1
|
Zhang Y, Pan C, Wang S, Zhou Y, Chen J, Yu X, Peng R, Zhang N, Yang H. Distinctive function of Tetraspanins: Implication in viral infections. Virulence 2025; 16:2474188. [PMID: 40053412 PMCID: PMC11901453 DOI: 10.1080/21505594.2025.2474188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Harboring four transmembrane domains in their structural hallmark, Tetraspanins (Tspans) are a family of glycoproteins with pivotal functions in a variety of biological and cellular processes. Through interacting laterally with each other or specific membrane proteins, Tspans organize tetraspanin-enriched microdomains (TEMs), modulating cellular signaling, adhesion, fusion, and proliferation. An abundance of evidence has identified the multiple functions in the progression of cancer as well as the underlying molecular mechanisms. Recently, plenty of studies have focused on the utilities of Tspans by pathogens for infection, especially the infection of viruses. The expression of Tspans correlates with the phase of viral infection, the type of virus, and targeted therapies. In particular, perturbations of Tspans in host cells can affect viral attachment, intracellular trafficking, translation, virus assembly, and release. In this review, we summarize and provide a historical overview of the discovery and characterization of various kinds of virus infection and highlight their diversity and complexity, along with the virus life cycle. Furthermore, we examined the current understanding of how various Tspans are involved in the regulatory mechanisms underlying viral infection. This review aims to offer a comprehensive understanding of the targeting of Tspans for therapeutic intervention in infections caused by diverse pathogens.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chengwei Pan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Guo Y, Zhou Y, Wang R, Lin Y, Lan H, Li Y, Wang DY, Dong J, Li K, Yan Y, Qiao Y. YAP as a potential therapeutic target for myofibroblast formation in asthma. Respir Res 2025; 26:51. [PMID: 39939959 PMCID: PMC11823061 DOI: 10.1186/s12931-025-03115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
Myofibroblasts accumulation contributes to airway remodeling, with the mechanisms being poorly understood. It is steroid-insensitive and has not been therapeutically targeted in asthma. In this study, we explored the potential of yes-associated protein (YAP) as a therapeutic target for myofibroblasts formation in asthma, by revealing the novel role and mechanisms by which YAP activation in type II alveolar epithelial (ATII) cells promotes the fibroblast-to-myofibroblast transition in vitro and in vivo. By performing immunofluorescence staining, we showed that myofibroblasts were increased in the bronchial walls and alveolar parenchyma in clinical asthmatic and house dust mite (HDM)-induced mouse lung samples. This was accompanied by YAP overexpression and nuclear translocation in ATII cells, and connective tissue growth factor (CTGF) upregulation. In vitro, HDM or combination of rhIL-1β with rhTNF-α upregulated and activated YAP in human primary ATII cells and A549 cells, but not in the bronchial epithelial cells, BEAS-2B. This effect was mediated by F-actin polymerization and could be suppressed by pretreatment with latrunculin A but not budesonide. Inhibition of YAP/transcriptional coactivator with PDZ-binding motif (TAZ) in A549 cells by pretreatment with YAP/TAZ siRNA or verteporfin, but not budesonide, impaired the fibroblast-to-myofibroblast transition in vitro. In vivo, verteporfin partly or completely prevented HDM-induced bronchial or alveolar myofibroblast accumulation, and significantly suppressed CTGF expression and collagen deposition in mouse lungs, without profoundly affecting airway inflammation. Our results provide novel mechanistic insights into airway remodeling, and holds promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yanrong Guo
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yuran Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Rui Wang
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yujing Lin
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Huimin Lan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yang Li
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Singapore
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, SAR, China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Goh KJ, Lu H, Tan EK, Lee ZY, Wong A, Tran T, Dunn NR, Roy S. Differentiation of CD166-positive hPSC-derived lung progenitors into airway epithelial cells. Biol Open 2024; 13:bio061729. [PMID: 39387302 PMCID: PMC11554259 DOI: 10.1242/bio.061729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture. These LPs can be purified using the cell surface marker CD166 (also known as ALCAM), and further matured into proximal airway epithelial cells including basal cells, secretory cells and multiciliated cells using either an organoid platform or culture at the air-liquid interface (ALI). We additionally demonstrate that these hPSC-derived airway epithelial cells can be used to model Influenza A infection. Collectively, our results underscore the utility of CD166 expression for the efficient enrichment of LPs from heterogenous differentiation cultures and the ability of these isolated cells to mature into more specialized, physiologically relevant proximal lung cell types.
Collapse
Affiliation(s)
- Kim Jee Goh
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zhao Yong Lee
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Amanda Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - N. Ray Dunn
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
4
|
Cochran SJ, Dunigan-Russell K, Hutton GM, Nguyen H, Schladweiler MC, Jones DP, Williams WC, Fisher AA, Gilmour MI, Dye JA, Smith MR, Miller CN, Gowdy KM. Repeated exposure to eucalyptus wood smoke alters pulmonary gene and metabolic profiles in male Long-Evans rats. Toxicol Sci 2024; 199:332-348. [PMID: 38544285 PMCID: PMC11131017 DOI: 10.1093/toxsci/kfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Exposure to wildfire smoke is associated with both acute and chronic cardiopulmonary illnesses, which are of special concern for wildland firefighters who experience repeated exposure to wood smoke. It is necessary to better understand the underlying pathophysiology by which wood smoke exposure increases pulmonary disease burdens in this population. We hypothesize that wood smoke exposure produces pulmonary dysfunction, lung inflammation, and gene expression profiles associated with future pulmonary complications. Male Long-Evans rats were intermittently exposed to smoldering eucalyptus wood smoke at 2 concentrations, low (11.0 ± 1.89 mg/m3) and high (23.7 ± 0.077 mg/m3), over a 2-week period. Whole-body plethysmography was measured intermittently throughout. Lung tissue and lavage fluid were collected 24 h after the final exposure for transcriptomics and metabolomics. Increasing smoke exposure upregulated neutrophils and select cytokines in the bronchoalveolar lavage fluid. In total, 3446 genes were differentially expressed in the lungs of rats in the high smoke exposure and only 1 gene in the low smoke exposure (Cd151). Genes altered in the high smoke group reflected changes to the Eukaryotic Initiation Factor 2 stress and oxidative stress responses, which mirrored metabolomics analyses. xMWAS-integrated analysis revealed that smoke exposure significantly altered pathways associated with oxidative stress, lung morphogenesis, and tumor proliferation pathways. These results indicate that intermittent, 2-week exposure to eucalyptus wood smoke leads to transcriptomic and metabolic changes in the lung that may predict future lung disease development. Collectively, these findings provide insight into cellular signaling pathways that may contribute to the chronic pulmonary conditions observed in wildland firefighters.
Collapse
Affiliation(s)
- Samuel J Cochran
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Katelyn Dunigan-Russell
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Grace M Hutton
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Helen Nguyen
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27711, USA
| | - Mette C Schladweiler
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Wanda C Williams
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Anna A Fisher
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ian Gilmour
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Janice A Dye
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Healthcare System, Decatur, Georgia 30033, USA
| | - Colette N Miller
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Bailly C, Bedart C, Vergoten G. A molecular docking exploration of the large extracellular loop of tetraspanin CD81 with small molecules. In Silico Pharmacol 2024; 12:24. [PMID: 38584777 PMCID: PMC10997574 DOI: 10.1007/s40203-024-00203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Tetraspanin CD81 is a transmembrane protein used as a co-receptor by different viruses and implicated in some cancer and inflammatory diseases. The design of therapeutic small molecules targeting CD81 lags behind monoclonal antibodies and peptides but different synthetic and natural products binding to CD81 have been identified. We have investigated the interaction between synthetic compounds and CD81, considering both the cholesterol-bound full-length receptor and a truncated protein corresponding to the large extracellular loop (LEL) of the tetraspanin. They represent the closed and open conformations of the protein, respectively. Stable complexes were characterized with bi-aryl compounds (notably the quinolinone-benzothiazole 6) and atypical molecules bearing a 1-amino-boraadamantane scaffold well adapted to interact with CD81 (5a-d). In each case, the mode of binding to CD81 was analyzed, the binding sites identified and the molecular contacts determined. The narrow intra-LEL binding site of CD81 can accommodate the elongated bi-aryl 6 but not a series of isosteric compounds with a bis(bicyclic) scaffold. The bora-adamantane derivatives appeared to bind well to CD81, but essentially to the external surface of the protein loop. The binding selectivity of the compounds was assessed comparing binding to the LEL of tetraspanins CD81, CD9 and Tspan15. A net preference for CD81 over CD9 was evidenced, but the LEL of Tspan15 also provided a suitable binding site for the compounds, notably for the bora-adamantane derivatives. This work provides an aid to the identification and design of tetraspanin-binding small molecules, underlining the distinct behavior of the open and closed conformation of the protein for drug binding. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00203-6.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, Wasquehal, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Corentin Bedart
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| | - Gérard Vergoten
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| |
Collapse
|
6
|
Zhong B, Sun S, Tan KS, Ong HH, Du J, Liu F, Liu Y, Liu S, Ba L, Li J, Wang DY, Liu J. Hypoxia-inducible factor 1α activates the NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:1444-1459.e14. [PMID: 37777019 DOI: 10.1016/j.jaci.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an upper airway inflammation disease associated with hypoxia-mediated inflammation. The effect of hypoxia-inducible factor 1α (HIF-1α) on NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in the pathogenesis of sinonasal mucosa is unclear. OBJECTIVE We investigated the effect and mechanism of HIF-1α on NLRP3 inflammasome activation in the primary human nasal epithelial cells (hNECs). METHODS We measured the expression levels of HIF-1α and the NLRP3 inflammasome in nasal biopsy samples and hNECs derived from negative controls (healthy) and patients with CRS with and without nasal polyps, then further analyzed the specific mechanism of HIF-1α regulation of the NLRP3 inflammasome and its effect on hNEC differentiation. RESULTS Increased mRNA and protein expression levels of HIF-1α and the NLRP3 inflammasome were found in all CRS biopsy samples. HIF-1α enhanced expression of phosphorylated NLRP3 (S295) in both HEK293T cells and hNECs; it also promoted recruitment of caspase-1 and apoptotic speck-like protein containing caspase recruitment domain (aka ASC) by NLRP3. HIF-1α also improved NLRP3's stability by preventing NLRP3 degradation caused by hypoxia-mediated inflammation. In addition, HIF-1α could also increase expression of Mucin5AC and decrease expression of α-tubulin by promoting activation of the NLRP3 inflammasome in hNECs. In addition, HIF-1α could also directly promote P63 expression in hNECs. CONCLUSION HIF-1α could potentially induce cilia loss and enhance the proliferation of goblet cells, possibly mediated by the regulation of NLRP3 phosphorylation in CRS inflammation.
Collapse
Affiliation(s)
- Bing Zhong
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Silu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Department of Microbiology and Immunology, National University of Singapore, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jintao Du
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Liu
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yafeng Liu
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shixi Liu
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Sun R, Cai Y, Zhou Y, Bai G, Zhu A, Kong P, Sun J, Li Y, Liu Y, Liao W, Liu J, Cui N, Xiang J, Li B, Zhao J, Wu D, Ran P. Proteomic profiling of single extracellular vesicles reveals colocalization of SARS-CoV-2 with a CD81/integrin-rich EV subpopulation in sputum from COVID-19 severe patients. Front Immunol 2023; 14:1052141. [PMID: 37251406 PMCID: PMC10214957 DOI: 10.3389/fimmu.2023.1052141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Background The global outbreak of COVID-19, and the limited availability of clinical treatments, forced researchers around the world to search for the pathogenesis and potential treatments. Understanding the pathogenesis of SARS-CoV-2 is crucial to respond better to the current coronavirus disease 2019 (COVID-19) pandemic. Methods We collected sputum samples from 20 COVID-19 patients and healthy controls. Transmission electron microscopy was used to observe the morphology of SARS-CoV-2. Extracellular vesicles (EVs) were isolated from sputum and the supernatant of VeroE6 cells, and were characterized by transmission electron microscopy, nanoparticle tracking analysis and Western-Blotting. Furthermore, a proximity barcoding assay was used to investigate immune-related proteins in single EV, and the relationship between EVs and SARS-CoV-2. Result Transmission electron microscopy images of SARS-COV-2 virus reveal EV-like vesicles around the virion, and western blot analysis of EVs extracted from the supernatant of SARS-COV-2-infected VeroE6 cells showed that they expressed SARS-COV-2 protein. These EVs have the infectivity of SARS-COV-2, and the addition can cause the infection and damage of normal VeroE6 cells. In addition, EVs derived from the sputum of patients infected with SARS-COV-2 expressed high levels of IL6 and TGF-β, which correlated strongly with expression of the SARS-CoV-2 N protein. Among 40 EV subpopulations identified, 18 differed significantly between patients and controls. The EV subpopulation regulated by CD81 was the most likely to correlate with changes in the pulmonary microenvironment after SARS-CoV-2 infection. Single extracellular vesicles in the sputum of COVID-19 patients harbor infection-mediated alterations in host and virus-derived proteins. Conclusions These results demonstrate that EVs derived from the sputum of patients participate in virus infection and immune responses. This study provides evidence of an association between EVs and SARS-CoV-2, providing insight into the possible pathogenesis of SARS-CoV-2 infection and the possibility of developing nanoparticle-based antiviral drugs.
Collapse
Affiliation(s)
- Ruiting Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanling Cai
- Shenzhen Second People’s Hospital, Postdoctoral Workstation of Zhongshan School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong, China
- R&D Department, Shenzhen Secretech Co. Ltd, Shenzhen, Guangdong, China
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ge Bai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Airu Zhu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Panyue Kong
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yimin Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuefei Liu
- R&D Department, Shenzhen Secretech Co. Ltd, Shenzhen, Guangdong, China
| | - Wenting Liao
- R&D Department, Shenzhen Secretech Co. Ltd, Shenzhen, Guangdong, China
| | - Jiye Liu
- R&D Department, Shenzhen Secretech Co. Ltd, Shenzhen, Guangdong, China
| | - Nan Cui
- R&D Department, Shenzhen Secretech Co. Ltd, Shenzhen, Guangdong, China
| | - Jinsheng Xiang
- R&D Department, Shenzhen Secretech Co. Ltd, Shenzhen, Guangdong, China
| | - Bing Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jincun Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Di Wu
- R&D Department, Shenzhen Secretech Co. Ltd, Shenzhen, Guangdong, China
- R&D Department, Vesicode AB, Solna, Sweden
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Researcher Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
9
|
Malla R, Kamal MA. Tetraspanin-enriched Microdomain Containing CD151, CD9, and TSPAN 8 - Potential Mediators of Entry and Exit Mechanisms in Respiratory Viruses Including SARS-CoV-2. Curr Pharm Des 2022; 28:3649-3657. [PMID: 36173052 DOI: 10.2174/1381612828666220907105543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, the Hubei region of China, has become a pandemic worldwide. It can transmit through droplets and enter via oral, nasal, and eye mucous membranes. It consists of single-stranded RNA (positive-sense), nonstructural proteins including enzymes and transcriptional proteins, and structural proteins such as Spike, Membrane, Envelope, and Nucleocapsid -proteins. SARS-CoV-2 mediates S-proteins entry and exit via binding to host cell surface proteins like tetraspanins. The transmembrane tetraspanins, CD151, CD9, and tetraspanin 8 (TSPAN8), facilitate the entry of novel coronaviruses by scaffolding host cell receptors and proteases. Also, CD151 was reported to increase airway hyperresponsiveness to calcium and nuclear viral export signaling. They may facilitate entry and exit by activating the serine proteases required to prime S-proteins in tetraspanin-enriched microdomains (TEMs). This article updates recent advances in structural proteins, their epitopes and putative receptors, and their regulation by proteases associated with TEMs. This review furnishes recent updates on the role of CD151 in the pathophysiology of SARS-CoV-2. We describe the role of CD151 in a possible mechanism of entry and exit in the airway, a major site for infection of SARS-CoV-2. We also updated current knowledge on the role of CD9 and TSPAN 8 in the entry and exit mechanism of coronaviruses. Finally, we discussed the importance of some small molecules which target CD151 as possible targeted therapeutics for COVID-19. In conclusion, this study could identify new targets and specific therapeutics to control emerging virus infections.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Ashulia, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham NSW 2770, Australia
| |
Collapse
|
10
|
An anti-influenza combined therapy assessed by single cell RNA-sequencing. Commun Biol 2022; 5:1075. [PMID: 36216966 PMCID: PMC9549038 DOI: 10.1038/s42003-022-04013-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Influenza makes millions of people ill every year, placing a large burden on the healthcare system and the economy. To develop a treatment against influenza, we combined virucidal sialylated cyclodextrins with interferon lambda and demonstrated, in human airway epithelia, that the two compounds inhibit the replication of a clinical H1N1 strain more efficiently when administered together rather than alone. We investigated the mechanism of action of the combined treatment by single cell RNA-sequencing analysis and found that both the single and combined treatments impair viral replication to different extents across distinct epithelial cell types. We showed that each cell type comprises multiple sub-types, whose proportions are altered by H1N1 infection, and assessed the ability of the treatments to restore them. To the best of our knowledge this is the first study investigating the effectiveness of an antiviral therapy against influenza virus by single cell transcriptomic studies. When combined with interferon lambda, virucidal sialylated cyclodextrins inhibit the replication of a clinical H1N1 influenza strain in ex vivo human airway epithelia more efficiently than when delivered alone.
Collapse
|
11
|
New C, Lee ZY, Tan KS, Wong AHP, Wang DY, Tran T. Tetraspanins: Host Factors in Viral Infections. Int J Mol Sci 2021; 22:11609. [PMID: 34769038 PMCID: PMC8583825 DOI: 10.3390/ijms222111609] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.
Collapse
Affiliation(s)
- ChihSheng New
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kai Sen Tan
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Singapore
| | - Amanda Huee-Ping Wong
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - De Yun Wang
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
12
|
A Crucial Role of ACBD3 Required for Coxsackievirus Infection in Animal Model Developed by AAV-Mediated CRISPR Genome Editing Technique. Viruses 2021; 13:v13020237. [PMID: 33546322 PMCID: PMC7913485 DOI: 10.3390/v13020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic screens using CRISPR/Cas9 have been exploited to discover host–virus interactions. These screens have identified viral dependencies on host proteins during their life cycle and potential antiviral strategies. The acyl-CoA binding domain containing 3 (ACBD3) was identified as an essential host factor for the Coxsackievirus B3 (CVB3) infection. Other groups have also investigated the role of ACBD3 as a host factor for diverse enteroviruses in cultured cells. However, it has not been tested if ACBD3 is required in the animal model of CVB3 infection. Owing to embryonic lethality, conventional knockout mice were not available for in vivo study. As an alternative approach, we used adeno-associated virus (AAV)-mediated CRISPR genome editing to generate mice that lacked ACBD3 within the pancreas, the major target organ for CVB3. Delivery of sgRNAs using self-complementary (sc) AAV8 efficiently induced a loss-of-function mutation in the pancreas of the Cas9 knock-in mice. Loss of ACBD3 in the pancreas resulted in a 100-fold reduction in the CVB3 titer within the pancreas and a noticeable reduction in viral protein expression. These results indicate a crucial function of ACBD3 in CVB3 infection in vivo. AAV-mediated CRISPR genome editing may be applicable to many in vivo studies on the virus–host interaction and identify a novel target for antiviral therapeutics.
Collapse
|
13
|
Host factors involved in influenza virus infection. Emerg Top Life Sci 2020; 4:389-398. [PMID: 33210707 DOI: 10.1042/etls20200232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Influenza virus causes an acute febrile respiratory disease in humans that is commonly known as 'flu'. Influenza virus has been around for centuries and is one of the most successful, and consequently most studied human viruses. This has generated tremendous amount of data and information, thus it is pertinent to summarise these for, particularly interdisciplinary readers. Viruses are acellular organisms and exist at the interface of living and non-living. Due to this unique characteristic, viruses require another organism, i.e. host to survive. Viruses multiply inside the host cell and are obligate intracellular pathogens, because their relationship with the host is almost always harmful to host. In mammalian cells, the life cycle of a virus, including influenza is divided into five main steps: attachment, entry, synthesis, assembly and release. To complete these steps, some viruses, e.g. influenza utilise all three parts - plasma membrane, cytoplasm and nucleus, of the cell; whereas others, e.g. SARS-CoV-2 utilise only plasma membrane and cytoplasm. Hence, viruses interact with numerous host factors to complete their life cycle, and these interactions are either exploitative or antagonistic in nature. The host factors involved in the life cycle of a virus could be divided in two broad categories - proviral and antiviral. This perspective has endeavoured to assimilate the information about the host factors which promote and suppress influenza virus infection. Furthermore, an insight into host factors that play a dual role during infection or contribute to influenza virus-host adaptation and disease severity has also been provided.
Collapse
|
14
|
Chen Q, Tan KS, Liu J, Ong HH, Zhou S, Huang H, Chen H, Ong YK, Thong M, Chow VT, Qiu Q, Wang DY. Host Antiviral Response Suppresses Ciliogenesis and Motile Ciliary Functions in the Nasal Epithelium. Front Cell Dev Biol 2020; 8:581340. [PMID: 33409274 PMCID: PMC7779769 DOI: 10.3389/fcell.2020.581340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Respiratory viral infections are one of the main drivers of development and exacerbation for chronic airway inflammatory diseases. Increased viral susceptibility and impaired mucociliary clearance are often associated with chronic airway inflammatory diseases and served as risk factors of exacerbations. However, the links between viral susceptibility, viral clearance, and impaired mucociliary functions are unclear. Therefore, the objective of this study is to provide the insights into the effects of improper clearance of respiratory viruses from the epithelium following infection, and their resulting persistent activation of antiviral response, on mucociliary functions. Methods In order to investigate the effects of persistent antiviral responses triggered by viral components from improper clearance on cilia formation and function, we established an in vitro air–liquid interface (ALI) culture of human nasal epithelial cells (hNECs) and used Poly(I:C) as a surrogate of viral components to simulate their effects toward re-epithelization and mucociliary functions of the nasal epithelium following damages from a viral infection. Results Through previous and current viral infection expression data, we found that respiratory viral infection of hNECs downregulated motile cilia gene expression. We then further tested the effects of antiviral response activation on the differentiation of hNECs using Poly(I:C) stimulation on differentiating human nasal epithelial stem/progenitor cells (hNESPCs). Using this model, we observed reduced ciliated cell differentiation compared to goblet cells, reduced protein and mRNA in ciliogenesis-associated markers, and increased mis-assembly and mis-localization of ciliary protein DNAH5 following treatment with 25 μg/ml Poly(I:C) in differentiating hNECs. Additionally, the cilia length and ciliary beat frequency (CBF) were also decreased, which suggest impairment of ciliary function as well. Conclusion Our results suggest that the impairments of ciliogenesis and ciliary function in hNECs may be triggered by specific expression of host antiviral response genes during re-epithelization of the nasal epithelium following viral infection. This event may in turn drive the development and exacerbation of chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Qianmin Chen
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suizi Zhou
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongming Huang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Otolaryngology, Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Hailing Chen
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yew Kwang Ong
- Department of Otolaryngology, Head and Neck Surgery, National University Health System, National University Hospital, Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology, Head and Neck Surgery, National University Health System, National University Hospital, Singapore, Singapore
| | - Vincent T Chow
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Qianhui Qiu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Tetraspanins: useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov Today 2020; 26:56-68. [PMID: 33137483 DOI: 10.1016/j.drudis.2020.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Tetraspanins constitute a well-conserved superfamily of four-span small membrane proteins (TM4SF), with >30 members in humans, with important roles in numerous mechanisms of cell biology. Moreover, tetraspanins associate with either specific partner proteins or another tetraspanin, generating a network of interactions involved in cell and membrane compartmentalization and having a role in cellular development, proliferation, activation, motility, and membrane fusions. Therefore, tetraspanins are considered regulators of cellular signaling and are often depicted as 'molecular facilitators'. In view of these many physiological functions, it is likely that these molecules are important actors in pathological processes. In this review, we present the main characteristics of this superfamily, providing a more detailed description of some significant representatives and discuss their relevance as potential targets for the design and development of small-molecule therapeutics in different pathologies.
Collapse
|
16
|
Repurposing Papaverine as an Antiviral Agent against Influenza Viruses and Paramyxoviruses. J Virol 2020; 94:JVI.01888-19. [PMID: 31896588 DOI: 10.1128/jvi.01888-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza viruses are highly infectious and are the leading cause of human respiratory diseases and may trigger severe epidemics and occasional pandemics. Although antiviral drugs against influenza viruses have been developed, there is an urgent need to design new strategies to develop influenza virus inhibitors due to the increasing resistance of viruses toward currently available drugs. In this study, we examined the antiviral activity of natural compounds against the following influenza virus strains: A/WSN/33 (H1N1), A/Udorn/72 (H3N2), and B/Lee/40. Papaverine (a nonnarcotic alkaloid that has been used for the treatment of heart disease, impotency, and psychosis) was found to be an effective inhibitor of multiple strains of influenza virus. Kinetic studies demonstrated that papaverine inhibited influenza virus infection at a late stage in the virus life cycle. An alteration in influenza virus morphology and viral ribonucleoprotein (vRNP) localization was observed as an effect of papaverine treatment. Papaverine is a well-known phosphodiesterase inhibitor and also modifies the mitogen-activated protein kinase (MAPK) pathway by downregulating the phosphorylation of MEK and extracellular signal-regulated kinase (ERK). Thus, the modulation of host cell signaling pathways by papaverine may be associated with the nuclear retention of vRNPs and the reduction of influenza virus titers. Interestingly, papaverine also inhibited paramyxoviruses parainfluenza virus 5 (PIV5), human parainfluenza virus 3 (HPIV3), and respiratory syncytial virus (RSV) infections. We propose that papaverine can be a potential candidate to be used as an antiviral agent against a broad range of influenza viruses and paramyxoviruses.IMPORTANCE Influenza viruses are important human pathogens that are the causative agents of epidemics and pandemics. Despite the availability of an annual vaccine, a large number of cases occur every year globally. Here, we report that papaverine, a vasodilator, shows inhibitory action against various strains of influenza virus as well as the paramyxoviruses PIV5, HPIV3, and RSV. A significant effect of papaverine on the influenza virus morphology was observed. Papaverine treatment of influenza-virus-infected cells resulted in the inhibition of virus at a later time in the virus life cycle through the suppression of nuclear export of vRNP and also interfered with the host cellular cAMP and MEK/ERK cascade pathways. This study explores the use of papaverine as an effective inhibitor of both influenza viruses as well as paramyxoviruses.
Collapse
|
17
|
Wong AH, Tran T. CD151 in Respiratory Diseases. Front Cell Dev Biol 2020; 8:64. [PMID: 32117989 PMCID: PMC7020194 DOI: 10.3389/fcell.2020.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
The tetraspanin, Cluster of Differentiation 151 (CD151), is ubiquitously expressed in adult tissue, especially in the lungs where it has been implicated in lung cancer, asthma, influenza, and idiopathic pulmonary fibrosis (IPF). CD151 interacts with laminin-binding integrins and growth factor receptors, and is reported in cancer-promoting processes such as tumor initiation, metastasis, and angiogenesis. In asthma, CD151 was shown to promote airways hyperresponsiveness through calcium signaling whereas in influenza, CD151 was shown to be a novel host factor for nuclear viral export signaling. Furthermore, CD151 was shown to be associated with increased disease severity and poorer survival outcome in asthma and lung cancer, respectively. In this review, we provide an update on the current understanding of CD151 with regards to its contribution to lung pathophysiology. We also summarize factors that have been shown to regulate CD151 expression and identify key areas that need to be taken into consideration for its utility as a screening or prognostic tool in disease management and/or as a therapeutic target for the treatment of lung diseases.
Collapse
Affiliation(s)
- Amanda H Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Tan KS, Andiappan AK, Lee B, Yan Y, Liu J, Tang SA, Lum J, He TT, Ong YK, Thong M, Lim HF, Choi HW, Rotzschke O, Chow VT, Wang DY. RNA Sequencing of H3N2 Influenza Virus-Infected Human Nasal Epithelial Cells from Multiple Subjects Reveals Molecular Pathways Associated with Tissue Injury and Complications. Cells 2019; 8:cells8090986. [PMID: 31461941 PMCID: PMC6770044 DOI: 10.3390/cells8090986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
The human nasal epithelium is the primary site of exposure to influenza virus, the initiator of host responses to influenza and the resultant pathologies. Influenza virus may cause serious respiratory infection resulting in major complications, as well as severe impairment of the airways. Here, we elucidated the global transcriptomic changes during H3N2 infection of human nasal epithelial cells from multiple individuals. Using RNA sequencing, we characterized the differentially-expressed genes and pathways associated with changes occurring at the nasal epithelium following infection. We used in vitro differentiated human nasal epithelial cell culture model derived from seven different donors who had no concurrent history of viral infections. Statistical analysis highlighted strong transcriptomic signatures significantly associated with 24 and 48 h after infection, but not at the earlier 8-h time point. In particular, we found that the influenza infection induced in the nasal epithelium early and altered responses in interferon gamma signaling, B-cell signaling, apoptosis, necrosis, smooth muscle proliferation, and metabolic alterations. These molecular events initiated at the infected nasal epithelium may potentially adversely impact the airway, and thus the genes we identified could serve as potential diagnostic biomarkers or therapeutic targets for influenza infection and associated disease management.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | | | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - See Aik Tang
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Ting Ting He
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mark Thong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hui Fang Lim
- Division of Respiratory and Critical Care Medicine, National University Hospital, Singapore 119074, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Hyung Won Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
19
|
Chen ZG, Wang ZN, Yan Y, Liu J, He TT, Thong KT, Ong YK, Chow VTK, Tan KS, Wang DY. Upregulation of cell-surface mucin MUC15 in human nasal epithelial cells upon influenza A virus infection. BMC Infect Dis 2019; 19:622. [PMID: 31307416 PMCID: PMC6631914 DOI: 10.1186/s12879-019-4213-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background Cell-surface mucins are expressed in apical epithelial cells of the respiratory tract, and contribute a crucial part of the innate immune system. Despite anti-inflammatory or antiviral functions being revealed for certain cell-surface mucins such as MUC1, the roles of other mucins are still poorly understood, especially in viral infections. Methods To further identify mucins significant in influenza infection, we screened the expression of mucins in human nasal epithelial cells infected by H3N2 influenza A virus. Results We found that the expression of MUC15 was significantly upregulated upon infection, and specific only to active infection. While MUC15 did not interact with virus particles or reduce viral replication directly, positive correlations were observed between MUC15 and inflammatory factors in response to viral infection. Given that the upregulation of MUC15 was only triggered late into infection when immune factors (including cytokines, chemokines, EGFR and phosphorylated ERK) started to peak and plateau, MUC15 may potentially serve an immunomodulatory function later during influenza viral infection. Conclusions Our study revealed that MUC15 was one of the few cell-surface mucins induced during influenza infection. While MUC15 did not interact directly with influenza virus, we showed that its increase coincides with the peak of immune activation and thus MUC15 may serve an immunomodulatory role during influenza infection. Electronic supplementary material The online version of this article (10.1186/s12879-019-4213-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuang Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Zhao Ni Wang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Ting Ting He
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Kim Thye Thong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Vincent T K Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| |
Collapse
|
20
|
Tan KS, Yan Y, Koh WLH, Li L, Choi H, Tran T, Sugrue R, Wang DY, Chow VT. Comparative Transcriptomic and Metagenomic Analyses of Influenza Virus-Infected Nasal Epithelial Cells From Multiple Individuals Reveal Specific Nasal-Initiated Signatures. Front Microbiol 2018; 9:2685. [PMID: 30487780 PMCID: PMC6246735 DOI: 10.3389/fmicb.2018.02685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
In vitro and in vivo research based on cell lines and animals are likely to be insufficient in elucidating authentic biological and physiological phenomena mimicking human systems, especially for generating pre-clinical data on targets and biomarkers. There is an obvious need for a model that can further bridge the gap in translating pre-clinical findings into clinical applications. We have previously generated a model of in vitro differentiated human nasal epithelial cells (hNECs) which elucidated the nasal-initiated repertoire of immune responses against respiratory viruses such as influenza A virus and rhinovirus. To assess their clinical utility, we performed a microarray analysis of influenza virus-infected hNECs to elucidate nasal epithelial-initiated responses. This was followed by a metagenomic analysis which revealed transcriptomic changes comparable with clinical influenza datasets. The primary target of influenza infection was observed to be the initiator of innate and adaptive immune genes, leaning toward type-1 inflammatory activation. In addition, the model also elucidated a down-regulation of metabolic processes specific to the nasal epithelium, and not present in other models. Furthermore, the hNEC model detected all 11 gene signatures unique to influenza infection identified from a previous study, thus supporting the utility of nasal-based diagnosis in clinical settings. In conclusion, this study highlights that hNECs can serve as a model for nasal-based clinical translational studies and diagnosis to unravel nasal epithelial responses to influenza in the population, and as a means to identify novel molecular diagnostic markers of severity.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wai Ling Hiromi Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Richard Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Vaccine based on antibody-dependent cell-mediated cytotoxicity epitope on the H1N1 influenza virus increases mortality in vaccinated mice. Biochem Biophys Res Commun 2018; 503:1874-1879. [PMID: 30064910 DOI: 10.1016/j.bbrc.2018.07.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
Antibody-dependent cell-mediated cytotoxicity bridges humoral immunity and cellular immunity. Thus vaccine candidates which can elicit both broadly neutralizing antibodies and potent antibody-dependent cell-mediated cytotoxicity (ADCC) are recommended. Previously, a panel of functional epitopes that can elicit ADCC effects is isolated and characterized on the H1N1 Influenza Virus. Based on these identified epitopes, an epitope vaccine against H1N1 infection has been designed. The serum of vaccine immunized mice show potent ADCC activities in comparison with vector control group and HA ecto domain vaccinated group. However, the release of IL-6 and TNFα is higher in lung of epitope vaccine immunized mice. The viral load is also higher in epitope vaccine immunized mice. In addition, the epitope vaccine immunized mice showed lower survive rate than both empty vector immunized mice and HA ectodomain immunized mice. Passive transfer of serum from epitope vaccine immunized mice to healthy adult mice can decrease the survival rate of recipients after viral challenge. Our data suggested that ADCC epitope based vaccine has a mortality promoting effect rather than protective effect after H1N1 viral challenge. This result provides indications in future vaccine design with a consideration of balancing humoral immune response and cellular immune response.
Collapse
|
22
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
23
|
Ng YP, Yip TF, Peiris JSM, Ip NY, Lee SMY. Avian influenza A H7N9 virus infects human astrocytes and neuronal cells and induces inflammatory immune responses. J Neurovirol 2018; 24:752-760. [PMID: 29987581 PMCID: PMC7094989 DOI: 10.1007/s13365-018-0659-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 11/05/2022]
Abstract
Seasonal, pandemic, and avian influenza virus infections may be associated with central nervous system pathology, albeit with varying frequency and different mechanisms. Here, we demonstrate that differentiated human astrocytic (T98G) and neuronal (SH-SY5Y) cells can be infected by avian H7N9 and pandemic H1N1 viruses. However, infectious progeny viruses can only be detected in H7N9 virus infected human neuronal cells. Neither of these viral strains can generate infectious progeny virus in human astrocytes despite replication of viral genome was observed. Furthermore, H7N9 virus triggered high pro-inflammatory cytokine expression, while pandemic H1N1 virus induced only low cytokine expression in either brain cell type. The experimental finding here is the first data to demonstrate that avian H7N9 virus can infect, transcribe, and replicate its viral genome; induce cytokine upregulation; and cause cytopathic effects in human brain cells, which may potentially lead to profound central nervous system injury. Observation for neurological problems due to H7N9 virus infection deserves further attention when managing these patients.
Collapse
Affiliation(s)
- Y P Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - T F Yip
- HKU-Pasteur Research Pole and Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - J S Malik Peiris
- HKU-Pasteur Research Pole and Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Suki M Y Lee
- HKU-Pasteur Research Pole and Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|