1
|
Shen W, Lin K, Wu L. Successful Treatment of Dupilumab-Induced Erythroderma with Abrocitinib: A Case Report. Dermatitis 2025; 36:e307-e309. [PMID: 39279574 DOI: 10.1089/derm.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Affiliation(s)
- Weijie Shen
- Department of Dermatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kesheng Lin
- Department of Dermatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming Wu
- Department of Dermatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
2
|
DeBerg HA, Fahning ML, Varkhande SR, Schlenker JD, Schmitt WP, Gupta A, Singh A, Gratz IK, Carlin JS, Campbell DJ, Morawski PA. T Cells Promote Distinct Transcriptional Programs of Cutaneous Inflammatory Disease in Keratinocytes and Dermal Fibroblasts. J Invest Dermatol 2025:S0022-202X(25)00401-4. [PMID: 40216155 DOI: 10.1016/j.jid.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/25/2025]
Abstract
T cells and structural cells coordinate appropriate inflammatory responses and restoration of barrier integrity following insult. Dysfunctional T cells precipitate skin pathology occurring alongside altered structural cell frequencies and transcriptional states, but to what extent different T cells promote disease-associated changes remains unclear. We show that functionally diverse circulating and skin-resident CD4+CLA+ T-cell populations promote distinct transcriptional outcomes in human keratinocytes and fibroblasts associated with inflamed or healthy tissue. We identify T helper 17 cell-induced genes in keratinocytes that are enriched in psoriasis patient skin and normalized by anti-IL-17 therapy. We also describe a CD103+ skin-resident T-cell-induced transcriptional module enriched in healthy controls that is diminished during psoriasis and scleroderma and show that CD103+ T-cell frequencies are altered during disease. Interrogating clinical data using immune-dependent transcriptional signatures defines the T-cell subsets and genes distinguishing inflamed from healthy skin and allows investigation of heterogeneous patient responses to biologic therapy.
Collapse
Affiliation(s)
- Hannah A DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Mitch L Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Suraj R Varkhande
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - James D Schlenker
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, Washington, USA
| | - William P Schmitt
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Aayush Gupta
- Department of Dermatology, Leprology, and Venereology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
| | - Archana Singh
- Systems Biology Lab, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Iris K Gratz
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria; EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, Salzburg, Austria
| | - Jeffrey S Carlin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA; Division of Rheumatology, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter A Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA.
| |
Collapse
|
3
|
Weidinger S, Blauvelt A, Papp KA, Reich A, Lee CH, Worm M, Lynde C, Kataoka Y, Foley P, Wei X, Wong W, Solente AC, Weber C, Adelman S, Davey S, Hurbin F, Rynkiewicz N, Yen K, O'Malley JT, Bernigaud C. Phase 2b randomized clinical trial of amlitelimab, an anti-OX40 ligand antibody, in patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol 2025; 155:1264-1275. [PMID: 39522654 DOI: 10.1016/j.jaci.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Amlitelimab, a fully human nondepleting mAb targeting OX40 ligand on antigen-presenting cells, could prevent T-cell-driven inflammation seen in atopic dermatitis (AD). OBJECTIVE This trial evaluated the efficacy and safety of amlitelimab in adults with AD. METHODS In this 2-part, phase 2b, randomized, double-blinded placebo-controlled trial (ClinicalTrials.gov identifier NCT05131477), patients received subcutaneous amlitelimab every 4 weeks at doses of 250 mg plus a 500-mg loading dose, 250 mg, 125 mg, or 62.5 mg or placebo for 24 weeks in Part 1 (1:1:1:1:1 randomization). In Part 2, clinical responders were reallocated 3:1 to stop taking amlitelimab or continue the previous dose regimen for 28 weeks. The primary end point was percentage of change in Eczema Area and Severity Index (EASI) from baseline to week 16. RESULTS In all, 390 and 190 patients enrolled in Part 1 and Part 2, respectively. A significant percentage of change decrease in EASI was observed with amlitelimab doses versus with placebo (P < .001). Clinical responses at week 24 (Investigator Global Assessment 0/1 and/or a 75% reduction in EASI) were maintained at week 52 in patients continuing or stopping amlitelimab. Of the patients maintaining clinical response at week 52 after no longer receiving treatment, more than 80% had serum amlitelimab concentrations less than the 4-μg/mL threshold for several weeks before week 52. Reductions in AD-related biomarkers during Part 1 were maintained through Part 2. Amlitelimab was well tolerated over 52 weeks. CONCLUSIONS Amlitelimab treatment significantly reduced clinical and biomarker responses, and was well tolerated in adults with AD through week 52. Sustained responses were observed in the majority of patients for 28 weeks after they had stopped taking amlitelimab.
Collapse
Affiliation(s)
- Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | | - Kim A Papp
- Alliance Clinical Trials and Probity Medical Research, Waterloo, Ontario, Canada; Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venereology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Charles Lynde
- Probity Medical Research, and University of Toronto, Markham, Ontario, Canada
| | - Yoko Kataoka
- Department of Dermatology, Osaka Habikino Medical Center, Habikino, Japan
| | - Peter Foley
- Skin Health Institute, and Probity Medical Research, Carlton, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Meng J, Xiao H, Xu F, She X, Liu C, Canonica GW. Systemic barrier dysfunction in type 2 inflammation diseases: perspective in the skin, airways, and gastrointestinal tract. Immunol Res 2025; 73:60. [PMID: 40069459 PMCID: PMC11897119 DOI: 10.1007/s12026-025-09606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
The epithelial barrier in different organs is the first line of defense against environmental insults and allergens, with type 2 immunity serving as a protective function. Genetic factors, and biological and chemical insults from the surrounding environment altered regulate epithelial homeostasis through disruption of epithelial tight junction proteins or dilated intercellular spaces. Recent studies suggest that epithelial barrier dysfunction contributes to pathologic alteration in diseases with type 2 immune dysregulation including (but not limited to) atopic dermatitis, prurigo nodularis, asthma, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. In this review, we summarized current understanding of dysfunction of barrier and its interaction with type 2 inflammation across different organs, and discussed the role of epithelial barrier disruption in the pathogenesis of type 2 inflammation. In addition, recent progresses of emerging barrier restorative therapies are reviewed.
Collapse
Affiliation(s)
- Juan Meng
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China
- Department of Otorhinolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xiao
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Xu
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueke She
- Sanofi China Investment Co., Ltd. Shanghai Branch, Shanghai, 200000, P.R. China
| | - Chuntao Liu
- Department of Allergy, West China Hospital, Sichuan University, Chengdu, China.
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
- Asthma & Allergy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, Italy
| |
Collapse
|
5
|
Wang Y, Yin H, Li Z, Wu H, Wang Q, Chen X, Mao L, Wu Y, Wang S, Qin H, Gu C, Yao X, Li W. Blood Transcriptome Signature as Indicator and Predictor for Efficacy of Abrocitinib in Treatment of Atopic Dermatitis. J Invest Dermatol 2025:S0022-202X(25)00311-2. [PMID: 40058571 DOI: 10.1016/j.jid.2025.02.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
Patients with atopic dermatitis (AD) exhibit significant blood transcriptome alterations, reflecting systemic inflammation. The effects of abrocitinib, a Jak1 inhibitor, on the blood transcriptome of AD remain unclear. This study aimed to investigate abrocitinib's effects on the blood transcriptome in patients with AD and identify transcriptomic predictors of treatment efficacy. Blood cell mRNA sequencing was conducted on 31 patients with AD at baseline and 4 and 12 weeks of 100 mg abrocitinib daily treatment. Differential gene expression, immune infiltration, and weighted gene coexpression network analyses were performed, along with correlation analysis of transcriptomic data and clinical traits. We observed that abrocitinib treatment significantly improved clinical signs of AD. Correspondingly, blood transcriptome normalization, including downregulation of T helper 2, T helper 1, and eosinophil and an increase in type 1 regulatory T-cell abundance, rapidly occurred by week 4, with slight rebound by week 12. Higher baseline eosinophil counts predicted greater transcript normalization. Weighted gene coexpression network analyses identified an efficacy-related gene module, leading to a 5-gene (PLIN2, CAT, CLC, RAB44, and SMPD3) efficacy-predictive model, which was validated in another independent cohort of 30 patients with AD treated with abrocitinib. In conclusion, abrocitinib treatment resulted in rapid and extensive normalization of the dysregulated blood transcripts in AD, which was associated with its clinical efficacy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Huibin Yin
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zheng Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao Wu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qianhao Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Liya Mao
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuemeng Wu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shangshang Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Haihong Qin
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chaoying Gu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Dawe HR, Di Meglio P. The Aryl Hydrocarbon Receptor (AHR): Peacekeeper of the Skin. Int J Mol Sci 2025; 26:1618. [PMID: 40004095 PMCID: PMC11855870 DOI: 10.3390/ijms26041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In the last decade, the aryl hydrocarbon receptor (AHR) has emerged as a critical peacekeeper for the maintenance of healthy skin. The evolutionary conservation of AHR implied physiological functions for this receptor, beyond the detoxification of man-made compounds, a notion further supported by the existence of physiological AHR ligands, notably derivates of tryptophan by the host and host microbiome. The UV light-derived ligand, 6-formylindolo[3,2-b]carbazole (FICZ), anticipated a role for AHR in skin, a UV light-exposed organ, where physiological AHR activation promotes a healthy skin barrier and constrains inflammation. The clinical development of tapinarof, the first topical AHR modulating drug for inflammatory skin disease, approved by the FDA for mild-to-moderate psoriasis and poised for approval in atopic dermatitis, supports the therapeutic targeting of the AHR pathway to harness its beneficial effect in skin inflammation. Here, we describe how a tightly controlled, physiological activation of the AHR pathway maintains skin homeostasis, and discuss how the pathway is dysregulated in psoriasis and atopic dermatitis, identifying areas offering opportunities for alternative therapeutic approaches, for further investigation.
Collapse
Affiliation(s)
- Hannah R. Dawe
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| | - Paola Di Meglio
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| |
Collapse
|
7
|
Schärli S, Luther F, Di Domizio J, Hillig C, Radonjic-Hoesli S, Thormann K, Simon D, Rønnstad ATM, Ruge IF, Fritz BG, Bjarnsholt T, Vallone A, Kezic S, Menden MP, Roesner LM, Werfel T, Thyssen JP, Eyerich S, Gilliet M, Bertschi NL, Schlapbach C. IL-9 sensitizes human T H2 cells to proinflammatory IL-18 signals in atopic dermatitis. J Allergy Clin Immunol 2025; 155:491-504.e9. [PMID: 39521283 DOI: 10.1016/j.jaci.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND TH2 cells crucially contribute to the pathogenesis of atopic dermatitis (AD) by secreting high levels of IL-13 and IL-22. Yet the upstream regulators that activate TH2 cells in AD skin remain unclear. IL-18 is a putative upstream regulator of TH2 cells because it is implicated in AD pathogenesis and has the capacity to activate T cells. OBJECTIVE We sought to decipher the role of IL-18 in TH2 responses in blood and skin of AD patients. METHODS Peripheral blood mononuclear cells and skin biopsy samples from AD patients and healthy donors were used. Functional assays were performed ex vivo using stimulation or blocking experiments. Analysis was performed by flow cytometry, bead-based multiplex assays, RT-qPCR, RNA-Seq, Western blot, and spatial sequencing. RESULTS IL-18Rα+ TH2 cells were enriched in blood and lesional skin of AD patients. Of all the cytokines for which TH2 cells express the receptor, only IL-9 was able to induce IL-18R via an IL-9R-JAK1/JAK3-STAT1 signaling pathway. Functionally, stimulation of circulating TH2 cells with IL-18 induced secretion of IL-13 and IL-22, an effect that was enhanced by costimulation with IL-9. Mechanistically, IL-18 induced TH2 cytokines via activation of IRAK4, NF-κB, and AP-1 signaling in TH2 cells, and neutralization of IL-18 inhibited these cytokines in cultured explants of AD skin lesions. Finally, IL-18 protein levels correlated positively with disease severity in lesional AD skin. CONCLUSION Our data identify a novel IL-9/IL-18 axis that contributes to TH2 responses in AD. Our findings suggest that both IL-9 and IL-18 could represent upstream targets for future treatment of AD.
Collapse
Affiliation(s)
- Stefanie Schärli
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Fabian Luther
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jeremy Di Domizio
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Christina Hillig
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Susanne Radonjic-Hoesli
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Kathrin Thormann
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Iben Frier Ruge
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Blaine G Fritz
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Angela Vallone
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sanja Kezic
- Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Michael P Menden
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Munich, Germany; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Stefanie Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicole L Bertschi
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Emmert H, Rademacher F, Hübenthal M, Gläser R, Norsgaard H, Weidinger S, Harder J. Type 2 Cytokine-Dependent Skin Barrier Regulation in Personalized 2-Dimensional and 3-Dimensional Skin Models of Atopic Dermatitis: A Pilot Study. JID INNOVATIONS 2025; 5:100309. [PMID: 39385749 PMCID: PMC11460444 DOI: 10.1016/j.xjidi.2024.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 10/12/2024] Open
Abstract
Keratinocytes (KCs) from healthy donors stimulated with type 2 cytokines are often used to experimentally study atopic dermatitis (AD) inflammatory responses. Owing to potential intrinsic alterations, it seems favorable to use KCs from patients with AD. KCs isolated from hair follicles offer a noninvasive approach to investigate AD-derived KCs. To evaluate whether such AD-derived KCs are suitable to mimic AD inflammatory responses, we compared hair follicle-derived KCs from healthy donors with those from patients with AD in a type 2 cytokine environment. Stimulation of AD-derived KCs with IL-4 and IL-13 induced higher expression changes of AD-associated markers than that of healthy KCs. The combination of IL-4 and IL-13 generally induced highest expression changes, but IL-13 alone also induced significant changes of AD-specific markers. Similar to the 2-dimensional cultures, IL-4/IL-13 stimulation of 3-dimensional skin models generated with AD-derived KCs modulated the expression of several AD-relevant factors. Whole-transcriptome analysis revealed that IL-4 and IL-13 acted similarly on these 3-dimensional skin models. Histologically, IL-13 alone and in combination with IL-4 increased epidermal spongiosis, a histological hallmark of AD skin. Taken together, our pilot study suggests that hair follicle-derived KCs from patients with AD represent a useful model system to study AD-related inflammation in a personalized in vitro model.
Collapse
Affiliation(s)
- Hila Emmert
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Rademacher
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Hübenthal
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hanne Norsgaard
- Department of Translational Sciences, Research & Early Development, LEO Pharma, Ballerup, Denmark
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
Tandon R, Harder I, Stölzl D, Hübenthal M, Sander N, Hartmann J, Suhrkamp I, Fonfara M, Gerdes S, Weidinger S. Tralokinumab Treatment of Atopic Dermatitis Induces a Progressive Transcriptomic Response. J Invest Dermatol 2024:S0022-202X(24)03035-5. [PMID: 39733934 DOI: 10.1016/j.jid.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024]
Abstract
Atopic dermatitis is characterized by a complex epidermal barrier deficiency and exaggerated immune responses dominated by type 2 mechanisms with variable contributions of additional immune axes. IL-13 is overexpressed in atopic dermatitis skin and a key driver of both barrier dysfunction and inflammation. In this study, we prospectively studied the effects of IL-13 inhibition with tralokinumab on cutaneous transcriptome profiles using RNA sequencing of biopsies from 16 patients with moderate-to-severe atopic dermatitis obtained at baseline, week 2, and week 16. Tralokinumab therapy induced early and delayed expression changes and progressively shifted the transcriptomic profile of lesional toward nonlesional skin by modulating both genes associated with keratinocyte proliferation and differentiation, itch signaling, and downstream inflammatory responses. At week 16, 751 genes were still significantly dysregulated compared with those in healthy control skin, reinforcing the need for long-term immunomodulatory therapy of moderate-to-severe atopic dermatitis to achieve deep responses. The study was registered with ClinicalTrials.gov (NCT04556461).
Collapse
Affiliation(s)
- Rashmi Tandon
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Inken Harder
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dora Stölzl
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Hübenthal
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicole Sander
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan Hartmann
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ina Suhrkamp
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Melina Fonfara
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sascha Gerdes
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
10
|
DeBerg HA, Fahning ML, Varkhande SR, Schlenker JD, Schmitt WP, Gupta A, Singh A, Gratz IK, Carlin JS, Campbell DJ, Morawski PA. T cells promote distinct transcriptional programs of cutaneous inflammatory disease in keratinocytes and dermal fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606077. [PMID: 39131334 PMCID: PMC11312529 DOI: 10.1101/2024.07.31.606077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
T cells and structural cells coordinate appropriate inflammatory responses and restoration of barrier integrity following insult. Dysfunctional T cells precipitate skin pathology occurring alongside altered structural cell frequencies and transcriptional states, but to what extent different T cells promote disease-associated changes remains unclear. We show that functionally diverse circulating and skin-resident CD4+CLA+ T cell populations promote distinct transcriptional outcomes in human keratinocytes and fibroblasts associated with inflamed or healthy tissue. We identify Th17 cell-induced genes in keratinocytes that are enriched in psoriasis patient skin and normalized by anti-IL-17 therapy. We also describe a CD103+ skin-resident T cell-induced transcriptional module enriched in healthy controls that is diminished during psoriasis and scleroderma and show that CD103+ T cell frequencies are altered during disease. Interrogating clinical data using immune-dependent transcriptional signatures defines the T cell subsets and genes distinguishing inflamed from healthy skin and allows investigation of heterogeneous patient responses to biologic therapy.
Collapse
Affiliation(s)
- Hannah A. DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mitch L. Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suraj R. Varkhande
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - James D. Schlenker
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - William P. Schmitt
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - Aayush Gupta
- Department of Dermatology, Leprology, and Venereology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
| | - Archana Singh
- Systems Biology Lab, CSIR – Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Iris K. Gratz
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Center for Tumor Biology and Immunology, University of Salzburg, Salzburg, Austria
| | - Jeffrey S. Carlin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
- Division of Rheumatology, Virginia Mason Medical Center, Seattle, WA, USA
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A. Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
11
|
Zirpel H, Ludwig RJ, Olbrich H, Kridin K, Ständer S, Thaçi D. Comparison of safety profile in patients with atopic dermatitis treated with dupilumab or conventional systemic treatment: real world data from the US network. J DERMATOL TREAT 2024; 35:2421429. [PMID: 39489506 DOI: 10.1080/09546634.2024.2421429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Safety of dupilumab in atopic dermatitis (AD) was investigated in randomized controlled trials (RCT). However, head-to-head trials comparing with conventional systemic drugs are lacking and large real-world data on the long-term safety profile as compared are scarce. OBJECTIVE To compare long-term safety profile of dupilumab with conventional systemic drugs used in the management of moderate to severe AD. METHODS Data from electronic health records of AD patients treated with either dupilumab, azathioprine, Cyclosporine A, mycophenolate mofetil, methotrexate, or oral glucocorticoids were retrieved from the TriNetX US Collaborative Network. Risks of adverse events and new onset of type-2-inflammatory diseases within 5 years after treatment initiation was investigated. RESULTS 5 propensity-matched cohorts, up to 18,708 individuals per cohort, were created. Dupilumab treatment displayed reduced risk for diseases of the circulatory, the upper respiratory, and the musculoskeletal system, infections, and type 2 diseases as compared to all other treatment options. In contrast risk for conjunctivitis was increased in dupilumab treated patients as compared to mycophenolate mofetil and methotrexate. CONCLUSION Here presented data indicates that treatment with dupilumab for AD has reduced risk for adverse effects of conventional systemic drugs and thus might be safer. Obtained data should be verified in prospective studies.
Collapse
Affiliation(s)
- Henner Zirpel
- Institute and Comprehensive Center for Inflammation Medicine, University-Hospital Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Henning Olbrich
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Unit of Dermatology and Skin Research Laboratory, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sascha Ständer
- Institute and Comprehensive Center for Inflammation Medicine, University-Hospital Lübeck, Lübeck, Germany
| | - Diamant Thaçi
- Institute and Comprehensive Center for Inflammation Medicine, University-Hospital Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
13
|
Zhu M, Ma L, Zhong P, Huang J, Gai J, Li G, Li Y, Qiao P, Gu H, Li X, Yin Y, Zhang L, Deng Z, Sun B, Chen Z, Ding Y, Wan Y. A novel inhalable nanobody targeting IL-4Rα for the treatment of asthma. J Allergy Clin Immunol 2024; 154:1008-1021. [PMID: 38871183 DOI: 10.1016/j.jaci.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Inhalable biologics represent a promising approach to improve the efficacy and safety of asthma treatment. Although several mAbs targeting IL-4 receptor α chain (IL-4Rα) have been approved or are undergoing clinical trials, the development of inhalable mAbs targeting IL-4Rα presents significant challenges. OBJECTIVE Capitalizing on the distinctive advantages of nanobodies (Nbs) in maintaining efficacy during storage and administration, we sought to develop a novel inhalable IL-4Rα Nb for effectively treating asthma. METHODS Three IL-4Rα immunized Nb libraries were used to generate specific and functional IL-4Rα Nbs. LQ036, a bivalent Nb comprising 2 HuNb103 units, was constructed with a high affinity and specificity for human IL-4Rα. The efficacy, pharmacokinetics, and safety of inhaled LQ036 were evaluated in B-hIL4/hIL4RA humanized mice. RESULTS LQ036 inhibited secreted embryonic alkaline phosphatase reporter activity, inhibited TF-1 cell proliferation, and suppressed phosphorylated signal transducer and activator of transduction 6 in T cells from patients with asthma. Crystal structure analysis revealed a binding region similar to dupilumab but with higher affinity, leading to better efficacy in blocking the signaling pathway. HuNb103 competed with IL-4 and IL-13 for IL-4Rα binding. Additionally, LQ036 significantly inhibited ovalbumin-specific IgE levels in serum, CCL17 levels in bronchoalveolar lavage fluid, bronchial mucous cell hyperplasia, and airway goblet cell hyperplasia in B-hIL4/hIL4RA humanized mice. Inhaled LQ036 exhibited favorable pharmacokinetics, safety, and tissue distribution, with higher concentrations observed in the lungs and bronchi. CONCLUSIONS These findings from preclinical studies establish the safety and efficacy of inhaled LQ036, underscoring its potential as a pioneering inhalable biologic therapy for asthma.
Collapse
Affiliation(s)
- Min Zhu
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Linlin Ma
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Peiyu Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Huang
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Yanfei Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Peng Qiao
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Huaiyu Gu
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Xiaofei Li
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Children's Medical Center Pediatric Medical Complex (Pudong), Shanghai, China; Pediatric AI Clinical Application and Research Center, Shanghai Children's Medical Center, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenzhen Deng
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China
| | - Baihe Sun
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China.
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai, China.
| |
Collapse
|
14
|
Hübenthal M, Dai C, Brown SJ, Heinrich L, Kind B, Harder I, Schmitt J, Werfel T, Weidinger S. Mapping SCORing of Atopic Dermatitis (SCORAD) and objective SCORAD to the Eczema Area and Severity Index to facilitate large-scale meta-analyses of molecular data. Br J Dermatol 2024; 191:637-639. [PMID: 38820224 DOI: 10.1093/bjd/ljae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 06/02/2024]
Abstract
We used data from 1501 patients to build mathematical models for mapping between common measures of atopic dermatitis severity, including SCORing of Atopic Dermatitis (SCORAD), objective SCORAD (oSORAD) and the Eczema Area and Severity Index (EASI). These models can be used to facilitate progress in harmonizing patient data across studies, enabling important comparative analyses at scale.
Collapse
Affiliation(s)
- Matthias Hübenthal
- Department of Dermatology, Quincke Research Center, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Sara J Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Luise Heinrich
- Center for Evidence-Based Healthcare, University Hospital Carl Gustav Carus and Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Barbara Kind
- Center for Evidence-Based Healthcare, University Hospital Carl Gustav Carus and Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Inken Harder
- Department of Dermatology, Quincke Research Center, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jochen Schmitt
- Center for Evidence-Based Healthcare, University Hospital Carl Gustav Carus and Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Weidinger
- Department of Dermatology, Quincke Research Center, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
15
|
Guttman-Yassky E, Croft M, Geng B, Rynkiewicz N, Lucchesi D, Peakman M, van Krinks C, Valdecantos W, Xing H, Weidinger S. The role of OX40 ligand/OX40 axis signalling in atopic dermatitis. Br J Dermatol 2024; 191:488-496. [PMID: 38836560 DOI: 10.1093/bjd/ljae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Atopic dermatitis (AD) is a heterogeneous inflammatory condition involving multiple immune pathways mediated by pathogenic T cells. OX40 ligand (OX40L) and OX40 are costimulatory immune checkpoint molecules that regulate effector and memory T-cell activity and promote sustained immune responses in multiple immunological pathways, including T helper (Th)2, Th1, Th17 and Th22. As such, OX40L/OX40 signalling between antigen-presenting cells (APCs) and activated T cells postantigen recognition promotes pathogenic T-cell proliferation and survival. Under inflammatory conditions, OX40L is upregulated on APCs, enhancing the magnitude of antigen-specific T-cell responses and secretion of proinflammatory cytokines. In AD, OX40L/OX40 signalling contributes to the amplification and chronic persistence of T-cell-mediated inflammation. Recent therapeutic success in clinical trials has highlighted the importance of the OX40L/OX40 axis as a promising target for the treatment of AD. Here, we discuss the many factors that are involved in the expression of OX40L and OX40, including the cytokine milieu, antigen presentation, the inflammatory environment in AD, and the therapeutic direction influenced by this costimulatory pathway.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Departments of Dermatology and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Michael Croft
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Bob Geng
- Department of Allergy and Immunology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Ochayon DE, DeVore SB, Chang WC, Krishnamurthy D, Seelamneni H, Grashel B, Spagna D, Andorf S, Martin LJ, Biagini JM, Waggoner SN, Khurana Hershey GK. Progressive accumulation of hyperinflammatory NKG2D low NK cells in early childhood severe atopic dermatitis. Sci Immunol 2024; 9:eadd3085. [PMID: 38335270 PMCID: PMC11107477 DOI: 10.1126/sciimmunol.add3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic comorbidities remain ill-defined. Here, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aeroallergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed coincident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine tumor necrosis factor-α. These observations provide important insights into a potential mechanism underlying the development of allergic comorbidity in early life in children with AD, which involves altered NK cell functional responses, and define an endotype of severe AD.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Stanley B. DeVore
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
| | - Wan-Chi Chang
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Durga Krishnamurthy
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Harsha Seelamneni
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Brittany Grashel
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Daniel Spagna
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jocelyn M. Biagini
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
17
|
Sander N, Stölzl D, Fonfara M, Hartmann J, Harder I, Suhrkamp I, Jakaša I, van den Bogaard E, van Vlijmen-Willems I, Szymczak S, Rodriguez E, Gerdes S, Weidinger S. Blockade of interleukin-13 signalling improves skin barrier function and biology in patients with moderate-to-severe atopic dermatitis. Br J Dermatol 2024; 191:344-350. [PMID: 38531691 DOI: 10.1093/bjd/ljae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Interleukin (IL)-13 is a key driver of inflammation and barrier dysfunction in atopic dermatitis (AD). While there is robust evidence that tralokinumab - a monoclonal antibody that neutralizes IL-13 - reduces inflammation and clinical disease activity, less is known about its effects on barrier function. OBJECTIVES To characterize the effects of tralokinumab treatment on skin barrier function. METHODS Transepidermal water loss (TEWL), stratum corneum hydration (SCH), natural moisturizing factor content, histopathological characteristics, biomarker expression and microbiome composition were evaluated in lesional, nonlesional and sodium lauryl sulfate-irritated skin of 16 patients with AD over the course of 16 weeks of tralokinumab treatment. RESULTS All clinical severity scores decreased significantly over time. At week 16, mean TEWL in target lesions decreased by 33% (P = 0.01) and SCH increased by 58% (P = 0.004), along with a histological reduction in spongiosis (P = 0.003), keratin 16 expression and epidermal thickness (P = 0.001). In parallel, there was a significant decrease in several barrier dysfunction-associated and proinflammatory proteins such as fibronectin (P = 0.006), CCL17/TARC (P = 0.03) and IL-8 (P = 0.01), with significant changes seen as early as week 8. Total bacterial load and Staphylococcus aureus abundance were significantly reduced from week 2. CONCLUSIONS Tralokinumab treatment improved skin physiology, epidermal pathology and dysbiosis, further highlighting the pleiotropic role of IL-13 in AD pathogenesis.
Collapse
Affiliation(s)
- Nicole Sander
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dora Stölzl
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Melina Fonfara
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Hartmann
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inken Harder
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ina Suhrkamp
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ivone Jakaša
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ellen van den Bogaard
- Department of Dermatology, Radboud Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Ivonne van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Gerdes
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
18
|
Xuan Z, Chen X, Zhou W, Shen Y, Sun Z, Zhang H, Yao Z. Exploring causal correlations between circulating cytokines and atopic dermatitis: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1367958. [PMID: 39055710 PMCID: PMC11269137 DOI: 10.3389/fimmu.2024.1367958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Numerous observational studies have reported associations between circulating cytokines and atopic dermatitis (AD); however, the causal relationships between them remain unclear. To explore the causal correlations and direction of causal effects between AD and levels of 91 circulating cytokines. Methods Two-sample Mendelian randomization (MR) analyses were conducted to examine the causal relationships between 91 circulating cytokines and AD using summary statistics from genome-wide association studies (GWAS). Reverse MR analyses were performed to investigate reverse causation. Pleiotropy and heterogeneity tests were conducted to assess the robustness of the findings. Additional transcriptome database and clinical peripheral blood mononuclear cells (PBMCs) samples were utilized to validate the results of MR analyses. Results Levels of interleukin (IL)-13, IL-18 Receptor 1, Tumor necrosis factor ligand superfamily member 14 (TNFSF14), TNF-related activation-induced cytokine (TRANCE), C-X-C motif chemokine (CXCL)11, IL-33, TNF-beta and CD5 were suggestively associated with the risk of AD (odds ratio, OR: 1.202, 95% CI: 1.018-1.422, p = 0.030; OR: 1.029, 95% CI: 1.029-1.157, p = 0.004; OR: 1.159, 95% CI: 1.018-1.320, p = 0.026; OR: 1.111, 95% CI: 1.016-1.214, p = 0.020; OR: 0.878, 95% CI: 0.783-0.984, p = 0.025; OR: 0.809, 95% CI: 0.661-0.991, p = 0.041; OR: 0.945, 95% CI: 0.896-0.997, p = 0.038; OR: 0.764, 95% CI: 0.652-0.895, p = 8.26e-04). In addition, levels of cytokines including Axin-1, CXCL5, CXCL10, Oncostatin-M (OSM), Sulfotransferase 1A1 (SULT1A1) and TNFSF14 were suggested to be consequences of AD (Beta: -0.080, p = 0.016; Beta: -0.062, p = 0.036; Beta: -0.066, p = 0.049; Beta: -0.073, p = 0.013; Beta: -0.089, p = 0.008; Beta: -0.079, p = 0.031). IL-13, IL-18R1, TNFSF14, and TRANCE were upregulated in both lesional skin biopsies and PBMCs from AD patients. Conclusion The study indicates that several cytokines, including IL-13, IL-18R1, TNFSF14, TRANCE, CXCL11, IL-33, TNF-beta, and CD5, are upstream of AD development, whereas a few circulating cytokines are potentially downstream in the development of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuanyi Chen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weinan Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihang Shen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Sun
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Jackson ND, Dyjack N, Goleva E, Bin L, Montgomery MT, Rios C, Everman JL, Taylor P, Bronchick C, Richers BN, Leung DY, Seibold MA. Atopic Dermatitis Complicated by Recurrent Eczema Herpeticum Is Characterized by Multiple, Concurrent Epidermal Inflammatory Endotypes. JID INNOVATIONS 2024; 4:100279. [PMID: 39006317 PMCID: PMC11239700 DOI: 10.1016/j.xjidi.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 07/16/2024] Open
Abstract
A subgroup of patients with atopic dermatitis (AD) suffers from recurrent, disseminated herpes simplex virus skin infection, termed eczema herpeticum. To determine the transcriptional mechanisms of the skin and immune system pathobiology that underlie development of AD with eczema herpeticum (ADEH), we performed RNA-sequencing analysis of nonlesional skin (epidermis, dermis) from AD patients with and without a history of ADEH (ADEH+, n = 15; ADEH-, n = 13) along with healthy controls (n = 15). We also performed RNA sequencing on participants' plasmacytoid dendritic cells infected in vitro with herpes simplex virus 1. ADEH+ patients exhibited dysregulated gene expression, limited in the dermis (14 differentially expressed genes) and more widespread in the epidermis (129 differentially expressed genes). ADEH+-upregulated epidermal differentially expressed genes were enriched in type 2 cytokine (IL4R , CCL22, CRLF2, IL7R), interferon (CXCL10, ICAM1, IFI44, IRF7), and IL-36γ (IL36G) inflammatory gene pathways. All ADEH+ participants exhibited type 2 cytokine and inteferon endotypes, and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH- participants. ADEH+ skin also had dysregulated epidermal differentiation complex gene expression of the late-cornified envelope, S100A, and small proline-rich gene families, which are involved in skin barrier function and antimicrobial activities. Plasmacytoid dendritic cell transcriptional responses to herpes simplex virus 1 infection were unaltered by ADEH status. The study concluded that the pathobiology underlying ADEH+ risk is associated with a unique, multifaceted epidermal inflammation that accompanies dysregulation of epidermal differentiation complex genes. These findings will help direct future studies that define how these inflammatory patterns may drive risk of eczema herpeticum in AD.
Collapse
Affiliation(s)
- Nathan D. Jackson
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Nathan Dyjack
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Michael T. Montgomery
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Cydney Rios
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Jamie L. Everman
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | | | - Donald Y.M. Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Max A. Seibold
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
20
|
Bier K, Senajova Z, Henrion F, Wang Y, Bruno S, Rauld C, Hörmann LC, Barske C, Delucis-Bronn C, Bergling S, Altorfer M, Hägele J, Knehr J, Junt T, Roediger B, Röhn TA, Kolbinger F. IL-26 Potentiates Type 2 Skin Inflammation in the Presence of IL-1β. J Invest Dermatol 2024; 144:1544-1556.e9. [PMID: 38237730 DOI: 10.1016/j.jid.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 06/24/2024]
Abstract
Atopic dermatitis (AD) is a debilitating inflammatory skin disorder. Biologics targeting the IL-4/IL-13 axis are effective in AD, but there is still a large proportion of patients who do not respond to IL-4R blockade. Further exploration of potentially pathogenic T-cell-derived cytokines in AD may lead to new effective treatments. This study aimed to investigate the downstream effects of IL-26 on skin in the context of type 2 skin inflammation. We found that IL-26 alone exhibited limited inflammatory activity in the skin. However, in the presence of IL-1β, IL-26 potentiated the secretion of TSLP, CXCL1, and CCL20 from human epidermis through Jak/signal transducer and activator of transcription signaling. Moreover, in an in vivo AD-like skin inflammation model, IL-26 exacerbated skin pathology and locally increased type 2 cytokines, most notably of IL13 in skin T helper cells. Neutralization of IL-1β abrogated IL-26-mediated effects, indicating that the presence of IL-1β is required for full IL-26 downstream action in vivo. These findings suggest that the presence of IL-1β enables IL-26 to be a key amplifier of inflammation in the skin. As such, IL-26 may contribute to the development and pathogenesis of inflammatory skin disorders such as AD.
Collapse
Affiliation(s)
- Katharina Bier
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Zuzana Senajova
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Fanny Henrion
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Yichen Wang
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sandro Bruno
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Celine Rauld
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lisa C Hörmann
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Carmen Barske
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Corinne Delucis-Bronn
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sebastian Bergling
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Marc Altorfer
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jasmin Hägele
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Judith Knehr
- Discovery Science, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tobias Junt
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ben Roediger
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Frank Kolbinger
- Immunology Disease Area, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
21
|
Zhang S, Fang X, Xu B, Zhou Y, Li F, Gao Y, Luo Y, Yao X, Liu X. Comprehensive analysis of phenotypes and transcriptome characteristics reveal the best atopic dermatitis mouse model induced by MC903. J Dermatol Sci 2024; 114:104-114. [PMID: 38806322 DOI: 10.1016/j.jdermsci.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Although several mouse models of exogenous-agent-induced atopic dermatitis (AD) are currently available, the lack of certainty regarding their similarity with human AD has limited their scientific value. Thus, comprehensive evaluation of the characteristics of mouse models and their similarity with human AD is essential. OBJECTIVE To compare six different exogenous-agent-induced AD mouse models and find out the optimum models for study. METHODS Female BALB/c mice underwent induction of AD-like dermatitis by MC903 alone or in combination with ovalbumin (OVA), dinitrofluorobenzene (DNFB) alone or in combination with OVA, OVA alone, or Staphylococcus aureus. Gross phenotype, total immunoglobulin E (IgE) level, histopathological manifestations, and skin lesion transcriptome were analyzed, and metagenomic sequencing of the gut microbiome was performed. RESULTS The DNFB plus OVA model showed the highest disease severity, while the OVA model showed the lowest severity. The MC903 and MC903 plus OVA models showed high expression of T-helper (Th)2- and Th17-related genes; the DNFB and DNFB plus OVA models showed upregulation of Th1-, Th2-, and Th17-related genes; while the S. aureus inoculation model showed more enhanced Th1 and Th17 immune responses. In contrast to the other models, the OVA-induced model showed the lowest expression levels of inflammation-related genes, while the MC903 model shared the largest overlap with human AD profiles. The intestinal microbiota of all groups showed significant differences after modeling. CONCLUSION Each AD mouse model exhibited different characteristics. The MC903 model was the best to recapitulate most features of human AD among these exogenous-agent-induced AD models.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiaokai Fang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Fang Li
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yuwen Gao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
22
|
Park CO, Kim SM, Lee KH, Bieber T. Biomarkers for phenotype-endotype relationship in atopic dermatitis: a critical review. EBioMedicine 2024; 103:105121. [PMID: 38614010 PMCID: PMC11021839 DOI: 10.1016/j.ebiom.2024.105121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Atopic dermatitis (AD) is the most common form of chronic skin inflammation with diverse clinical variants. Historically, various AD phenotypes have been grouped together without considering their heterogeneity. This approach has resulted in a lack of phenotype- and endotype-adapted therapeutic strategies. Comprehensive insights into AD pathogenesis have enabled precise medicinal approach for AD. These efforts aimed to redefine the endophenotype of AD and develop various biomarkers for diverse purposes. Among these endeavours, efforts are underway to elucidate the mechanisms (and related biomarkers) that lead to the emergence and progression of atopic diseases originating from AD (e.g., atopic march). This review focuses on diverse AD phenotypes and calls for a definition of endophenotypes. While awaiting scientific validation, these biomarkers ensure predicting disease onset and trajectory and tailoring therapeutic strategies for the future.
Collapse
Affiliation(s)
- Chang Ook Park
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Su Min Kim
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwang Hoon Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Thomas Bieber
- Christine Kühne-Center of Allergy Research and Education, Medicine Campus, Davos, Switzerland
| |
Collapse
|
23
|
Yang L, Li D, Sun S, Liu D, Wang Y, Liu X, Zhou B, Nie W, Li L, Wang Y, Sha S, Li Y, Shen C, Tao J. Dupilumab therapy improves gut microbiome dysbiosis and tryptophan metabolism in Chinese patients with atopic dermatitis. Int Immunopharmacol 2024; 131:111867. [PMID: 38493690 DOI: 10.1016/j.intimp.2024.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Dupilumab has demonstrate its potential to orchestrate inflammatory skin microenvironment, enhance skin barrier and shift skin microbiome dysbiosis, collectively contributing to clinical improvement in patients with atopic dermatitis (AD). As the second genome of human body, growing evidence suggests that the gut microbiome might relate to the host response to treatments. Little is known about the association between dupilumab treatment and gut microbiome in AD patients. OBJECTIVE We aimed to characterize the gut microbiome among Chinese subjects with or without AD and determine the potential effect of dupilumab on the gut microbiome. RESULTS The 16 s rRNA gene sequencing was conducted on 48 healthy controls (HC), 44 AD patients and 27 AD patients who received dupilumab for 16 weeks. Prior to treatment, we identified the changed beta-diversity, increased Firmicutes/Bacteroidetes ratio, decreased Bifidobacterium and expanded Faecalibacterium among the AD patients compared to HC. After 16 weeks of dupilumab treatment, gut microbiome dysbiosis of the AD patients improved with reversed beta-diversity, closer bacterial connections, increased colonization of Bifidobacterium, Ruminococcus gnavus, and Coprococcus, which were negatively correlated with disease severity indicators. This shift was largely independent of the degree of clinical improvement. Bacterial function analysis revealed further metabolic alterations following dupilumab treatment, including up-regulated expression of genes involved in the indole pathway of tryptophan metabolism, corroborated by quantitative UHPLC-MS/MS analysis. CONCLUSION Dupilumab treatment tends to help shift the gut microbial dysbiosis in AD patients to a healthier state, along with improved intestinal tryptophan metabolism, suggesting the gut flora and its metabolites may mediate part of the synergistic therapeutic effects on the host.
Collapse
Affiliation(s)
- Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danqi Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shuomin Sun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danping Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohuan Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha 410007, Hunan, China
| | - Bin Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Wenjia Nie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Lu Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yifei Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China.
| |
Collapse
|
24
|
Federico A, Möbus L, Al-Abdulraheem Z, Pavel A, Fortino V, Del Giudice G, Alenius H, Fyhrquist N, Greco D. Integrative network analysis suggests prioritised drugs for atopic dermatitis. J Transl Med 2024; 22:64. [PMID: 38229087 PMCID: PMC10792836 DOI: 10.1186/s12967-024-04879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease whose pathophysiology involves the interplay between genetic and environmental factors, ultimately leading to dysfunction of the epidermis. While several treatments are effective in symptom management, many existing therapies offer only temporary relief and often come with side effects. For this reason, the formulation of an effective therapeutic plan is challenging and there is a need for more effective and targeted treatments that address the root causes of the condition. Here, we hypothesise that modelling the complexity of the molecular buildup of the atopic dermatitis can be a concrete means to drive drug discovery. METHODS We preprocessed, harmonised and integrated publicly available transcriptomics datasets of lesional and non-lesional skin from AD patients. We inferred co-expression network models of both AD lesional and non-lesional skin and exploited their interactional properties by integrating them with a priori knowledge in order to extrapolate a robust AD disease module. Pharmacophore-based virtual screening was then utilised to build a tailored library of compounds potentially active for AD. RESULTS In this study, we identified a core disease module for AD, pinpointing known and unknown molecular determinants underlying the skin lesions. We identified skin- and immune-cell type signatures expressed by the disease module, and characterised the impaired cellular functions underlying the complex phenotype of atopic dermatitis. Therefore, by investigating the connectivity of genes belonging to the AD module, we prioritised novel putative biomarkers of the disease. Finally, we defined a tailored compound library by characterising the therapeutic potential of drugs targeting genes within the disease module to facilitate and tailor future drug discovery efforts towards novel pharmacological strategies for AD. CONCLUSIONS Overall, our study reveals a core disease module providing unprecedented information about genetic, transcriptional and pharmacological relationships that foster drug discovery in atopic dermatitis.
Collapse
Affiliation(s)
- Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, 33100, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland
| | - Lena Möbus
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
| | - Zeyad Al-Abdulraheem
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Giusy Del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland
| | - Harri Alenius
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Nanna Fyhrquist
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland.
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland.
- Institute of Biotechnology, University of Helsinki, 00100, Helsinki, Finland.
| |
Collapse
|
25
|
Rosenberg FM, Wardenaar R, Voorberg AN, Spierings DCJ, Schuttelaar MLA. Transcriptional differences between vesicular hand eczema and atopic dermatitis. Contact Dermatitis 2024; 90:23-31. [PMID: 37857578 DOI: 10.1111/cod.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Transcriptome analyses of vesicular hand eczema (VHE) indicated a large overlap with atopic dermatitis (AD). However, differentially expressed genes (DEGs) that differentiate VHE from AD are unknown. OBJECTIVE To identify distinctive transcriptional features of VHE in comparison to AD. METHODS We re-analysed RNA sequencing data of 10 lesional palmar VHE epidermal biopsies and performed DEG analyses. We adjusted the obtained DEG results of 57 lesional whole AD skin biopsies of the upper extremities or trunk to our criteria. Up- and down-regulated DEGs in both skin diseases, VHE-only, AD-only, and opposite regulated DEGs were identified. Enrichment analyses and Chi-squared tests were conducted to test for differences in gene set enrichment between both skin diseases. RESULTS Comparing 3028 DEGs in VHE (1645 up; 1383 down) with 5391 DEGs in AD (3842 up; 1549 down), revealed 1516 shared DEGs (1179 up; 337 down) and 1512 DEGs unique to VHE (466 up, 1046 down). Interferon signalling and necroptosis were significantly more prominent in VHE compared to AD. Downregulated genes identified only in VHE (like DNASE1L2, KRT2, KRT9 and KRT25) indicate an aberrant epidermal differentiation. CONCLUSION Our study indicates a common pathophysiology between VHE and AD, but also reveals transcriptional differences between VHE and AD.
Collapse
Affiliation(s)
- Fieke M Rosenberg
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Angelique N Voorberg
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-Louise A Schuttelaar
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Wang X, Chen L, Chen X, Liu C, Qiu W, Guo K. Identification of potential miR‑155 target genes in epidermal immune microenvironment of atopic dermatitis patients and their inflammatory effects on HaCaT cells. Exp Ther Med 2024; 27:25. [PMID: 38125354 PMCID: PMC10728954 DOI: 10.3892/etm.2023.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition and the leading cause of morbidity associated with skin conditions worldwide. For the majority of patients, AD is a lifelong disease that cannot be cured completely. Therefore, in the present study, differentially expressed genes (DEGs) in the epidermal immune microenvironment were screened using bioinformatic techniques. Subsequently, an in vitro cellular model was constructed to investigate the role of microRNA (miR)-155 in immune infiltration during AD. In the present study, two datasets (GSE121212 and GSE157194) were downloaded from Gene Expression Omnibus, before the DEGs were screened and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. miRNet was used to predict the possible target genes of miR-155 among the differentially expressed genes found. Consequently, peptidase inhibitor 3 (PI3), FOS-like 1, AP-1 transcription factor subunit (FOSL1), C-X-C motif chemokine ligand (CXCL)1 and CXCL8 were selected to be the potential target genes of miR-155 in the epidermal immune microenvironment of patients with AD. Concurrently, an inflammatory cell model using HaCaT cells was constructed by TNF-α and IFN-γ treatment. The effects of miR-155 on HaCaT cell proliferation and secretion of IL-1β, IL-6, IL-10, IL-15, PI3, FOSL1, CXCL1 and CXCL8 under inflammatory and non-inflammatory conditions were then analyzed. The results showed that after the HaCaT cells were transfected with miR-155, miR-155 inhibited HaCaT cell proliferation and decreased the mRNA expression levels of PI3 and CXCL8, increased the mRNA levels of FOSL1 and secretion levels of IL-1β, IL-6, IL-15 and CXCL1. By contrast, miR-155 decreased the secretion levels of IL-10 and CXCL8. In the inflammatory cell model of HaCaT cells, miR-155 was found to significantly inhibit the proliferation of HaCaT cells during inflammation whilst significantly increasing the secretion of IL-1β, IL-6, IL-10 and IL-15. In addition, miR-155 increased the mRNA expression and secretion levels of CXCL1 and CXCL8, whilst also increasing the mRNA expression levels of PI3. Results from the current study suggest that miR-155 can stimulate keratinocytes to produce inflammatory cytokines and proteins to enhance the inflammatory response in AD.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lu Chen
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Xiaoqing Chen
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Chang Liu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Wenhong Qiu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Kaiwen Guo
- Department of Pathogenic Biology, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
27
|
Zhao W, Yu HH, Meng WW, Liu AM, Zhang BX, Wang Y, Li J, Wang L, Fang YF. Icariin restrains NLRP3 inflammasome-mediated Th2 immune responses and ameliorates atopic dermatitis through modulating a novel lncRNA MALAT1/miR-124-3p axis. PHARMACEUTICAL BIOLOGY 2023; 61:1249-1259. [PMID: 37602424 PMCID: PMC10444017 DOI: 10.1080/13880209.2023.2244004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/13/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Atopic dermatitis (AD) is a common inflammatory skin disease characterized with hyperactivation of type 2 T helper (Th2) immune responses. Icariin is a flavonoid glucoside with anti-inflammatory activities, which has been used to treat multiple diseases. OBJECTIVE The present study investigates the underlying mechanisms by which icariin regulates Th2 responses and AD development. MATERIALS AND METHODS BALB/c mice were induced by DNFB to establish AD models, and injected with or without 10 mg/kg icariin for 2 weeks (i.p., daily). CD4+T cells were induced by Th2 condition to simulate AD in vitro, and also treated with or without 100 µM icariin. RESULTS Icariin ameliorated AD-like skin lesion, manifested as a significant decrease in dermatitis scores (from 8.00 ± 1.00 to 3.67 ± 0.58), serum IgE levels (from 3119.15 ± 241.81 to 948.55 ± 182.51 ng/mL), epidermal thickness (from 93.86 ± 4.61 to 42.67 ± 2.48 µm) and infiltration of mast cells (from 60.67 ± 3.21 cells to 36.00 ± 2.65 cells). Also, icariin inactivated NLRP3 inflammasome, inhibited Th2 skewing, reduced lncRNA MALAT1 expression, but elevated miR-124-3p expression in vivo and in vitro. MALAT1 increased NLRP3 expression through targeting miR-124-3p. Knockdown of MALAT1 repressed NLRP3 inflammasome activation and mitigated Th1/Th2 imbalance in Th2-conditioned CD4+T cells, whereas both MALAT1 overexpression and miR-124-3p inhibition ablated the inhibitory effects of icariin on Th2 immune responses. DISCUSSION AND CONCLUSIONS The findings further improve our understanding of the mechanism by which icariin affects AD progression, and highlights the potential of icariin in the treatment of AD.
Collapse
Affiliation(s)
- Wei Zhao
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huan-Huan Yu
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei-Wei Meng
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ai-Min Liu
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bu-Xin Zhang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Li
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Wang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu-Fu Fang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
28
|
Ackerman L, Acloque G, Bacchelli S, Schwartz H, Feinstein BJ, La Stella P, Alavi A, Gollerkeri A, Davis J, Campbell V, McDonald A, Agarwal S, Karnik R, Shi K, Mishkin A, Culbertson J, Klaus C, Enerson B, Massa V, Kuhn E, Sharma K, Keaney E, Barnes R, Chen D, Zheng X, Rong H, Sabesan V, Ho C, Mainolfi N, Slavin A, Gollob JA. IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial. Nat Med 2023; 29:3127-3136. [PMID: 37957373 PMCID: PMC10719089 DOI: 10.1038/s41591-023-02635-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
Toll-like receptor-driven and interleukin-1 (IL-1) receptor-driven inflammation mediated by IL-1 receptor-associated kinase 4 (IRAK4) is involved in the pathophysiology of hidradenitis suppurativa (HS) and atopic dermatitis (AD). KT-474 (SAR444656), an IRAK4 degrader, was studied in a randomized, double-blind, placebo-controlled phase 1 trial where the primary objective was safety and tolerability. Secondary objectives included pharmacokinetics, pharmacodynamics and clinical activity in patients with moderate to severe HS and in patients with moderate to severe AD. KT-474 was administered as a single dose and then daily for 14 d in 105 healthy volunteers (HVs), followed by dosing for 28 d in an open-label cohort of 21 patients. Degradation of IRAK4 was observed in HV blood, with mean reductions after a single dose of ≥93% at 600-1,600 mg and after 14 daily doses of ≥95% at 50-200 mg. In patients, similar IRAK4 degradation was achieved in blood, and IRAK4 was normalized in skin lesions where it was overexpressed relative to HVs. Reduction of disease-relevant inflammatory biomarkers was demonstrated in the blood and skin of patients with HS and patients with AD and was associated with improvement in skin lesions and symptoms. There were no drug-related infections. These results, from what, to our knowledge, is the first published clinical trial using a heterobifunctional degrader, provide initial proof of concept for KT-474 in HS and AD to be further confirmed in larger trials. ClinicalTrials.gov identifier: NCT04772885 .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kelvin Shi
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | | | | | | | | | - Eric Kuhn
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | - Erin Keaney
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | - Dapeng Chen
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | | | | | - Chris Ho
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | | | | |
Collapse
|
29
|
Wang ZY, Zheng YX, Xu F, Cui YZ, Chen XY, Chen SQ, Yan BX, Zhou Y, Zheng M, Man XY. Epidermal keratinocyte-specific STAT3 deficiency aggravated atopic dermatitis-like skin inflammation in mice through TSLP upregulation. Front Immunol 2023; 14:1273182. [PMID: 38053996 PMCID: PMC10694200 DOI: 10.3389/fimmu.2023.1273182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases with complex pathogenesis involving epidermal barrier dysfunction, skin microbiome abnormalities and type-2-skewed immune dysregulation. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays critical roles in various biological processes. However, the role of STAT3 in epidermal keratinocytes in AD remains unclear. In this study, we generated an epidermal keratinocyte-specific Stat3-deficient mouse strain (termed Stat3 cKO mice). After topical 2,4-dinitrochlorobenzene (DNCB) treatment, Stat3 cKO mice developed worsened AD-like skin inflammation with increased Ki67+ cells, decreased filaggrin and loricrin expression, and downregulated S100A9 and LL37. The dominant microbial population in Stat3 cKO mice changed from Ralstonia to Staphylococcus. DNCB-treated Stat3 cKO mice displayed more infiltrating type-2 inflammatory cells, including mast cells, eosinophils, and CD4+T cells, accompanied by increased skin IL-4 and serum IgE levels. Moreover, thymic stromal lymphopoietin (TSLP), mainly produced by keratinocytes, was highly expressed in the ear skin of Stat3 cKO mice and chemoattracted more TSLPR+ cells. TSLP blockade significantly alleviated DNCB-induced AD-like skin inflammation in Stat3 cKO mice. Thus, epidermal keratinocyte-specific STAT3 deficiency can aggravate AD-like skin inflammation in mice, possibly through TSLP dysregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Simpson EL, Schlievert PM, Yoshida T, Lussier S, Boguniewicz M, Hata T, Fuxench Z, De Benedetto A, Ong PY, Ko J, Calatroni A, Rudman Spergel AK, Plaut M, Quataert SA, Kilgore SH, Peterson L, Gill AL, David G, Mosmann T, Gill SR, Leung DYM, Beck LA. Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. J Allergy Clin Immunol 2023; 152:1179-1195. [PMID: 37315812 PMCID: PMC10716365 DOI: 10.1016/j.jaci.2023.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.
Collapse
Affiliation(s)
- Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | | | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, Calif
| | - Zelma Fuxench
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pa
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Peck Y Ong
- Department of Pediatrics, University Southern California, Los Angeles, Calif
| | - Justin Ko
- Department of Dermatology, Stanford University, Stanford, Calif
| | | | - Amanda K Rudman Spergel
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marshall Plaut
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sally A Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Samuel H Kilgore
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa
| | - Liam Peterson
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Tim Mosmann
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Donald Y M Leung
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo.
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
31
|
Aid M, Sciacca M, McMahan K, Hope D, Liu J, Jacob-Dolan C, Powers O, Barrett J, Wu C, Mutoni A, Murdza T, Richter H, Velasco J, Teow E, Boursiquot M, Cook A, Orekov T, Hamilton M, Pessaint L, Ryan A, Hayes T, Martinot AJ, Seaman MS, Lewis MG, Andersen H, Barouch DH. Mpox infection protects against re-challenge in rhesus macaques. Cell 2023; 186:4652-4661.e13. [PMID: 37734373 PMCID: PMC10591870 DOI: 10.1016/j.cell.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
The mpox outbreak of 2022-2023 involved rapid global spread in men who have sex with men. We infected 18 rhesus macaques with mpox by the intravenous, intradermal, and intrarectal routes and observed robust antibody and T cell responses following all three routes of infection. Numerous skin lesions and high plasma viral loads were observed following intravenous and intradermal infection. Skin lesions peaked on day 10 and resolved by day 28 following infection. On day 28, we re-challenged all convalescent and 3 naive animals with mpox. All convalescent animals were protected against re-challenge. Transcriptomic studies showed upregulation of innate and inflammatory responses and downregulation of collagen formation and extracellular matrix organization following challenge, as well as rapid activation of T cell and plasma cell responses following re-challenge. These data suggest key mechanistic insights into mpox pathogenesis and immunity. This macaque model should prove useful for evaluating mpox vaccines and therapeutics.
Collapse
Affiliation(s)
- Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michaela Sciacca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cindy Wu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Audrey Mutoni
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tetyana Murdza
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | - Alaina Ryan
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Tammy Hayes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Amanda J Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Haertlé J, Kienlin P, Begemann G, Werfel T, Roesner LM. Inhibition of IL-17 ameliorates keratinocyte-borne cytokine responses in an in vitro model for house-dust-mite triggered atopic dermatitis. Sci Rep 2023; 13:16628. [PMID: 37789035 PMCID: PMC10547677 DOI: 10.1038/s41598-023-42595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
A subgroup of patients suffering from atopic dermatitis (AD) does not respond to biologics therapy targeting the key players of type-2 inflammation, and it is an ongoing discussion whether skin-infiltrating Th17 cells may underlie this phenomenon. This study aimed to investigate the potential of allergen-induced, immune-cell derived IL-17 on the induction of inflammatory processes in keratinocytes. Peripheral blood mononuclear cells derived from respectively sensitized AD patients were stimulated with house dust mite (HDM) extract and cell culture supernatants were applied subsequently in absence or presence of secukinumab to primary human keratinocytes. Hereby we confirm that the immune response of sensitized AD patients to HDM contains aside from type-2 cytokines significant amounts of IL-17. Blocking IL-17 efficiently reduced the stimulation-induced changes in keratinocyte gene expression. IL-17-dependent transcriptional changes included increased expression of the cytokines IL-20 and IL-24 as well as Suppressor of Cytokine Siganling 3 (SOCS3), a negative feedback-regulator of the STAT3/IL-17/IL-24 immune response. We conclude that the immune response to HDM can induce pro-inflammatory cytokines from keratinocytes in AD, which in part is mediated via IL-17. Targeting IL-17 may turn out to be a reasonable alternative therapy in a subgroup of patients with moderate to severe AD and HDM sensitization.
Collapse
Affiliation(s)
- Juliane Haertlé
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Petra Kienlin
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Gabriele Begemann
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
33
|
Sekita A, Kawasaki H, Fukushima-Nomura A, Yashiro K, Tanese K, Toshima S, Ashizaki K, Miyai T, Yazaki J, Kobayashi A, Namba S, Naito T, Wang QS, Kawakami E, Seita J, Ohara O, Sakurada K, Okada Y, Amagai M, Koseki H. Multifaceted analysis of cross-tissue transcriptomes reveals phenotype-endotype associations in atopic dermatitis. Nat Commun 2023; 14:6133. [PMID: 37783685 PMCID: PMC10545679 DOI: 10.1038/s41467-023-41857-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Atopic dermatitis (AD) is a skin disease that is heterogeneous both in terms of clinical manifestations and molecular profiles. It is increasingly recognized that AD is a systemic rather than a local disease and should be assessed in the context of whole-body pathophysiology. Here we show, via integrated RNA-sequencing of skin tissue and peripheral blood mononuclear cell (PBMC) samples along with clinical data from 115 AD patients and 14 matched healthy controls, that specific clinical presentations associate with matching differential molecular signatures. We establish a regression model based on transcriptome modules identified in weighted gene co-expression network analysis to extract molecular features associated with detailed clinical phenotypes of AD. The two main, qualitatively differential skin manifestations of AD, erythema and papulation are distinguished by differential immunological signatures. We further apply the regression model to a longitudinal dataset of 30 AD patients for personalized monitoring, highlighting patient heterogeneity in disease trajectories. The longitudinal features of blood tests and PBMC transcriptome modules identify three patient clusters which are aligned with clinical severity and reflect treatment history. Our approach thus serves as a framework for effective clinical investigation to gain a holistic view on the pathophysiology of complex human diseases.
Collapse
Affiliation(s)
- Aiko Sekita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kawasaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kiyoshi Yashiro
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Susumu Toshima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Ashizaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
| | - Tomohiro Miyai
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Junshi Yazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Atsuo Kobayashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Qingbo S Wang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Seita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
| | | | - Kazuhiro Sakurada
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
- Department of Extended Intelligence for Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukinori Okada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masayuki Amagai
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
34
|
Renkhold L, Wiegmann H, Pfleiderer B, Süer A, Zeidler C, Pereira MP, Schmelz M, Ständer S, Agelopoulos K. Scratching increases epidermal neuronal branching and alters psychophysical testing responses in atopic dermatitis and brachioradial pruritus. Front Mol Neurosci 2023; 16:1260345. [PMID: 37795274 PMCID: PMC10546039 DOI: 10.3389/fnmol.2023.1260345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
Background Chronic scratching imposes a major stress on the skin and can lead to itch intensity worsening, and consequently, patients may enter an itch-scratch cycle. This repetitive mechanical stress can result in lichenification, worsening of epidermal barrier function, and enhanced cutaneous inflammation. Furthermore, a reduction of intraepidermal nerve fibers was previously described in lichenification. Aim The aim of this study was to investigate the influence of chronic scratching on the epidermal neuroanatomy and on sensory changes, in particular the prevalence of hyperknesis and alloknesis in patients after mechanical, chemical, and electrical stimuli. Methods Analyses were performed on pruritic lichenified (chronically scratched), pruritic non-lichenified (not chronically scratched), and non-pruritic non-lesional (unaffected) skin areas of patients with inflammatory pruritus, i.e., atopic dermatitis (n = 35), and neuropathic pruritus, i.e., brachioradial pruritus (n = 34) vs. healthy matched controls (n = 64). Our fine-grained spatial skin characterization enabled specifically studying the differential effects of chronic scratching in inflammatory and neuropathic itch. Results Analysis of intraepidermal nerve fiber density showed rarefaction of fibers in all three skin areas of patients compared with healthy controls in both diagnoses. Even more, the two pruritic areas had significantly less nerve fibers than the unaffected skin, whereas electrically induced itch was massively increased. Epidermal branching of the remaining nerve fibers in lichenified/chronically scratched skin was increased, particularly in patients with brachioradial pruritus, which may contribute to the pronounced local neuronal sensitivity. Hyperknesis and alloknesis were found to increase independently of lichenification. Conclusion Our results indicate that chronic scratching may not affect intraepidermal nerve fiber density but leads to a stronger branching pattern of intraepidermal nerve fibers, which may contribute to local hypersensitivity. The increased sensitivity in the pruritic areas suggests mechanisms of peripheral sensitization, whereas the increased sensation of electrically and chemically induced itch in unaffected skin indicates central sensitization for itch.
Collapse
Affiliation(s)
- Lina Renkhold
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Henning Wiegmann
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University Hospital Münster, University of Münster, Münster, Germany
| | - Aysenur Süer
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Claudia Zeidler
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Manuel P. Pereira
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sonja Ständer
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Konstantin Agelopoulos
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| |
Collapse
|
35
|
Kim HM, Jin BR, Lee JS, Jo EH, Park MC, An HJ. Anti-atopic dermatitis effect of fish collagen on house dust mite-induced mice and HaCaT keratinocytes. Sci Rep 2023; 13:14888. [PMID: 37689763 PMCID: PMC10492863 DOI: 10.1038/s41598-023-41831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Collagen, a major structural protein in mammalian tissues, is effective against skin wounds and osteoarthritis. Although bovine and porcine collagens have mainly been used, several potential risks of mammalian collagen have led to the use of fish collagen (FC) as an alternative. FC and its peptides are used as common cosmeceutical products because of their antihypertensive, anti-bacterial, and antioxidant activities. Despite the effects of FC on wrinkle reduction, UV-protection, and wound healing, the relationship between FC and atopic dermatitis (AD) has not yet been reported. Therefore, we investigated the anti-AD effects of FC against house dust mite (Dermatophagoides farinae, HDM)-induced AD in NC/Nga mice and TNF-α/IFN-γ-stimulated HaCaT keratinocytes. FC alleviated AD apparent symptoms, such as dermatitis score, transepidermal water loss, epidermal thickness, and mast cell infiltration upon declining pro-inflammatory cytokines and mediators, IL-6, IL-5, IL-13, TSLP, and TNF-α. The skin barrier protein, filaggrin, was also recovered by FC administration in vivo and in vitro. Immune response and skin barrier dysfunction are both mitigated by three routes of FC administration: oral, topical, and both routes via the regulation of IκB, MAPKs, and STATs pathways. In summary, FC could be a potential therapeutic agent for AD by regulating immune balance and skin barrier function.
Collapse
Affiliation(s)
- Hye-Min Kim
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Sil Lee
- R&D Institute, Haewon Biotech, Inc., Bucheon, Gyeonggi-do, Republic of Korea
| | - Eun Heui Jo
- Department of Acupuncture and Moxibustion, Wonkwang University Korean Medicine Hospital and Research Center of Traditional Korean Medicine, Wonkwang University, Deokjin-gu, Jeonju, Jeollabuk-do, Republic of Korea
| | - Min Cheol Park
- Department of Korean Medicine Ophthalmology and Otolaryngology and Dermatology, Wonkwang University Korean Medicine Hospital and Research Center of Traditional Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan, Jeollabuk-do, 54538, Republic of Korea.
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
36
|
Ochayon DE, DeVore SB, Chang WC, Krishnamurthy D, Seelamneni H, Grashel B, Spagna D, Andorf S, Martin LJ, Biagini JM, Waggoner S, Hershey GKK. Progressive accumulation of hyperinflammatory NKG2D low NK cells in early childhood severe atopic dermatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.02.23290884. [PMID: 37333102 PMCID: PMC10274972 DOI: 10.1101/2023.06.02.23290884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic co-morbidities remain ill-defined. Herein, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aero allergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed co-incident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine TNF-α. These observations provide important insights into a potential mechanism underlying the development of allergic co-morbidity in early life in children with AD which involves altered NK-cell functional responses, and define an endotype of severe AD.
Collapse
|
37
|
Wang Y, Wu Y, Gu C, Wang S, Yin H, Zhu R, Wang C, Li Z, Yao X, Li W. Peripheral blood mononuclear cell- transcriptome signatures of atopic dermatitis and prediction for the efficacy of dupilumab. J Dermatol Sci 2023; 111:83-92. [PMID: 37349237 DOI: 10.1016/j.jdermsci.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Few studies have explored transcriptome of the peripheral blood mononuclear cells (PBMCs) of atopic dermatitis (AD). Parameters for prediction of the efficacy of dupilumab in AD remain obscure. OBJECTIVE To explore transcriptome signature of the PBMCs from Chinese AD patients and the usage in predication for the efficacy of dupilumab. METHODS A total of 56 moderate-to-severe adult AD patients were enrolled and followed up for 16 week-dupilumab treatment. PBMCs samples were collected at baseline and 16 weeks after dupilumab treatment. Thirty-five patients were subjected to RNA-sequencing. Weighted gene co-expression network analysis (WGCNA) was used to find genes for prediction of dupilumab efficacy, which was validated in the rest 21 AD patients. Another 30 healthy individuals were enrolled and subjected to RNA-sequencing as healthy controls. RESULTS Upregulation of the T helper (Th) 2/Th22 pathway, Th17 antimicrobial genes, and natural T-regulatory cell abundance in the PBMCs of AD cases was observed, whereas TGF-β signaling and NK-cell signaling were decreased. Dupilumab treatment reversed the increase in the expression of Th2 cytokine receptors. WGCNA identified two immune-related modules that were correlated significantly with the efficacy of dupilumab. Hub gene MAP2K3 and UBE2L3 of these two modules demonstrated potential predictive ability for efficacy in the RNA-sequencing group by Spearman correlation, ROC analysis, and regression analysis, which was further validated in additional 21 AD cases. CONCLUSION We firstly revealed the molecular phenotype of PBMCs in Chinese patients with AD, and uncovered two molecules that might be useful for prediction of the efficacy of dupilumab.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Yuemeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Huibin Yin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Ce Wang
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, PR China
| | - Zheng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China.
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China.
| |
Collapse
|
38
|
Hartmann J, Moitinho-Silva L, Sander N, Harder I, Häsler R, Rodriguez E, Haufe E, Kleinheinz A, Abraham S, Heratizadeh A, Weisshaar E, Schäkel K, Handrick C, Augustin M, Wollenberg A, Staubach-Renz P, Ertner K, Sticherling M, Schwarz B, Quist S, Wiemers F, Schenck F, Wildberger J, Tittmann L, Lieb W, Schmitt J, Werfel T, Weidinger S. Dupilumab but not cyclosporine treatment shifts the microbiome toward a healthy skin flora in patients with moderate-to-severe atopic dermatitis. Allergy 2023; 78:2290-2300. [PMID: 37032440 DOI: 10.1111/all.15742] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) patients display an altered skin microbiome which may not only be an indicator but also a driver of inflammation. We aimed to investigate associations among AD patients' skin microbiome, clinical data, and response to systemic therapy in patients of the TREATgermany registry. METHODS Skin swabs of 157 patients were profiled with 16S rRNA gene amplicon sequencing before and after 3 months of treatment with dupilumab or cyclosporine. For comparison, 16s microbiome data from 258 population-based healthy controls were used. Disease severity was assessed using established instruments such as the Eczema Area and Severity Index (EASI). RESULTS We confirmed the previously shown correlation of Staphylococcus aureus abundance and bacterial alpha diversity with AD severity as measured by EASI. Therapy with Dupilumab shifted the bacterial community toward the pattern seen in healthy controls. The relative abundance of Staphylococci and in particular S. aureus significantly decreased on both lesional and non-lesional skin, whereas the abundance of Staphylococcus hominis increased. These changes were largely independent from the degree of clinical improvement and were not observed for cyclosporine. CONCLUSIONS Systemic treatment with dupilumab but not cyclosporine tends to restore a healthy skin microbiome largely independent of the clinical response indicating potential effects of IL-4RA blockade on the microbiome.
Collapse
Affiliation(s)
- Jan Hartmann
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lucas Moitinho-Silva
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Nicole Sander
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inken Harder
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Elke Rodriguez
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Eva Haufe
- Center of Evidence-Based Healthcare, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | - Susanne Abraham
- Department of Dermatology, Medical Faculty Carl Gustav Carus, University Allergy Center, TU Dresden, Dresden, Germany
| | - Annice Heratizadeh
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Elke Weisshaar
- Division of Occupational Dermatology, Department of Dermatology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | | | - Matthias Augustin
- Institute for Health Services Research in Dermatology Hamburg, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Wollenberg
- Clinics and Outpatient Clinics for Dermatology and Allergy, LMU Munich, Munich, Germany
| | - Petra Staubach-Renz
- Department of Dermatology and Allergy, University Medical Center Mainz, Mainz, Germany
| | | | - Michael Sticherling
- Department of Dermatology, University Hospital, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | | | - Sven Quist
- Dermatology Clinic, Helix Medical Excellence Center Mainz, Mainz, Germany
| | | | | | - Julia Wildberger
- Practice Dr. med. Julia Wildberger, Hautmedizin Bad Soden, Bad Soden, Germany
| | - Lukas Tittmann
- Biobank PopGen and Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Jochen Schmitt
- Center of Evidence-Based Healthcare, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Weidinger
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
39
|
Mortlock RD, Ma EC, Cohen JM, Damsky W. Assessment of Treatment-Relevant Immune Biomarkers in Psoriasis and Atopic Dermatitis: Toward Personalized Medicine in Dermatology. J Invest Dermatol 2023; 143:1412-1422. [PMID: 37341663 PMCID: PMC10830170 DOI: 10.1016/j.jid.2023.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/22/2023]
Abstract
Immunologically targeted therapies have revolutionized the treatment of inflammatory dermatoses, including atopic dermatitis and psoriasis. Although immunologic biomarkers hold great promise for personalized classification of skin disease and tailored therapy selection, there are no approved or widely used approaches for this in dermatology. This review summarizes the translational immunologic approaches to measuring treatment-relevant biomarkers in inflammatory skin conditions. Tape strip profiling, microneedle-based biomarker patches, molecular profiling from epidermal curettage, RNA in situ hybridization tissue staining, and single-cell RNA sequencing have been described. We discuss the advantages and limitations of each and open questions for the future of personalized medicine in inflammatory skin disease.
Collapse
Affiliation(s)
- Ryland D Mortlock
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Medical Scientist Training Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emilie C Ma
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Jeffrey M Cohen
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
40
|
Schuler CF, Billi AC, Maverakis E, Tsoi LC, Gudjonsson JE. Novel insights into atopic dermatitis. J Allergy Clin Immunol 2023; 151:1145-1154. [PMID: 36428114 PMCID: PMC10164702 DOI: 10.1016/j.jaci.2022.10.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
Recent research into the pathophysiology and treatment of atopic dermatitis (AD) has shown notable progress. An increasing number of aspects of the immune system are being implicated in AD, including the epithelial barrier, TH2 cytokines, and mast cells. Major advances in therapeutics were made in biologic cytokine and receptor antagonists and among Janus kinase inhibitors. We focus on these areas and address new insights into AD epidemiology, biomarkers, endotypes, prevention, and comorbidities. Going forward, we expect future mechanistic insights and therapeutic advances to broaden physicians' ability to diagnose and manage AD patients, and perhaps to find a cure for this chronic condition.
Collapse
Affiliation(s)
- Charles F Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Emanual Maverakis
- Department of Dermatology, University of California-Davis, Sacramento, Calif
| | - Lam C Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Johann E Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
41
|
Bertschi NL, Steck O, Luther F, Bazzini C, von Meyenn L, Schärli S, Vallone A, Felser A, Keller I, Friedli O, Freigang S, Begré N, Radonjic-Hoesli S, Lamos C, Gabutti MP, Benzaquen M, Laimer M, Simon D, Nuoffer JM, Schlapbach C. PPAR-γ regulates the effector function of human T helper 9 cells by promoting glycolysis. Nat Commun 2023; 14:2471. [PMID: 37120582 PMCID: PMC10148883 DOI: 10.1038/s41467-023-38233-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023] Open
Abstract
T helper 9 (TH9) cells promote allergic tissue inflammation and express the type 2 cytokines, IL-9 and IL-13, as well as the transcription factor, PPAR-γ. However, the functional role of PPAR-γ in human TH9 cells remains unknown. Here, we demonstrate that PPAR-γ drives activation-induced glycolysis, which, in turn, promotes the expression of IL-9, but not IL-13, in an mTORC1-dependent manner. In vitro and ex vivo experiments show that the PPAR-γ-mTORC1-IL-9 pathway is active in TH9 cells in human skin inflammation. Additionally, we find dynamic regulation of tissue glucose levels in acute allergic skin inflammation, suggesting that in situ glucose availability is linked to distinct immunological functions in vivo. Furthermore, paracrine IL-9 induces expression of the lactate transporter, MCT1, in TH cells and promotes their aerobic glycolysis and proliferative capacity. Altogether, our findings uncover a hitherto unknown relationship between PPAR-γ-dependent glucose metabolism and pathogenic effector functions in human TH9 cells.
Collapse
Affiliation(s)
- Nicole L Bertschi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oliver Steck
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabian Luther
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cecilia Bazzini
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Leonhard von Meyenn
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefanie Schärli
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Angela Vallone
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Felser
- Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Olivier Friedli
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Stefan Freigang
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Nadja Begré
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Susanne Radonjic-Hoesli
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cristina Lamos
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Max Philip Gabutti
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Benzaquen
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Laimer
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism (UDEM), Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
42
|
Arroyo AB, Bernal-Carrión M, Cantón-Sandoval J, Cabas I, Corbalán-Vélez R, Martínez-Menchón T, Ferri B, Cayuela ML, García-Moreno D, Mulero V. NAMPT and PARylation Are Involved in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2023; 24:ijms24097992. [PMID: 37175698 PMCID: PMC10178103 DOI: 10.3390/ijms24097992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.
Collapse
Affiliation(s)
- Ana B Arroyo
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Martín Bernal-Carrión
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Cabas
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Belén Ferri
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoriano Mulero
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
43
|
Guo Y, Luo L, Zhu J, Li C. Multi-Omics Research Strategies for Psoriasis and Atopic Dermatitis. Int J Mol Sci 2023; 24:ijms24098018. [PMID: 37175722 PMCID: PMC10178671 DOI: 10.3390/ijms24098018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Psoriasis and atopic dermatitis (AD) are multifactorial and heterogeneous inflammatory skin diseases, while years of research have yielded no cure, and the costs associated with caring for people suffering from psoriasis and AD are a huge burden on society. Integrating several omics datasets will enable coordinate-based simultaneous analysis of hundreds of genes, RNAs, chromatins, proteins, and metabolites in particular cells, revealing networks of links between various molecular levels. In this review, we discuss the latest developments in the fields of genomes, transcriptomics, proteomics, and metabolomics and discuss how they were used to identify biomarkers and understand the main pathogenic mechanisms underlying these diseases. Finally, we outline strategies for achieving multi-omics integration and how integrative omics and systems biology can advance our knowledge of, and ability to treat, psoriasis and AD.
Collapse
Affiliation(s)
- Youming Guo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Lingling Luo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Jing Zhu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Chengrang Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| |
Collapse
|
44
|
Hu T, Todberg T, Ewald DA, Hoof I, Correa da Rosa J, Skov L, Litman T. Assessment of Spatial and Temporal Variation in the Skin Transcriptome of Atopic Dermatitis by Use of 1.5 mm Minipunch Biopsies. J Invest Dermatol 2023; 143:612-620.e6. [PMID: 36496193 DOI: 10.1016/j.jid.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder characterized by a heterogeneous and fluctuating disease course. To obtain a detailed molecular understanding of both the temporal and spatial variation in AD, we conducted a longitudinal case-control study, in which we followed a population, the GENAD (Gentofte AD) cohort, of mild-to-moderate patients with AD and matched healthy controls for more than a year. By the use of 1.5 mm minipunch biopsies, we obtained 393 samples from lesional, nonlesional, and healthy skin from multiple anatomical regions at different time points for transcriptomic profiling. We observed that the skin transcriptome was remarkably stable over time, with the largest variation being because of disease, individual, and skin site. Numerous AD-specific, differentially expressed genes were identified and indicated a disrupted skin barrier and activated immune response as the main features of AD. We also identified potentially novel targets in AD, including IL-37, MAML1, and several long noncoding RNAs. We envisage that the application of small biopsies, such as those introduced in this study, combined with omics technologies, will enable future skin research, in which multiple sampling from the same individual will give a more detailed, dynamic picture of how a disease fluctuates in time and space.
Collapse
Affiliation(s)
- Tu Hu
- Explorative Biology and Bioinformatics, LEO Pharma, Ballerup, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Todberg
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Ilka Hoof
- Explorative Biology and Bioinformatics, LEO Pharma, Ballerup, Denmark
| | - Joel Correa da Rosa
- Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Explorative Biology and Bioinformatics, LEO Pharma, Ballerup, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Tang Y, Li M, Su Y, Du Y, Wu X, Chen X, Song Y, Lai L, Cheng H. Integrated transcriptomic and metabolomic analyses of DNCB-induced atopic dermatitis in mice. Life Sci 2023; 317:121474. [PMID: 36746357 DOI: 10.1016/j.lfs.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
AIMS Atopic dermatitis (AD) is a common chronic inflammatory skin disorder that affects up to 20 % of children and 10 % of adults worldwide; however, the exact molecular mechanisms remain largely unknown. MATERIALS AND METHODS In this study, we used integrated transcriptomic and metabolomic analyses to study the potential mechanisms of 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like skin lesions. KEY FINDINGS We found that DNCB induced AD-like skin lesions, including phenotypical and histomorphological alterations and transcriptional and metabolic alterations in mice. A total of 3413 differentially expressed metabolites were detected between DNCB-induced AD-like mice and healthy controls, which includes metabolites in taurine and hypotaurine metabolism, phenylalanine metabolism, biosynthesis of unsaturated fatty acids, tryptophan metabolism, arachidonic acid metabolism, pantothenate and CoA biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism pathways. Furthermore, the differentially expressed genes associated (DEGs) with these metabolic pathways were analyzed using RNA sequencing (RNA-seq), and we found that the expression of pyrimidine metabolism-associated genes was significantly increased. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the glycolysis/gluconeogenesis, glucagon signaling pathway and pentose phosphate pathway-associated metabolic genes were dramatically altered. SIGNIFICANCE Our results explain the possible mechanism of AD at the gene and metabolite levels and provide potential targets for the development of clinical drugs for AD.
Collapse
Affiliation(s)
- Yi Tang
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China; Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ma Li
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yixin Su
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yue Du
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xia Wu
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China.
| | - Lihua Lai
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China.
| |
Collapse
|
46
|
Sans-de San Nicolàs L, Figueras-Nart I, García-Jiménez I, Bonfill-Ortí M, Guilabert A, Curto-Barredo L, Bertolín-Colilla M, Ferran M, Serra-Baldrich E, Pujol RM, Santamaria-Babí LF. Allergen sensitization stratifies IL-31 production by memory T cells in atopic dermatitis patients. Front Immunol 2023; 14:1124018. [PMID: 36993985 PMCID: PMC10040786 DOI: 10.3389/fimmu.2023.1124018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundThe role of allergen sensitization in IL-31 production by T cells and specifically in the clinical context of atopic dermatitis (AD) has not been characterized.MethodsThe response to house dust mite (HDM) in purified memory T cells cocultured with epidermal cells from AD patients (n=58) and control subjects (n=11) was evaluated. AD-associated cytokines from culture supernatants, plasma proteins and mRNA expression from cutaneous lesions were assessed and related with the clinical features of the patients.ResultsHDM-induced IL-31 production by memory T cells defined two subsets of AD patients according to the presence or absence of IL-31 response. Patients in the IL-31 producing group showed a more inflammatory profile, and increased HDM-specific (sp) and total IgE levels compared to the IL-31 non-producing group. A correlation between IL-31 production and patient’s pruritus intensity, plasma CCL27 and periostin was detected. When the same patients were analyzed based on sp IgE and total IgE levels, an increased IL-31 in vitro response, as well as type 2 markers in plasma and cutaneous lesions, was found in patients with sp IgE levels > 100 kUA/L and total IgE levels > 1000 kU/L. The IL-31 response by memory T cells was restricted to the cutaneous lymphocyte-associated antigen (CLA)+ T-cell subset.ConclusionIgE sensitization to HDM allows stratifying IL-31 production by memory T cells in AD patients and relating it to particular clinical phenotypes of the disease.
Collapse
Affiliation(s)
- Lídia Sans-de San Nicolàs
- Immunologia Translacional, Departament de Biologia Cel•lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Ignasi Figueras-Nart
- Departament de Dermatologia, Hospital de Bellvitge, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, Spain
| | - Irene García-Jiménez
- Immunologia Translacional, Departament de Biologia Cel•lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Montserrat Bonfill-Ortí
- Departament de Dermatologia, Hospital de Bellvitge, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, Spain
| | - Antonio Guilabert
- Departament de Dermatologia, Hospital General de Granollers, Granollers, Spain
| | - Laia Curto-Barredo
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Bertolín-Colilla
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Ferran
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Esther Serra-Baldrich
- Departament de Dermatologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ramon M. Pujol
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Luis F. Santamaria-Babí
- Immunologia Translacional, Departament de Biologia Cel•lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
- *Correspondence: Luis F. Santamaria-Babí,
| |
Collapse
|
47
|
IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J Allergy Clin Immunol 2023; 151:737-746.e6. [PMID: 36410530 DOI: 10.1016/j.jaci.2022.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/22/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND IL-31 is a type 2 cytokine involved in the itch sensation in atopic dermatitis (AD). The cellular origins of IL-31 are generally considered to be TH2 cells. Macrophages have also been implicated as cellular sources of IL-31. OBJECTIVE We sought to determine the expression of IL-31 by macrophages and to elucidate the productive mechanisms and contributions to itch in AD skin lesions. METHODS Expression of IL-31 by macrophages, expressions of thymic stromal lymphopoietin (TSLP) and periostin, and presence of infiltrating basophils in human AD lesions were examined through immunofluorescent staining, and correlations were assessed. Furthermore, mechanisms of inducing IL-31-expressing macrophages were analyzed in an MC903-induced murine model for AD in vivo and in mouse peritoneal macrophages ex vivo. RESULTS A significant population of IL-31+ cells in human AD lesions was that of CD68+ cells expressing CD163, an M2 macrophage marker. The number of IL-31+/CD68+ cells correlated with epidermal TSLP, dermal periostin, and the number of dermal-infiltrating basophils. In the MC903-induced murine AD model, significant scratching behaviors with enhanced expressions of TSLP and periostin were observed, accompanied by massive infiltration of basophils and IL-31+/MOMA-2+/Arg-1+ cells. Blockade of IL-31 signaling with anti-IL-31RA antibody or direct depletion of macrophages by clodronate resulted in attenuation of scratching behaviors. To effectively reduce lesional IL-31+ macrophages and itch, basophil depletion was essential in combination with TSLP- and periostin-signal blocking. Murine peritoneal macrophages produced IL-31 when stimulated with TSLP, periostin, and basophils. CONCLUSIONS A network comprising IL-31-expressing macrophages, TSLP, periostin, and basophils plays a significant role in AD itch.
Collapse
|
48
|
Jackson ND, Dyjack N, Goleva E, Bin L, Montgomery MT, Rios C, Everman JL, Taylor P, Bronchick C, Richers BN, Leung DY, Seibold MA. Atopic dermatitis complicated by recurrent eczema herpeticum is characterized by multiple, concurrent epidermal inflammatory endotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530316. [PMID: 36909594 PMCID: PMC10002633 DOI: 10.1101/2023.02.27.530316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND A subgroup of atopic dermatitis (AD) patients suffer from recurrent, disseminated herpes simplex virus (HSV) skin infections, termed eczema herpeticum (EH), which can be life-threatening and contribute to AD morbidity. The pathobiology underlying ADEH is unknown. OBJECTIVE To determine transcriptional mechanisms of skin and immune system pathobiology that underlie ADEH disease. METHODS We performed whole transcriptome RNA-sequencing of non-lesional skin samples (epidermis, dermis) of AD patients with (ADEH + , n=15) and without (ADEH - , n=13) recurrent EH history, and healthy controls (HC, n=15). We also performed RNA-sequencing on plasmacytoid dendritic cells (pDCs) collected from these participants and infected in vitro with HSV-1. Differential expression, gene set enrichment, and endotyping analyses were performed. RESULTS ADEH + disease was characterized by dysregulation in skin gene expression, which was limited in dermis (differentially expressed genes [DEGs]=14) and widespread in epidermis (DEGs=129). ADEH + -upregulated epidermal DEGs were enriched in type 2 cytokine (T2) ( IL4R, CCL22, CRLF2, IL7R ), interferon ( CXCL10, ICAM1, IFI44 , and IRF7) , and IL-36γ ( IL36G ) inflammatory pathway genes. At a person-level, all ADEH + participants exhibited T2 and interferon endotypes and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH - participants. ADEH + patient skin also exhibited dysregulation in epidermal differentiation complex (EDC) genes within the LCE, S100 , and SPRR families, which are involved in skin barrier function, inflammation, and antimicrobial activities. pDC transcriptional responses to HSV-1 infection were not altered by ADEH status. CONCLUSIONS ADEH + pathobiology is characterized by a unique, multi-faceted epidermal inflammation that accompanies dysregulation in the expression of EDC genes. Key Messages AD patients with a history of recurrent EH exhibit molecular skin pathobiology that is similar in form, but more severe in degree, than in AD patients without this complication. Non-lesional skin of ADEH + patients concurrently exhibits excessive type 2 cytokine, interferon, and IL-36γ-driven epidermal inflammation. Expression of these inflammatory skin endotypes among ADEH + patients is associated with dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity. Capsule Summary AD patients with a history of recurrent disseminated HSV-1 skin infections form a unique molecular skin endotype group that concurrently exhibits type 2 cytokine, interferon, and IL-36γ-driven skin inflammation, accompanied by dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity.
Collapse
|
49
|
Nunomura S, Uta D, Kitajima I, Nanri Y, Matsuda K, Ejiri N, Kitajima M, Ikemitsu H, Koga M, Yamamoto S, Honda Y, Takedomi H, Andoh T, Conway SJ, Izuhara K. Periostin activates distinct modules of inflammation and itching downstream of the type 2 inflammation pathway. Cell Rep 2023; 42:111933. [PMID: 36610396 PMCID: PMC11486451 DOI: 10.1016/j.celrep.2022.111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing skin disease accompanied by recurrent itching. Although type 2 inflammation is dominant in allergic skin inflammation, it is not fully understood how non-type 2 inflammation co-exists with type 2 inflammation or how type 2 inflammation causes itching. We have recently established the FADS mouse, a mouse model of AD. In FADS mice, either genetic disruption or pharmacological inhibition of periostin, a downstream molecule of type 2 inflammation, inhibits NF-κB activation in keratinocytes, leading to downregulating eczema, epidermal hyperplasia, and infiltration of neutrophils, without regulating the enhanced type 2 inflammation. Moreover, inhibition of periostin blocks spontaneous firing of superficial dorsal horn neurons followed by a decrease in scratching behaviors due to itching. Taken together, periostin links NF-κB-mediated inflammation with type 2 inflammation and promotes itching in allergic skin inflammation, suggesting that periostin is a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Kosuke Matsuda
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoko Ejiri
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Midori Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Hitoshi Ikemitsu
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Misaki Koga
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Sayaka Yamamoto
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Hironobu Takedomi
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Tsugunobu Andoh
- Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
50
|
Maintz L, Welchowski T, Herrmann N, Brauer J, Traidl-Hoffmann C, Havenith R, Müller S, Rhyner C, Dreher A, Schmid M, Bieber T. IL-13, periostin and dipeptidyl-peptidase-4 reveal endotype-phenotype associations in atopic dermatitis. Allergy 2023; 78:1554-1569. [PMID: 36647778 DOI: 10.1111/all.15647] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The heterogeneous (endo)phenotypes of atopic dermatitis (AD) require precision medicine. Currently, systemic therapy is recommended to patients with an Eczema Area and Severity Index (EASI)≥16. Previous studies have demonstrated an improved treatment response to the anti-interleukin (IL)-13 antibody tralokinumab in AD subgroups with elevated levels of the IL-13-related biomarkers dipeptidyl-peptidase (DPP)-4 and periostin. METHODS Herein, 373 AD patients aged≥12 years were stratified by IL-13high , periostinhigh and DPP-4high endotypes using cross-sectional data from the ProRaD cohort Bonn. "High" was defined as >80th quantile of 47 non-atopic controls. We analyzed endotype-phenotype associations using machine-learning gradient boosting compared to logistic regression. RESULTS AD severity and eosinophils correlated with IL-13 and periostin levels. Correlations of IL-13 with EASI were stronger in patients with increased (rs=0.482) than with normal (rs=0.342) periostin levels. We identified eosinophilia>6% and an EASI range of 5.5-17 dependent on the biomarker combination to be associated with increasing probabilities of biomarkerhigh endotypes. Also patients with mild-to-low-moderate severity (EASI<16) featured increased biomarkers (IL-13high : 41%, periostinhigh : 48.4%, DPP-4high : 22.3%). Herthoge sign (adjusted Odds Ratio (aOR)=1.89, 95% Confidence Interval (CI) [1.14-3.14]) and maternal allergic rhinitis (aOR=2.79-4.47) increased the probability of an IL-13high -endotype, "dirty neck" (aOR=2.83 [1.32-6.07]), orbital darkening (aOR=2.43 [1.08-5.50]), keratosis pilaris (aOR=2.21 [1.1-4.42]) and perleche (aOR=3.44 [1.72-6.86]) of a DPP-4high -endotype. CONCLUSIONS A substantial proportion of patients with EASI<16 featured high biomarker levels suggesting systemic impact of skin inflammation already below the current cut-off for systemic therapy. Our findings facilitate the identification of patients with distinct endotypes potentially linked to response to IL-13-targeted therapy.
Collapse
Affiliation(s)
- Laura Maintz
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Thomas Welchowski
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Nadine Herrmann
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Juliette Brauer
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstraße 2, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Augsburg, Germany
| | - Regina Havenith
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Svenja Müller
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Claudio Rhyner
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Davos Biosciences, Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Anita Dreher
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Davos Biosciences, Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Davos Biosciences, Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| |
Collapse
|