1
|
Liu Y, Chen Z, Cheng H, Zheng R, Huang W. Mucosal immunotherapy targeting APC in lung disease. J Inflamm (Lond) 2025; 22:15. [PMID: 40229816 PMCID: PMC11998460 DOI: 10.1186/s12950-025-00432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/28/2025] [Indexed: 04/16/2025] Open
Abstract
Several studies have demonstrated that the pulmonary immune response is primarily facilitated by antigen-presenting cells (APCs), and that both professional and non-professional APCs contribute to overall pulmonary immunity. APCs play unique roles and mechanisms in pathogen elimination and immunomodulation. Mucosal immunity exhibits potential advantages over traditional parenteral immunity in that it stimulates immune defenses in mucosal and systemic tissues, which is important for reducing the burden of lung disease. However, obtaining a comprehensive understanding of the crosstalk between mucosal immunity and APC in the context of various lung diseases remains challenging. This mini-review aimed to elucidate the mechanisms of novel mucosal immunity, targeting APC action during lung infections, allergies, and malignant tumorigenesis. This minreview provides important insights into more effective therapeutic approaches for various lung diseases.
Collapse
Affiliation(s)
- Yangqi Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zijian Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hanchang Cheng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Runzhi Zheng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Li SS, Guo M, Zhao Y, Fan F, Huang S, Yang H, Chen X, Jin X. Intranasal delivery of R8-modified circNFXL1 liposomes ameliorates Su5416-induced pulmonary arterial hypertension in C57BL/6 mice. Respir Res 2025; 26:127. [PMID: 40189516 PMCID: PMC11972480 DOI: 10.1186/s12931-025-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive, life-threatening condition characterized by increased pulmonary vascular resistance and right ventricular hypertrophy (RVH). Current treatments primarily alleviate symptoms but do not effectively target the underlying molecular mechanisms driving the disease. This study aimed to evaluate the therapeutic potential of R8-modified liposomal delivery of circNFXL1, a circular RNA, in a mouse model of PAH. METHODS R8-circNFXL1 liposomes were synthesized and characterized for their physicochemical properties, including encapsulation efficiency. PAH was induced in C57BL/6 mice using a combination of subcutaneous Su5416 administration and hypoxic exposure. Intranasal delivery of R8-circNFXL1 was performed, and therapeutic effects were assessed using echocardiography and hemodynamic measurements. Molecular mechanisms were explored through analysis of the miR-29b/Kcnb1 axis, a regulatory pathway in PAH. RESULTS The R8-circNFXL1 liposomes demonstrated optimal physicochemical properties, including high encapsulation efficiency. Treatment with R8-circNFXL1 significantly reduced RVH, improved cardiac function, and mitigated pulmonary vascular remodeling compared to untreated PAH controls. Molecular analysis revealed that R8-circNFXL1 modulated the miR-29b/Kcnb1 axis, providing insights into its mechanism of action. CONCLUSIONS R8-circNFXL1 liposomes offer a promising, targeted therapeutic strategy for PAH by addressing underlying molecular mechanisms. This approach has potential implications for developing alternative treatments to improve disease management and outcomes in PAH.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China.
| | - Miao Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Feifei Fan
- School of Medicine, Nankai University, Tianjin, China
| | | | | | - Xu Chen
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China.
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.
| |
Collapse
|
3
|
Wang Y, Yang J, Lai X, Leung ASY, Xing Y, Wong GWK. Early Origins of Asthma and Allergies: Clues From Studies in China. Clin Exp Allergy 2025. [PMID: 40087850 DOI: 10.1111/cea.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Asthma and allergies have emerged as some of the most common chronic diseases, particularly in developed countries. Epidemiological studies have consistently demonstrated that children growing up in farming/rural environments are less likely to develop these conditions. Over the past three decades, China has experienced unprecedented economic development and urbanisation, accompanied by a rapid rise in the prevalence of allergic disorders. Despite the substantial number of affected individuals, allergy management in China remains inconsistent and often inadequate, compounded by variations in diagnostic criteria and limited healthcare access in less developed regions. Furthermore, the vast population, regional disparities, and methodological inconsistencies in data collection have hindered the acquisition of comprehensive, large-scale epidemiological data. This review examines the factors contributing to asthma and allergies from their early origins, focusing on modifiable factors from a specific perspective of China. Factors related to traditional lifestyle, such as early-life exposure to agricultural farming and poultry, diverse dietary patterns, and early introduction of allergenic foods, appear to offer protection against allergies. Conversely, exposure to open-fire cooking, incense burning, tobacco smoke, as well as early-life antibiotic use and perinatal factors like Caesarean section delivery and prematurity may represent potential risks. A clear understanding of the role of these factors would pave the way for developing effective interventions to mitigate the substantial health and socioeconomic burdens associated with asthma and allergies.
Collapse
Affiliation(s)
- Yike Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Jing Yang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xueling Lai
- Shenzhen Guangming Maternal & Child Healthcare Hospital, Shenzhen, China
| | - Agnes Sze-Yin Leung
- Department of Paediatrics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Department of Paediatrics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
4
|
Hollinger MK, Grayson EM, Ferreira CM, Sperling AI. Harnessing the Farm Effect: Microbial Products for the Treatment and Prevention of Asthma Throughout Life. Immunol Rev 2025; 330:e70012. [PMID: 40035333 PMCID: PMC11877632 DOI: 10.1111/imr.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
It has long been appreciated that farm exposure early in life protects individuals from allergic asthma. Understanding what component(s) of this exposure is responsible for this protection is crucial to understanding allergic asthma pathogenesis and developing strategies to prevent or treat allergic asthma. In this review, we introduce the concept of Farm-Friends, or specific microbes associated with both a farm environment and protection from allergic asthma. We review the mechanism(s) by which these Farm-Friends suppress allergic inflammation, with a focus on the molecule(s) produced by these Farm-Friends. Finally, we discuss the relevance of Farm-Friend administration (oral vs. inhaled) for preventing the development and severity of allergic asthma throughout childhood and adulthood. By developing a fuller understanding of which Farm-Friends modulate host immunity, a greater wealth of prophylactic and therapeutic options becomes available to counter the current allergy epidemic.
Collapse
Affiliation(s)
- Maile K. Hollinger
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Emily M. Grayson
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Caroline M. Ferreira
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Institute of Environmental, Chemistry and Pharmaceutics Sciences, Department of Pharmaceutics SciencesFederal University of São PauloSão PauloBrazil
| | - Anne I. Sperling
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
5
|
Zou W, Ma D, Sun F, Chen Z, Chen Y, Li X, Chen M, Lin M, Shi H, Wu B, Chen L, Liang Z, Liu J. Maternal OM-85 administration alleviates offspring allergic airway inflammation by downregulating IL-33/ILC2 axis. Pediatr Allergy Immunol 2025; 36:e70044. [PMID: 39927900 DOI: 10.1111/pai.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Type 2 innate lymphoid cells (ILC2s) are essential for maintaining immune regulation and promoting tissue homeostasis in allergic asthma. How the development of gut microbiota on neonatal ILC2s influences allergic airway inflammation remains unclear. Here we focus on offspring ILC2 development in the context of alterations in maternal gut microbiota. METHODS C57BL/6 maternal mice were gavaged with OM-85 during pregnancy and/or lactation, ILC2-driven allergic airway inflammation in the OVA-sensitized adult offspring was observed. ILC2 development in offspring early life were investigated using recombinant (r)IL-33, rIL-25 and Bromodeoxyuridine in the vivo experiments. Further ILC2 promoting factors- IL-33 and IL-25 production in offspring early life were analysed. Finally, we examined the changes in gut microbiota and its metabolites in both dams and pups, and explored the effects of short-chain fatty acids (SCFAs) on IL-33 expression and secretion. RESULTS Maternal OM-85 administration restrained ILC2-driven allergic airway inflammation in the OVA-sensitized adult offspring. During ILC2 development in offspring early life, maternal OM-85 administration suppressed IL-33 and IL-25 production to inhibit ILC2 expansion and ILC2 responsiveness to alarmins, and infantile ILC2s could persist into adulthood. Maternal OM-85 administration increased SCFAs in breast milk and SCFA-producing gut probiotics (predominant Bacteroides and Blautia) in offspring, especially during pregnancy and lactation. SCFAs down-regulated IL-33 expression and reduced IL-33 secretion by inhibited gasdermin D (GSDMD) formation. CONCLUSION Maternal OM-85 administration restrains ILC2-driven allergic airway inflammation in adult offspring by increasing offspring intestinal SCFAs to modulate ILC2 development at an early stage, demonstrating that the transgenerational effects of maternal OM-85 exposure on offspring innate immunity.
Collapse
Affiliation(s)
- Wei Zou
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Donghai Ma
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Fengfei Sun
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zehu Chen
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Ying Chen
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xuegang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Meizhu Chen
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Minmin Lin
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Honglei Shi
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Baihe Wu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Lei Chen
- Oncology Central Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zibin Liang
- Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Allergy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
6
|
Wang S, Wang P, Wang D, Shen S, Wang S, Li Y, Chen H. Postbiotics in inflammatory bowel disease: efficacy, mechanism, and therapeutic implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:721-734. [PMID: 39007163 DOI: 10.1002/jsfa.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuxin Wang
- Marine College, Shandong University, Weihai, China
| | - Pu Wang
- Marine College, Shandong University, Weihai, China
| | - Donghui Wang
- Marine College, Shandong University, Weihai, China
| | | | - Shiqi Wang
- Marine College, Shandong University, Weihai, China
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
7
|
Gu W, Zheng T, Li W, Luo X, Xu X, Wang Y, Mao C, Ma Y, Dong L. Migrasomes derived from human umbilical cord mesenchymal stem cells: a new therapeutic agent for ovalbumin-induced asthma in mice. Stem Cell Res Ther 2025; 16:26. [PMID: 39865246 PMCID: PMC11770983 DOI: 10.1186/s13287-025-04145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication. The objective of this study was to investigate the therapeutic effects of migrasomes obtained from MSC in a model of asthma. METHODS Migrasomes produced by human umbilical cord MSCs (hUCMSCs) were isolated by sequential centrifugation. Characterization of hUCMSC-derived migrasomes were carried out by transmission electron microscopy and western blot analysis. The therapeutic effects of migrasomes on airway inflammation in ovalbumin (OVA)-induced asthmatic mice were evaluated by hematoxylin-eosin (HE) and periodic-acid schiff (PAS) staining, and their mechanism were further testified by immunofluorescent staining, real-time PCR and flow cytometry. RESULTS Here, we showed that inhibition of migrasomes' production dramatically impaired the anti-inflammatory effects of hUCMSCs in OVA animals, as evidenced by a notable increase in both the infiltration of inflammatory cells and the number of epithelial goblet cells. We successfully isolated hUCMSC-migrasomes, which were morphologically intact and positive for the specific migrasomes markers. The administration of hUCMSC-migrasomes was observed to significantly ameliorate the symptoms of airway inflammation and mucus production in asthmatic mice. Additionally, the expression of Th2 cytokines (IL-4, IL-5 and IL-13) were found to be reduced, while the activation of dendritic cells (DCs) was inhibited. HUCMSC-migrasomes could possibly be delivered to lung region after injection, and were able to be taken in by DCs both in vivo and in vitro. Notably, in vitro, migraosmes decreased the capacity of BMDCs to stimulate OVA-specific Th2-cell responses. More importantly, we found that adoptive transfer of hUCMSC-migrasomes-treated BMDCs was sufficient to protect mice from allergic airway inflammation. In addition, we found that hUCMSC-migrasomes inhibited the receptor for advanced glycation end-products (RAGE) signal in OVA-treated BMDCs in vitro and in asthma mice lung in vivo. CONCLUSION Our results provided the first evidence that hUCMSC-migrasomes possess anti-inflammatory properties in OVA-induced allergic mice, which may provide a novel "MSC-cell free" therapeutic agent for the management of asthma.
Collapse
Affiliation(s)
- Weifeng Gu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China.
| | - Wen Li
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China
| | - Xinkai Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China
| | - Xiaowei Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, P. R. China
| | - Ying Wang
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, P.R. China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China
| | - Yongbin Ma
- Department of Central Laboratory, Jintan First People's Hospital, Changzhou, 213200, Jiangsu, P. R. China.
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China.
| |
Collapse
|
8
|
Grigg J, Barratt B, Bønnelykke K, Custovic A, Ege M, Pasquali C, Palomares O, Shaheen S, Sokolowska M, Vercelli D, Maizels R, von Mutius E. European Respiratory Society Research Seminar on Preventing Pediatric Asthma. Pediatr Pulmonol 2025; 60:e27401. [PMID: 39625247 PMCID: PMC11748117 DOI: 10.1002/ppul.27401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
This report is a summary of the presentations given at the European Respiratory Society's Research Seminar on Asthma Prevention. The seminar reviewed both epidemiological and mechanistic studies and concluded that; (i) reducing exposure of pregnant women and children to air pollution will reduce incident asthma, (ii) there are promising data that both fish oil and a component of raw cow's milk prevent asthma, and (iii) modulating trained immunity by either mimicking helminth infection or oral and sublingual bacterial products is a promising area of research.
Collapse
Affiliation(s)
- Jonathan Grigg
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Blizard InstituteQueen Mary University of LondonLondonUK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College LondonLondonUK
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in ChildhoodCopenhagen University HospitalCopenhagenDenmark
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Markus Ege
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Dr von Hauner Children's HospitalLudwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC‐M), German Center for Lung ResearchMunichGermany
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular BiologySchool of Chemistry, Complutense University of MadridMadridSpain
| | - Seif Shaheen
- Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
- Allergy and Lung Health Unit, Melbourne School of Population and Global HealthThe University of MelbourneVictoriaAustralia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma ResearchUniversity of ZurichDavosSwitzerland
| | - Donata Vercelli
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| | - Rick Maizels
- Wellcome Centre of Integrative Parasitology, School of Infection and ImmunityUniversity of GlasgowGlasgowUK
| | - Erika von Mutius
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| |
Collapse
|
9
|
Di Gioacchino M, Santilli F, Pession A. Is There a Role for Immunostimulant Bacterial Lysates in the Management of Respiratory Tract Infection? Biomolecules 2024; 14:1249. [PMID: 39456182 PMCID: PMC11505618 DOI: 10.3390/biom14101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial Lysates are immunostimulants clinically prescribed for the prevention of respiratory tract infections (RTIs). It has been shown that Bacterial Lysates upregulate the immune system, acting both on innate and adaptive reactions. In fact, there are demonstrations of their efficacy in restoring the integrity and immune function of epithelial barriers, activating ILC3 and dendritic cells with an enhanced Th1 response, and producing serum IgG and serum and salivary IgA specific to the administered bacterial antigens. The activated immune system also protects against other bacteria and viruses due to a trained immunity effect. Most studies show that the number of RTIs and their severity decrease in Bacterial Lysates-pretreated patients, without relevant side effects. The Bacterial Lysates treatment, in addition to reducing the number of RTIs, also prevents the deterioration of the underlying disease (i.e., COPD) induced by repeated infections. Despite these positive data, the most recent meta-analyses evidence the weakness of the studies performed, which are of low quality and have an inadequate number of patients, some of which were non-randomized while others were without a control group or were performed contemporarily in different clinical conditions or with different ages. The high heterogeneity of the studies does not allow us to state Bacterial Lysates' effectiveness in preventing RTIs with sufficient certainty. To completely define their indications, double-blind, placebo-controlled, multicenter, randomized clinical trials should be performed for each product and for each indication. The study population should be adequate for each indication. For this purpose, an adequate run-in phase will be necessary.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Francesca Santilli
- Center for Advanced Science and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Science of Aging, G. d’Annunzio University, 66100 Chieti, Italy
| | - Andrea Pession
- Department of Medicine and Surgery, “Alma Mater Studiorum”-University of Bologna, 40100 Bologna, Italy;
| |
Collapse
|
10
|
Węgrzyn K, Jasińska A, Janeczek K, Feleszko W. The Role of Postbiotics in Asthma Treatment. Microorganisms 2024; 12:1642. [PMID: 39203484 PMCID: PMC11356534 DOI: 10.3390/microorganisms12081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, there has been abundant research concerning human microbiome and its impact on the host's health. Studies have shown that not only the commensal bacteria itself, but also postbiotics, understood as inanimate microorganisms, possibly with the presence of their components, may themselves have an effect on various elements of human physiology. In this review, we take a closer look at the specific ways in which postbiotics can alter immune response in allergic asthma, which is one of the most prevalent allergic diseases in today's world and a serious subject of concern. Through altering patients' immune response, not only to allergens but also to pathogens, postbiotics could have a significant role in lowering the number of asthma exacerbations. We suggest that more profound research should be undertaken in order to launch postbiotics into clinical standards of asthma treatment, given the greatly promising findings in terms of their immunomodulating potential.
Collapse
Affiliation(s)
- Konstancja Węgrzyn
- Central Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agnieszka Jasińska
- Department of Pediatric Pneumonology and Allergy, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Kamil Janeczek
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
11
|
Braido F, Melioli G, Nicolini G, Ferraris M, Di Girolamo S, Di Gioacchino M, Canonica GW. Sublingually administered bacterial lysates: rationale, mechanisms of action and clinical outcomes. Drugs Context 2024; 13:2024-1-5. [PMID: 39165613 PMCID: PMC11335356 DOI: 10.7573/dic.2024-1-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 08/22/2024] Open
Abstract
This review discusses available evidence on the mechanisms of action of bacterial lysates, and the clinical effects of their sublingual administration. Bacterial lysates act through many immunological effects, including dendritic cell activation, modification of circulating lymphocyte subsets and antibody production. The production of salivary IgA was repeatedly shown to be induced by the sublingual administration of a prototype bacterial lysate containing soluble and corpuscular antigens. Bacterial lysates are a useful tool for the prevention of recurrent respiratory tract infections. Sublingual administration should be the preferred option.
Collapse
Affiliation(s)
- Fulvio Braido
- IRCCS Ospedale Policlinico San Martino,
Italy
- Università di Genova, DiMI, Genoa,
Italy
| | | | | | | | - Stefano Di Girolamo
- Otorhinolaryngology Department of Clinical Science and Translational Medicine, Tor Vergata School of Medicine and Surgery, Rome,
Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti,
Italy
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, Pescara,
Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Milan,
Italy
- Asthma & Allergy Unit-IRCCS Humanitas Research Hospital, Milan,
Italy
| |
Collapse
|
12
|
Michael AN, Pivniouk O, Ezeh PC, Banskar S, Hahn S, DeVries A, O’Connell K, Pivniouk V, Vercelli D. Administration of a bacterial lysate to the airway compartment is sufficient to inhibit allergen-induced lung eosinophilia in germ-free mice. J Leukoc Biol 2024; 116:392-397. [PMID: 38470858 PMCID: PMC11271978 DOI: 10.1093/jleuko/qiae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The nexus between eosinophils and microbes is attracting increasing attention. We previously showed that airway administration of sterile microbial products contained in dust collected from traditional dairy farms virtually abrogated bronchoalveolar lavage (BAL) eosinophilia and other cardinal asthma phenotypes in allergen-sensitized specific pathogen-free (SPF) mice. Interestingly, comparable inhibition of allergen-induced BAL eosinophilia and promotion of airway barrier integrity were found upon administration of a sterile, pharmacological-grade bacterial lysate, OM-85, to the airway compartment of allergen-sensitized SPF mice. Here, we asked whether intrinsic properties of airway-delivered microbial products were sufficient to inhibit allergic lung inflammation or whether these effects were mediated by reprogramming of the host microbiota. We compared germ-free (GF) mice and offspring of GF mice associated with healthy mouse gut microbiota and maintained under SPF conditions for multiple generations (Ex-GF mice). These mice were treated intranasally with OM-85 and evaluated in the ovalbumin and Alternaria models of allergic asthma focusing primarily on BAL eosinophilia. Levels of allergen-induced BAL eosinophilia were comparable in GF and conventionalized Ex-GF mice. Airway administration of the OM-85 bacterial lysate was sufficient to inhibit allergen-induced lung eosinophilia in both Ex-GF and GF mice, suggesting that host microbiota are not required for the protective effects of bacterial products in these models and local airway exposure to microbial products is an effective source of protection. OM-85-dependent inhibition of BAL eosinophilia in GF mice was accompanied by suppression of lung type 2 cytokines and eosinophil-attracting chemokines, suggesting that OM-85 may work at least by decreasing eosinophil lung recruitment.
Collapse
Affiliation(s)
- Ashley N Michael
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
| | - Oksana Pivniouk
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
| | - Peace C Ezeh
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
| | - Sunil Banskar
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
| | - Seongmin Hahn
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
| | - Avery DeVries
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
| | - Kathryn O’Connell
- University Animal Care, University of Arizona, BIO5 Institute, 1657 E Helen Street, Tucson, AZ 85721, United States
| | - Vadim Pivniouk
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
- Department of Cellular and Molecular Medicine, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245044, Tucson AZ 85724-5044, United States
| | - Donata Vercelli
- Asthma and Airway Disease Research Center, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245030, Tucson, AZ 85724, United States
- Department of Cellular and Molecular Medicine, University of Arizona, 1501 N. Campbell Avenue P.O. Box 245044, Tucson AZ 85724-5044, United States
- BIO5 Institute, University of Arizona, 1657 E Helen Street, Tucson, AZ 85721, United States
- Arizona Center for the Biology of Complex Diseases, University of Arizona, BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
13
|
Rahman MM, Grice ID, Ulett GC, Wei MQ. Advances in Bacterial Lysate Immunotherapy for Infectious Diseases and Cancer. J Immunol Res 2024; 2024:4312908. [PMID: 38962577 PMCID: PMC11221958 DOI: 10.1155/2024/4312908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024] Open
Abstract
Antigenic cell fragments, pathogen-associated molecular patterns, and other immunostimulants in bacterial lysates or extracts may induce local and systemic immune responses in specific and nonspecific paradigms. Based on current knowledge, this review aimed to determine whether bacterial lysate has comparable functions in infectious diseases and cancer treatment. In infectious diseases, including respiratory and urinary tract infections, immune system activation by bacterial lysate can identify and combat pathogens. Commercially available bacterial lysates, including OM-85, Ismigen, Lantigen B, and LW 50020, were effective in children and adults in treating respiratory tract infections, chronic obstructive pulmonary disease, rhinitis, and rhinosinusitis with varying degrees of success. Moreover, OM-89, Uromune, Urovac, Urivac, and ExPEC4V showed therapeutic benefits in controlling urinary tract infections in adults, especially women. Bacterial lysate-based therapeutics are safe, well-tolerated, and have few side effects, making them a good alternative for infectious disease management. Furthermore, a nonspecific immunomodulation by bacterial lysates may stimulate innate immunity, benefiting cancer treatment. "Coley's vaccine" has been used to treat sarcomas, carcinomas, lymphomas, melanomas, and myelomas with varying outcomes. Later, several similar bacterial lysate-based therapeutics have been developed to treat cancers, including bladder cancer, non-small cell lung cancer, and myeloma; among them, BCG for in situ bladder cancer is well-known. Proinflammatory cytokines, including IL-1, IL-6, IL-12, and TNF-α, may activate bacterial antigen-specific adaptive responses that could restore tumor antigen recognition and response by tumor-specific type 1 helper cells and cytotoxic T cells; therefore, bacterial lysates are worth investigating as a vaccination adjuvants or add-on therapies for several cancers.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - I. Darren Grice
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Institute for GlycomicsGriffith University, Gold Coast 4222, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - Ming Q. Wei
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| |
Collapse
|
14
|
Khameneh HJ, Bolis M, Ventura PMO, Cassanmagnago GA, Fischer BA, Zenobi A, Guerra J, Buzzago I, Bernasconi M, Zaman GJR, Rinaldi A, Moro SG, Sallusto F, Baulier E, Pasquali C, Guarda G. The bacterial lysate OM-85 engages Toll-like receptors 2 and 4 triggering an immunomodulatory gene signature in human myeloid cells. Mucosal Immunol 2024; 17:346-358. [PMID: 38447907 DOI: 10.1016/j.mucimm.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Marco Bolis
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy; Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - Pedro M O Ventura
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Giada A Cassanmagnago
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy
| | - Berenice A Fischer
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Irene Buzzago
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maurizio Bernasconi
- Pulmonology Division, Ente Ospedaliero Cantonale (EOC), Ospedale Regionale di Bellinzona e Valli (ORBV), Bellinzona, Switzerland
| | | | - Andrea Rinaldi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Simone G Moro
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Federica Sallusto
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Edouard Baulier
- OM Pharma SA, Department of Preclinical Research, Meyrin, Switzerland
| | | | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| |
Collapse
|
15
|
Xu C, Hao M, Zai X, Song J, Huang Y, Gui S, Chen J. A new perspective on gut-lung axis affected through resident microbiome and their implications on immune response in respiratory diseases. Arch Microbiol 2024; 206:107. [PMID: 38368569 DOI: 10.1007/s00203-024-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The highly diverse microbial ecosystem of the human body colonizes the gastrointestinal tract has a profound impact on the host's immune, metabolic, endocrine, and other physiological processes, which are all interconnected. Specifically, gut microbiota has been found to play a crucial role in facilitating the adaptation and initiation of immune regulatory response through the gastrointestinal tract affecting the other distal mucosal sites such as lungs. A tightly regulated lung-gut axis during respiratory ailments may influence the various molecular patterns that instructs priming the disease severity to dysregulate the normal function. This review provides a comprehensive summary of current research on gut microbiota dysbiosis in respiratory diseases including asthma, pneumonia, bronchopneumonia, COPD during infections and cancer. A complex-interaction among gut microbiome, associated metabolites, cytokines, and chemokines regulates the protective immune response activating the mucosal humoral and cellular response. This potential mechanism bridges the regulation patterns through the gut-lung axis. This paper aims to advance the understanding of the crosstalk of gut-lung microbiome during infection, could lead to strategize to modulate the gut microbiome as a treatment plan to improve bad prognosis in various respiratory diseases.
Collapse
Affiliation(s)
- Cong Xu
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengqi Hao
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaohu Zai
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jing Song
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuzhe Huang
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Juan Chen
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
| |
Collapse
|
16
|
Xing Y, Tsang MSM, Yang Z, Wang MH, Pivniouk V, Leung ASY, Leung TF, Roponen M, Schaub B, Vercelli D, Wong CK, Li J, Wong GWK. Immune modulation by rural exposures and allergy protection. Pediatr Allergy Immunol 2024; 35:e14086. [PMID: 38351891 DOI: 10.1111/pai.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Growing up on traditional farms protects children from the development of asthma and allergies. However, we have identified distinct asthma-protective factors, such as poultry exposure. This study aims to examine the biological effect of rural exposure in China. METHODS We recruited 67 rural children (7.4 ± 0.9 years) and 79 urban children (6.8 ± 0.6 years). Depending on the personal history of exposure to domestic poultry (DP), rural children were further divided into those with DP exposure (DP+ , n = 30) and those without (DP- , n = 37). Blood samples were collected to assess differential cell counts and expression of immune-related genes. Dust samples were collected from poultry stables inside rural households. In vivo activities of nasal administration of DP dust extracts were tested in an ovalbumin-induced asthma model. RESULTS There was a stepwise increase in the percentage of eosinophils (%) from rural DP+ children (median = 1.65, IQR = [1.28, 3.75]) to rural DP- children (3.40, [1.70, 6.50]; DP+ vs. DP- , p = .087) and to the highest of their urban counterparts (4.00, [2.00, 7.25]; urban vs. DP+ , p = .017). Similarly, rural children exhibited reduced mRNA expression of immune markers, both at baseline and following lipopolysaccharide (LPS) stimulation. Whereas LPS stimulation induced increased secretion of Th1 and proinflammatory cytokines in rural DP+ children compared to rural DP- children and urban children. Bronchoalveolar lavage of mice with intranasal instillation of dust extracts from DP household showed a significant decrease in eosinophils as compared to those of control mice (p < .05). Furthermore, DP dust strongly inhibited gene expression of Th2 signature cytokines and induced IL-17 expression in the murine asthma model. CONCLUSIONS Immune responses of rural children were dampened compared to urban children and those exposed to DP had further downregulated immune responsiveness. DP dust extracts ameliorated Th2-driven allergic airway inflammation in mice. Determining active protective components in the rural environment may provide directions for the development of primary prevention of asthma.
Collapse
Affiliation(s)
- Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Maggie Haitian Wang
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Vadim Pivniouk
- Department of Cellular and Molecular Medicine, Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Agnes Sze-Yin Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Munich, Germany
| | - Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
18
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
19
|
Wang H, Tao F, Li CY, Yang GJ, Chen J. Short-term administration of Qipian®, a mixed bacterial lysate, inhibits airway inflammation in ovalbumin-induced mouse asthma by modulating cellular, humoral and neurogenic immune responses. Life Sci 2024; 336:122310. [PMID: 38013140 DOI: 10.1016/j.lfs.2023.122310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
AIMS Qipian® is a commercialized agent composed of extracts of three genera of commensal bacteria, and its mechanism of action on asthma is unclear. This study aimed to examine the impact of Qipian® on airway inflammation and investigate the underlying mechanisms. MATERIALS AND METHODS Qipian® or dexamethasone (DEX) was administered before OVA challenge in an ovalbumin-induced asthma mouse model, and then asthmatic symptoms were observed and scored. Samples of lung tissues, blood, and bronchoalveolar lavage fluid (BALF) were collected, and eosinophils (Eos), immunoglobins (Igs), and type 1 T helper (Th1)/Th2 cell cytokines were measured. Mucus production in the lung was assessed by periodic acid-Schiff (PAS) staining. The effects of Qipian® on dendritic and T regulatory (Treg) cells were investigated using flow cytometry. KEY FINDINGS The short-term administration of Qipian® significantly inhibited the cardinal features of allergic asthma, including an elevated asthmatic behaviour score, airway inflammation and immune response. Histological analysis of the lungs showed that Qipian® attenuated airway inflammatory cell infiltration and mucus hyperproduction. Qipian® restored Th1/Th2 imbalance by decreasing interleukin (IL)-4, IL-5, and IL-13 while increasing interferon (IFN)-γ and IL-10. Further investigation revealed that Qipian® treatment induced the upregulation of CD4+CD25+Foxp3+ Treg cells and CD103+ DCs and downregulation of tachykinins neurokinin A (NKA) and NKB in the lung. SIGNIFICANCE Our findings suggested that short-term treatment with Qipian® could alleviate inflammation in allergic asthma through restoring the Th1/Th2 balance by recruiting Treg cells to airways and inducing the proliferation of CD103+ DCs, which actually provides a new treatment option for asthma.
Collapse
Affiliation(s)
- Huiying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China.
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang Province 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang Province 315832, China.
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang Province 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang Province 315832, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang Province 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang Province 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang Province 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang Province 315832, China.
| |
Collapse
|
20
|
Yao S, Weng D, Wang Y, Zhang Y, Huang Q, Wu K, Li H, Zhang X, Yin Y, Xu W. The preprogrammed anti-inflammatory phenotypes of CD11c high macrophages by Streptococcus pneumoniae aminopeptidase N safeguard from allergic asthma. J Transl Med 2023; 21:898. [PMID: 38082290 PMCID: PMC10712085 DOI: 10.1186/s12967-023-04768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.
Collapse
Affiliation(s)
- Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Honghui Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Zhou Y, Xu Z, Liu Z. Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives. J Transl Med 2023; 21:902. [PMID: 38082335 PMCID: PMC10714644 DOI: 10.1186/s12967-023-04782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin (IL)-33 is an alarmin of the IL-1 superfamily localized to the nucleus of expressing cells, such as endothelial cells, epithelial cells, and fibroblasts. In response to cellular damage or stress, IL-33 is released and activates innate immune responses in some immune and structural cells via its receptor interleukin-1 receptor like-1 (IL-1RL1 or ST2). Recently, IL-33 has become a hot topic of research because of its role in pulmonary inflammation. The IL-33-ST2 signaling pathway plays a pro-inflammatory role by activating the type 2 inflammatory response, producing type 2 cytokines and chemokines. Elevated levels of IL-33 and ST2 have been observed in chronic pulmonary obstructive disease (COPD). Notably, IL-33 is present in COPD induced by cigarette smoke or acute inflammations. The role of IL-33 in sepsis is becoming increasingly prominent, and understanding its significance in the treatment of sepsis associated with high mortality is critical. In addition to its pro-inflammatory effects, the IL-33-ST2 axis appears to play a role in bacterial clearance and tissue repair. In this review, we focused on the role of the IL-33-ST2 axis in sepsis, asthma, and COPD and summarized the therapeutic targets associated with this axis, providing a basis for future treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
22
|
Wang Q, Guo L, Zeng Z, Huang Y, Tang H, Hu H, Yuan X, Deng J, Qin G, Wang X, Zhang Y. Neferine Attenuates HDM-Induced Allergic Inflammation by Inhibiting the Activation of Dendritic Cell. Inflammation 2023; 46:2433-2448. [PMID: 37702907 DOI: 10.1007/s10753-023-01891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023]
Abstract
House dust mite (HDM) acts as an environmental antigen that might cause chronic allergic diseases. Neferine (NEF) shows anti-inflammation therapeutic effects. This study is to explore the protection role of NEF against HDM-induced allergic inflammation. HDM-induced allergic asthmatic C57BL/6J mice models were established. Differential histological staining was used to analyze lung tissue pathological scores. Flow cytometry was used to analyze subtypes and biomarker expression of immune cells. RT-PCR and ELISA were used to test cytokines-related gene and/or protein expression levels. Western blot was performed to investigate the signaling pathway that mediates allergic inflammation from mice lung tissue and bone marrow-derived dendritic cells (BMDCs). H&E and PAS staining results indicate NEF significantly attenuated inflammatory index and the percentage of goblet cells in the lung tissue induced by HDM. The HDM-elevated TH2 and TH17 cells were significantly decreased by NEF; inflammatory cytokines Il-4, Il-13 and Il-17 were dramatically downregulated in the NEF plus HDM group compared with HDM alone. CD40+ and CD86+ DCs, eosinophils and mast cells, and ILC2 cells were decreased by NEF which was elevated under HDM stimulation. In vivo and ex vivo investigations indicated NEF can attenuate the activated NF-κB signaling induced by HDM is involved in allergic inflammatory immune response and regulates cytokines-related gene expression. HDM-activated DCs promoted differentiation of TH2 and TH17 cells but were attenuated by NEF. This study suggests NEF interrupts the overexpression of some cytokines released by DCs, TH2, and TH17 cells; NEF attenuates HDM-induced allergic inflammation via inhibiting NF-κB signaling of DCs.
Collapse
Affiliation(s)
- Qiao Wang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA.
| | - Ziling Zeng
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yueru Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Hongmei Tang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hang Hu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiefang Yuan
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jun Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xing Wang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Yun Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
23
|
Zhang L, Wu Q, Huang Y, Zheng J, Guo S, He L. Formononetin ameliorates airway inflammation by suppressing ESR1/NLRP3/Caspase-1 signaling in asthma. Biomed Pharmacother 2023; 168:115799. [PMID: 37922653 DOI: 10.1016/j.biopha.2023.115799] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Since inhaled glucocorticoids are the first-line treatment for asthma, asthma management becomes extremely difficult when asthma does not react well to glucocorticoids. Formononetin, a bioactive isoflavone and typical phytoestrogen, has been shown to have an anti-inflammatory impact while alleviating epithelial barrier dysfunction, which plays a role in the pathogenesis of allergic illnesses like asthma. However, the biological mechanisms behind this impact are unknown. As a result, we set out to investigate the effects of formononetin on airway inflammation and epithelial barrier repair in house dust mite (HDM)-induced asthmatic mice. We further expanded on formononetin's putative mode of action in reducing airway inflammation by modifying epithelial barrier dysfunction. In the current study, researchers discovered that formononetin significantly lowered total IgE levels in serum and interleukin (IL)-4, IL-6, and IL-17A levels in bronchoalveolar lavage fluid (BALF) in HDM-challenged asthmatic mice. Experiments on cell proliferation, migration, and apoptosis were performed in vitro to determine the effect of formononetin on bronchial epithelial barrier repair. Furthermore, in lipopolysaccharide (LPS)-stimulated 16HBE cells, formononetin increased cell proliferation and migration while preventing apoptosis and lowering the Bax/Bcl-2 ratio. In vitro and in vivo, formononetin significantly inhibited toll-like receptor 4 (TLR4) and estrogen receptor (ESR1)/Nod-like receptor family pyrin domain-containing protein 3 (NLRP3)/Caspase-1 signaling. These findings show that formononetin can reduce airway inflammation in HDM-challenged asthmatic mice by promoting epithelial barrier repair and possibly by inhibiting ESR1/NLRP3/Caspase-1 signaling as the underlying mechanism; formononetin could be a promising alternative treatment for asthma.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wu
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuying Huang
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zheng
- Department of Respiratory Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
van Beveren GJ, Said H, van Houten MA, Bogaert D. The respiratory microbiome in childhood asthma. J Allergy Clin Immunol 2023; 152:1352-1367. [PMID: 37838221 DOI: 10.1016/j.jaci.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Asthma is the most prevalent noncommunicable disease in childhood, characterized by reversible airway constriction and inflammation of the lower airways. The respiratory tract consists of the upper and lower airways, which are lined with a diverse community of microbes. The composition and density of the respiratory microbiome differs across the respiratory tract, with microbes adapting to the gradually changing physiology of the environment. Over the past decade, both the upper and lower respiratory microbiomes have been implicated in the etiology and disease course of asthma, as well as in its severity and phenotype. We have reviewed the literature on the role of the respiratory microbiome in asthma, making a careful distinction between the relationship of the microbiome with development of childhood asthma and its relationship with the disease course, while accounting for age and the microbial niches studied. Furthermore, we have assessed the literature regarding the underlying asthma endotypes and the impact of the microbiome on the host immune response. We have identified distinct microbial signatures across the respiratory tract associated with asthma development, stability, and severity. These data suggest that the respiratory microbiome may be important for asthma development and severity and may therefore be a potential target for future microbiome-based preventive and treatment strategies.
Collapse
Affiliation(s)
- Gina J van Beveren
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, Hoofddorp, The Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hager Said
- Department of Pediatrics, Spaarne Gasthuis Haarlem
| | - Marlies A van Houten
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, Hoofddorp, The Netherlands; Department of Pediatrics, Spaarne Gasthuis Haarlem
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
25
|
Xing Y, Leung ASY, Wong GWK. From preschool wheezing to asthma: Environmental determinants. Pediatr Allergy Immunol 2023; 34:e14049. [PMID: 38010001 DOI: 10.1111/pai.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Wheezing is common among preschool children, representing a group of highly heterogeneous conditions with varying natural history. Several phenotypes of wheezing have been proposed to facilitate the identification of young children who are at risk of subsequent development of asthma. Epidemiological and immunological studies across different populations have revealed the key role of environmental factors in influencing the progression from preschool wheezing to childhood asthma. Significant risk factors include severe respiratory infections, allergic sensitization, and exposure to tobacco smoke. In contrast, a farming/rural environment has been linked to asthma protection in both human and animal studies. Early and intense exposures to microorganisms and microbial metabolites have been demonstrated to alter host immune responses to allergens and viruses, thereby driving the trajectory away from wheezing illness and asthma. Ongoing clinical trials of candidate microbes and microbial products have shown promise in shaping the immune function to reduce episodes of viral-induced wheezing. Moreover, restoring immune training may be especially important for young children who had reduced microbial exposure due to pandemic restrictions. A comprehensive understanding of the role of modifiable environmental factors will pave the way for developing targeted prevention strategies for preschool wheezing and asthma.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Agnes Sze-Yin Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
26
|
Abstracts from The International Society for Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37906031 DOI: 10.1089/jamp.2023.ab02.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
|
27
|
Marques Dos Santos M, Pivniouk V, Rankl B, Walker A, Pagani G, Hertkorn N, Schmitt-Kopplin P, Müller C, Bracher F, Merl-Pham J, Hauck SM, Schloter M, Michael AN, Anderson D, Honeker L, Gozdz J, Pivniouk O, Ober C, Holbreich M, Martinez FD, Snyder SA, von Mutius E, Vercelli D. Asthma-protective agents in dust from traditional farm environments. J Allergy Clin Immunol 2023; 152:610-621. [PMID: 37271318 PMCID: PMC10680491 DOI: 10.1016/j.jaci.2023.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Growing up on traditional European or US Amish dairy farms in close contact with cows and hay protects children against asthma, and airway administration of extracts from dust collected from cowsheds of those farms prevents allergic asthma in mice. OBJECTIVES This study sought to begin identifying farm-derived asthma-protective agents. METHODS Our work unfolded along 2 unbiased and independent but complementary discovery paths. Dust extracts (DEs) from protective and nonprotective farms (European and Amish cowsheds vs European sheep sheds) were analyzed by comparative nuclear magnetic resonance profiling and differential proteomics. Bioactivity-guided size fractionation focused on protective Amish cowshed DEs. Multiple in vitro and in vivo functional assays were used in both paths. Some of the proteins thus identified were characterized by in-solution and in-gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzymatic digestion/peptide mapping followed by liquid chromatography/mass spectrometry. The cargo carried by these proteins was analyzed by untargeted liquid chromatography-high-resolution mass spectrometry. RESULTS Twelve carrier proteins of animal and plant origin, including the bovine lipocalins Bos d 2 and odorant binding protein, were enriched in DEs from protective European cowsheds. A potent asthma-protective fraction of Amish cowshed DEs (≈0.5% of the total carbon content of unfractionated extracts) contained 7 animal and plant proteins, including Bos d 2 and odorant binding protein loaded with fatty acid metabolites from plants, bacteria, and fungi. CONCLUSIONS Animals and plants from traditional farms produce proteins that transport hydrophobic microbial and plant metabolites. When delivered to mucosal surfaces, these agents might regulate airway responses.
Collapse
Affiliation(s)
| | - Vadim Pivniouk
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz
| | - Bettina Rankl
- Institute for Asthma and Allergy Prevention, IAP, Helmholtz Center Munich, Munich, Germany
| | - Alesia Walker
- Research Unit Analytical Biogeochemistry, BGC, Helmholtz Center Munich, Munich, Germany
| | - Giulia Pagani
- Institute for Asthma and Allergy Prevention, IAP, Helmholtz Center Munich, Munich, Germany
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry, BGC, Helmholtz Center Munich, Munich, Germany
| | | | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Center Munich, Munich, Germany; ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Ashley N Michael
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz
| | - Dayna Anderson
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz
| | - Linnea Honeker
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz; Biosphere2, The University of Arizona, Tucson, Ariz
| | - Justyna Gozdz
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz
| | - Oksana Pivniouk
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | - Fernando D Martinez
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, The University of Arizona, Tucson, Ariz; The BIO5 Institute, The University of Arizona, Tucson, Ariz.
| | - Erika von Mutius
- Institute for Asthma and Allergy Prevention, IAP, Helmholtz Center Munich, Munich, Germany; Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Comprehensive Pneumology Center-Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany.
| | - Donata Vercelli
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz; The BIO5 Institute, The University of Arizona, Tucson, Ariz; Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, Ariz.
| |
Collapse
|
28
|
Wang C, Du Z, Li R, Luo Y, Zhu C, Ding N, Lei A. Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. J Mol Med (Berl) 2023; 101:947-959. [PMID: 37414870 DOI: 10.1007/s00109-023-02345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by a lack of antigen receptors, have been regarded as an important component of type 2 pulmonary immunity. Analogous to Th2 cells, ILC2s are capable of releasing type 2 cytokines and amphiregulin, thus playing an essential role in a variety of diseases, such as allergic diseases and virus-induced respiratory diseases. Interferons (IFNs), an important family of cytokines with potent antiviral effects, can be triggered by microbial products, microbial exposure, and pathogen infections. Interestingly, the past few years have witnessed encouraging progress in revealing the important role of IFNs and IFN-producing cells in modulating ILC2 responses in allergic lung inflammation and respiratory viral infections. This review underscores recent progress in understanding the role of IFNs and IFN-producing cells in shaping ILC2 responses and discusses disease phenotypes, mechanisms, and therapeutic targets in the context of allergic lung inflammation and infections with viruses, including influenza virus, rhinovirus (RV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ranhui Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
29
|
Abstract
Allergic diseases typically begin in early life and can impose a heavy burden on children and their families. Effective preventive measures are currently unavailable but may be ushered in by studies on the "farm effect", the strong protection from asthma and allergy found in children born and raised on traditional farms. Two decades of epidemiologic and immunologic research have demonstrated that this protection is provided by early and intense exposure to farm-associated microbes that target primarily innate immune pathways. Farm exposure also promotes timely maturation of the gut microbiome, which mediates a proportion of the protection conferred by the farm effect. Current research seeks to identify allergy-protective compounds from traditional farm environments, but standardization and regulation of such substances will likely prove challenging. On the other hand, studies in mouse models show that administration of standardized, pharmacological-grade lysates of human airway bacteria abrogates allergic lung inflammation by acting on multiple innate immune targets, including the airway epithelium/IL-33/ILC2 axis and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming is sufficient for asthma protection in adoptive transfer models. To the extent that these bacterial lysates mimic the protective effects of natural exposure to microbe-rich environments, these agents might provide an effective tool for prevention of allergic disease.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma & Airway Disease Research Center, The BIO5 Institute, and The Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
30
|
Xu Z, Yan J, Wen W, Zhang N, Bachert C. Pathophysiology and management of Staphylococcus aureus in nasal polyp disease. Expert Rev Clin Immunol 2023; 19:981-992. [PMID: 37409375 DOI: 10.1080/1744666x.2023.2233700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is a common pathogen that frequently colonizes the sinonasal cavity. Recent studies demonstrated the essential role of Staphylococcus aureus in the pathophysiology of uncontrolled severe chronic rhinosinusitis with nasal polyps (NP) by initiating an immune response to the germ and its products, resulting in type 2 inflammation. AREAS COVERED This review aims to summarize the evidence for the role of S. aureus in the development of NP disease including S. aureus-related virulence factors, the pathophysiologic mechanisms used by S. aureus, and the synergistic effects of S. aureus and other pathogens. It also describes the current management of S. aureus associated with NPs as well as potential therapeutic strategies that are used in clinical practice. EXPERT OPINION S. aureus is able to damage the nasal mucosal epithelial barrier, impair the clearance of the host immune system, and trigger adaptive and innate immune reactions which lead to the formation of inflammation and nasal polyp growth. Further studies should focus on the development of novel therapeutic strategies, such as biologics, bacteriophages, probiotics, and nanomedicine, which could be used to treat S. aureus and its immunological consequences in the future.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Jieying Yan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Weiping Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- Division of ENT Diseases, Stockholm, Sweden
- Clinic for ENT Diseases and Head and Neck Surgery, University Clinic Münster, Münster, Germany
| |
Collapse
|
31
|
Lajiness JD, Cook-Mills JM. Catching Our Breath: Updates on the Role of Dendritic Cell Subsets in Asthma. Adv Biol (Weinh) 2023; 7:e2200296. [PMID: 36755197 PMCID: PMC10293089 DOI: 10.1002/adbi.202200296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Dendritic cells (DCs), as potent antigen presenting cells, are known to play a central role in the pathophysiology of asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Furthermore, asthma is increasingly recognized as a heterogeneous disease with potentially diverse underlying mechanisms. The goal of this review is to summarize the role of DCs and the various subsets therein in the pathophysiology of asthma and highlight some of the crucial animal models shaping the field today. Potential future avenues of investigation to address existing gaps in knowledge are discussed.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, 1030 West Michigan Street, Suite C 4600, Indianapolis, IN, 46202-5201, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Department of Microbiology and Immunology, Pediatric Pulmonary, Asthma, and Allergy Basic Research Program, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, R4-202A, Indianapolis, IN, 46202, USA
| |
Collapse
|
32
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Bosco A. Emerging role for interferons in respiratory viral infections and childhood asthma. Front Immunol 2023; 14:1109001. [PMID: 36895568 PMCID: PMC9989033 DOI: 10.3389/fimmu.2023.1109001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) and Rhinovirus (RV) infections are major triggers of severe lower respiratory illnesses (sLRI) in infants and children and are strongly associated with the subsequent development of asthma. Decades of research has focused on the role of type I interferons in antiviral immunity and ensuing airway diseases, however, recent findings have highlighted several novel aspects of the interferon response that merit further investigation. In this perspective, we discuss emerging roles of type I interferons in the pathogenesis of sLRI in children. We propose that variations in interferon response patterns exist as discrete endotypes, which operate locally in the airways and systemically through a lung-blood-bone marrow axis. We discuss new insights into the role of interferons in immune training, bacterial lysate immunotherapy, and allergen-specific immunotherapy. Interferons play complex and diverse roles in the pathogenesis of sLRI and later asthma, providing new directions for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
34
|
Martín-Cruz L, Sevilla-Ortega C, Angelina A, Domínguez-Andrés J, Netea MG, Subiza JL, Palomares O. From trained immunity in allergy to trained immunity-based allergen vaccines. Clin Exp Allergy 2023; 53:145-155. [PMID: 36494877 DOI: 10.1111/cea.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Innate immune cells experience long lasting metabolic and epigenetic changes after an encounter with specific stimuli. This facilitates enhanced immune responses upon secondary exposition to both the same and unrelated pathogens, a process termed trained immunity. Trained immunity-based vaccines (TIbV) are vaccines able to induce innate immune memory, thus conferring heterologous protection against a broad range of pathogens. While trained immunity has been well documented in the context of infections and multiple immune-mediated diseases, the role of innate immune memory and its contribution to the initiation and maintenance of chronic allergic diseases remains poorly understood. Over the last years, different studies attempting to uncover the role of trained immunity in allergy have emerged. Exposition to environmental factors impacting allergy development such as allergens or viruses induces the reprogramming of innate immune cells to acquire a more pro-inflammatory phenotype in the context of asthma or food allergy. Several studies have convincingly demonstrated that prevention of viral infections using TIbV contributes to reduce wheezing attacks in children, which represent a high-risk factor for asthma development later in life. Innate immune cells trained with specific stimuli might also acquire anti-inflammatory features and promote tolerance, which may have important implications for chronic inflammatory diseases such as allergies. Recent findings showed that allergoid-mannan conjugates, which are next generation vaccines for allergen-specific immunotherapy (AIT), are able to reprogram monocytes into tolerogenic dendritic cells by mechanisms depending on metabolic and epigenetic rewiring. A better understanding of the underlying mechanisms of trained immunity in allergy will pave the way for the design of novel trained immunity-based allergen vaccines as potential alternative strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Carmen Sevilla-Ortega
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
35
|
Pivniouk V, Vercelli D. The OM-85 bacterial lysate: a new tool against SARS-CoV-2? Multidiscip Respir Med 2023; 18:906. [PMID: 36798954 PMCID: PMC9926922 DOI: 10.4081/mrm.2023.906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
The emergence of SARS-CoV-2, a novel coronavirus, caused the global Coronavirus disease of 2019 (COVID-19) pandemic. Because SARS-CoV-2 mutates rapidly, vaccines that induce immune responses against viral components critical for target cell infection strongly mitigate but do not abrogate viral spread, and disease rates remain high worldwide. Complementary treatments are therefore needed to reduce the frequency and/or severity of SARS-CoV-2 infections. OM-85, a standardized lysate of 21 bacterial strains often found in the human airways, has immuno-modulatory properties and is widely used empirically in Europe, South America and Asia for the prophylaxis of recurrent upper airway infections in adults and children, with excellent safety profiles. In vitro studies from our laboratory recently demonstrated that OM-85 inhibits SARS-CoV-2 epithelial cell infection by downregulating SARS-CoV-2 receptor expression, raising the possibility that this bacterial extract might eventually complement the current COVID-19 therapeutic toolkit. Here we discuss how our results and those from other groups are fostering progress in this emerging field of research.
Collapse
Affiliation(s)
- Vadim Pivniouk
- Department of Cellular and Molecular Medicine
- Asthma and Airway Disease Research Center
| | - Donata Vercelli
- Department of Cellular and Molecular Medicine
- Asthma and Airway Disease Research Center
- The BIO5 Institute
- Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
36
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
37
|
Rodriguez-Martinez CE, Sossa-Briceño MP, Soto-Martinez ME. The Use of Bacterial Lysate for the Prevention of Wheezing Episodes in Preschool Children: A Cost-Utility Analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:220-227. [PMID: 36243402 DOI: 10.1016/j.jaip.2022.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although increasing recent evidence has shown the efficacy of bacterial lysate therapy for the prevention of wheezing episodes and asthma exacerbations in pediatric patients, evidence of its cost-effectiveness in preschool patients is scarce. OBJECTIVES To evaluate the cost-utility of bacterial lysate therapy as an add-on to standard care of preschool children with recurrent wheezing. METHODS To achieve the objectives of the study, we used a Markov simulation model with 3 mutually exclusive nonabsorbent states (regular Markov chain). Effectiveness parameters were obtained from a recent systematic review of the literature with meta-analyses (5 randomized controlled trials, 433 children). Cost data were obtained from hospital bills and from the national manual of drug prices in Colombia. The study was carried out from the perspective of the national health care system in Colombia. The main outcome of the model was quality-adjusted life-years. To assess the robustness of the model's results, we performed deterministic and probabilistic sensitivity analysis. RESULTS Compared with standard care, bacterial lysate add-on therapy to standard care was associated with lower overall treatment costs (US $694.03 vs $830.71 average cost per patient) and the greatest gain in QALYs (0.9211 vs 0.9154 QALYs on average per patient), thus showing dominance. CONCLUSIONS In Colombia, compared with standard care, bacterial lysate add-on therapy to standard care for treating preschool children with recurrent wheezing is a dominant strategy because it showed a greater gain in QALYs at lower total treatment costs.
Collapse
Affiliation(s)
- Carlos E Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia; Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia.
| | - Monica P Sossa-Briceño
- Department of Internal Medicine, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
| | - Manuel E Soto-Martinez
- Respiratory Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera," Caja Costarricense Seguro Social, San José, Costa Rica; Section of Pediatrics, School of Medicine, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
38
|
Liu P, Kang C, Zhang J, Liu Y, Liu J, Hu T, Zeng X, Qiu S. The role of dendritic cells in allergic diseases. Int Immunopharmacol 2022; 113:109449. [DOI: 10.1016/j.intimp.2022.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
|
39
|
Block KE, Iijima K, Pierson MJ, Walsh DA, Tei R, Kucaba TA, Xu J, Khan MH, Staley C, Griffith TS, McSorley HJ, Kita H, Jameson SC. Physiological microbial exposure transiently inhibits mouse lung ILC2 responses to allergens. Nat Immunol 2022; 23:1703-1713. [PMID: 36411381 PMCID: PMC9974086 DOI: 10.1038/s41590-022-01350-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
Lung group 2 innate lymphoid cells (ILC2s) control the nature of immune responses to airway allergens. Some microbial products, including those that stimulate interferons, block ILC2 activation, but whether this occurs after natural infections or causes durable ILC2 inhibition is unclear. In the present study, we cohoused laboratory and pet store mice as a model of physiological microbial exposure. Laboratory mice cohoused for 2 weeks had impaired ILC2 responses and reduced lung eosinophilia to intranasal allergens, whereas these responses were restored in mice cohoused for ≥2 months. ILC2 inhibition at 2 weeks correlated with increased interferon receptor signaling, which waned by 2 months of cohousing. Reinduction of interferons in 2-month cohoused mice blocked ILC2 activation. These findings suggest that ILC2s respond dynamically to environmental cues and that microbial exposures do not control long-term desensitization of innate type 2 responses to allergens.
Collapse
Affiliation(s)
- Katharine E Block
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Koji Iijima
- Division of Allergy, Asthma and Clinical Immunology and Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark J Pierson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel A Walsh
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Rinna Tei
- Division of Allergy, Asthma and Clinical Immunology and Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Tochigi, Japan
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Julie Xu
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Thomas S Griffith
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Henry J McSorley
- Division of Cell signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology and Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
40
|
Gaurav R, Poole JA. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J Asthma 2022; 59:2530-2538. [PMID: 34928757 PMCID: PMC9234100 DOI: 10.1080/02770903.2021.2020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES PubMed, clinicaltrials.gov. STUDY SELECTIONS A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
41
|
Aerosol Inhalation of Heat-Killed Clostridium butyricum CGMCC0313-1 Alleviates Allergic Airway Inflammation in Mice. J Immunol Res 2022; 2022:8447603. [PMID: 36033385 PMCID: PMC9410851 DOI: 10.1155/2022/8447603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have shown that exposure to beneficial microorganisms can reduce the risk of asthma, but the clinical use of live probiotics is controversial due to the risk of infection. As heat-killed probiotics can also exhibit immunomodulatory activity, this study is aimed at investigating whether heat-killed Clostridium butyricum (HKCB) CGMCC0313-1 could reduce allergic airway inflammation in an ovalbumin-induced mouse model. Mice received aerosol inhalation of HKCB, oral administration of HKCB, or oral administration of live Clostridium butyricum (CB) during sensitization. Bronchoalveolar lavage fluid cell number, histology, and levels of the cytokines interferon-gamma and IL-4, the autophagy-related proteins LC3B, Beclin1, and p62, and members of the nuclear factor kappa B (NF-κB)/NLRP3 inflammasome signaling pathway were examined. Our results demonstrated that aerosol inhalation of HKCB, oral HKCB administration, and oral live CB administration alleviated allergic airway inflammation and mucus secretion in allergic mice. Aerosol inhalation of HKCB was the most effective method; it restored the Th1/Th2 balance, ameliorated autophagy, and inhibited the NF-κB/NLRP3 inflammasome signaling pathway in the lungs of allergic mice. Thus, aerosol inhalation of HKCB could be a promising strategy for the prevention or treatment of asthma.
Collapse
|
42
|
Kryshen KL, Gaidai DS, Gushchin YA, Makarova МN, Makarov VG, Kalyuzhin OV. Bacterial Lysate Complex Administered Intranasally Suppresses Inflammation in an In Vivo Model of Aseptic Lymphadenitis. Bull Exp Biol Med 2022; 173:361-365. [DOI: 10.1007/s10517-022-05549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/30/2022]
|
43
|
Kaczynska A, Klosinska M, Janeczek K, Zarobkiewicz M, Emeryk A. Promising Immunomodulatory Effects of Bacterial Lysates in Allergic Diseases. Front Immunol 2022; 13:907149. [PMID: 35812388 PMCID: PMC9257936 DOI: 10.3389/fimmu.2022.907149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
In light of an escalating prevalence of allergic disorders, it is crucial to fully comprehend their pathophysiology and etiology. Such knowledge would play a pivotal role in the search for new therapeutic approaches concerning not only diseases' symptoms, but also their underlying causes. The hygiene hypothesis indicates a high correlation between limited exposure to pathogens in early childhood and the risk of developing allergic disorders. Bearing in mind the significance of respiratory and digestive systems' mucous membrane's first-line exposure to pathogens as well as its implications on the host's immune response, a therapy targeted at aforesaid membranes could guarantee promising and extensive treatment outcomes. Recent years yielded valuable information about bacterial lysates (BLs) known for having immunomodulatory properties. They consist of antigen mixtures obtained through lysis of bacteria which are the most common etiologic agents of respiratory tract infections. They interact with dendritic cells located in the mucous membranes of the upper respiratory tract and the gastrointestinal tract by toll-like receptors. The dendritic cells present acquired antigens resulting in innate immune response development on the release of chemokines, both stimulating monocytes and NK cells maturation and promoting polymorphonuclear neutrophil migration. Moreover, they influence the adaptive immune system by stimulating an increase of specific antibodies against administered bacterial antigens. The significance of BLs includes not only an anti-inflammatory effect on local infections but also restoration of Th1/Th2 balance, as demonstrated mainly in animal models. They decrease Th2-related cytokine levels (IL-4, IL-13) and increase Th1-related cytokine levels (IFN-γ). The reestablishment of the balance of the immune response leads to lowering atopic reactions incidence which, in addition to reduced risk of inflammation, provides the alleviation and improvement of clinical manifestations of allergic disorders. In this review, we hereby describe mechanisms of BLs action, considering their significant immunomodulatory role in innate immunity. The correlation between local, innate, and adaptive immune responses and their impact on the clinical course of allergic disorders are discussed as well. To conclude our review, we present up-to-date literature regarding the outcomes of BLs implemented in atopic dermatitis, allergic rhinitis, and asthma prevention and treatment, especially in children.
Collapse
Affiliation(s)
- Agnieszka Kaczynska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Martyna Klosinska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Kamil Janeczek
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Emeryk
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
44
|
Maintz L, Bieber T, Simpson HD, Demessant-Flavigny AL. From Skin Barrier Dysfunction to Systemic Impact of Atopic Dermatitis: Implications for a Precision Approach in Dermocosmetics and Medicine. J Pers Med 2022; 12:jpm12060893. [PMID: 35743678 PMCID: PMC9225544 DOI: 10.3390/jpm12060893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
: Atopic dermatitis (AD) affects up to 20% of children and is considered the starting point of the atopic march with the development of food allergy, asthma, and allergic rhinitis. The heterogeneous phenotype reflects distinct and/or overlapping pathogenetic mechanisms with varying degrees of epidermal barrier disruption, activation of different T cell subsets and dysbiosis of the skin microbiome. Here, we review current evidence suggesting a systemic impact of the cutaneous inflammation in AD together with a higher risk of asthma and other comorbidities, especially in severe and persistent AD. Thus, early therapy of AD to restore the impaired skin barrier, modified microbiome, and target type 2 inflammation, depending on the (endo)phenotype, in a tailored approach is crucial. We discuss what we can learn from the comorbidities and the implications for preventive and therapeutic interventions from precision dermocosmetics to precision medicine. The stratification of AD patients into biomarker-based endotypes for a precision medicine approach offers opportunities for better long-term control of AD with the potential to reduce the systemic impact of a chronic skin inflammation and even prevent or modify the course, not only of AD, but possibly also the comorbidities, depending on the patient’s age and disease stage.
Collapse
Affiliation(s)
- Laura Maintz
- Department of Dermatology and Allergy, University Hospital Bonn, 53127 Bonn, Germany;
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), 7265 Davos, Switzerland
- Correspondence: ; Tel.: +49-228-287-16898
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, 53127 Bonn, Germany;
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), 7265 Davos, Switzerland
- Davos Biosciences, Herman-Burchard-Str. 9, CH-7265 Davos Wolfgang, Switzerland
| | | | | |
Collapse
|
45
|
Antunes KH, Cassão G, Santos LD, Borges SG, Poppe J, Gonçalves JB, Nunes EDS, Recacho GF, Sousa VB, Da Silva GS, Mansur D, Stein RT, Pasquali C, De Souza APD. Airway Administration of Bacterial Lysate OM-85 Protects Mice Against Respiratory Syncytial Virus Infection. Front Immunol 2022; 13:867022. [PMID: 35603159 PMCID: PMC9118194 DOI: 10.3389/fimmu.2022.867022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a seasonal pathogen responsible for the highest percentage of viral bronchiolitis in pediatric patients. There are currently no vaccine available and therapeutic methods to mitigate the severity of RSV bronchiolitis are limited. OM-85, an oral standardized bacterial lysate isolated from human respiratory strains and widely used to prevent recurrent infections and/or exacerbations in populations at risk, has been shown to be effective and safe in children and adults. Here, we demonstrate that airway administration of OM-85 in Balb/c mice prior to infection prevents RSV-induced disease, resulting in inhibition of viral replication associated with less perivascular and peribronchial inflammation in the lungs. These protective effects are dose and time-dependent with complete protection using 1mg dose of OM-85 only four times intranasally. Mechanistic insights using this topical route in the airways revealed increased alveolar macrophages, a selective set of tolerogenic DCs, Treg and Th1 expansion in the lung, even in the absence of infection, contributing to a better Th1/Th2 balance and preventing ILC2 recruitment in the airways and associated inflammatory sequelae. OM-85 preventive treatment also improved antiviral response by increasing IFNβ and its responsive genes in the lung. In vitro, OM-85 protects against RSV infection in a type I interferon pathway. Our animal model data suggest that intranasal use of OM-85 should be considered as a potential prophylactic product to prevent RSV bronchiolitis once human studies confirm these findings.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gisele Cassão
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Duarte Santos
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sofia Giacomet Borges
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Juliana Poppe
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Budelon Gonçalves
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduarda da Silva Nunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Guilherme Fernando Recacho
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Vitória Barbosa Sousa
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriela Souza Da Silva
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Daniel Mansur
- Laboratory of Imunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Renato T Stein
- Department of Pediatrics, São Lucas Hospital PUCRS, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Ana Paula Duarte De Souza
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
46
|
Taube C. Bacterial lysates to inhibit allergic airway disease: Are they up to the challenge? J Allergy Clin Immunol 2022; 149:893-894. [PMID: 35038544 DOI: 10.1016/j.jaci.2021.12.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Taube
- Department of Pulmonary Medicine, University Hospital - Ruhrlandklinik, Essen.
| |
Collapse
|
47
|
Ballarini S, Ardusso L, Ortega Martell JA, Sacco O, Feleszko W, Rossi GA. Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front Pediatr 2022; 10:1051079. [PMID: 36479289 PMCID: PMC9720385 DOI: 10.3389/fped.2022.1051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Respiratory tract infections (RTI) are mainly viral in origin and among the leading cause of childhood morbidity globally. Associated wheezing illness and asthma are still a clear unmet medical need. Despite the continuous progress in understanding the processes involved in their pathogenesis, preventive measures and treatments failed to demonstrate any significant disease-modifying effect. However, in the last decades it was understood that early-life exposure to microbes, may reduce the risk of infectious and allergic disorders, increasing the immune response efficacy. These results suggested that treatment with bacterial lysates (BLs) acting on gut microbiota, could promote a heterologous immunomodulation useful in the prevention of recurrent RTIs and of wheezing inception and persistence. This hypothesis has been supported by clinical and experimental studies showing the reduction of RTI frequency and severity in childhood after oral BL prophylaxis and elucidating the involved mechanisms. OM-85 is the product whose anti-viral effects have been most extensively studied in vitro, animal, and human cell studies and in translational animal infection/disease models. The results of the latter studies, describing the potential immune training-based activities of such BL, leading to the protection against respiratory viruses, will be reported. In response to human rhinovirus, influenza virus, respiratory syncytial virus and severe acute respiratory coronavirus-2, OM-85 was effective in modulating the structure and the functions of a large numbers of airways epithelial and immune cells, when administered both orally and intranasally.
Collapse
Affiliation(s)
| | - Ledit Ardusso
- Allergy and Immunology Department, Rosario School of Medicine, National University of Rosario, Rosario, Argentina
| | | | - Oliviero Sacco
- Department of Pediatrics, Pulmonary and Allergy Disease Unit, G. Gaslini University Hospital, Genoa, Italy
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, The Medical University Children's Hospital, Warszawa, Poland
| | - Giovanni A Rossi
- Department of Pediatrics, Unit of Pediatrics Pulmonology and Respiratory Endoscopy, G. Gaslini Hospital, Genoa, Italy
| |
Collapse
|
48
|
Pivniouk V, Pivniouk O, DeVries A, Uhrlaub JL, Michael A, Pivniouk D, VanLinden SR, Conway MY, Hahn S, Malone SP, Ezeh P, Churko JM, Anderson D, Kraft M, Nikolich-Zugich J, Vercelli D. The OM-85 bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression. J Allergy Clin Immunol 2021; 149:923-933.e6. [PMID: 34902435 PMCID: PMC8660661 DOI: 10.1016/j.jaci.2021.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
Background Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. Objectives We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. Methods ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein–pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. Results OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein–pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. Conclusions OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.
Collapse
|
49
|
Dietary Fibers: Effects, Underlying Mechanisms and Possible Role in Allergic Asthma Management. Nutrients 2021; 13:nu13114153. [PMID: 34836408 PMCID: PMC8621630 DOI: 10.3390/nu13114153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The prevalence of asthma is increasing, but the cause remains under debate. Research currently focuses on environmental and dietary factors that may impact the gut-lung axis. Dietary fibers are considered to play a crucial role in supporting diversity and activity of the microbiome, as well as immune homeostasis in the gut and lung. This review discusses the current state of knowledge on how dietary fibers and their bacterial fermentation products may affect the pathophysiology of allergic asthma. Moreover, the impact of dietary fibers on early type 2 asthma management, as shown in both pre-clinical and clinical studies, is described. Short-chain fatty acids, fiber metabolites, modulate host immunity and might reduce the risk of allergic asthma development. Underlying mechanisms include G protein-coupled receptor activation and histone deacetylase inhibition. These results are supported by studies in mice, children and adults with allergic asthma. Fibers might also exert direct effects on the immune system via yet to be elucidated mechanisms. However, the effects of specific types of fiber, dosages, duration of treatment, and combination with probiotics, need to be explored. There is an urgent need to further valorize the potential of specific dietary fibers in prevention and treatment of allergic asthma by conducting more large-scale dietary intervention trials.
Collapse
|