1
|
Sarriés-Serrano U, Miquel-Rio L, Santana N, Paz V, Sancho-Alonso M, Callado LF, Meana JJ, Bortolozzi A. Impaired unfolded protein response, BDNF and synuclein markers in postmortem dorsolateral prefrontal cortex and caudate nucleus of patients with depression and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111299. [PMID: 40015617 DOI: 10.1016/j.pnpbp.2025.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Major depressive disorder (MDD) is characterized by significant impairment in social, emotional, and cognitive functioning. Its precise pathophysiology remains poorly understood. Alterations in protein homeostasis and some misfolded proteins have been identified within the brains of patients diagnosed with neuropsychiatric disorders. In contrast to neurodegenerative processes such as Parkinson's disease (PD), where the accumulation of aggregated α-synuclein (α-Syn) protein is a primary cause of significant neuronal loss, altered proteostasis in MDD may result in loss-of-function effects by modifying synaptic neuroplasticity. Moreover, aberrant activation of endoplasmic reticulum (ER) pathways may intensify the pathological alterations due to altered proteostasis. In this study, dorsolateral prefrontal cortex (dlPFC) and caudate nucleus from MDD patients and non-psychiatric controls were used. Postmortem samples of same brain areas from PD patients (Braak 2-3 and 5-6) and controls were also included. Protein levels of ER and unfolded protein response (UPR), synucleins (α-, β- and γ-Syn), and brain-derived neurotrophic factor (BDNF) were measured by Western-Blot. Phospho-eIF2α/eIF2α ratio was increased in the dlPFC and caudate nucleus of MDD and PD patients compared to their respective controls. Brain area-dependent changes in BiP and GRP94 levels were also found. We further detected accumulation of immature BDNF precursors and opposite changes in α- and β-Syn levels in the dlPFC of MDD and PD patients compared to controls. Our findings suggest that alterations in proteostasis contribute to the pathophysiology of MDD, as previously described in PD. A deeper understanding of the pathways involved will identify other candidate proteins and new targets with therapeutic potential.
Collapse
Affiliation(s)
- Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Noemí Santana
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Luis F Callado
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - J Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Yang H, Chen Y, Tao Q, Shi W, Tian Y, Wei Y, Li S, Zhang Y, Han S, Cheng J. Integrative molecular and structural neuroimaging analyses of the interaction between depression and age of onset: A multimodal magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111052. [PMID: 38871019 DOI: 10.1016/j.pnpbp.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Depression is a neurodevelopmental disorder that exhibits progressive gray matter volume (GMV) atrophy. Research indicates that brain development is influential in depression-induced GMV alterations. However, the interaction between depression and age of onset is not well understood by the underlying molecular and neuropathological mechanisms. Thus, 152 first-episode depression individuals and matched 130 healthy controls (HCs) were recruited to undergo T1-weighted high-resolution magnetic resonance imaging for this study. By two-way ANOVA, age and diagnosis were used as factors when analyzing the interaction of GMV in the participants. Then, spatial correlations between neurotransmitter maps and factor-related volume maps are established. Results illustrate a pronounced antagonistic interaction between depression and age of onset in the right insula, superior temporal gyrus, anterior cingulate gyrus, and orbitofrontal gyrus. Depression-caused reductions in GMV are mainly distributed in thalamic-limbic-cortical regions, regardless of age. For the main effect of age, adults exhibit brain atrophy in frontal, cerebellum, parietal, and temporal lobe structures. Cross-modal correlations showed that GMV changes in the interactive regions were linked with the serotonergic system and dopaminergic systems. Summarily, our results reveal the interaction between depression and age of onset in neurobiological mechanisms, which provide hints for future treatment of different ages of depression.
Collapse
Affiliation(s)
- Huiting Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
3
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
4
|
Bashford-Largo J, Nakua H, Blair RJR, Dominguez A, Hatch M, Blair KS, Dobbertin M, Ameis S, Bajaj S. A Shared Multivariate Brain-Behavior Relationship in a Transdiagnostic Sample of Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:377-386. [PMID: 37572936 PMCID: PMC10858974 DOI: 10.1016/j.bpsc.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Internalizing and externalizing psychopathology typically present in early childhood and can have negative implications on general functioning and quality of life. Prior work has linked increased psychopathology symptoms with altered brain structure. Multivariate analysis such as partial least squares correlation can help identify patterns of covariation between brain regions and psychopathology symptoms. This study examined the relationship between gray matter volume (GMV) and psychopathology symptoms in adolescents with various psychiatric diagnoses. METHODS Structural magnetic resonance imaging data were collected from 490 participants with various internalizing and externalizing diagnoses (197 female/293 male; age = 14.68 ± 2.35 years; IQ = 104.05 ± 13.11). Cortical and subcortical volumes were parcellated using the Desikan-Killiany atlas. Partial least squares correlation was used to identify multivariate linear relationships between GMV and the Strength and Difficulties Questionnaire difficulties domains (emotional, peer, conduct, and hyperactivity issues). Resampling approaches were used to determine significance (permutation test), stability (bootstrap resampling), and reproducibility (split-half resampling) of identified relationships. RESULTS We found a significant, stable, and largely reproducible dimension that linked lower Strength and Difficulties Questionnaire scores (less impairment) across all difficulties domains with greater widespread GMV (singular value = 1.17, accounts for 87.1% of the covariance; p < .001). This dimension emphasized the relationship between lower conduct problems and greater GMV in frontotemporal regions. CONCLUSIONS Our results indicate that the most significant and stable brain-behavior relationship in a transdiagnostic sample is a domain-general relationship, linking lower psychopathology symptom scores to greater global GMV. This finding suggests that a shared brain-behavior relationship may be present across adolescents with and without clinically significant psychopathology symptoms.
Collapse
Affiliation(s)
- Johannah Bashford-Largo
- Boys Town National Research Hospital, Boys Town, Nebraska; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska.
| | - Hajer Nakua
- Center for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Ahria Dominguez
- Clinical Health, Emotion, and Neuroscience Laboratory, Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Melissa Hatch
- Mind and Brain Health Labs. Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Karina S Blair
- Boys Town National Research Hospital, Boys Town, Nebraska
| | - Matthew Dobbertin
- Boys Town National Research Hospital, Boys Town, Nebraska; Child and Adolescent Inpatient Psychiatric Unit, Boys Town National Research Hospital, Boys Town, Nebraska
| | - Stephanie Ameis
- Center for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sahil Bajaj
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Center, Houston, Texas
| |
Collapse
|
5
|
Shao J, Qin J, Wang H, Sun Y, Zhang W, Wang X, Wang T, Xue L, Yao Z, Lu Q. Capturing the Individual Deviations From Normative Models of Brain Structure for Depression Diagnosis and Treatment. Biol Psychiatry 2024; 95:403-413. [PMID: 37579934 DOI: 10.1016/j.biopsych.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of gray matter volume. METHODS We enrolled 1092 participants, including 187 patients with depression and 905 healthy control participants. Structural magnetic resonance imaging data of healthy control participants from the Human Connectome Project (n = 510) and REST-meta-MDD Project (n = 229) were used to establish a normative model across the life span in adults 18 to 65 years old for each brain region. Deviations from the normative range for 187 patients and 166 healthy control participants recruited from two local hospitals were captured as normative probability maps, which were used to identify the disease risk and treatment-related latent factors. RESULTS In contrast to case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual normative probability maps (area under the receiver operating characteristic curve range, 0.7146-0.7836) showed better performance than models trained with original gray matter volume values (area under the receiver operating characteristic curve range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on normative probability maps, suggesting distinct treatment response and inclination. CONCLUSIONS Capturing personalized deviations from a normative range could help in understanding the heterogeneous neurobiology of depression and thus guide clinical diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Jiaolong Qin
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Wei Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Ting Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Matar D, Serhan A, El Bilani S, Faraj RA, Hadi BA, Fakhoury M. Psychopharmacological Approaches for Neural Plasticity and Neurogenesis in Major Depressive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:27-48. [PMID: 39261422 DOI: 10.1007/978-981-97-4402-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Major depressive disorder (MDD) is a mental health disorder associated with cognitive impairment, dysregulated appetite, fatigue, insomnia or hypersomnia, and severe mood changes that significantly impact the ability of the affected individual to perform day-to-day tasks, leading to suicide in the worst-case scenario. As MDD is becoming more prevalent, affecting roughly 300 million individuals worldwide, its treatment has become a major point of interest. Antidepressants acting as selective serotonin reuptake inhibitors (SSRIs) are currently used as the first line of treatment for MDD. Other antidepressants currently used for the treatment of MDD include the serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs). However, although effective in alleviating symptoms of MDD, most antidepressants require weeks or even months of regular administration prior to eliciting a rational clinical effect. Owing to the strong evidence showing a relationship between neural plasticity, neurogenesis, and MDD, researchers have also looked at the possibility of using treatment modalities that target these processes in an attempt to improve clinical outcome. The overarching aim of this chapter is to highlight the role of neural plasticity and neurogenesis in the pathophysiology of MDD and discuss the most recently studied treatment strategies that target these processes by presenting supporting evidence from both animal and human studies.
Collapse
Affiliation(s)
- Dina Matar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Aya Serhan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sabah El Bilani
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Rashel Abi Faraj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Bayan Ali Hadi
- School of Pharmacy, Lebanese American University, Beirut, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
7
|
Lee KH, Shin J, Lee J, Yoo JH, Kim JW, Brent DA. Measures of Connectivity and Dorsolateral Prefrontal Cortex Volumes and Depressive Symptoms Following Treatment With Selective Serotonin Reuptake Inhibitors in Adolescents. JAMA Netw Open 2023; 6:e2327331. [PMID: 37540512 PMCID: PMC10403785 DOI: 10.1001/jamanetworkopen.2023.27331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Importance Selective serotonin reuptake inhibitors (SSRIs) are considered a first-line pharmacological treatment for adolescent depression with moderate or higher levels of symptom severity. Thus, it is important to understand neurobiological changes related to SSRIs during the course of treatment for adolescents with depression. Objective To examine neurobiological changes associated with SSRI treatment in adolescents with major depressive disorder (MDD) by measuring longitudinal changes in volume and resting-state functional connectivity (rsFC) in the dorsolateral prefrontal cortex (DLPFC), a core region of cognitive control. Design, Setting, and Participants This cohort study was conducted with an open-label design. Adolescents with MDD and healthy controls were recruited at the Seoul National University Hospital (Seoul, South Korea). Adolescents with MDD were treated with escitalopram for 8 weeks. Data analysis was conducted between April 2021 and February 2022. Main Outcomes and Measures Depressive symptoms were assessed using the Children's Depression Rating Scale-Revised. The outcome measure was defined as the change in Children's Depression Rating Scale-Revised scores from week 0 (before treatment) to week 8 (after treatment) or upon termination. Participants completed structural and resting-state functional magnetic resonance imaging (rsfMRI) assessments before (week 0) and after (week 8) SSRI treatment. Repeated measures analysis of variance and liner mixed model analyses were used to examine the longitudinal associations of SSRI treatment with DLPFC volume and rsFC between responders who showed at least a 40% decrease in depressive symptoms and nonresponders who did not. Results Ninety-five adolescents with MDD and 57 healthy controls were initially recruited. The final analyses of volume included 36 responders (mean [SD] age, 15.0 [1.6] years; 25 girls [69.4%]) and 26 nonresponders (mean [SD] age, 15.3 [1.5] years; 19 girls [73.1%]). Analyses of rsFC included 33 responders (mean [SD] age, 15.2 [1.5] years; 21 girls [63.6%]) and 26 nonresponders (mean [SD] age, 15.3 [1.5] years; 19 girls [73.1%]). The longitudinal associations of SSRI treatment were more evident in responders than in nonresponders. Responders showed significantly increased right DLPFC volume, decreased bilateral DLPFC rsFC with the superior frontal gyri, and decreased left DLPFC rsFC with the ventromedial PFC after treatment compared with before treatment. Furthermore, increased right DLPFC volume was correlated with decreased rsFC between the right DLPFC and superior frontal gyri after SSRI treatment. Conclusions and Relevance The preliminary results of this cohort study suggest that the DLPFC volumetric and rsFC changes may serve as potential neurobiological treatment markers that are associated with symptom improvement in adolescents with MDD.
Collapse
Affiliation(s)
- Kyung Hwa Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiyoon Shin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Lee
- Integrative Care Hub, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jae Hyun Yoo
- Department of Psychiatry, The Catholic University of Korea, Seoul St Mary's Hospital, Seoul, Republic of Korea
| | - Jae-Won Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - David A Brent
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
9
|
Brain structure and synaptic protein expression alterations after antidepressant treatment in a Wistar-Kyoto rat model of depression. J Affect Disord 2022; 314:293-302. [PMID: 35878834 DOI: 10.1016/j.jad.2022.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Structural MRI has demonstrated brain alterations in depression pathology and antidepressants treatment. While synaptic plasticity has been previously proposed as the potential underlying mechanism of MRI findings at a cellular and molecular scale, there is still insufficient evidence to link the MRI findings and synaptic plasticity mechanisms in depression pathology. METHODS In this study, a Wistar-Kyoto (WKY) depression rat model was treated with antidepressants (citalopram or Jie-Yu Pills) and tested in a series of behavioral tests and a 7.0 MRI scanner. We then measured dendritic spine density within altered brain regions. We also examined expression of synaptic marker proteins (PSD-95 and SYP). RESULTS WKY rats exhibited depression-like behaviors in the sucrose preference test (SPT) and forced swim test (FST), and anxiety-like behaviors in the open field test (OFT). Both antidepressants reversed behavioral changes in SPT and OFT but not in FST. We found a correlation between SPT performance and brain volumes as detected by MRI. All structural changes were consistent with alterations of the corpus callosum (white matter), dendritic spine density, as well as PSD95 and SYP expression at different levels. Two antidepressants similarly reversed these macro- and micro-changes. LIMITATIONS The single dose of antidepressants was the major limitation of this study. Further studies should focus on the white matter microstructure changes and myelin-related protein alterations, in addition to comparing the effects of ketamine. CONCLUSION Translational evidence links structural MRI changes and synaptic plasticity alterations, which promote our understanding of SPT mechanisms and antidepressant response in WKY rats.
Collapse
|
10
|
Li Y, Wang J, Yan X, Li H. Combined fractional anisotropy and subcortical volumetric deficits in patients with mild-to-moderate depression: Evidence from the treatment of antidepressant traditional Chinese medicine. Front Neurosci 2022; 16:959960. [PMID: 36081664 PMCID: PMC9448251 DOI: 10.3389/fnins.2022.959960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Numerous neuroimaging studies have demonstrated that diverse brain structural plasticity could occur in a human brain during a depressive episode. However, there is a lack of knowledge regarding the underlying mechanisms of mild-to-moderate depression (MMD), especially the changes of brain structural characteristics after treatment with the Shuganjieyu capsule (SG), a kind of traditional Chinese medicine that has been recommended for the specialized treatment of MMD. In this study, we investigated the structural brain plasticity in MMD that have been undergoing 8 weeks of SG treatment compared with age- and sex-matched healthy controls (HCs) and assessed the relationship between these brain structural alternations and clinical symptoms in MMD. At the baseline, we found that: (1) fractional anisotropy (FA) values in patients with MMD were found to be significantly increased in the regions of anterior limb of internal capsule (ALIC) [MNI coordinates: Peak (x/y/z) = 102, 126, 77; MMD FApeak (Mean ± SD) = 0.621 ± 0.043; HCs FApeak (Mean ± SD) = 0.524 ± 0.052; MMD > HCs, t = 9.625, p < 0.001] and posterior limb of internal capsule (PLIC) [MNI coordinates: Peak (x/y/z) = 109, 117, 87; MMD FApeak (Mean ± SD) = 0.694 ± 0.042; HCs FApeak (Mean ± SD) = 0.581 ± 0.041; MMD > HCs, t = 12.90, p < 0.001], and FA values were significantly positively correlated with HAMD scores in patients with MMD. (2) Patients with MMD showed smaller gray matter volume (GMV) of the dorsolateral prefrontal cortex (DLPFC), frontal cortex, occipital cortex, and precuneus, and the GMV of DLPFC was negatively correlated with HAMD scores. After SG treatment, we found that (1) the HAMD scores decreased; (2) FA values were significantly decreased in the regions of the ALIC and PLIC compared to those at baseline and TBSS revealed no significant differences in FA values between patients with MMD and HCs. (3) The structural characteristics of DLPFC in patients with MMD obtained at the 8th week were improved, e.g., no significant differences in GMV of DLPFC between the two groups. Taken together, our results provided neuroimaging evidence suggesting that SG is an effective treatment for patients with MMD. Moreover, alterations of GMV after 8 weeks of SG treatment indicated a potential modulation mechanism in brain structural plasticity within the DLPFC in patients with MMD.
Collapse
Affiliation(s)
- Yuan Li
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Junjie Wang
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xu Yan
- Department of Medical Imaging, Changzhi Medical College, Changzhi, China
| | - Hong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- *Correspondence: Hong Li
| |
Collapse
|
11
|
Gerlach AR, Karim HT, Peciña M, Ajilore O, Taylor WD, Butters MA, Andreescu C. MRI predictors of pharmacotherapy response in major depressive disorder. Neuroimage Clin 2022; 36:103157. [PMID: 36027717 PMCID: PMC9420953 DOI: 10.1016/j.nicl.2022.103157] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is among the most prevalent psychiatric disorders, exacting a substantial personal, social, and economic toll. Antidepressant treatment typically involves an individualized trial and error approach with an inconsistent success rate. Despite a pressing need, no reliable biomarkers for predicting treatment outcome have yet been discovered. Brain MRI measures hold promise in this regard, though clinical translation remains elusive. In this review, we summarize structural MRI and functional MRI (fMRI) measures that have been investigated as predictors of treatment outcome. We broadly divide these into five categories including three structural measures: volumetric, white matter burden, and white matter integrity; and two functional measures: resting state fMRI and task fMRI. Currently, larger hippocampal volume is the most widely replicated predictor of successful treatment. Lower white matter hyperintensity burden has shown robustness in late life depression. However, both have modest discriminative power. Higher fractional anisotropy of the cingulum bundle and frontal white matter, amygdala hypoactivation and anterior cingulate cortex hyperactivation in response to negative emotional stimuli, and hyperconnectivity within the default mode network (DMN) and between the DMN and executive control network also show promise as predictors of successful treatment. Such network-focused measures may ultimately provide a higher-dimensional measure of treatment response with closer ties to the underlying neurobiology.
Collapse
Affiliation(s)
- Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Seewoo BJ, Rodger J, Demitrack MA, Heart KL, Port JD, Strawn JR, Croarkin PE. Neurostructural Differences in Adolescents With Treatment-Resistant Depression and Treatment Effects of Transcranial Magnetic Stimulation. Int J Neuropsychopharmacol 2022; 25:619-630. [PMID: 35089358 PMCID: PMC9380715 DOI: 10.1093/ijnp/pyac007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite its morbidity and mortality, the neurobiology of treatment-resistant depression (TRD) in adolescents and the impact of treatment on this neurobiology is poorly understood. METHODS Using automatic segmentation in FreeSurfer, we examined brain magnetic resonance imaging baseline volumetric differences among healthy adolescents (n = 30), adolescents with major depressive disorder (MDD) (n = 19), and adolescents with TRD (n = 34) based on objective antidepressant treatment rating criteria. A pooled subsample of adolescents with TRD were treated with 6 weeks of active (n = 18) or sham (n = 7) 10-Hz transcranial magnetic stimulation (TMS) applied to the left dorsolateral prefrontal cortex. Ten of the adolescents treated with active TMS were part of an open-label trial. The other adolescents treated with active (n = 8) or sham (n = 7) were participants from a randomized controlled trial. RESULTS Adolescents with TRD and adolescents with MDD had decreased total amygdala (TRD and MDD: -5%, P = .032) and caudal anterior cingulate cortex volumes (TRD: -3%, P = .030; MDD: -.03%, P = .041) compared with healthy adolescents. Six weeks of active TMS increased total amygdala volumes (+4%, P < .001) and the volume of the stimulated left dorsolateral prefrontal cortex (+.4%, P = .026) in adolescents with TRD. CONCLUSIONS Amygdala volumes were reduced in this sample of adolescents with MDD and TRD. TMS may normalize this volumetric finding, raising the possibility that TMS has neurostructural frontolimbic effects in adolescents with TRD. TMS also appears to have positive effects proximal to the site of stimulation.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, WA, Australia
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centre, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, WA, Australia
| | - Mark A Demitrack
- Mayo Clinic, Rochester, Minnesota, USA; Trevena, Inc. Chesterbrook, Pennsylvania, USA
| | | | - John D Port
- Department of Radiology
Chesterbrook, Pennsylvania, USA
- Department of Psychiatry and Psychology
Chesterbrook, Pennsylvania, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology
Chesterbrook, Pennsylvania, USA
| |
Collapse
|
13
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
14
|
Khushboo, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Neuroanatomical, Biochemical, and Functional Modifications in Brain Induced by Treatment with Antidepressants. Mol Neurobiol 2022; 59:3564-3584. [DOI: 10.1007/s12035-022-02780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
|
15
|
Amidfar M, Quevedo J, Z Réus G, Kim YK. Grey matter volume abnormalities in the first depressive episode of medication-naïve adult individuals: a systematic review of voxel based morphometric studies. Int J Psychiatry Clin Pract 2021; 25:407-420. [PMID: 33351672 DOI: 10.1080/13651501.2020.1861632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To identify the reliable and consistent grey matter volume (GMV) abnormalities associated with major depressive disorder (MDD), we excluded the influence of confounding clinical characteristics, comorbidities and brain degeneration on brain morphological abnormalities by inclusion of non-comorbid and non-geriatric drug-naïve MDD individuals experiencing first episode depressive. METHODS The PubMed, Scopus, Web of Science, Science Direct and Google scholar databases were searched for papers published in English up to April 2020. RESULTS A total of 21 voxel based morphometric (VBM) studies comparing 845 individuals in the first depressive episode and medication-naïve with 940 healthy control subjects were included. The results showed a grey matter volumes reductions in the orbitofrontal cortex (OFC), prefrontal cortex (PFC), frontal and temporal gyri, temporal pole, insular lobe, thalamus, basal ganglia, cerebellum, hippocampus, cingulate cortex, and amygdala. In addition, increased grey matter volumes in the postcentral gyrus, superior frontal gyrus, insula, basal ganglia, thalamus, amygdala, cuneus, and precuneus differentiated the first depressive episode in medication-naïve individuals from healthy subjects. CONCLUSION The present systematic review provided additional support for the involvement of grey matter structural abnormalities in limbic-cortical circuits as possibly specific structural abnormalities in the early stage of MDD.Key pointsDistinct brain regions in MDD patients might be associated with the early stages of illness, and thus it is critical to study the causal relationship between brain structures and the onset of the disease to improve the evaluation in clinic.Grey matter alterations in the fronto-limbic networks in the first episode, medication-naïve MDD might suggest that these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.First episode, medically naïve depressive patients show grey matter volume alterations in brain regions mainly associated with emotion regulation including parietal-temporal regions, PFC, insular lobe, thalamus, basal ganglia, cerebellum and limbic structures that may be specific changes in early stage of MDD.Genotype-diagnosis interaction effects on brain morphology in the cortico-limbic-striatal circuits, including the PFC, amygdala, hippocampus and striatum that might be implicated in the dysfunctional regulation of emotion in first-episode MDD patients.Future longitudinal and prospective studies should be conducted to identify the core structural brain changes in people at-risk for MDD and explore the association of their brain volumes with symptom onset.
Collapse
Affiliation(s)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Yong-Ku Kim
- Departments of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
16
|
Kim SE, Bang M, Won E, Lee SH. Association between Uncinate Fasciculus Integrity and Agoraphobia Symptoms in Female Patients with Panic Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:63-72. [PMID: 33508789 PMCID: PMC7851457 DOI: 10.9758/cpn.2021.19.1.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Objective Although neural correlates of sub-clinical agoraphobia (AG) symptoms have been previously suggested, only a few studies evaluating structural changes of the brain have been conducted in agoraphobic patients with panic disorder (PD). We investigated and compared white matter (WM) micro-structural alterations between PD patients with AG (PD + AG) and those without AG (PD − AG). Methods Our study included 56 female PD patients, of which 25 were diagnosed with AG and 31 were diagnosed without AG. Diffusion tensor imaging was performed to investigate micro-structural changes in the WM tracts related to fronto-temporo-occipital areas (uncinate fasciculus, cingulum bundle, inferior longitudinal/fronto-occipital fasciculus, fornix column and body, and fornix/stria terminalis). All participants were subjected to the Anxiety Sensitivity Inventory-Revised (ASI-R), Beck Depression Inventory-II (BDI-II), and Albany Panic and Phobia questionnaires. Results The fractional anisotropy values of the right uncinate fasciculus in PD + AG were significantly lower than that of PD − AG and showed significant correlations with BDI-II and ASI-R total scores. Mean diffusivity and radial diffusivity values of the right uncinate fasciculus were significantly higher in PD + AG as compared to PD − AG. Conclusion Our findings suggest that the uncinate fasciculus may be associated with AG symptoms in PD, possibly through demyelination. Our findings may contribute to the neurobiological evidence regarding the association between AG and WM structural changes in PD.
Collapse
Affiliation(s)
- Sung Eun Kim
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Minji Bang
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eunsoo Won
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Sang-Hyuk Lee
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
- Departments of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
17
|
Yang J, Hellerstein DJ, Chen Y, McGrath PJ, Stewart JW, Liu Z, Peterson BS, Wang Z. Gray matter reorganization underpinnings of antidepressant treatment of persistent depressive disorder. Eur Neuropsychopharmacol 2021; 43:129-138. [PMID: 33402259 DOI: 10.1016/j.euroneuro.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/29/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
Brain gray matter is organized in a manner with interconnected brain regions, resulting in a notable covariance pattern that recapitulates either the functional coactivation or structural connectivity of brain regions, which is believed to underpin psychiatric disorders such as depression. This study aimed to investigate whether and how antidepressants took effect in treating depression and reducing symptoms by altering the gray matter covariance pattern. We combined structural magnetic resonance imaging (MRI) scans acquired in two randomized, double-blind, placebo-controlled trial (RCT) studies of the treatment using serotonin-norepinephrine reuptake inhibitor (SNRI) antidepressant medications in patients with persistent depressive disorder (PDD). One was an RCT of 10-week duloxetine medication that consisted of patients who received duloxetine (N = 21) or placebo (N = 21), and the other was an RCT of 12-week desvenlafaxine medication that consisted of 19 and 17 patients respectively who received desvenlafaxine or placebo. We examined treatment effect on gray matter volume (GMV) and topological organization of GMV covariance pattern (i.e., GMV-based network). We found a treatment-by-time effect on GMV in the angular gyrus and cuneus areas, whereas the GMV change rate of the cuneus was inversely correlated with the response rate. We observed a significant increase in the local efficiency of the GMV-based network following medication treatment compared with placebo. Our findings provide preliminary evidence for a GMV-based network-specific reconfiguration caused by antidepressants compared to placebo and the cuneus may be a possible candidate region to predict antidepressant response.
Collapse
Affiliation(s)
- Jie Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Renming Z Rd, Changsha, Hunan 410011, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; New York State Psychiatric Institute, New York, NY, USA.
| | - David J Hellerstein
- New York State Psychiatric Institute, New York, NY, USA; Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Ying Chen
- New York State Psychiatric Institute, New York, NY, USA; Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Patrick J McGrath
- New York State Psychiatric Institute, New York, NY, USA; Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jonathan W Stewart
- New York State Psychiatric Institute, New York, NY, USA; Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Renming Z Rd, Changsha, Hunan 410011, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhishun Wang
- New York State Psychiatric Institute, New York, NY, USA; Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
18
|
Gudayol-Ferré E, Duarte-Rosas P, Peró-Cebollero M, Guàrdia-Olmos J. THE EFFECT OF SECOND-GENERATION ANTIDEPRESSANT TREATMENT ON THE EXECUTIVE FUNCTIONS OF PATIENTS WITH MAJOR DEPRESSIVE DISORDER: A META-ANALYSIS STUDY WITH STRUCTURAL EQUATION MODELS. Psychiatry Res 2021; 296:113690. [PMID: 33387749 DOI: 10.1016/j.psychres.2020.113690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Major depressive disorder (MDD) has been linked to executive functions (EF) deficits that can be improved after pharmacological treatment, but it is unclear whether there is a class of antidepressants that is more effective than others to ameliorate these deficits in MDD. Additionally, the possible effects of clinical and demographic variables on the improvement of MDD EF deficits after pharmacological treatment are currently unknown. Our aim was to study the possible neuropsychological effects of second-generation antidepressant classes on the EF of MDD patients and the potential influence of clinical and demographic variables as moderators of these effects through a meta-analytic approach. Twenty-one papers were included in our study. A structural equation model meta-analysis was performed. The improvement of EF after pharmacological treatment is clinically relevant, but it is incomplete. This effect is influenced by age and years of education of the patients. Selective serotonin reuptake inhibitors (SSRIs) and dual inhibitors are the drugs causing the greatest improvement in EF of MDD patients. Antidepressant class is an important variable linked to EF improvement after MDD treatment, but the degree of improvement in these cognitive functions is strongly influenced by some clinical and demographic variables of patients with depression.
Collapse
Affiliation(s)
- Esteve Gudayol-Ferré
- Facultad de Psicología. Universidad Michoacana San Nicolás de Hidalgo, Morelia, México.
| | - Patricia Duarte-Rosas
- Doctorado de Psicología Clínica y de la Salud. Facultat de Psicologia. Universitat de Barcelona, Barcelona Spain
| | - Maribel Peró-Cebollero
- Facultat de Psicologia, Institut de Neurociències, UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
| | - Joan Guàrdia-Olmos
- Facultat de Psicologia, Institut de Neurociències, UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Suen PJC, Doll S, Batistuzzo MC, Busatto G, Razza LB, Padberg F, Mezger E, Bulubas L, Keeser D, Deng ZD, Brunoni AR. Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci 2021; 271:101-110. [PMID: 32279145 PMCID: PMC8100980 DOI: 10.1007/s00406-020-01127-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention investigated for the treatment of depression. Clinical results have been heterogeneous, partly due to the variability of electric field (EF) strength in the brain owing to interindividual differences in head anatomy. Therefore, we investigated whether EF strength was correlated with behavioral changes in 16 depressed patients using simulated electric fields in real patient data from a controlled clinical trial. We hypothesized that EF strength in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), brain regions implicated in depression pathophysiology, would be associated with changes in depression, mood and anxiety scores. SimNIBS were used to simulate individual electric fields based on the MRI structural T1-weighted brain scans of depressed subjects. Linear regression models showed, at the end of the acute treatment phase, that simulated EF strength was inversely associated with negative affect in the bilateral ACC (left: β = - 160.463, CI [- 291.541, - 29.385], p = 0.021; right: β = - 189.194, CI [- 289.479, - 88.910], p = 0.001) and DLPFC (left: β = - 93.210, CI [- 154.960, - 31.461], p = 0.006; right: β = - 82.564, CI [- 142.867, - 22.262], p = 0.011) and with depression scores in the left ACC (β = - 156.91, CI [- 298.51, - 15.30], p = 0.033). No association between positive affect or anxiety scores, and simulated EF strength in the investigated brain regions was found. To conclude, our findings show preliminary evidence that EF strength simulations might be associated with further behavioral changes in depressed patients, unveiling a potential mechanism of action for tDCS. Further studies should investigate whether individualization of EF strength in key brain regions impact clinical response.
Collapse
Affiliation(s)
- Paulo J. C. Suen
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Doll
- Department of Psychology, University of Münster, Münster, Germany
| | | | - Geraldo Busatto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA) and Laboratory of Psychiatric Neuroimaging, Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Lais B. Razza
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Service of Interdisciplinary Neuromodulation, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Instituto de Psiquiatria, R Dr Ovidio Pires de Campos 785, 2o andar, Ala Sul, São Paulo, CEP 05403-000, Brazil
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany,Department of Clinical Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andre R. Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Service of Interdisciplinary Neuromodulation, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Instituto de Psiquiatria, R Dr Ovidio Pires de Campos 785, 2o andar, Ala Sul, São Paulo, CEP 05403-000, Brazil,Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo and Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, São Paulo 05508-000, Brazil
| |
Collapse
|
20
|
Huang Y, Shen L, Huang J, Xu X, Wang Y, Jin H. Efficacy and Safety of tDCS and tACS in Treatment of Major Depressive Disorder: A Randomized, Double-Blind, Factorial Placebo-Controlled Study Design. Neuropsychiatr Dis Treat 2021; 17:1459-1468. [PMID: 34012266 PMCID: PMC8128494 DOI: 10.2147/ndt.s295945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are regarded as promising antidepressant treatments. OBJECTIVE To compare the efficacy and safety of tDCS, tACS, escitalopram, and placebo/sham stimulation controls. DESIGN Randomized, parallel, double-blind, placebo-controlled study. METHODS Sample sizes were calculated based on data from previous similar studies. Eligible non-treatment-resistant-depressive outpatient subjects with moderate-to-severe depression (HRDS ≥17) are randomized to receive (1) tDCS + placebo; (2) tACS + placebo; (3) escitalopram + placebo; or (4) sham stimulation + placebo. The intensity of electricity is 2 mA, lasting for 30 minutes over two consecutive working days (10 sessions in total). The medication lasts for 6 weeks. The primary outcome measure was the response rates within 6 weeks (week 6 is also the endpoint of the study), and secondary outcome measures included changes in other clinical measurements. Safety and acceptability are measured by adverse event rates and dropout rates. Exploring outcome consist of the performance of cognitive battery as well as neurophysiology results. CONCLUSION To the best of our knowledge, the present study is the first double-blind controlled study comparing tDCS, tACS, and clinically used antidepressants, which will provide further evidence for their efficacy and safety in possible clinical applications.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Linjie Shen
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Jia Huang
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hnagzhou, Zhejiang Province, People's Republic of China
| | - Yong Wang
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Hua Jin
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Seok D, Smyk N, Jaskir M, Cook P, Elliott M, Girelli T, Scott JC, Balderston N, Beer J, Stock J, Makhoul W, Gur RC, Davatzikos C, Shinohara R, Sheline Y. Dimensional connectomics of anxious misery, a human connectome study related to human disease: Overview of protocol and data quality. NEUROIMAGE-CLINICAL 2020; 28:102489. [PMID: 33395980 PMCID: PMC7708855 DOI: 10.1016/j.nicl.2020.102489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022]
Abstract
We present a new imaging study of 200 adults experiencing depression and anxiety. Quantitative measures of image quality indicate comparable quality to the HCP-YA. In addition, a comprehensive set of assessments measured patients’ symptom profiles. Data will be publicly available through the NIMH Data Archive starting fall 2020.
Disparate diagnostic categories from the Diagnostic and Statistical Manual of Mental Disorders (DSM), including generalized anxiety disorder, major depressive disorder and post-traumatic stress disorder, share common behavioral and phenomenological dysfunctions. While high levels of comorbidity and common features across these disorders suggest shared mechanisms, past research in psychopathology has largely proceeded based on the syndromal taxonomy established by the DSM rather than on a biologically-informed framework of neural, cognitive and behavioral dysfunctions. In line with the National Institute of Mental Health’s Research Domain Criteria (RDoC) framework, we present a Human Connectome Study Related to Human Disease that is intentionally designed to generate and test novel, biologically-motivated dimensions of psychopathology. The Dimensional Connectomics of Anxious Misery study is collecting neuroimaging, cognitive and behavioral data from a heterogeneous population of adults with varying degrees of depression, anxiety and trauma, as well as a set of healthy comparators (to date, n = 97 and n = 24, respectively). This sample constitutes a dataset uniquely situated to elucidate relationships between brain circuitry and dysfunctions of the Negative Valence construct of the RDoC framework. We present a comprehensive overview of the eligibility criteria, clinical procedures and neuroimaging methods of our project. After describing our protocol, we present group-level activation maps from task fMRI data and independent components maps from resting state data. Finally, using quantitative measures of neuroimaging data quality, we demonstrate excellent data quality relative to a subset of the Human Connectome Project of Young Adults (n = 97), as well as comparable profiles of cortical thickness from T1-weighted imaging and generalized fractional anisotropy from diffusion weighted imaging. This manuscript presents results from the first 121 participants of our full target 250 participant dataset, timed with the release of this data to the National Institute of Mental Health Data Archive in fall 2020, with the remaining half of the dataset to be released in 2021.
Collapse
Affiliation(s)
- Darsol Seok
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Nathan Smyk
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Marc Jaskir
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Philip Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Mark Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Tommaso Girelli
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Nicholas Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Joanne Beer
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, United States
| | - Janet Stock
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Russell Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, United States
| | - Yvette Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
22
|
Li F, Jackson T. Gray matter volume differences between lower, average, and higher pain resilience subgroups. Psychophysiology 2020; 57:e13631. [DOI: 10.1111/psyp.13631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/09/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Fenghua Li
- Key Laboratory of Cognition & Personality Southwest University Chongqing China
| | - Todd Jackson
- Key Laboratory of Cognition & Personality Southwest University Chongqing China
- Department of Psychology University of Macau Taipa China
| |
Collapse
|
23
|
Choi KW, Kwon S, Pyun SB, Tae WS. Shape Deformation in the Brainstem of Medication-Naïve Female Patients with Major Depressive Disorder. Psychiatry Investig 2020; 17:465-474. [PMID: 32403210 PMCID: PMC7265019 DOI: 10.30773/pi.2020.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Although neuroimaging studies have shown volumetric reductions, such as the anterior cingulate, prefrontal cortices, and hippocampus in patients with major depressive disorder (MDD), few studies have investigated the volume of or shape alterations in the subcortical regions and the brainstem. We hypothesized that medication-naïve female adult patients with MDD might present with shape and volume alterations in the subcortical regions, including the brainstem, compared to healthy controls (HCs). METHODS A total of 20 medication-naïve female patients with MDD and 21 age-matched female HCs, underwent 3D T1-weighted structural magnetic resonance scanning. We analyzed the volumes of each subcortical region and each brainstem region, including the midbrain, pons, and medulla oblongata. We also performed surface-based vertex analyses on the subcortical areas and brainstem. RESULTS Female patients with MDD showed non-significant volumetric differences in the subcortical regions, whole brainstem, and each brainstem region compared to the HCs. However, in the surface-based vertex analyses, significant shape contractions were observed in both cerebellar peduncles located on the lateral wall of the posterior brainstem [threshold-free cluster enhancement, corrected for family-wise error (FWE) at p<0.05] in patients with MDD. CONCLUSION We revealed shape alterations in the posterior brainstem in female patients with MDD.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soonwook Kwon
- Department of Anatomy, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Hung YY, Yang LH, Stubbs B, Li DJ, Tseng PT, Yeh TC, Chen TY, Liang CS, Chu CS. Efficacy and tolerability of deep transcranial magnetic stimulation for treatment-resistant depression: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109850. [PMID: 31863873 DOI: 10.1016/j.pnpbp.2019.109850] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed to investigate the efficacy of deep transcranial magnetic stimulation (dTMS) for treatment-resistant depression (TRD). METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed, Medline, PsycINFO, Embase, and Cochrane Library were systematically searched from the time of their inception until July 17, 2019. Data were pooled using a random-effects model. Primary outcomes were mean change of depression and anxiety severity. Secondary outcomes were response and remission rate of depression. RESULTS Fifteen studies including three randomized controlled trials (RCTs) (n = 417, mean age: 50.6 years) and twelve uncontrolled clinical trials (n = 284, mean age: 46.4 years) were included. dTMS significantly improved the depressive (Hedges' g = -1.323, 95% CI = -1.651 to -0.995, p < .001) and anxiety symptoms (Hedges' g = -1.282, 95% CI = -1.514 to -1.051, p < .001) in patients with TRD. Subgroup analysis showed that non-RCTs had a larger effect size than RCTs (-1.461 vs -0.756) on depression severity. Although the response and remission rates of the dTMS group were high, only studies using both dTMS and antidepressant medications achieved significance. The anxiolytic effect of dTMS was more heterogeneous, and the results were obtained mainly from non-RCTs. Importantly, the dTMS group showed favorable tolerability without major adverse events. CONCLUSIONS dTMS is a safe and effective intervention in patients with TRD. Studies combining dTMS and antidepressant medications seemed to show greater therapeutic effects. Future studies are needed to address the interaction effect of dTMS with different classes of antidepressant medications.
Collapse
Affiliation(s)
- Yu-Yung Hung
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Li-Heng Yang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Bredon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, UK; Positive Ageing Research Institute (PARI), Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Dian-Jeng Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Ping-Tao Tseng
- WinShine Clinics in Specialty of Psychiatry, Kaohsiung City, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan; Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
25
|
Matsuo K, Harada K, Fujita Y, Okamoto Y, Ota M, Narita H, Mwangi B, Gutierrez CA, Okada G, Takamura M, Yamagata H, Kusumi I, Kunugi H, Inoue T, Soares JC, Yamawaki S, Watanabe Y. Distinctive Neuroanatomical Substrates for Depression in Bipolar Disorder versus Major Depressive Disorder. Cereb Cortex 2020; 29:202-214. [PMID: 29202177 DOI: 10.1093/cercor/bhx319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
No neuroanatomical substrates for distinguishing between depression of bipolar disorder (dBD) and major depressive disorder (dMDD) are currently known. The aim of the current multicenter study was to identify neuroanatomical patterns distinct to depressed patients with the two disorders. Further analysis was conducted on an independent sample to enable generalization of results. We directly compared MR images of these subjects using voxel-based morphometry (VBM) and a support vector machine (SVM) algorithm using 1531 participants. The VBM analysis showed significantly reduced gray matter volumes in the bilateral dorsolateral prefrontal (DLPFC) and anterior cingulate cortices (ACC) in patients with dBD compared with those with dMDD. Patients with the two disorders shared small gray matter volumes for the right ACC and left inferior frontal gyrus when compared with healthy subjects. Voxel signals in these regions during SVM analysis contributed to an accurate classification of the two diagnoses. The VBM and SVM results in the second cohort also supported these results. The current findings provide new evidence that gray matter volumes in the DLPFC and ACC are core regions in displaying shared and distinct neuroanatomical substrates and can shed light on elucidation of neural mechanism for depression within the bipolar/major depressive disorder continuum.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| | - Yusuke Fujita
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Hisashi Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Japan
| | - Benson Mwangi
- Department of Psychiatry, The University of Texas Health Science Center at Houston, TX, USA
| | - Carlos A Gutierrez
- Department of Psychiatry, The University of Texas Health Science Center at Houston, TX, USA
| | - Go Okada
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Japan.,Department of Psychiatry, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Jair C Soares
- Department of Psychiatry, The University of Texas Health Science Center at Houston, TX, USA
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan
| |
Collapse
|
26
|
Choi KW, Han KM, Kim H, Kim A, Kang W, Kang Y, Tae WS, Ham BJ. Comparison of shape alterations of the thalamus and caudate nucleus between drug-naïve major depressive disorder patients and healthy controls. J Affect Disord 2020; 264:279-285. [PMID: 32056762 DOI: 10.1016/j.jad.2020.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although structural alterations have been reported in patients with major depressive disorder (MDD), very few studies have compared the shape alterations of the subcortical regions between drug-naïve MDD patients and healthy controls (HCs). Therefore, we investigated and compared the subcortical shape alterations and volumetric changes between drug-naïve MDD patients and HCs in this study. METHODS This study included 45 drug-naïve MDD patients and 83 HCs, who underwent three-dimensional (3-D) T1-weighted structural magnetic resonance imaging. Surface-based vertex analysis (SVA) was performed with automated segmentation of the bilateral caudate nuclei, putamina, nuclei accumbens, thalami, pallidum, hippocampi, amygdalae, and brainstem. SVA revealed regional contractions of the thalamus (bilateral medial and lateral nuclei) and right caudate nucleus (medial wall and anterosuperior areas) in the drug-naïve MDD patients when compared to HCs RESULTS: In volume analysis, the drug-naïve MDD patients showed a significant decrease in the volume of bilateral thalami compared with HCs (after Bonferroni correction p < 0.003). We identified morphometric contractions in bilateral thalami and right caudate nucleus in the drug-naïve MDD patients (p < 0.05). CONCLUSIONS The present study implied that with cortical shape changes, the subcortical brain alterations could contribute to emotional dysregulation in the drug-naïve MDD patients.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, #73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University College of Medicine, #73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Yoshino Y, Dwivedi Y. Elevated expression of unfolded protein response genes in the prefrontal cortex of depressed subjects: Effect of suicide. J Affect Disord 2020; 262:229-236. [PMID: 31727394 PMCID: PMC6917852 DOI: 10.1016/j.jad.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a leading cause of mental disability worldwide. Despite many studies, the pathophysiology associated with MDD brain is not very clear. It is reported that cellular stress is related to depressive symptoms. Under stressful conditions, intracellular homeostasis processes can be disrupted, which can induce a process of unfolded protein response (UPR) in the subcellular lumen of endoplasmic reticulum (ER). The purpose of this study is to elucidate whether UPR is active in the depressed brain. METHODS The dorsolateral prefrontal cortex (dlPFC) was used from 23 non-psychiatric controls and 43 MDD subjects. The expression levels of UPR associated genes (GRP78, GRP94, XBP-1, CHOP, ATF4C, and ATF6C) were measured by qRT-PCR. RESULTS The level of mRNA expression in MDD subjects was significantly higher for GRP78 (p = 0.008), GRP94 (p = 0.018), and ATF4C (p = 0.03) compared to non-psychiatric controls. Further analysis suggested that changes in the expression of these genes were specifically higher only in those MDD subjects who died by suicide but not in those who died by causes other than suicide when compared with non-psychiatric controls (GRP78, p = 0.007; GRP94, p = 0.041; ATF4C, p = 0.037). LIMITATIONS This study was performed only in MDD subjects who had died by suicide. Suicide subjects with other psychiatric illnesses need to be included. CONCLUSIONS Given that UPR is involved in many physiological processes in the brain, including inflammatory response as well as apoptosis, increased expression of UPR genes indicates that ER stress and mediated UPR may be critical factors in suicidality among depressed patients.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
28
|
Enneking V, Leehr EJ, Dannlowski U, Redlich R. Brain structural effects of treatments for depression and biomarkers of response: a systematic review of neuroimaging studies. Psychol Med 2020; 50:187-209. [PMID: 31858931 DOI: 10.1017/s0033291719003660] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antidepressive pharmacotherapy (AD), electroconvulsive therapy (ECT) and cognitive behavioural therapy (CBT) are effective treatments for major depressive disorder. With our review, we aim to provide a systematic overview of neuroimaging studies that investigate the effects of AD, ECT and CBT on brain grey matter volume (GMV) and biomarkers associated with response. After a systematic database research on PubMed, we included 50 studies using magnetic resonance imaging and investigating (1) changes in GMV, (2) pre-treatment GMV biomarkers associated with response, or (3) the accuracy of predictions of response to AD, ECT or CBT based on baseline GMV data. The strongest evidence for brain structural changes was found for ECT, showing volume increases within the temporal lobe and subcortical structures - such as the hippocampus-amygdala complex, anterior cingulate cortex (ACC) and striatum. For AD, the evidence is heterogeneous as only 4 of 11 studies reported significant changes in GMV. The results are not sufficient in order to draw conclusions about the structural brain effects of CBT. The findings show consistently that higher pre-treatment ACC volume is associated with response to AD, ECT and CBT. An association of higher pre-treatment hippocampal volume and response has only been reported for AD. Machine learning approaches based on pre-treatment whole brain patterns reach accuracies of 64-90% for predictions of AD or ECT response on the individual patient level. The findings underline the potential of brain biomarkers for the implementation in clinical practice as an additive feature within the process of treatment selection.
Collapse
Affiliation(s)
- Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
29
|
Saricicek Aydogan A, Oztekin E, Esen ME, Dusmez S, Gelal F, Besiroğlu L, Zorlu N. Cortical thickening in remitters compared to non-remitters with major depressive disorder following 8-week antidepressant treatment. Acta Psychiatr Scand 2019; 140:217-226. [PMID: 31250445 DOI: 10.1111/acps.13065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Little is known about the relationship between antidepressant treatment outcomes and underlying neurobiological mechanisms in patients with major depressive disorder (MDD). In this prospective study, we aimed to investigate how cortical thickness and subcortical volumes differed between remitter and non-remitter patients with MDD. METHODS Fifty-eight patients with MDD with a score of at least 17 on the 17-item Hamilton Depression Rating Scale and free of medication for at least 2 months and 41 healthy controls underwent structural magnetic resonance imaging. At the baseline, patients with MDD started on either selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, or vortioxetine. After 8-week antidepressant treatment, patients with MDD were scanned using the same MRI protocol. Structural images were analyzed using the FreeSurfer software package (version 6.0). RESULTS Longitudinal analyses showed remitter patients with MDD had significantly greater right cerebral cortex thickening in six significant clusters, including superior temporal cortex, precuneus, rostral middle frontal cortex, pars opercularis (although the cluster extends into the insula), inferior parietal cortex, and supramarginal cortex than in non-remitter patients with MDD. CONCLUSION Our results suggest that distinct antidepressant treatment-related structural alterations in brain regions implicated in cognition, emotion regulation, and rumination might be associated with treatment outcome.
Collapse
Affiliation(s)
- A Saricicek Aydogan
- Department of Psychiatry, Faculty of Medicine, Ataturk Training and Research Hospital, Izmir Katip Celebi University, İzmir, Turkey
| | - E Oztekin
- Department of Psychiatry, Faculty of Medicine, Ataturk Training and Research Hospital, Izmir Katip Celebi University, İzmir, Turkey
| | - M E Esen
- Clinic of Psychiatry, Idil State Hospital, Sirnak, Turkey
| | - S Dusmez
- Department of Psychiatry, Faculty of Medicine, Ataturk Training and Research Hospital, Izmir Katip Celebi University, İzmir, Turkey
| | - F Gelal
- Department of Radiodiagnostics, Faculty of Medicine, Ataturk Training and Research Hospital, Izmir Katip Celebi University, İzmir, Turkey
| | - L Besiroğlu
- Department of Psychiatry, Faculty of Medicine, Ataturk Training and Research Hospital, Izmir Katip Celebi University, İzmir, Turkey
| | - N Zorlu
- Department of Psychiatry, Faculty of Medicine, Ataturk Training and Research Hospital, Izmir Katip Celebi University, İzmir, Turkey
| |
Collapse
|
30
|
Bulubas L, Padberg F, Bueno PV, Duran F, Busatto G, Amaro E, Benseñor IM, Lotufo PA, Goerigk S, Gattaz W, Keeser D, Brunoni AR. Antidepressant effects of tDCS are associated with prefrontal gray matter volumes at baseline: Evidence from the ELECT-TDCS trial. Brain Stimul 2019; 12:1197-1204. [DOI: 10.1016/j.brs.2019.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/23/2022] Open
|
31
|
Westlund Schreiner M, Klimes-Dougan B, Parenteau A, Hill D, Cullen KR. A Framework for Identifying Neurobiologically Based Intervention Targets for NSSI. Curr Behav Neurosci Rep 2019. [DOI: 10.1007/s40473-019-00188-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Bykowsky O, Harrisberger F, Schmidt A, Smieskova R, Hauke DJ, Egloff L, Riecher-Rössler A, Fusar-Poli P, Huber CG, Lang UE, Andreou C, Borgwardt S. Association of antidepressants with brain morphology in early stages of psychosis: an imaging genomics approach. Sci Rep 2019; 9:8516. [PMID: 31186482 PMCID: PMC6560086 DOI: 10.1038/s41598-019-44903-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
Depressive symptoms in subjects at Clinical High Risk for Psychosis (CHR-P) or at first-episode psychosis (FEP) are often treated with antidepressants. Our cross-sectional study investigated whether brain morphology is altered by antidepressant medication. High-resolution T1-weighted structural MRI scans of 33 CHR-P and FEP subjects treated with antidepressants, 102 CHR-P and FEP individuals without antidepressant treatment and 55 controls, were automatically segmented using Freesurfer 6.0. Linear mixed-effects modelling was applied to assess the differences in subcortical volume, surface area and cortical thickness in treated, non-treated and healthy subjects, taking into account converted dosages of antidepressants. Increasing antidepressant dose was associated with larger volume of the pallidum and the putamen, and larger surface of the left inferior temporal gyrus. In a pilot subsample of separately studied subjects of known genomic risk loci, we found that in the right postcentral gyrus, the left paracentral lobule and the precentral gyrus antidepressant dose-associated surface increase depended on polygenic schizophrenia-related-risk score. As the reported regions are linked to the symptoms of psychosis, our findings reflect the possible beneficial effects of antidepressant treatment on an emerging psychosis.
Collapse
Affiliation(s)
- Oleg Bykowsky
- Neuropsychiatry and Brain Imaging, Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.,Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland.,Center for Addiction Medicine, Châlons-en-Champagne General Hospital, Châlons-en-Champagne, France
| | - Fabienne Harrisberger
- Neuropsychiatry and Brain Imaging, Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.,Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland
| | - André Schmidt
- Neuropsychiatry and Brain Imaging, Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.,Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland
| | - Renata Smieskova
- Neuropsychiatry and Brain Imaging, Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.,Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland
| | - Daniel J Hauke
- Neuropsychiatry and Brain Imaging, Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.,Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland.,Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
| | - Laura Egloff
- Neuropsychiatry and Brain Imaging, Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.,Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland
| | | | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical Detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Christian G Huber
- Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland
| | - Undine E Lang
- Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland
| | - Christina Andreou
- Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging, Department of Psychiatry (UPK), University of Basel, Basel, Switzerland. .,Psychiatric University Hospital (UPK), University of Basel, Basel, Switzerland. .,Early Psychosis: Interventions and Clinical Detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
33
|
McClintock SM, Kallioniemi E, Martin DM, Kim JU, Weisenbach SL, Abbott CC. A Critical Review and Synthesis of Clinical and Neurocognitive Effects of Noninvasive Neuromodulation Antidepressant Therapies. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:18-29. [PMID: 31975955 PMCID: PMC6493152 DOI: 10.1176/appi.focus.20180031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a plethora of current and emerging antidepressant therapies in the psychiatric armamentarium for the treatment of major depressive disorder. Noninvasive neuromodulation therapies are one such therapeutic category; they typically involve the transcranial application of electrical or magnetic stimulation to modulate cortical and subcortical brain activity. Although electroconvulsive therapy (ECT) has been used since the 1930s, with the prevalence of major depressive disorder and treatment-resistant depression (TRD), the past three decades have seen a proliferation of noninvasive neuromodulation antidepressant therapeutic development. The purpose of this critical review was to synthesize information regarding the clinical effects, neurocognitive effects, and possible mechanisms of action of noninvasive neuromodulation therapies, including ECT, transcranial magnetic stimulation, magnetic seizure therapy, and transcranial direct current stimulation. Considerable research has provided substantial information regarding their antidepressant and neurocognitive effects, but their mechanisms of action remain unknown. Although the four therapies vary in how they modulate neurocircuitry and their resultant antidepressant and neurocognitive effects, they are nonetheless useful for patients with acute and chronic major depressive disorder and TRD. Continued research is warranted to inform dosimetry, algorithm for administration, and integration among the noninvasive neuromodulation therapies and with other antidepressant strategies to continue to maximize their safety and antidepressant benefit.
Collapse
Affiliation(s)
- Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Elisa Kallioniemi
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Donel M Martin
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Joseph U Kim
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Sara L Weisenbach
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Christopher C Abbott
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| |
Collapse
|
34
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
35
|
Han KM, Choi S, Kim A, Kang J, Won E, Tae WS, Kim YK, Lee MS, Ham BJ. The effects of 5-HTTLPR and BDNF Val66Met polymorphisms on neurostructural changes in major depressive disorder. Psychiatry Res Neuroimaging 2018; 273:25-34. [PMID: 29414128 DOI: 10.1016/j.pscychresns.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
The serotonin-transporter-linked polymorphic region (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have been implicated in the pathophysiology of major depressive disorder (MDD). We aimed to investigate the effects of genetic variants of the 5-HTTLPR and BDNF Val66Met polymorphisms and their interactions with MDD on cortical volume and white matter integrity. Ninety-five patients with MDD and 65 healthy participants aged 20-65 years were recruited. The subjects were genotyped for the 5-HTTLPR and BDNF Val66Met polymorphisms and scanned with T1-weighted and diffusion tensor imaging. The gray matter volumes of 24 gyri in the prefrontal and anterior cingulate cortices and the fractional anisotropy values of nine white matter tracts in both hemispheres were determined. In the pooled sample of subjects from both groups, 5-HTTLPR L-allele carriers had significantly decreased cortical volume in the right anterior midcingulate gyrus compared to S-allele homozygotes. A significant effect of the interaction of the BDNF Val66Met polymorphism and MDD on the fractional anisotropy values of the right uncinate fasciculus was observed. Our results suggested that these genetic polymorphisms play important roles in the neurostructural changes of emotion-processing regions in subjects with MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Zanderigo F, Pantazatos S, Rubin-Falcone H, Ogden RT, Chhetry BT, Sullivan G, Oquendo M, Miller JM, Mann JJ. In vivo relationship between serotonin 1A receptor binding and gray matter volume in the healthy brain and in major depressive disorder. Brain Struct Funct 2018; 223:2609-2625. [PMID: 29550938 DOI: 10.1007/s00429-018-1649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
Serotonin 1A (5-HT1A) receptors mediate serotonin trophic role in brain neurogenesis. Gray matter volume (GMV) loss and 5-HT1A receptor binding alterations have been identified in major depressive disorder (MDD). Here we investigated the relationship between 5-HT1A receptor binding and GMV in 40 healthy controls (HCs) and, for the first time, 47 antidepressant-free MDD patients using Voxel-Based Morphometry and [11C]WAY100635 Positron Emission Tomography. Values of GMV and 5-HT1A binding (expressed as BPF, one of the types of binding potentials that refer to displaceable or specific binding that can be quantified in vivo with PET) were obtained in 13 regions of interest, including raphe, and at the voxel level. We used regression analysis within each group to predict GMV from BPF, while covarying for age, sex, total gray matter volume and medication status. In the HCs group, we found overall a positive correlation between terminal field 5-HT1A receptor binding and GMV, which reached statistical significance in regions such as hippocampus, insula, orbital prefrontal cortex, and parietal lobe. We observed a trend towards inverse correlation between raphe 5-HT1A autoreceptor binding and anterior cingulate GMV in both groups, and a statistically significant positive correlation between raphe 5-HT1A binding and temporal GMV in MDD. Analysis of covariance at the voxel-level revealed a trend towards interaction between diagnosis and raphe 5-HT1A binding in predicting GMV in cerebellum and supramarginal gyrus (higher correlation in HCs compared with MDD). Our results replicated previous findings in the normative brain, but did not extend them to the brain in MDD, and indicated a trend towards dissociation between MDD and HCs in the relationship of raphe 5-HT1A binding with postsynaptic GMV. These results suggest that 5-HT1A receptors contribute to altered neuroplasticity in MDD, possibly via effects predating depression onset.
Collapse
Affiliation(s)
- Francesca Zanderigo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA. .,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Spiro Pantazatos
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Harry Rubin-Falcone
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - R Todd Ogden
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Biostatistics, Columbia University, Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Binod Thapa Chhetry
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Gregory Sullivan
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Maria Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Radiology, Columbia University, 622 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
37
|
Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis. J Affect Disord 2018; 225:599-606. [PMID: 28886501 DOI: 10.1016/j.jad.2017.08.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/20/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The goal of this meta-analysis was to quantitatively summarize the evidence available on the differences in grey matter volume between lithium-treated and lithium-free bipolar patients. METHODS A systematic search was conducted in Cochrane Central, Embase, MEDLINE, and PsycINFO databases for original peer-reviewed journal articles that reported on global grey matter volume in lithium-medicated and lithium-free bipolar patients. Standard mean difference and Hedges' g were used to calculate effect size in a random-effects model. Risk of publication bias was assessed using Egger's test and quality of evidence was assessed using standard criteria. RESULTS There were 15 studies with a total of 854 patients (368 lithium-medicated, 486 lithium-free) included in the meta-analysis. Global grey matter volume was significantly larger in lithium-treated bipolar patients compared to lithium-free patients (SMD: 0.17, 95% CI: 0.01-0.33; z = 2.11, p = 0.035). Additionally, there was a difference in global grey matter volume between groups in studies that employed semi-automated segmentation methods (SMD: 0.66, 95% CI: 0.01-1.31; z = 1.99, p = 0.047), but no significant difference in studies that used fully-automated segmentation. No publication bias was detected (bias coefficient = - 0.65, p = 0.46). LIMITATIONS Variability in imaging methods and lack of high-quality evidence limits the interpretation of the findings. CONCLUSIONS Results suggest that lithium-treated patients have a greater global grey matter volume than those who were lithium-free. Further study of the relationship between lithium and grey matter volume may elucidate the therapeutic potential of lithium in conditions characterized by abnormal changes in brain structure.
Collapse
|
38
|
Pillai RLI, Malhotra A, Rupert DD, Weschler B, Williams JC, Zhang M, Yang J, Mann JJ, Oquendo MA, Parsey RV, DeLorenzo C. Relations between cortical thickness, serotonin 1A receptor binding, and structural connectivity: A multimodal imaging study. Hum Brain Mapp 2017; 39:1043-1055. [PMID: 29323797 DOI: 10.1002/hbm.23903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 01/03/2023] Open
Abstract
Serotonin 1A (5-HT1A ) receptors play a direct role in neuronal development, cell proliferation, and dendritic branching. We hypothesized that variability in 5-HT1A binding can affect cortical thickness, and may account for a subtype of major depressive disorder (MDD) in which both are altered. To evaluate this, we measured cortical thickness from structural magnetic resonance imaging (MRI) and 5-HT1A binding by positron emission tomography (PET) in an exploratory study. To examine a range of 5-HT1A binding and cortical thickness values, we recruited 25 healthy controls and 19 patients with MDD. We hypothesized increased 5-HT1A binding in the raphe nucleus (RN) would be negatively associated with cortical thickness due to reduced serotonergic transmission. Contrary to our hypothesis, raphe 5-HT1A binding was positively correlated with cortical thickness in right posterior cingulate cortex (PCC), a region implicated in the default mode network. Cortical thickness was also positively correlated with 5-HT1A in each cortical region. We further hypothesized that the strength of 5-HT1A -cortical thickness correlation depends on the number of axons between the raphe nucleus and each region. To explore this we related 5-HT1A -cortical thickness correlation coefficients to the number of tracts connecting that region and the raphe, as measured by diffusion tensor imaging (DTI) in an independent sample. The 5-HT1A -cortical thickness association correlated significantly with the number of tracts to each region, supporting our hypothesis. We posit a defect in the raphe may affect the PCC within the default mode network in MDD through serotonergic fibers, resulting in increased ruminative processing.
Collapse
Affiliation(s)
- Rajapillai L I Pillai
- Stony Brook University SOM, Stony Brook, New York.,Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Center for Understanding Biology using Imaging Technology, Stony Brook University, Stony Brook, New York
| | - Ashwin Malhotra
- Department of Neurology, New York-Presbyterian Weill Cornell Medical Center, New York, New York
| | | | | | | | - Mengru Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York
| | - Jie Yang
- Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - J John Mann
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philidelphia, Pennsylvania
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Center for Understanding Biology using Imaging Technology, Stony Brook University, Stony Brook, New York
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Center for Understanding Biology using Imaging Technology, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
39
|
Won E, Han KM, Kang J, Kim A, Yoon HK, Chang HS, Park JY, Lee MS, Greenberg T, Tae WS, Ham BJ. Vesicular monoamine transporter 1 gene polymorphism and white matter integrity in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:138-145. [PMID: 28408293 DOI: 10.1016/j.pnpbp.2017.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022]
Abstract
The genetic variant of the vesicular monoamine transporter 1 gene (VMAT1) has been suggested to be associated with monoaminergic signaling and neural circuit activity related to emotion processing. We aimed to investigate microstructural changes in white matter tracts of patients with major depressive disorder (MDD), and examined the interaction effect between VMAT1 Thr136Ile (rs1390938) polymorphism and MDD on white matter integrity. Diffusion tensor imaging (DTI) and VMAT1 Thr136Ile (rs1390938) genotyping were performed on 103 patients diagnosed with MDD and 83 healthy control participants. DTI was used to investigate microstructural changes in white matter tracts in patients compared to healthy controls. The possible interaction effect between rs1390938 and MDD on white matter integrity was also assessed. Patients with MDD exhibited lower fractional anisotropy (FA) values of the forceps major (p<0.001), forceps minor (p=0.001), inferior longitudinal fasciculus (left: p=0.001; right: p<0.001), parietal endings of the superior longitudinal fasciculus (left: p<0.001; right: p=0.002), left temporal endings of the superior longitudinal fasciculus (p=0.001), and right uncinate fasciculus (p=0.001). Significant genotype-by-diagnosis interaction effects were observed on FA values of the right uncinate fasciculus (p=0.001), with A-allele carrier patients exhibiting lower FA values compared to G-allele homozygous patients (p=0.003). No significant differences in FA values were observed between genotype subgroups among healthy controls. Our results may contribute to the evidence indicating an association between the VMAT1 gene and structural brain alterations in depression.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Bucheon, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Pittsburgh, United States
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Tsafrir Greenberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Kraus C, Castrén E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev 2017; 77:317-326. [PMID: 28342763 DOI: 10.1016/j.neubiorev.2017.03.007] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 12/26/2022]
Abstract
Serotonin modulates neuroplasticity, especially during early life, and dysfunctions in both systems likewise contribute to pathophysiology of depression. Recent findings demonstrate that serotonin reuptake inhibitors trigger reactivation of juvenile-like neuroplasticity. How these findings translate to clinical antidepressant treatment in major depressive disorder remains unclear. With this review, we link preclinical with clinical work on serotonin and neuroplasticity to bring two pathophysiologic models in clinical depression closer together. Dysfunctional developmental plasticity impacts on later-life cognitive and emotional functions, changes of synaptic serotonin levels and receptor levels are coupled with altered synaptic plasticity and neurogenesis. Structural magnetic resonance imaging in patients reveals disease-state-specific reductions of gray matter, a marker of neuroplasticity, and reversibility upon selective serotonin reuptake inhibitor treatment. Translational evidence from magnetic resonance imaging in animals support that reduced densities and sizes of neurons and reduced hippocampal volumes in depressive patients could be attributable to changes of serotonergic neuroplasticity. Since ketamine, physical exercise or learning enhance neuroplasticity, combinatory paradigms with selective serotonin reuptake inhibitors could enhance clinical treatment of depression.
Collapse
Affiliation(s)
- Christoph Kraus
- NEUROIMAGING LABs (NIL) - PET & MRI & EEG & Chemical Lab Department of Psychiatry and Psychotherapy Medical University of Vienna
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria(1)
| | - Rupert Lanzenberger
- NEUROIMAGING LABs (NIL) - PET & MRI & EEG & Chemical Lab Department of Psychiatry and Psychotherapy Medical University of Vienna.
| |
Collapse
|
41
|
Han KM, Won E, Sim Y, Kang J, Han C, Kim YK, Kim SH, Joe SH, Lee MS, Tae WS, Ham BJ. Influence of FKBP5 polymorphism and DNA methylation on structural changes of the brain in major depressive disorder. Sci Rep 2017; 7:42621. [PMID: 28198448 PMCID: PMC5309810 DOI: 10.1038/srep42621] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
A single nucleotide polymorphism of rs1360780 in the FKBP5 gene is associated with a predisposition to developing major depressive disorder (MDD). We investigated the interactive effects of FKBP5 rs1360780 allelic variants, DNA methylation, and the diagnosis of MDD on structural changes of the entire brain. One hundred and fourteen patients with MDD and eighty-eight healthy controls underwent T1-weighted structural magnetic resonance imaging and FKBP5 rs1360780 genotyping, including DNA methylation of intron 7. We analyzed the volume of cortical and subcortical regions and cortical thickness using FreeSurfer. Significant genotype-by-diagnosis interactions were observed for volumes of the left pars triangularis, supramarginal gyrus, superior parietal lobule, right frontomarginal, and posterior midcingulate gyrus. The T allele was associated with significant volume reductions in these brain regions only in the MDD group except for the right posterior midcingulate gyrus. FKBP5 DNA methylation showed a positive correlation with the thickness of the right transverse frontopolar gyrus in the C allele homozygote group. Our findings suggest that the FKBP5 gene and its epigenetic changes could have influence on morphologic changes of several brain regions involved in emotion regulation, and that this process may be associated with the development of MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngbo Sim
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sook-Haeng Joe
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
42
|
Han KM, Kim D, Sim Y, Kang J, Kim A, Won E, Tae WS, Ham BJ. Alterations in the brainstem volume of patients with major depressive disorder and their relationship with antidepressant treatment. J Affect Disord 2017; 208:68-75. [PMID: 27750062 DOI: 10.1016/j.jad.2016.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/27/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Morphologic changes of the brainstem in major depressive disorder (MDD) have rarely been reported in neuroimaging studies, even though, monoaminergic neurotransmitters are synthesized in several brainstem regions. We aimed to investigate volume changes in each region of the brainstem and their association with antidepressant use or the remission status of MDD. METHODS A total of 126 patients with MDD and 101 healthy controls underwent T1-weighted structural magnetic resonance imaging. We analyzed volumes of each brainstem region, including the medulla oblongata, pons, midbrain, and superior cerebellar peduncle, and the volume of the whole brainstem using the FreeSurfer. RESULTS The patients with MDD had significantly greater midbrain volumes (P=0.013) compared to healthy controls. In particular, drug-naïve patients with MDD had significantly greater brainstem volumes compared to healthy controls (P=0.007), while no significant findings were observed between the antidepressant treatment group and healthy controls. The remitted patient group had reduced pons (P=0.002) and midbrain (P=0.005) volumes compared to healthy controls, while the non-remitted MDD patient group had significantly greater midbrain volumes compared to the healthy controls (P=0.017). LIMITATIONS We could not distinguish gray versus white matter volumes changes in our analysis. CONCLUSIONS We observed that the midbrain is enlarged in patients with a current depressive episode, who are not undergoing antidepressant treatment. This volume then returns to normal after antidepressant treatment, and is even reduced, when the patient is in remission. Further studies are needed to confirm our observations.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daseul Kim
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngbo Sim
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea; Geriatric Health Clinic and Research Institute, Korea University, College of Medicine, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Qin J, Liu H, Wei M, Zhao K, Chen J, Zhu J, Shen X, Yan R, Yao Z, Lu Q. Reconfiguration of hub-level community structure in depressions: A follow-up study via diffusion tensor imaging. J Affect Disord 2017; 207:305-312. [PMID: 27741467 DOI: 10.1016/j.jad.2016.09.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The role of abnormal communications among large-scale brain networks have been given increasing attentions in the pathophysiology of major depressive disorder (MDD). However, few studies have investigated the effect of antidepressant medication treatment on the information communication of structural brain networks, especially converged from the individual analysis. METHODS Nineteen unipolar MDD patients completed two diffusion tensor imaging (DTI) scans before and after 8-week treatment with selective serotonin reuptake inhibitor. DTI data of 37 matched healthy controls were acquired. We focused on a hub-level community structure network, and investigated whether it had differences on the whole structure and which regions drove these differences in terms of modular affiliation and hub role shift. Data were analyzed by the novel permutation network framework, which appraised the topological consistency of hubs and reserved an individual information. RESULTS Compared to the pre-treatment state, post-treatment patients exhibited increasing number of modular members in the modules that included the right medial superior frontal gyrus (SFGmed) or the thalamus. Moreover, the result suggested a hub role shift of the left insula from a provincial-hub before treatment to a connector-hub after treatment. Additionally, reduced inter-module degree in the right SFGmed was positively correlated with the reduced sum score of 17-item Hamilton depression rating scale at the follow-up. CONCLUSIONS Antidepressant medication treatment might be associated with modular reconfigurations of hubs within the fronto-limbic circuit. Moreover, increased inter-module connections of the left insula might improve its integration ability, promoting the remission of MDD. The correlation results of the right SFGmed suggested it might be a valuable indicator for treatment response.
Collapse
Affiliation(s)
- Jiaolong Qin
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Centre for Learning Science, Southeast University, Si Pailou 2, Nanjing 210096, China
| | - Haiyan Liu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, China
| | - Maobin Wei
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Centre for Learning Science, Southeast University, Si Pailou 2, Nanjing 210096, China
| | - Ke Zhao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, China
| | - Jianhuai Chen
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, China
| | - Jingyu Zhu
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Centre for Learning Science, Southeast University, Si Pailou 2, Nanjing 210096, China
| | - Xiangyu Shen
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Centre for Learning Science, Southeast University, Si Pailou 2, Nanjing 210096, China
| | - Rui Yan
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Nanjing University Medical School, 22 Hankou Road, Nanjing 210093, China.
| | - Qing Lu
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Centre for Learning Science, Southeast University, Si Pailou 2, Nanjing 210096, China.
| |
Collapse
|
44
|
Matsubara T, Matsuo K, Harada K, Nakano M, Nakashima M, Watanuki T, Egashira K, Furukawa M, Matsunaga N, Watanabe Y. Distinct and Shared Endophenotypes of Neural Substrates in Bipolar and Major Depressive Disorders. PLoS One 2016; 11:e0168493. [PMID: 28030612 PMCID: PMC5193412 DOI: 10.1371/journal.pone.0168493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023] Open
Abstract
Little is known about disorder-specific biomarkers of bipolar disorder (BD) and major depressive disorder (MDD). Our aim was to determine a neural substrate that could be used to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-degree relatives (FDRs) of individuals with BD), MDD group (17 patients with MDD, 17 FDRs of individuals with MDD), and 27 healthy individuals. Structural and functional brain abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT), respectively. The BD group showed a significant main effect of diagnosis in the gray matter (GM) volume of the anterior cingulate cortex (ACC; p = 0.01) and left insula (p < 0.01). FDRs of individuals with BD showed significantly smaller left ACC GM volume than healthy subjects (p < 0.01), and patients with BD showed significantly smaller ACC (p < 0.01) and left insular GM volume (p < 0.01) than healthy subjects. The MDD group showed a tendency toward a main effect of diagnosis in the right and left insular GM volume. The BD group showed a significantly inverse correlation between the left insular GM volume and TMT-A scores (p < 0.05). Our results suggest that the ACC volume could be a distinct endophenotype of BD, while the insular volume could be a shared BD and MDD endophenotype. Moreover, the insula could be associated with cognitive decline and poor outcome in BD.
Collapse
Affiliation(s)
- Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Health Service Center, Yamaguchi University Organization for University Education, Yamaguchi, Yamaguchi, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail:
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Katakura Hospital, Ube, Yamaguchi, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Nagato-ichinomiya Hospital, Shimonoseki, Yamaguchi, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kazuteru Egashira
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Egashira Clinic, Kitakyusyu, Fukuoka, Japan
| | - Matakazu Furukawa
- Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Naofumi Matsunaga
- Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
45
|
Imaging the neuroplastic effects of ketamine with VBM and the necessity of placebo control. Neuroimage 2016; 147:198-203. [PMID: 27986606 DOI: 10.1016/j.neuroimage.2016.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/19/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022] Open
Abstract
In the last years a plethora of studies have investigated morphological changes induced by behavioural or pharmacological interventions using structural T1-weighted MRI and voxel-based morphometry (VBM). Ketamine is thought to exert its antidepressant action by restoring neuroplasticity. In order to test for acute impact of a single ketamine infusion on grey matter volume we performed a placebo-controlled, double-blind investigation in healthy volunteers using VBM. 28 healthy individuals underwent two MRI sessions within a timeframe of 2 weeks, each consisting of two structural T1-weighted MRIs within a single session, one before and one 45min after infusion of S-ketamine (bolus of 0.11mg/kg, followed by an maintenance infusion of 0.12mg/kg) or placebo (0.9% NaCl infusion) using a crossover design. In the repeated-measures ANOVA with time (post-infusion/pre-infusion) and medication (placebo/ketamine) as factors, no significant effect of interaction and no effect of medication was found (FWE-corrected). Importantly, further post-hoc t-tests revealed a strong "decrease" of grey matter both in the placebo and the ketamine condition over time. This effect was evident mainly in frontal and temporal regions bilaterally with t-values ranging from 4.95 to 5.31 (FWE-corrected at p<0.05 voxel level). The vulnerabilities of VBM have been repeatedly demonstrated, with reports of influence of blood flow, tissue water and direct effects of pharmacological compounds on the MRI signal. Here again, we highlight that the relationship between intervention and VBM results is apparently subject to a number of physiological influences, which are partly unknown. Future studies focusing on the effects of ketamine on grey matter should try to integrate known influential factors such as blood flow into analysis. Furthermore, the results of this study highlight the importance of a carefully performed placebo condition in pharmacological fMRI studies.
Collapse
|
46
|
Abnormal cerebellar volume in acute and remitted major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:97-102. [PMID: 27321187 DOI: 10.1016/j.pnpbp.2016.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 11/24/2022]
Abstract
Abnormal cortical volume is well-documented in patients with major depressive disorder (MDD), but cerebellar findings have been heterogeneous. It is unclear whether abnormal cerebellar structure relates to disease state or medication. In this study, using structural MRI, we investigated cerebellar volume in clinically acute (with and without psychotropic treatment) and remitted MDD patients. High-resolution structural MRI data at 3T were obtained from acute medicated (n=29), acute unmedicated (n=14) and remitted patients (n=16). Data from 29 healthy controls were used for comparison purposes. Cerebellar volume was investigated using cerebellum-optimized voxel-based analysis methods. Patients with an acute MDD episode showed increased volume of left cerebellar area IX, and this was true for both medicated and unmedicated individuals (p<0.05 cluster-corrected). Remitted patients exhibited bilaterally increased area IX volume. In remitted, but not in acutely ill patients, area IX volume was significantly associated with measures of depression severity, as assessed by the Hamilton Depression Rating Scale (HAMD). In addition, area IX volume in remitted patients was significantly related to the duration of antidepressant treatment. In acutely ill patients, no significant relationships were established using clinical variables, such as HAMD, illness or treatment duration and number of depressive episodes. The data suggest that cerebellar area IX, a non-motor region that belongs to a large-scale brain functional network with known relevance to core depressive symptom expression, exhibits abnormal volume in patients independent of clinical severity or medication. Thus, the data imply a possible trait marker of the disorder. However, given bilaterality and an association with clinical scores at least in remitted patients, the current findings raise the possibility that cerebellar volume may be reflective of successful treatment as well.
Collapse
|
47
|
Rive MM, Redlich R, Schmaal L, Marquand AF, Dannlowski U, Grotegerd D, Veltman DJ, Schene AH, Ruhé HG. Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters. Bipolar Disord 2016; 18:612-623. [PMID: 27870505 DOI: 10.1111/bdi.12446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Recent studies have indicated that pattern recognition techniques of functional magnetic resonance imaging (fMRI) data for individual classification may be valuable for distinguishing between major depressive disorder (MDD) and bipolar disorder (BD). Importantly, medication may have affected previous classification results as subjects with MDD and BD use different classes of medication. Furthermore, almost all studies have investigated only depressed subjects. Therefore, we focused on medication-free subjects. We additionally investigated whether classification would be mood state independent by including depressed and remitted subjects alike. METHODS We applied Gaussian process classifiers to investigate the discriminatory power of structural MRI (gray matter volumes of emotion regulation areas) and resting-state fMRI (resting-state networks implicated in mood disorders: default mode network [DMN], salience network [SN], and lateralized frontoparietal networks [FPNs]) in depressed (n=42) and remitted (n=49) medication-free subjects with MDD and BD. RESULTS Depressed subjects with MDD and BD could be classified based on the gray matter volumes of emotion regulation areas as well as DMN functional connectivity with 69.1% prediction accuracy. Prediction accuracy using the FPNs and SN did not exceed chance level. It was not possible to discriminate between remitted subjects with MDD and BD. CONCLUSIONS For the first time, we showed that medication-free subjects with MDD and BD can be differentiated based on structural MRI as well as resting-state functional connectivity. Importantly, the results indicated that research concerning diagnostic neuroimaging tools distinguishing between MDD and BD should consider mood state as only depressed subjects with MDD and BD could be correctly classified. Future studies, in larger samples are needed to investigate whether the results can be generalized to medication-naïve or first-episode subjects.
Collapse
Affiliation(s)
- Maria M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience, Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - André F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Aart H Schene
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Psychiatry, Mood and Anxiety Disorders, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
48
|
Won E, Kang J, Kim A, Choi S, Han KM, Tae WS, Chang HS, Son KR, Greenberg T, Joe SH, Lee MS, Ham BJ. Influence of BclI C/G (rs41423247) on hippocampal shape and white matter integrity of the parahippocampal cingulum in major depressive disorder. Psychoneuroendocrinology 2016; 72:147-55. [PMID: 27428087 DOI: 10.1016/j.psyneuen.2016.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
We investigated the interactive effects of BclI C/G (rs41423247) allelic variants and the diagnosis of major depressive disorder (MDD) on hippocampal shape and integrity of the left parahippocampal subdivision of the cingulum. Fifty-two patients with MDD and 52 healthy controls (HCs) underwent T1-weighted structural magnetic resonance imaging and BclI C/G (rs41423247) genotyping. We analyzed hippocampal shape using the FIRST module of FSL and analyzed white matter (WM) integrity using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS). Significant alterations in left hippocampal shape and decreased fractional anisotropy (FA) values of the left parahippocampal cingulum were observed in MDD patients, compared to HCs. In addition, MDD patients of the BclI minor (G-) allele carrier group showed significant alterations in left hippocampal shape and decreased FA values of the left parahippocampal cingulum compared to BclI minor (G-) allele carrier HCs. No significant differences between diagnostic subgroups of the C/C homozygotes were observed. Our study provides evidence for alterations in hippocampal shape and decreased integrity of the WM region associated with the hippocampus in MDD, and for the possible influence of BclI C/G polymorphism (rs41423247) on hippocampal shape and integrity of the parahippocampal subdivision of the cingulum in depression.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Suk Tae
- Brain Convergence Research Center, Anam Hospital, Korea University Medical Center, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Bucheon, Republic of Korea
| | - Kyu Ri Son
- Department of Radiology, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Tsafrir Greenberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Sook-Haeng Joe
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Lai CH, Wu YT, Chen CY, Hou YC. Gray matter increases in fronto-parietal regions of depression patients with aripiprazole monotherapy: An exploratory study. Medicine (Baltimore) 2016; 95:e4654. [PMID: 27559967 PMCID: PMC5400334 DOI: 10.1097/md.0000000000004654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We investigated the treatment effects of aripiprazole monotherapy in first-episode medication-naïve patients with major depressive disorder (MDD). The accompanying changes in the gray matter volume (GMV) were also explored.Fifteen patients completed the trial and received structural scans by 3-Tesla magnetic resonance imaging at baseline and partially responding state (sixth week). To account for the test-retest bias, 27 healthy controls were scanned twice within 6 weeks. We utilized optimized voxel-based morphometry with different comparisons between groups.The partially responding patients with MDD had greater GMV in left middle frontal gyrus and left superior parietal gyrus when compared with baseline. However, they had decreases in the GMV of right orbitofrontal gyrus and right inferior temporal gyrus after response. The partially responding patients with MDD still had residual GMV deficits in right superior frontal gyrus when compared with controls. However, the lack of second patient group without aripiprazole intervention would be a significant limitation to interpret the aripiprazole-specific effects on GMV.The changes in the GMV of fronto-parieto-temporal regions and residual GMV deficits in the superior frontal gyrus might represent "state-dependent brain changes" and "residual-deficit brain regions," respectively, for aripiprzole monotherapy in MDD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Chung Shan Hospital
- Department of Biomedical Imaging and Radiological Sciences
- Institute of Biophotonics
| | - Yu-Te Wu
- Department of Biomedical Imaging and Radiological Sciences
- Institute of Biophotonics
- Brain Research Center, National Yang-Ming University, Taipei
- Correspondence: Yu-Te Wu, Institute of Biophotonics, National Yang Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112 Taiwan, Taiwan, ROC. (e-mail: )
| | - Cheng-Yu Chen
- Department of Family Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
| | - Yi-Cheng Hou
- Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
50
|
Peng W, Chen Z, Yin L, Jia Z, Gong Q. Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients. J Affect Disord 2016; 199:114-23. [PMID: 27100056 DOI: 10.1016/j.jad.2016.04.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/06/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Because brain morphological abnormalities in major depressive disorder (MDD) may be modulated by medication and episodes, previous meta-analyses of voxel-based morphometry (VBM) studies therefore have been biased for including medicated patients or medication-free patients who had ever received drugs, as well as patients with different episodes. We sought to identify the essential morphological features without the interference of medication and episodes in MDD. METHODS Seed-based d Mapping was applied to analyze the gray matter differences between all first episode (FE), medication-naive MDD patients and healthy controls. Subgroup meta-analyses and meta-regression were used to explore the effects of methodology, demographics and clinical characteristics. RESULTS We identified 10 studies comprising 329 FE, medication-naive MDD patients and 340 healthy controls. Gray matter volumes were increased in the bilateral thalamus, cuneus, left paracentral lobule and medial superior frontal gyrus, and decreased in the right dorsolateral superior frontal gyrus, left insula and middle frontal gyrus in patients. Decreased volume in the right inferior temporal gyrus was only observed in patients with short illness duration and studies with threshold corrections. Moreover, there were different results between 3.0T MRI and 1.5T MRI studies. Meta-regression analyses revealed that mean age and the percentage of female patients were not significantly correlated with gray matter changes. LIMITATIONS There are heterogeneities in demographics, clinical features and analyzing methods of selected studies. CONCLUSIONS The present meta-analysis revealed that structural abnormalities in the fronto-limbic networks are the essential characteristics in MDD and could contribute to the high risk of suicide in patients.
Collapse
Affiliation(s)
- Wei Peng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Ziqi Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, PR China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu, PR China.
| |
Collapse
|