to its relative ease of recurrence. However, steroid treatment is limited owing to the side effects. Therefore, research on therapeutics with proven safety is required. Here, we evaluated the anti-allergic activity of the probiotic strain Pediococcus pentosaceus KF159 (PPKF159) with an ex vivo mouse model sensitized with ovalbumin (OVA) and a mouse model of AD induced by house dust mites. Changes in pathological symptoms were confirmed based on the clinical status of the AD-induced lesion site and the levels of T helper type 2 (Th2)-derived cytokines and immunoglobulin E (IgE). In addition, cell-mediated responses and related mechanisms were elucidated using various kinds of primary cells including splenocytes, mesenteric lymph nodes, Peyer's patch, and bone marrow-derived dendritic cells (BMDCs) in vitro and ex vivo. Oral administration of PPKF159 alleviated AD-like clinical symptoms such as erythema, edema, hemorrhage, and increased tissue thickness, and suppressed the production of Th2-associated cytokines and serum IgE while increasing T helper type 1 (Th1)-mediated cytokine production. PPKF159 induced tolerogenic dendritic cells (tol-DCs) by increasing the expression of ICOS-L, PD-L1, and IDO which were closely related to Treg induction in PPKF159-treated BMDCs. In addition, BMDCs and naive T cells co-cultured in the presence of PPKF159 had elevated IL10 production and increased proportions of CD4+CD25+Foxp3+ Tregs compared to the absence of PPKF159. This study showed that PPKF159 relieved AD-like clinical symptoms, modulated the Th1/Th2 immune balance, and inhibited IgE production in a mouse AD model. PPKF159 induced the transformation of dendritic cells into tolerogenic versions. These induced tol-DCs directly enhanced the production of IL10 or improved the secretion of IL10 through the induction of CD4+CD25+Foxp3+ Treg cells, thereby improving AD. These results suggest that PPKF159 can be applied as a functional food material for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Ji-Eun Eom
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Dong-Uk Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
32
|
Iamsawat S, Yu R, Kim S, Dvorina N, Qiu K, Choi J, Baldwin WM, Min B. Single-Cell Analysis Uncovers Striking Cellular Heterogeneity of Lung-Infiltrating Regulatory T Cells during Eosinophilic versus Neutrophilic Allergic Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1867-1876. [PMID: 38647384 PMCID: PMC11147735 DOI: 10.4049/jimmunol.2300646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Allergic airway inflammation results from uncontrolled immune responses to environmental Ags. Although it is well established that allergic immune responses exhibit a high degree of diversity, driven by primary effector cell types such as eosinophils, neutrophils, or CD4 T cells with distinct effector signatures, the mechanisms responsible for such pathogenesis remain elusive. Foxp3+ regulatory T cells (Tregs) are essential immune regulators during chronic inflammation, including allergic airway inflammation. Emerging evidence suggests that Tregs infiltrating inflamed tissues exhibit distinct phenotypes dependent on the specific tissue sites and can display heterogeneity and tissue residency. Whether diverse allergic airway inflammatory responses influence infiltrating Treg heterogeneity or Treg lung residency has not been explored. We employed an unbiased single-cell RNA sequencing approach to investigate lung-infiltrating Tregs in models of eosinophilic and neutrophilic airway inflammation. We found that lung-infiltrating Tregs are highly heterogeneous, and that Tregs displaying lung-resident phenotypes are significantly different depending on the types of inflammation. Treg expression of ST2, a receptor for alarmin IL-33, was predominantly associated with eosinophilic inflammation and tissue residency. Nevertheless, Treg-specific ST2 deficiency did not affect the development of eosinophilic allergic inflammation or the generation of lung-resident Tregs. These results uncover a stark heterogeneity among Tregs infiltrating the lungs during allergic airway inflammation. The results indicate that varying types of inflammation may give rise to phenotypically distinct lung-resident Tregs, underscoring a (to our knowledge) novel mechanism by which inflammatory cues may shape the composition of infiltrating Tregs, allowing them to regulate inflammatory responses through tissue-adapted mechanisms.
Collapse
Affiliation(s)
- Supinya Iamsawat
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
33
|
Chen HY, Zhou YC, Liu Y, Huang JY, Liu H, Liu CF, Liu WH, Liu GM, Liu QM. Fermented Gracilaria lemaneiformis polysaccharides alleviate food allergy by regulating Treg cells and gut microbiota. Int J Biol Macromol 2024; 269:132215. [PMID: 38729482 DOI: 10.1016/j.ijbiomac.2024.132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Food allergy has a significant impact on the health and well-being of individuals, affecting both their physical and mental states. Research on natural bioactive compounds, such as polysaccharides extracted from seaweeds, holds great promise in the treatment of food allergies. In this study, fermented Gracilaria lemaneiformis polysaccharides (F-GLSP) were prepared using probiotic fermentation. Probiotic fermentation of Gracilaria lemaneiformis reduces the particle size of polysaccharides. To compare the anti-allergic activity of F-GLSP with unfermented Gracilaria lemaneiformis polysaccharides (UF-GLSP), an OVA-induced mouse food allergy model was established. F-GLSP exhibited a significant reduction in OVA-specific IgE and mMCP levels in allergic mice. Moreover, it significantly inhibited Th2 differentiation and IL-4 production and significantly promoted Treg differentiation and IL-10 production in allergic mice. In contrast, UF-GLSP only reduced OVA-specific IgE and mMCP in the serum of allergic mice. Furthermore, F-GLSP demonstrated a more pronounced regulation of intestinal flora abundance compared to UF-GLSP, significantly influencing the populations of Firmicutes, Bacteroidetes, Lactobacillus, and Clostridiales in the intestines of mice with food allergy. These findings suggest that F-GLSP may regulate food allergies in mice through multiple pathways. In summary, this study has promoted further development of functional foods with anti-allergic properties based on red algae polysaccharides.
Collapse
Affiliation(s)
- Hui-Ying Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yu-Chen Zhou
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yan Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Jia-Yu Huang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Chen-Feng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, Anhui, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China; Xiamen Ocean Vocational college, Xiamen, Fujian 361102, China.
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China.
| |
Collapse
|
34
|
M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, Abdullah B, Chen X, Tengku Din TADAA. CD4+ Foxp3+ Regulatory T-cells in Modulating Inflammatory Microenvironment in Chronic Rhinosinusitis with Nasal Polyps: Progress and Future Prospect. Cytokine 2024; 178:156557. [PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
Collapse
Affiliation(s)
- Nur Najwa Farahin M Yusoff
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | | |
Collapse
|
35
|
Dong Y, Lau HX, Suaini NHA, Kee MZL, Ooi DSQ, Shek LPC, Lee BW, Godfrey KM, Tham EH, Ong MEH, Liu N, Wong L, Tan KH, Chan JKY, Yap FKP, Chong YS, Eriksson JG, Feng M, Loo EXL. A machine-learning exploration of the exposome from preconception in early childhood atopic eczema, rhinitis and wheeze development. ENVIRONMENTAL RESEARCH 2024; 250:118523. [PMID: 38382664 DOI: 10.1016/j.envres.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Most previous research on the environmental epidemiology of childhood atopic eczema, rhinitis and wheeze is limited in the scope of risk factors studied. Our study adopted a machine learning approach to explore the role of the exposome starting already in the preconception phase. METHODS We performed a combined analysis of two multi-ethnic Asian birth cohorts, the Growing Up in Singapore Towards healthy Outcomes (GUSTO) and the Singapore PREconception Study of long Term maternal and child Outcomes (S-PRESTO) cohorts. Interviewer-administered questionnaires were used to collect information on demography, lifestyle and childhood atopic eczema, rhinitis and wheeze development. Data training was performed using XGBoost, genetic algorithm and logistic regression models, and the top variables with the highest importance were identified. Additive explanation values were identified and inputted into a final multiple logistic regression model. Generalised structural equation modelling with maternal and child blood micronutrients, metabolites and cytokines was performed to explain possible mechanisms. RESULTS The final study population included 1151 mother-child pairs. Our findings suggest that these childhood diseases are likely programmed in utero by the preconception and pregnancy exposomes through inflammatory pathways. We identified preconception alcohol consumption and maternal depressive symptoms during pregnancy as key modifiable maternal environmental exposures that increased eczema and rhinitis risk. Our mechanistic model suggested that higher maternal blood neopterin and child blood dimethylglycine protected against early childhood wheeze. After birth, early infection was a key driver of atopic eczema and rhinitis development. CONCLUSION Preconception and antenatal exposomes can programme atopic eczema, rhinitis and wheeze development in utero. Reducing maternal alcohol consumption during preconception and supporting maternal mental health during pregnancy may prevent atopic eczema and rhinitis by promoting an optimal antenatal environment. Our findings suggest a need to include preconception environmental exposures in future research to counter the earliest precursors of disease development in children.
Collapse
Affiliation(s)
- Yizhi Dong
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.
| | - Hui Xing Lau
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Noor Hidayatul Aini Suaini
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Michelle Zhi Ling Kee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore.
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Keith M Godfrey
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom; MRC Lifecourse Epidemiology Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | - Elizabeth Huiwen Tham
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Marcus Eng Hock Ong
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore; Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore.
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore; Health Services Research Centre, Singapore Health Services, Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| | - Limsoon Wong
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore.
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital (KKH), Singapore.
| | - Jerry Kok Yen Chan
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital (KKH), Singapore.
| | - Fabian Kok Peng Yap
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Paediatrics, KK Women's and Children's Hospital (KKH), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| | - Johan Gunnar Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore; Folkhälsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki, Finland.
| | - Mengling Feng
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Dean's Office, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Kratchmarov R, Djeddi S, Dunlap G, He W, Jia X, Burk CM, Ryan T, McGill A, Allegretti JR, Kataru RP, Mehrara BJ, Taylor EM, Agarwal S, Bhattacharyya N, Bergmark RW, Maxfield AZ, Lee S, Roditi R, Dwyer DF, Boyce JA, Buchheit KM, Laidlaw TM, Shreffler WG, Rao DA, Gutierrez-Arcelus M, Brennan PJ. TCF1-LEF1 co-expression identifies a multipotent progenitor cell (T H2-MPP) across human allergic diseases. Nat Immunol 2024; 25:902-915. [PMID: 38589618 PMCID: PMC11849131 DOI: 10.1038/s41590-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.
Collapse
Affiliation(s)
- Radomir Kratchmarov
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenqin He
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojiong Jia
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Burk
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tessa Ryan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin M Taylor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Neil Bhattacharyya
- Massachusetts Eye & Ear Institute, Harvard Medical School, Boston, MA, USA
| | - Regan W Bergmark
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Alice Z Maxfield
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Lee
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Roditi
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Bai J, Zhou Y, Xia X, Wu Z, Li X, Tong P, Yang A, Chen H. Transglutaminase-Cross-Linked Tofu Suppressed Soybean-Induced Allergic Reactions by Enhancing Intestinal Mucosa Immune Tolerance. Foods 2024; 13:1206. [PMID: 38672879 PMCID: PMC11049078 DOI: 10.3390/foods13081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, food allergies are closely related to intestinal health, and ensuring the integrity and health of intestinal mucosa could reduce the incidence of food allergies. In this study, a soybean-allergic mouse model was used to explore the mechanism of intestinal mucosa immune response induced by enzyme-cross-linked tofu. The effects of enzyme-cross-linked tofu on intestinal mucosal immunity in mice were determined by hematoxylin-eosin (HE) staining and flow cytometry. Our results reveled that the MTG-cross-linked tofu reduced the reactivity of the intestinal mucosal immune system, which mainly manifested as a decrease in the dendritic cell (DC) levels of mesenteric lymph nodes (MLNs), increasing the Th1 cells and Tregs in Peyer's patch (PP) nodes and MLNs, and inhibiting the Th2 cells. Compared with soy protein, enzyme-cross-linked tofu had less damage to the small intestinal tract of mice. Therefore, the above-mentioned results fully revealed that the enzyme-cross-linked tofu promoted the transformation of intestinal mucosal immune cells, shifted the Th1/Th2 balance toward Th1, and reduced its sensitization effect.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Yiling Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xinlei Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| |
Collapse
|
38
|
Rad LM, Arellano G, Podojil JR, O'Konek JJ, Shea LD, Miller SD. Engineering nanoparticle therapeutics for food allergy. J Allergy Clin Immunol 2024; 153:549-559. [PMID: 37926124 PMCID: PMC10939913 DOI: 10.1016/j.jaci.2023.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Food allergy is a growing public health issue among children and adults that can lead to life-threatening anaphylaxis following allergen exposure. The criterion standard for disease management includes food avoidance and emergency epinephrine administration because current allergen-specific immunotherapy treatments are limited by adverse events and unsustained desensitization. A promising approach to remedy these shortcomings is the use of nanoparticle-based therapies that disrupt disease-driving immune mechanisms and induce more sustained tolerogenic immune pathways. The pathophysiology of food allergy includes multifaceted interactions between effector immune cells, including lymphocytes, antigen-presenting cells, mast cells, and basophils, mainly characterized by a TH2 cell response. Regulatory T cells, TH1 cell responses, and suppression of other major allergic effector cells have been found to be major drivers of beneficial outcomes in these nanoparticle therapies. Engineered nanoparticle formulations that have shown efficacy at reducing allergic responses and revealed new mechanisms of tolerance include polymeric-, lipid-, and emulsion-based nanotherapeutics. This review highlights the recent engineering design of these nanoparticles, the mechanisms induced by them, and their future potential therapeutic targets.
Collapse
Affiliation(s)
- Laila M Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill; Cour Pharmaceutical Development Company, Skokie, Ill
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, Mich.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich.
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill.
| |
Collapse
|
39
|
Georgiev P, Benamar M, Han S, Haigis MC, Sharpe AH, Chatila TA. Regulatory T cells in dominant immunologic tolerance. J Allergy Clin Immunol 2024; 153:28-41. [PMID: 37778472 PMCID: PMC10842646 DOI: 10.1016/j.jaci.2023.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
40
|
Naito M, Kumanogoh A. The role of semaphorins in allergic diseases. Allergol Int 2024; 73:31-39. [PMID: 37635021 DOI: 10.1016/j.alit.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Semaphorins were originally identified as guidance molecules in neural development. However, accumulating evidence indicates that 'immune semaphorins' are critically involved in regulating immune cell activation, differentiation, mobility and migration. Semaphorins are also intimately associated with the pathogenesis of allergic diseases including asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and eosinophilic chronic rhinosinusitis. Interestingly, reflecting their function in positive or negative regulation of immune cells, levels of some semaphorins are increased while others are decreased in patients with allergic diseases. This review presents the pathogenic functions of immune semaphorins in allergic inflammation and discusses the potential use of these molecules as therapeutic targets for allergic diseases.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
41
|
Martínez-Blanco M, Menchén-Martínez D, Cámara C, López-Fandiño R, Berin MC, Lozano-Ojalvo D. Coculture of Human Dendritic and T Cells for the Study of Specific T Cell-Mediated Responses Against Food Allergens. Methods Mol Biol 2024; 2717:175-190. [PMID: 37737984 DOI: 10.1007/978-1-0716-3453-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Dendritic cells (DCs) connect innate and adaptive immunity by sampling, capturing, processing, and presenting the allergen to distinct subsets of CD4+ T cells. In food allergy, this process leads to the generation of allergen-specific Th2 responses and the production of type 2 cytokines that ultimately induce the synthesis of IgE by allergen-specific B cells. In this chapter, we have described different protocols for the isolation of circulating DCs as well as the generation of DC-like cells derived from autologous peripheral monocytes and the human monocytic THP-1 cell line. Coculture of isolated/generated DCs with CD4+ T cells obtained from PBMCs of allergic subjects allows the study of antigen-specific T cell immune responses against food allergens. Early responses upon allergen recognition can be determined by the upregulation of activation markers such as CD154 (CD40 ligand) and the detection of type 2 cytokines (IL-4, IL-5, IL-9, and IL-13). Delayed allergen-specific CD4+ T cell responses induce the proliferation of these cells and the accumulation of type 2 cytokines in coculture supernatants that can be quantified by different approaches (ELISA, EllaTM, and multiplex assays). Together, the protocols described in this chapter can be used to investigate the features of food proteins to induce food allergy, the influence of environmental factors to generate Th2-polarization, the function of DCs to generate differential immune responses in allergic versus tolerant individuals, and to assess the immunomodulating properties of potential therapeutic substances.
Collapse
Affiliation(s)
- Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David Menchén-Martínez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Carmen Cámara
- Department of Immunology, Hospital La Paz, Madrid, Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - M Cecilia Berin
- Department of Medicine, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Yao S, Weng D, Wang Y, Zhang Y, Huang Q, Wu K, Li H, Zhang X, Yin Y, Xu W. The preprogrammed anti-inflammatory phenotypes of CD11c high macrophages by Streptococcus pneumoniae aminopeptidase N safeguard from allergic asthma. J Transl Med 2023; 21:898. [PMID: 38082290 PMCID: PMC10712085 DOI: 10.1186/s12967-023-04768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.
Collapse
Affiliation(s)
- Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Honghui Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
43
|
Luo L, Wang S, Hu Y, Wang L, Jiang X, Zhang J, Liu X, Guo X, Luo Z, Zhu C, Xie M, Li Y, You J, Yang F. Precisely Regulating M2 Subtype Macrophages for Renal Fibrosis Resolution. ACS NANO 2023; 17:22508-22526. [PMID: 37948096 DOI: 10.1021/acsnano.3c05998] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Macrophages are central to the pathogenesis of kidney disease and serve as an effective therapeutic target for kidney injury and fibrosis. Among them, M2-type macrophages have double-edged effects regarding anti-inflammatory effects and tissue repair. Depending on the polarization of the M2 subtypes (M2a or M2c) in the diseased microenvironment, they can either mediate normal tissue repair or drive tissue fibrosis. In renal fibrosis, M2a promotes disease progression through macrophage-to-myofibroblast transition (MMT) cells, while M2c possesses potent anti-inflammatory functions and promotes tissue repair, and is inhibited. The mechanisms underlying this differentiation are complex and are currently not well understood. Therefore, in this study, we first confirmed that M2a-derived MMT cells are responsible for the development of renal fibrosis and demonstrated that the intensity of TGF-β signaling is a major factor determining the differential polarization of M2a and M2c. Under excessive TGF-β stimulation, M2a undergoes a process known as MMT cells, whereas moderate TGF-β stimulation favors the polarization of M2c phenotype macrophages. Based on these findings, we employed targeted nanotechnology to codeliver endoplasmic reticulum stress (ERS) inhibitor (Ceapin 7, Cea or C) and conventional glucocorticoids (Dexamethasone, Dex or D), precisely modulating the ATF6/TGF-β/Smad3 signaling axis within macrophages. This approach calibrated the level of TGF-β stimulation on macrophages, promoting their polarization toward the M2c phenotype and suppressing excessive MMT polarization. The study indicates that the combination of ERS inhibitor and a first-line anti-inflammatory drug holds promise as an effective therapeutic approach for renal fibrosis resolution.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Hangzhou 310058, Zhejiang, China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Litong Wang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xindong Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Miaomiao Xie
- The Second Affiliated Hospital of Shenzhen University, 118 Longjinger Road, Baoan District, Shenzhen 518101, Guangdong, China
| | - Yeqing Li
- The People's Hospital of Baoan Shenzhen, 118 Longjinger Road, Baoan District, Shenzhen 518101, Guangdong, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
44
|
Wang C, Huang L, Huang Y, Tian X, Liu J. Study on Immunoregulatory Effects of Fucoidan from Sargassum graminifolium In Vivo and Immunoactivation Activity of Its Fecal Fermentation Products Using Co-Culture Model. Molecules 2023; 28:7794. [PMID: 38067525 PMCID: PMC10707906 DOI: 10.3390/molecules28237794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Fucoidan, brown seaweed-derived dietary fibers (DFs), can be considered a promising candidate for modulating immune responses. Due to its structural complexity and diversity, it is unclear whether Sargassum graminifolium fucoidans (SGFs) also show marvelous immunoregulatory effects. In the present study, two fractions, SGF-1 and SGF-2, were purified from SGFs by DEAE-Sepharose Fast Flow and Sephacryl S-400 HR column chromatography. We investigated the in vivo immune regulatory activity of SGF-2 and explored the immune activation of SGF-2 fecal fermentation products with in vitro fecal fermentation combined with a Caco-2/RAW264.7 co-culture system. In vivo results exhibited that SGF-2 could elevate the thymus/spleen indices, CD8+ splenic T lymphocyte subpopulations, and CD4+ Foxp3+ splenic Tregs. The 16S high-throughput sequencing results showed that SGF-2 administration significantly increased the relative abundance of Lactobacillus, Alloprevotella, Ruminococcus, and Akkermansia. In addition, it was found that SGF-2 fermented by feces could significantly improve the phagocytosis, NO, and cytokine (TNF-α, IL-6, and IL-10) production of macrophages in the co-culture system. These results indicated that SGFs have the potential to modulate immunity and promote health by affecting the gut microbiota.
Collapse
Affiliation(s)
- Cuifang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.H.); (X.T.)
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
| | - Lan Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, China;
| | - Yaolong Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.H.); (X.T.)
| | - Xin Tian
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.H.); (X.T.)
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China;
| |
Collapse
|
45
|
Lee JS, Karthikeyan D, Fini M, Vincent BG, Rubinsteyn A. ACE configurator for ELISpot: optimizing combinatorial design of pooled ELISpot assays with an epitope similarity model. Brief Bioinform 2023; 25:bbad495. [PMID: 38180831 PMCID: PMC10768796 DOI: 10.1093/bib/bbad495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024] Open
Abstract
The enzyme-linked immunosorbent spot (ELISpot) assay is a powerful in vitro immunoassay that enables cost-effective quantification of antigen-specific T-cell reactivity. It is used widely in the context of cancer and infectious diseases to validate the immunogenicity of predicted epitopes. While technological advances have kept pace with the demand for increased throughput, efforts to increase scale are bottlenecked by current assay design and deconvolution methods, which have remained largely unchanged. Current methods for designing pooled ELISpot experiments offer limited flexibility of assay parameters, lack support for high-throughput scenarios and do not consider peptide identity during pool assignment. We introduce the ACE Configurator for ELISpot (ACE) to address these gaps. ACE generates optimized peptide-pool assignments from highly customizable user inputs and handles the deconvolution of positive peptides using assay readouts. In this study, we present a novel sequence-aware pooling strategy, powered by a fine-tuned ESM-2 model that groups immunologically similar peptides, reducing the number of false positives and subsequent confirmatory assays compared to existing combinatorial approaches. To validate ACE's performance on real-world datasets, we conducted a comprehensive benchmark study, contextualizing design choices with their impact on prediction quality. Our results demonstrate ACE's capacity to further increase precision of identified immunogenic peptides, directly optimizing experimental efficiency. ACE is freely available as an executable with a graphical user interface and command-line interfaces at https://github.com/pirl-unc/ace.
Collapse
Affiliation(s)
- Jin Seok Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Dhuvarakesh Karthikeyan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Misha Fini
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Alex Rubinsteyn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
46
|
Benamar M, Chen Q, Martinez-Blanco M, Chatila TA. Regulatory T cells in allergic inflammation. Semin Immunol 2023; 70:101847. [PMID: 37837939 PMCID: PMC10842049 DOI: 10.1016/j.smim.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
47
|
Hervé PL, Dioszeghy V, Matthews K, Bee KJ, Campbell DE, Sampson HA. Recent advances in epicutaneous immunotherapy and potential applications in food allergy. FRONTIERS IN ALLERGY 2023; 4:1290003. [PMID: 37965375 PMCID: PMC10641725 DOI: 10.3389/falgy.2023.1290003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Given the potent immunological properties of the skin, epicutaneous immunotherapy (EPIT) emerges as a promising treatment approach for inducing immune tolerance, particularly for food allergies. Targeting the highly immunocompetent, non-vascularized epidermis allows for the application of microgram amounts of allergen while significantly reducing the risk of allergen passage into the bloodstream, thus limiting systemic allergen exposure and distribution. This makes EPIT highly suitable for the treatment of potentially life-threatening allergies such as food allergies. Multiple approaches to EPIT are currently under investigation for the treatment of food allergy, and these include the use of allergen-coated microneedles, application of allergen on the skin pretreated by tape stripping, abrasion or laser-mediated microperforation, or the application of allergen on the intact skin using an occlusive epicutaneous system. To date, the most clinically advanced approach to EPIT is the Viaskin technology platform. Viaskin is an occlusive epicutaneous system (patch) containing dried native allergen extracts, without adjuvants, which relies on frequent application for the progressive passage of small amounts of allergen to the epidermis through occlusion of the intact skin. Numerous preclinical studies of Viaskin have demonstrated that this particular approach to EPIT can induce potent and long-lasting T-regulatory cells with broad homing capabilities, which can exert their suppressive effects in multiple organs and ameliorate immune responses from different routes of allergen exposure. Clinical trials of the Viaskin patch have studied the efficacy and safety for the treatment of life-threatening allergies in younger patients, at an age when allergic diseases start to occur. Moreover, this treatment approach is designed to provide a non-invasive therapy with no restrictions on daily activities. Taken together, the preclinical and clinical data on the use of EPIT support the continued investigation of this therapeutic approach to provide improved treatment options for patients with allergic disorders in the near future.
Collapse
Affiliation(s)
| | | | | | | | - Dianne E. Campbell
- DBV Technologies, Montrouge, France
- Department of Allergy and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Hugh A. Sampson
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
48
|
López-Fandiño R, Molina E, Lozano-Ojalvo D. Intestinal factors promoting the development of RORγt + cells and oral tolerance. Front Immunol 2023; 14:1294292. [PMID: 37936708 PMCID: PMC10626553 DOI: 10.3389/fimmu.2023.1294292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The gastrointestinal tract has to harmonize the two seemingly opposite functions of fulfilling nutritional needs and avoiding the entry of pathogens, toxins and agents that can cause physical damage. This balance requires a constant adjustment of absorptive and defending functions by sensing environmental changes or noxious substances and initiating adaptive or protective mechanisms against them through a complex network of receptors integrated with the central nervous system that communicate with cells of the innate and adaptive immune system. Effective homeostatic processes at barrier sites take the responsibility for oral tolerance, which protects from adverse reactions to food that cause allergic diseases. During a very specific time interval in early life, the establishment of a stable microbiota in the large intestine is sufficient to prevent pathological events in adulthood towards a much larger bacterial community and provide tolerance towards diverse food antigens encountered later in life. The beneficial effects of the microbiome are mainly exerted by innate and adaptive cells that express the transcription factor RORγt, in whose generation, mediated by different bacterial metabolites, retinoic acid signalling plays a predominant role. In addition, recent investigations indicate that food antigens also contribute, analogously to microbial-derived signals, to educating innate immune cells and instructing the development and function of RORγt+ cells in the small intestine, complementing and expanding the tolerogenic effect of the microbiome in the colon. This review addresses the mechanisms through which microbiota-produced metabolites and dietary antigens maintain intestinal homeostasis, highlighting the complementarity and redundancy between their functions.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | | | | |
Collapse
|
49
|
Li Z, Wang X, Zhang W, Yang W, Xu B, Hu W. Excretory/Secretory Products from Schistosoma japonicum Eggs Alleviate Ovalbumin-Induced Allergic Airway Inflammation. PLoS Negl Trop Dis 2023; 17:e0011625. [PMID: 37788409 PMCID: PMC10547495 DOI: 10.1371/journal.pntd.0011625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION Excretory/secretory products (ESPs) derived from helminths have been reported to effectively control allergic inflammation, which have better therapeutic prospects than live parasite infections. However, it remains unknown whether ESPs from schistosome eggs can protect against allergies, despite reports alleging that schistosome infection could alleviate disordered allergic inflammation. METHOD In the present study, we investigated the protective effects of ESPs from Schistosoma japonicum eggs (ESP-SJE) on asthmatic inflammation. Firstly, we successfully established an allergic airway inflammation model in mice by alum-adjuvanted ovalbumin (OVA) sensitization and challenge. ESP-SJE were administered intraperitoneally on days -1 and 13 (before sensitization), on day 20 (before challenge), and on days 21-24 (challenge phase). RESULTS The results showed that ESP-SJE treatment significantly reduced the infiltration of inflammatory cells, especially eosinophils into the lung tissue, inhibited the production of the total and OVA-specific IgE during OVA-sensitized and -challenged phases, respectively, and suppressed the secretion of Th2-type inflammatory cytokines (IL-4). Additionally, ESP-SJE treatment significantly upregulated the regulatory T cells (Tregs) in the lung tissue during OVA challenge. Furthermore, using liquid chromatography-mass spectrometry analysis and Treg induction experiments in vitro, we might identify nine potential therapeutic proteins against allergic inflammation in ESP-SJE. The targets of these candidate proteins included glutathione S-transferase, egg protein CP422 precursor, tubulin alpha-2/alpha-4 chain, actin-2, T-complex protein 1 subunit beta, histone H₄, whey acidic protein core region, and molecular chaperone HtpG. CONCLUSION Taken together, the results discussed herein demonstrated that ESP-SJE could significantly alleviate OVA-induced asthmatic inflammation in a murine model, which might be mediated by the upregulation of Treg in lung tissues that may be induced by the potential modulatory proteins. Therefore, potential proteins in ESP-SJE might be the best candidates to be tested for therapeutic application of asthma, thus pointing out to a possible new therapy for allergic airway inflammation.
Collapse
Affiliation(s)
- Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, P. R. China
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Xiaoling Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
50
|
Risemberg EL, Smeekens JM, Cisneros MCC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to peanut-induced oral anaphylaxis in CC027 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557467. [PMID: 37745496 PMCID: PMC10515941 DOI: 10.1101/2023.09.13.557467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, unlike C3H/HeJ (C3H) mice. Objective To determine the genetic basis of orally-induced anaphylaxis to peanut in CC027 mice. Methods A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 and five additional CC strains. Results Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis, and 4% having severe anaphylaxis. A total of eight genetic loci were associated with variation in response to peanut challenge, six associated with anaphylaxis (temperature decrease) and two associated with peanut-specific IgE levels. There were two major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis (thymocyte-expressed molecule involved in selection) gene. Consistent with Themis' described functions, we found that CC027 have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. Conclusion Our results demonstrate a key role for Themis in the orally-reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L. Risemberg
- Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill
- Department of Genetics, UNC Chapel Hill
| | - Johanna M. Smeekens
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Marta C. Cruz Cisneros
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | - Brea K. Hampton
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | | | | | | | - Kelly Orgel
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Ginger D. Shaw
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | | | - A. Wesley Burks
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - William Valdar
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | - Michael D. Kulis
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | | |
Collapse
|