1
|
Oluwagbemigun K, Anesi A, Vrhovsek U, Mattivi F, Martino Adami P, Pentzek M, Scherer M, Riedel-Heller SG, Weyerer S, Bickel H, Wiese B, Schmid M, Cryan JF, Ramirez A, Wagner M, Nöthlings U. An Investigation into the Relationship of Circulating Gut Microbiome Molecules and Inflammatory Markers with the Risk of Incident Dementia in Later Life. Mol Neurobiol 2024; 61:9776-9793. [PMID: 37605096 PMCID: PMC11584436 DOI: 10.1007/s12035-023-03513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
The gut microbiome may be involved in the occurrence of dementia primarily through the molecular mechanisms of producing bioactive molecules and promoting inflammation. Epidemiological evidence linking gut microbiome molecules and inflammatory markers to dementia risk has been mixed, and the intricate interplay between these groups of biomarkers suggests that their joint investigation in the context of dementia is warranted. We aimed to simultaneously investigate the association of circulating levels of selected gut microbiome molecules and inflammatory markers with dementia risk. This case-cohort epidemiological study included 805 individuals (83 years, 66% women) free of dementia at baseline. Plasma levels of 19 selected gut microbiome molecules comprising lipopolysaccharide, short-chain fatty acids, and indole-containing tryptophan metabolites as well as four inflammatory markers measured at baseline were linked to incident all-cause (ACD) and Alzheimer's disease dementia (AD) in binary outcomes and time-to-dementia analyses. Independent of several covariates, seven gut microbiome molecules, 5-hydroxyindole-3-acetic acid, indole-3-butyric acid, indole-3-acryloylglycine, indole-3-lactic acid, indole-3-acetic acid methyl ester, isobutyric acid, and 2-methylbutyric acid, but no inflammatory markers discriminated incident dementia cases from non-cases. Furthermore, 5-hydroxyindole-3-acetic acid (hazard ratio: 0.58; 0.36-0.94, P = 0.025) was associated with time-to-ACD. These molecules underpin gut microbiome-host interactions in the development of dementia and they may be crucial in its prevention and intervention strategies. Future larger epidemiological studies are needed to confirm our findings, specifically in exploring the repeatedly measured circulating levels of these molecules and investigating their causal relationship with dementia risk.
Collapse
Affiliation(s)
- Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, 53115, Bonn, Germany.
| | - Andrea Anesi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Pamela Martino Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50924, Cologne, Germany
| | - Michael Pentzek
- Institute of General Practice, University Hospital Essen, 45147, Essen, Germany
| | - Martin Scherer
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center, 20246, Hamburg-Eppendorf, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103, Leipzig, Germany
| | - Siegfried Weyerer
- Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Horst Bickel
- Department of Psychiatry, Technical University of Munich, 80336, Munich, Germany
| | - Birgitt Wiese
- Institute of General Practice, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - John F Cryan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, T12 XF62, Ireland
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50924, Cologne, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127, Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, 78229, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
2
|
Hetemäki I, Heikkilä N, Peterson P, Kekäläinen E, Willcox N, Anette S B W, Jarva H, Arstila TP. Decreased T-cell response against latent cytomegalovirus infection does not correlate with anti-IFN autoantibodies in patients with APECED. APMIS 2024; 132:881-887. [PMID: 39113427 DOI: 10.1111/apm.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is an inborn error of immunity affecting both multiple endocrine organs and susceptibility to candidiasis, each with an autoimmune basis. Recently, high titer neutralizing anti-type I interferon (IFN) autoantibodies have been linked with increased severity of SARS-CoV-2 and varicella zoster virus infections in APECED patients. Examining immunity against cytomegalovirus (CMV), we found a higher prevalence of anti-CMV IgG antibodies in patients with APECED (N = 19) than in 44 healthy controls (90% vs 64%, p = 0.04); the similar difference in their IgG levels did not achieve significance (95 ± 74 vs 64 ± 35 IU/mL, ns.). In contrast, the frequency of CMV-specific T cells was lower (804 ± 718/million vs 1591 ± 972/million PBMC p = 0.03). We saw no correlations between levels of anti-CMV IgG and anti-IFN antibodies in APECED patients or in a separate cohort of patients with thymoma (n = 70), over 60% of whom also had anti-IFN antibodies. Our results suggest a dysregulated response to CMV in APECED patients and highlight immunodeficiency to viral infections as part of the disease spectrum.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Microbiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nick Willcox
- Department of Clinical Neurosciences, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, UK
| | - Wolff Anette S B
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hanna Jarva
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Microbiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Pärnänen P, Suojanen J, Laine M, Sorsa T, Ranki A. Long-term remission of candidiasis with fermented lingonberry mouth rinse in an adult patient with APECED. Int J Infect Dis 2024; 144:107066. [PMID: 38649005 DOI: 10.1016/j.ijid.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
We report a long-term remission in candidiasis in a 57-year-old Finnish female with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) suffering from recurrent oral, esophageal, gastric, vaginal, and anal candidiasis since childhood. Candidiasis treatment with antifungal medicines fluconazole, itraconazole, posaconazole, voriconazole, caspofungin, nystatin, or amphotericin-B during 2008-2021 had variable effects and intermittent development of antifungal resistance and hospital periods. The patient started using fermented lingonberry juice (FLJ) as a mouth rinse daily in April 2021. No symptoms or mucosal signs of candidiasis in any part of the digestive system or vaginal area have been noticed during this exceptionally long-term 2 ½ year remission in candidiasis without antifungal medications.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Juho Suojanen
- Helsinki University Hospital, Cleft Palate and Craniofacial Centre, Helsinki, Finland; Department of Maxillofacial Surgery, Päijät-Häme Central Hospital, Joint Authority for Health and Wellbeing, Lahti, Finland; Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Laine
- Porvoo Hospital, Department of Gastrointestinal Surgery, Hospital District of Helsinki and Uusimaa, Porvoo, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Alajoleen RM, Oakland DN, Estaleen R, Shakeri A, Lu R, Appiah M, Sun S, Neumann J, Kawauchi S, Cecere TE, McMillan RP, Reilly CM, Luo XM. Tlr5 deficiency exacerbates lupus-like disease in the MRL/ lpr mouse model. Front Immunol 2024; 15:1359534. [PMID: 38352866 PMCID: PMC10862078 DOI: 10.3389/fimmu.2024.1359534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.
Collapse
Affiliation(s)
- Razan M. Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - David N. Oakland
- Graduate Program of Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Rana Estaleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Aida Shakeri
- Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michael Appiah
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sha Sun
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Jonathan Neumann
- Transgenic Mouse Facility, University of California, Irvine, Irvine, CA, United States
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christopher M. Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
6
|
Gargari G, Mantegazza G, Cremon C, Taverniti V, Valenza A, Barbaro MR, Marasco G, Duncan R, Fiore W, Ferrari R, De Vitis V, Barbara G, Guglielmetti S. Collinsella aerofaciens as a predictive marker of response to probiotic treatment in non-constipated irritable bowel syndrome. Gut Microbes 2024; 16:2298246. [PMID: 38178601 PMCID: PMC10773624 DOI: 10.1080/19490976.2023.2298246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Probiotics are exploited for adjuvant treatment in IBS, but reliable guidance for selecting the appropriate probiotic to adopt for different forms of IBS is lacking. We aimed to identify markers for recognizing non-constipated (NC) IBS patients that may show significant clinical improvements upon treatment with the probiotic strain Lacticaseibacillus paracasei DG (LDG). To this purpose, we performed a post-hoc analysis of samples collected during a multicenter, double-blind, parallel-group, placebo-controlled trial in which NC-IBS patients were randomized to receive at least 24 billion CFU LDG or placebo capsules b.i.d. for 12 weeks. The primary clinical endpoint was the composite response based on improved abdominal pain and fecal type. The fecal microbiome and serum markers of intestinal (PV1 and zonulin), liver, and kidney functions were investigated. We found that responders (R) in the probiotic arm (25%) differed from non-responders (NR) based on the abundance of 18 bacterial taxa, including the families Coriobacteriaceae, Dorea spp. and Collinsella aerofaciens, which were overrepresented in R patients. These taxa also distinguished R (but not NR) patients from healthy controls. Probiotic intervention significantly reduced the abundance of these bacteria in R, but not in NR. Analogous results emerged for C. aerofaciens from the analysis of data from a previous trial on IBS with the same probiotic. Finally, C. aerofaciens was positively correlated with the plasmalemmal vesicle associated protein-1 (PV-1) and the markers of liver function. In conclusion, LDG is effective on NC-IBS patients with NC-IBS with a greater abundance of potential pathobionts. Among these, C. aerofaciens has emerged as a potential predictor of probiotic efficacy.
Collapse
Affiliation(s)
- Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giacomo Mantegazza
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Cesare Cremon
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Alice Valenza
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Maria Raffaella Barbaro
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Robin Duncan
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | | | | - Giovanni Barbara
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
7
|
Aytekin ES, Cagdas D. APECED and the place of AIRE in the puzzle of the immune network associated with autoimmunity. Scand J Immunol 2023; 98:e13299. [PMID: 38441333 DOI: 10.1111/sji.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 03/07/2024]
Abstract
In the last 20 years, discoveries about the autoimmune regulator (AIRE) protein and its critical role in immune tolerance have provided fundamental insights into understanding the molecular basis of autoimmunity. This review provides a comprehensive overview of the effect of AIRE on immunological tolerance and the characteristics of autoimmune diseases in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED), which is caused by biallelic AIRE mutations. A better understanding of the immunological mechanisms of AIRE deficiency may enlighten immune tolerance mechanisms and new diagnostic and treatment strategies for autoimmune diseases. Considering that not all clinical features of APECED are present in a given follow-up period, the diagnosis is not easy in a patient at the first visit. Longer follow-up and a multidisciplinary approach are essential for diagnosis. It is challenging to prevent endocrine and other organ damage compared with other diseases associated with multiple autoimmunities, such as FOXP3, LRBA, and CTLA4 deficiencies. Unfortunately, no curative therapy like haematopoietic stem cell transplantation or specific immunomodulation is present that is successful in the treatment.
Collapse
Affiliation(s)
- Elif Soyak Aytekin
- Pediatric Allergy and Immunology, Department of Pediatrics, SBU Dr. Sami Ulus Children Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Ihsan Dogramaci Children`s Hospital, Institute of Child Health, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
8
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
9
|
Liu Y, Zhang D, Ning Q, Wang J. Growth characteristics and metabonomics analysis of Lactobacillus rhamnosus GG in Ganoderma lucidum aqueous extract medium. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
10
|
Schmitt MM, Ferré EMN, Sampaio De Melo M, Cooper MA, Quezado MM, Heller T, Lionakis MS. Mycophenolate-Induced Colitis in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Patients. JPGN REPORTS 2021; 2:e131. [PMID: 35425944 PMCID: PMC9004485 DOI: 10.1097/pg9.0000000000000131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a prototypic monogenic autoimmune disorder caused by AIRE deficiency-mediated impaired central immune tolerance. Although multiple endocrine and non-endocrine tissues are affected in APECED, the colon is an uncommon target of autoimmune attack. Mycophenolate is a potent immunomodulatory medication that is used to treat autoimmune manifestations in patients with APECED and other autoimmune diseases. METHODS We reviewed the clinical, laboratory, genetic, histological, and treatment data of mycophenolate-induced colitis in our cohort of 104 APECED patients. DISCUSSION Among 10 mycophenolate-treated APECED patients, four (40%) developed reversible biopsy-proven mycophenolate-induced colitis characterized by an inflammatory bowel disease-like and/or graft-versus-host disease-like histological pattern. Mycophenolate-induced colitis appears to be a common complication in patients with APECED for which clinicians should maintain a high index of suspicion.
Collapse
Affiliation(s)
- Monica M. Schmitt
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Elise M. N. Ferré
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Michelly Sampaio De Melo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Martha M. Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| |
Collapse
|
11
|
Ferré EMN, Schmitt MM, Lionakis MS. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front Pediatr 2021; 9:723532. [PMID: 34790633 PMCID: PMC8591095 DOI: 10.3389/fped.2021.723532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome type-1 (APS-1), is a rare monogenic autoimmune disease caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene. AIRE deficiency impairs immune tolerance in the thymus and results in the peripheral escape of self-reactive T lymphocytes and the generation of several cytokine- and tissue antigen-targeted autoantibodies. APECED features a classic triad of characteristic clinical manifestations consisting of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and primary adrenal insufficiency (Addison's disease). In addition, APECED patients develop several non-endocrine autoimmune manifestations with variable frequencies, whose recognition by pediatricians should facilitate an earlier diagnosis and allow for the prompt implementation of targeted screening, preventive, and therapeutic strategies. This review summarizes our current understanding of the genetic, immunological, clinical, diagnostic, and treatment features of APECED.
Collapse
Affiliation(s)
| | | | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|