1
|
Fu XX, Huang ZH, Wang SY, Qi JW, Luo ZJ, E Y, Zhang YD, Jiang T. Knockdown of TREML2 Alleviates Neuropathological Hallmarks and Cognitive Deficiency in a Model of Sporadic Alzheimer's Disease. J Inflamm Res 2024; 17:10471-10478. [PMID: 39654855 PMCID: PMC11627106 DOI: 10.2147/jir.s489474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Recently, we revealed that triggering receptor expressed on myeloid cells-like 2 (TREML2) modulated inflammation by regulating microglial polarization and NLRP3 inflammasome activation. However, the role of TREML2 in Alzheimer's disease (AD) pathogenesis remains poorly understood. In this study, we tried to observe the impact of TREML2 on neuropathological hallmarks (including amyloid-β (Aβ) pathology, hyperphosphorylated tau and neuroinflammation) and cognitive deficiency in senescence-accelerated mouse prone substrain 8 (SAMP8) mice, an animal model of sporadic AD. Methods A lentiviral-based strategy was employed to manipulate TREML2 levels in the brain of SAMP8 mice. Enzyme-linked immunosorbent assay was used to detect the protein levels of inflammatory cytokines, Aβ42 and hyperphosphorylated tau. The mRNA levels of microglial polarization markers were assessed by qRT-PCR. Morris water maze test was performed to evaluate the spatial cognitive functions. Results TREML2 overexpression elevated inflammatory cytokines levels, induced microglial M1-type polarization, and exacerbated Aβ and tau pathology in SAMP8 mice. Contrastingly, knocking down TREML2 mitigated inflammatory cytokines release, promoted microglial M2-type polarization, ameliorated Aβ and tau pathology, and rescued cognitive deficiency in SAMP8 mice. Conclusion This study offers the first in vivo evidence that TREML2 contributes to the pathogenesis of AD. Furthermore, this study also proves that inhibition of TREML2 signaling may represent a potential treatment strategy for this disease.
Collapse
Affiliation(s)
- Xin-Xin Fu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhi-Hang Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shi-Yao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jing-Wen Qi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zi-Jian Luo
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Meng D, Lai Y, Zhang L, Hu W, Wei H, Guo C, Jing X, Zhou H, Xiao R, Zhu L, Luo S, Xu Z, Chen Y, Wang X, Liu R, Zeng J. Helicobacter pylori outer membrane vesicles directly promote Aβ aggregation and enhance Aβ toxicity in APP/PS1 mice. Commun Biol 2024; 7:1474. [PMID: 39516239 PMCID: PMC11549467 DOI: 10.1038/s42003-024-07125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection has been found associated with Alzheimer's disease (AD) with unclear mechanisms. Outer Membrane Vesicles (OMVs) are spherical particles secreted by Gram-negative bacteria. Here we explore the effect of H. pylori OMVs on Aβ aggregation and toxicity. We show intraperitoneally-injected H. pylori OMVs enter the brain and co-localize with Aβ plaques in APP/PS1 mice, accompanied by aggravated Aβ pathology, exacerbated cognitive deficits and synaptic impairment, indicating that H. pylori OMVs promote β-amyloidosis and AD development. The in vitro results further identify that H. pylori OMVs significantly accelerate Aβ aggregation and increase Aβ-induced neurotoxicity. Through lipidomic analysis, we reveal that lipid components, particularly LPC 18:0 in H. pylori OMVs accelerate Aβ aggregation and enhance Aβ neurotoxicity. Moreover, H. pylori OMVs-enhanced Aβ neurotoxicity is mediated by Ca2+. These findings reveal a mechanism of H. pylori OMVs in accelerating AD development in which the bacterial OMVs-originated lipid components play a key role in promoting Aβ aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Dongli Meng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Yiwen Lai
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Wenting Hu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiping Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Jing
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Huan Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengquan Luo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhendong Xu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China.
| |
Collapse
|
3
|
Watkins L, Mukherjee S, Tithof J. Dynamics of waste proteins in brain tissue: Numerical insights into Alzheimer's risk factors. Phys Rev E 2024; 110:034401. [PMID: 39425375 DOI: 10.1103/physreve.110.034401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/14/2024] [Indexed: 10/21/2024]
Abstract
Over the past few decades, research has indicated that the buildup of waste proteins, like amyloid-β (Aβ), in the brain's interstitial spaces is linked to neurodegenerative diseases like Alzheimer's, but the details of how such proteins are removed from the brain are not well understood. We have developed a numerical model to investigate the aggregation and clearance mechanisms of Aβ in the interstitial spaces of the brain. The model describes the volume-averaged transport of Aβ in a segment of the brain interstitium modeled as a porous medium, oriented between the perivascular space (fluid-filled channel surrounding a blood vessel) of a penetrating arteriole and that of a venule. Our numerical approach solves N coupled advection-diffusion-aggregation equations that model the production, aggregation, fragmentation, and clearance of N species of Aβ. We simulate N=50 species to investigate the oligomer-size dependence of clearance and aggregation. We introduce a timescale plot that helps predict Aβ buildup for different neurological conditions. We show that a sudden increase in monomer concentration, as occurs in conditions like traumatic brain injury, leads to significant plaque formation, which can qualitatively be predicted using the timescale plot. Our results also indicate that impaired protein clearance (as occurs with aging) and fragmentation are both mechanisms that sustain large intermediate oligomer concentrations. Our results provide novel insight into several known risk factors for Alzheimer's disease and cognitive decline, and we introduce a unique framing of Aβ dynamics as a competition between different timescales associated with production rates, aggregation rates, and clearance conditions.
Collapse
|
4
|
O’Hare N, Millican K, Ebong EE. Unraveling neurovascular mysteries: the role of endothelial glycocalyx dysfunction in Alzheimer's disease pathogenesis. Front Physiol 2024; 15:1394725. [PMID: 39027900 PMCID: PMC11254711 DOI: 10.3389/fphys.2024.1394725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
While cardiovascular disease, cancer, and human immunodeficiency virus (HIV) mortality rates have decreased over the past 20 years, Alzheimer's Disease (AD) deaths have risen by 145% since 2010. Despite significant research efforts, effective AD treatments remain elusive due to a poorly defined etiology and difficulty in targeting events that occur too downstream of disease onset. In hopes of elucidating alternative treatment pathways, now, AD is commonly being more broadly defined not only as a neurological disorder but also as a progression of a variety of cerebrovascular pathologies highlighted by the breakdown of the blood-brain barrier. The endothelial glycocalyx (GCX), which is an essential regulator of vascular physiology, plays a crucial role in the function of the neurovascular system, acting as an essential vascular mechanotransducer to facilitate ultimate blood-brain homeostasis. Shedding of the cerebrovascular GCX could be an early indication of neurovascular dysfunction and may subsequently progress neurodegenerative diseases like AD. Recent advances in in vitro modeling, gene/protein silencing, and imaging techniques offer new avenues of scrutinizing the GCX's effects on AD-related neurovascular pathology. Initial studies indicate GCX degradation in AD and other neurodegenerative diseases and have begun to demonstrate a possible link to GCX loss and cerebrovascular dysfunction. This review will scrutinize the GCX's contribution to known vascular etiologies of AD and propose future work aimed at continuing to uncover the relationship between GCX dysfunction and eventual AD-associated neurological deterioration.
Collapse
Affiliation(s)
- Nicholas O’Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Ishiki K, Yamashita K, Watanabe S, Miura M, Kawahira J, Arimatsu Y, Kawasaki K, Iwanaga S, Sato T. The appropriate sample-handling procedure for measuring the plasma β-amyloid level using a fully automated immunoassay. Sci Rep 2024; 14:14266. [PMID: 38902510 PMCID: PMC11190145 DOI: 10.1038/s41598-024-65264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Plasma β-amyloid (Aβ) assays are a promising tool for Alzheimer's disease diagnosis in clinical practice. To obtain reliable results, establishing an appropriate sample-handling procedure for each analytical platform is warranted. This study proposes an appropriate sample-handling procedure using HISCL analyzer by elucidating the individual/combined effects of pre-analytical parameters on plasma Aβ42/Aβ40 levels. We investigated the effects of various pre-analytical parameters, including storage times for whole blood, plasma, and freezing conditions, on plasma Aβ42/Aβ40 levels, and confirmed if these values met the acceptable criteria. Plasma Aβ42/Aβ40 levels were acceptable in all conditions. We determined our protocol by confirming that plasma Aβ42/Aβ40 levels remained acceptable when combining pre-analytical parameters. We established an appropriate sample-handling protocol that ensures reliable measurement of plasma Aβ42/Aβ40 levels using HISCL analyzer. We believe the Aβ assay, with our protocol, shows promise for aiding AD diagnosis in clinical settings.
Collapse
Affiliation(s)
- Kengo Ishiki
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Kazuto Yamashita
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Shunsuke Watanabe
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Masahiro Miura
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan.
| | - Junko Kawahira
- Reagent Engineering, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Yuji Arimatsu
- Reagent Engineering, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Kana Kawasaki
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Shigeki Iwanaga
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Toshiyuki Sato
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| |
Collapse
|
6
|
Abstract
Dementia, a prevalent condition among older individuals, has profound societal implications. Extensive research has resulted in no cure for what is perceived as the most common dementing illness: Alzheimer disease (AD). AD is defined by specific brain abnormalities - amyloid-β plaques and tau protein neurofibrillary tangles - that are proposed to actively influence the neurodegenerative process. However, conclusive evidence of amyloid-β toxicity is lacking, the mechanisms leading to the accumulation of plaques and tangles are unknown, and removing amyloid-β has not halted neurodegeneration. So, the question remains, are we making progress towards a solution? The complexity of AD is underscored by numerous genetic and environmental risk factors, and diverse clinical presentations, suggesting that AD is more akin to a syndrome than to a traditional disease, with its pathological manifestation representing a convergence of pathogenic pathways. Therefore, a solution requires a multifaceted approach over a single 'silver bullet'. Improved recognition and classification of conditions that converge in plaques and tangle accumulation and their treatment requires the use of multiple strategies simultaneously.
Collapse
Affiliation(s)
- Amos D Korczyn
- Departments of Neurology, Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel.
| | - Lea T Grinberg
- Departments of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
7
|
Qais FA, Parveen N, Afzal M, Furkan M, Khan RH. Preventing amyloid-β oligomerization and aggregation with berberine: Investigating the mechanism of action through computational methods. Int J Biol Macromol 2024; 258:128900. [PMID: 38128802 DOI: 10.1016/j.ijbiomac.2023.128900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Neurological disorders (NDs) have become a major cause of both cognitive and physical disabilities worldwide. In NDs, misfolded proteins tend to adopt a β-sheet-rich fibrillar structure called amyloid. Amyloid beta (Aβ) plays a crucial role in the nervous system. The misfolding and aggregation of Aβ are primary factors in the progression of Alzheimer's disease (AD). Inhibiting the oligomerization and aggregation of Aβ is considered as an effective strategy against NDs. While it is known that berberine analogs exhibit anti-Aβ aggregation properties, the precise mechanism of action remains unclear. In this study, we have employed computational approaches to unravel the possible mechanism by which berberine combats Aβ aggregation. The introduction of berberine was observed to delay the equilibrium of Aβ16-21 oligomerization. Initially, within the first 10 ns of simulation, β-sheets content was 12.89 % and gradually increased to 22.19 % within the first 20 ns. This upward trend continued, reaching 32.80 %. However, berberine substantially reduced the formation of β-sheets to 1.36 %. These findings decipher the potency of berberine against Aβ16-21 oligomerization, a crucial step for β-sheet formation. Additionally, a remarkable decrease in total number of hydrogen bonds was found in the presence of berberine. Berberine also led to a slight reduction in the flexibility of Aβ16-21, which may be due to the formation of a more stable structures. This study offers valuable insights at the mechanistic level, which could prove beneficial in the development of new drugs to combat NDs.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Nagma Parveen
- Department of Zoology, Saifia College, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
8
|
Matošević A, Opsenica DM, Spasić M, Maraković N, Zandona A, Žunec S, Bartolić M, Kovarik Z, Bosak A. Evaluation of 4-aminoquinoline derivatives with an n-octylamino spacer as potential multi-targeting ligands for the treatment of Alzheimer's disease. Chem Biol Interact 2023; 382:110620. [PMID: 37406982 DOI: 10.1016/j.cbi.2023.110620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of β-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 μM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dejan M Opsenica
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Studentski trg 12-16, 11000, Beograd, Serbia; Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000, Belgrade, Serbia
| | - Marta Spasić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
9
|
Majid N, Khan RH. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int J Biol Macromol 2023; 242:125123. [PMID: 37270122 DOI: 10.1016/j.ijbiomac.2023.125123] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Proteins play a major role in the regulation of various cellular functions including the synthesis of structural components. But proteins are stable under physiological conditions only. A slight variation in environmental conditions can cost them huge in terms of conformational stability ultimately leading to aggregation. Under normal conditions, aggregated proteins are degraded or removed from the cell by a quality control system including ubiquitin-proteasomal machinery and autophagy. But they are burdened under diseased conditions or are impaired by the aggregated proteins leading to the generation of toxicity. The misfolding and aggregation of protein such as amyloid-β, α-synuclein, human lysozyme etc., are responsible for certain diseases including Alzheimer, Parkinson, and non- neuropathic systemic amyloidosis respectively. Extensive research has been done to find the therapeutics for such diseases but till now we have got only symptomatic treatment that will reduce the disease severity but will not target the initial formation of nucleus responsible for disease progression and propagation. Hence there is an urgent need to develop the drugs targeting the cause of the disease. For this, a wide knowledge related to misfolding and aggregation under the same heading is required as described in this review alongwith the strategies hypothesized and implemented till now. This will contribute a lot to the work of researchers in the field of neuroscience.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
10
|
Lyubchenko YL. Protein Self-Assembly at the Liquid-Surface Interface. Surface-Mediated Aggregation Catalysis. J Phys Chem B 2023; 127:1880-1889. [PMID: 36812408 DOI: 10.1021/acs.jpcb.2c09029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane-liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer's and other devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
11
|
Zhao S, Fan Z, Zhang X, Li Z, Shen T, Li K, Yan Y, Yuan Y, Pu J, Tian J, Liu Z, Chen Y, Zhang B. Metformin Attenuates Tau Pathology in Tau-Seeded PS19 Mice. Neurotherapeutics 2023; 20:452-463. [PMID: 36422837 PMCID: PMC10121992 DOI: 10.1007/s13311-022-01316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Accumulation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau is a histopathological hallmark of Alzheimer's disease (AD) and related tauopathies. Growing evidence demonstrated that tau pathology in AD spreads in a prion-like manner. Previous studies showed that metformin might have a positive effect on cognition. However, the underlying mechanisms are still unknown. Therefore, the present study aimed to investigate the effects of metformin on tau propagation. Brain extracts containing tau aggregates were unilaterally injected into the hippocampus and the overlying cerebral cortex of PS19 mice. Metformin was administrated through drinking water for four months, and we observed tau spreading in the brain of tau-seeded PS19 mice. Metformin inhibited the spreading of tau pathology in the ipsilateral hemisphere, attenuated tau pathology in the contralateral hemisphere, and reduced the hyperphosphorylation of tau at Ser202/Thr205, Thr231, and Ser422 sites in the soluble fraction and Ser202/Thr205, Ser262, Thr396, Thr231, and Ser422 sites in the insoluble fraction of tau-seeded PS19 mice brains. Metformin did not affect tau kinases or phosphatase 2A protein levels but reduced mTORC1 protein levels. Additionally, metformin reduced learning and memory deficits of the tau-seeded PS19 mice. These findings indicate that metformin reduced tau hyperphosphorylation, attenuated tau pathology in tau-seeded PS19 mice, and improved learning and memory deficits. These findings highlight the potential mechanisms underlying the beneficial effects of metformin on cognition, implying that metformin could be a promising drug for the prevention and early treatment of AD.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ziqi Fan
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kaicheng Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yunfeng Yuan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
12
|
Zhu M, Zeng L, Li Z, Wang C, Wu L, Jiang X. Revealing the Nanoarchitectonics of Amyloid β-Aggregation on Two-Dimensional Biomimetic Membranes by Surface-Enhanced Infrared Absorption Spectroscopy. ChemistryOpen 2023; 12:e202200253. [PMID: 36744594 PMCID: PMC9906390 DOI: 10.1002/open.202200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
The in vivo folding of amyloid β (Aβ) is influenced by many factors among which biomembrane interfaces play an important role. Here, using surface-enhanced infrared absorption (SEIRA) spectroscopy and atomic force microscopy (AFM), the adsorption, structure, and morphology of Aβ42 aggregating on different two-dimensional interfaces were investigated. Results show that interfaces facilitate the aggregation of Aβ42 and are conducive to the formation of homogeneous aggregates, while the aggregates vary on different interfaces. On hydrophobic interfaces, strong hydrophobic interactions with the C-terminus of Aβ42 result in the formation of small oligomers with a small proportion of the β-sheet structure. On hydrophilic interfaces, hydrogen-bonding interactions and electrostatic interactions promote the formation of large aggregate particles with β-sheet structure. The hydration repulsion plays an important role in the interaction of Aβ42 with interfaces. These findings help to understand the nature of Aβ42 adsorption and aggregation on the biomembrane interface and the origin of heterogeneity and polymorphism of Aβ42 aggregates.
Collapse
Affiliation(s)
- Manyu Zhu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Zihao Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Chen Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
13
|
Huang P, Zhang M. Magnetic Resonance Imaging Studies of Neurodegenerative Disease: From Methods to Translational Research. Neurosci Bull 2023; 39:99-112. [PMID: 35771383 PMCID: PMC9849544 DOI: 10.1007/s12264-022-00905-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/07/2022] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases (NDs) have become a significant threat to an aging human society. Numerous studies have been conducted in the past decades to clarify their pathologic mechanisms and search for reliable biomarkers. Magnetic resonance imaging (MRI) is a powerful tool for investigating structural and functional brain alterations in NDs. With the advantages of being non-invasive and non-radioactive, it has been frequently used in both animal research and large-scale clinical investigations. MRI may serve as a bridge connecting micro- and macro-level analysis and promoting bench-to-bed translational research. Nevertheless, due to the abundance and complexity of MRI techniques, exploiting their potential is not always straightforward. This review aims to briefly introduce research progress in clinical imaging studies and discuss possible strategies for applying MRI in translational ND research.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| |
Collapse
|
14
|
Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci 2022; 15:937133. [PMID: 36090249 PMCID: PMC9454331 DOI: 10.3389/fnmol.2022.937133] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regulated cell death (RCD) is an ordered and tightly orchestrated set of changes/signaling events in both gene expression and protein activity and is responsible for normal development as well as maintenance of tissue homeostasis. Aberrant activation of this pathway results in cell death by various mechanisms including apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. Such pathological changes in neurons alone or in combination have been observed in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Pathological hallmarks of AD focus primarily on the accumulation of two main protein markers: amyloid β peptides and abnormally phosphorylated tau proteins. These protein aggregates result in the formation of A-β plaques and neuro-fibrillary tangles (NFTs) and induce neuroinflammation and neurodegeneration over years to decades leading to a multitude of cognitive and behavioral deficits. Autopsy findings of AD reveal massive neuronal death manifested in the form of cortical volume shrinkage, reduction in sizes of gyri to up to 50% and an increase in the sizes of sulci. Multiple forms of cell death have been recorded in neurons from different studies conducted so far. However, understanding the mechanism/s of neuronal cell death in AD patients remains a mystery as the trigger that results in aberrant activation of RCD is unknown and because of the limited availability of dying neurons. This review attempts to elucidate the process of Regulated cell death, how it gets unregulated in response to different intra and extracellular stressors, various forms of unregulated cell death, their interplay and their role in pathogenesis of Alzheimer's Disease in both human and experimental models of AD. Further we plan to explore the correlation of both amyloid-beta and Tau with neuronal loss as seen in AD.
Collapse
Affiliation(s)
- Parul Goel
- Department of Biochemistry, Shri Atal Bihari Vajpayee Government Medical College Chhainsa, Faridabad, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Kapil Goel
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karanpreet Bhutani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Tanya Chopra
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Sharadendu Bali
- Department of Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
15
|
HDAC4 Inhibitors as Antivascular Senescence Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3087916. [PMID: 35814270 PMCID: PMC9259336 DOI: 10.1155/2022/3087916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Aging is an inevitable consequence of life, and during this process, the epigenetic landscape changes and reactive oxygen species (ROS) accumulation increases. Inevitably, these changes are common in many age-related diseases, including neurodegeneration, hypertension, and cardiovascular diseases. In the current research, histone deacetylation 4 (HDAC4) was studied as a potential therapeutic target in vascular senescence. HDAC4 is a specific class II histone deacetylation protein that participates in epigenetic modifications and deacetylation of heat shock proteins and various transcription factors. There is increasing evidence to support that HDAC4 is a potential therapeutic target, and developments in the synthesis and testing of HDAC4 inhibitors are now gaining interest from academia and the pharmaceutical industry.
Collapse
|
16
|
Komatović K, Matošević A, Terzić-Jovanović N, Žunec S, Šegan S, Zlatović M, Maraković N, Bosak A, Opsenica DM. 4-Aminoquinoline-Based Adamantanes as Potential Anticholinesterase Agents in Symptomatic Treatment of Alzheimer's Disease. Pharmaceutics 2022; 14:1305. [PMID: 35745878 PMCID: PMC9229919 DOI: 10.3390/pharmaceutics14061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.
Collapse
Affiliation(s)
- Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Nataša Terzić-Jovanović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Sandra Šegan
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Mario Zlatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Dejan M. Opsenica
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
- Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Kouki MA, Pritchard AB, Alder JE, Crean S. Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer's Disease? J Alzheimers Dis 2021; 85:957-973. [PMID: 34897087 DOI: 10.3233/jad-215103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is protected by a highly selective barrier, the blood-brain barrier (BBB), that regulates the exchange and homeostasis of bloodborne molecules, excluding xenobiotics. This barrier forms the first line of defense by prohibiting pathogens from crossing to the CNS. Aging and chronic exposure of the BBB to pathogens renders it permeable, and this may give rise to pathology in the CNS such as Alzheimer's disease (AD). Researchers have linked pathogens associated with periodontitis to neuroinflammation and AD-like pathology in vivo and in vitro. Although the presence of periodontitis-associated bacteria has been linked to AD in several clinical studies as DNA and virulence factors were confirmed in brain samples of human AD subjects, the mechanism by which the bacteria traverse to the brain and potentially influences neuropathology is unknown. In this review, we present current knowledge about the association between periodontitis and AD, the mechanism whereby periodontal pathogens might provoke neuroinflammation and how periodontal pathogens could affect the BBB. We suggest future studies, with emphasis on the use of human in vitro models of cells associated with the BBB to unravel the pathway of entry for these bacteria to the CNS and to reveal the molecular and cellular pathways involved in initiating the AD-like pathology. In conclusion, evidence demonstrate that bacteria associated with periodontitis and their virulence factors are capable of inflecting damage to the BBB and have a role in giving rise to pathology similar to that found in AD.
Collapse
Affiliation(s)
- Mhd Ammar Kouki
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Anna Barlach Pritchard
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Jane Elizabeth Alder
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - StJohn Crean
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
18
|
Fatafta H, Kav B, Bundschuh BF, Loschwitz J, Strodel B. Disorder-to-order transition of the amyloid-β peptide upon lipid binding. Biophys Chem 2021; 280:106700. [PMID: 34784548 DOI: 10.1016/j.bpc.2021.106700] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is mounting evidence that Alzheimer's disease progression and severity are linked to neuronal membrane damage caused by aggregates of the amyloid-β (Aβ) peptide. However, the detailed mechanism behind the membrane damage is not well understood yet. Recently, the lipid-chaperone hypothesis has been put forward, based on which the formation of complexes between Aβ and free lipids enables an easy insertion of Aβ into membranes. In order to test this hypothesis, we performed numerous all-atom molecular dynamics simulations. We studied the complex formation between individual lipids, considering both POPC and DPPC, and Aβ and examined whether the resulting complexes would be able to insert into lipid membranes. Complex formation at a one-to-one ratio was readily observed, yet with minimal effects on Aβ's characteristics. Most importantly, the peptide remains largely disordered in 1:1 complexes, and the complex does not insert into the membrane; instead, it is adsorbed to the membrane surface. The results change considerably once Aβ forms a complex with a POPC cluster composed of three lipid molecules. The hydrophobic interactions between Aβ and the lipid tails cause the peptide to fold into either a helical or a β-sheet structure. These observations provide atomic insight into the disorder-to-order transition that is needed for membrane insertion or amyloid aggregation to proceed.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Batuhan Kav
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bastian F Bundschuh
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitütstrasse 1, 40225 Düsseldorf, Germany
| | - Jennifer Loschwitz
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitütstrasse 1, 40225 Düsseldorf, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitütstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Gallardo-Nelson MJ, Strzalka K, Muñoz-Torrero D. Protective Role of a Donepezil-Huprine Hybrid against the β-Amyloid (1-42) Effect on Human Erythrocytes. Int J Mol Sci 2021; 22:ijms22179563. [PMID: 34502472 PMCID: PMC8431064 DOI: 10.3390/ijms22179563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Aβ(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aβ(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals. AVCRI104P4 is a multitarget donepezil-huprine hybrid that improves short-term memory in a mouse model of AD and exerts protective effects in transgenic Caenorhabditis elegans that express Aβ(1-42) peptide. At present, there is no information about the effects of this compound on human erythrocytes. Thus, we considered it important to study its effects on the cell membrane and erythrocyte models, and to examine its protective effect against the toxic insult induced by Aβ(1-42) peptide in this cell and models. This research was developed using X-ray diffraction and differential scanning calorimetry (DSC) on molecular models of the human erythrocyte membrane constituted by lipid bilayers built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). They correspond to phospholipids representative of those present in the external and internal monolayers, respectively, of most plasma and neuronal membranes. The effect of AVCRI104P4 on human erythrocyte morphology was studied by scanning electron microscopy (SEM). The experimental results showed a protective effect of AVCRI104P4 against the toxicity induced by Aβ(1-42) peptide in human erythrocytes and molecular models.
Collapse
Affiliation(s)
- Pablo Zambrano
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence: ; Tel.: +49-89-8578-2374
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile;
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (M.J.-R.); (K.S.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (M.J.-R.); (K.S.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food, Sciences, University of Barcelona (UB), E-08028 Barcelona, Spain;
- Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| |
Collapse
|
20
|
McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ. The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener 2021; 16:49. [PMID: 34289882 PMCID: PMC8293489 DOI: 10.1186/s13024-021-00467-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease (AD) prevention trials hold the promise to delay or prevent cognitive decline and dementia onset by intervening before significant neuronal damage occurs. In recent years, the first AD prevention trials have launched and are yielding important findings on the biology of targeting asymptomatic AD pathology. However, there are limitations that impact the design of these prevention trials, including the translation of animal models that recapitulate key stages and multiple pathological aspects of the human disease, missing target validation in asymptomatic disease, uncertain causality of the association of pathophysiologic changes with cognitive and clinical symptoms, and limited biomarker validation for novel targets. The field is accelerating advancements in key areas including the development of highly specific and quantitative biomarker measures for AD pathology, increasing our understanding of the course and relationship of amyloid and tau pathology in asymptomatic through symptomatic stages, and the development of powerful interventions that can slow or reverse AD amyloid pathology. We review the current status of prevention trials and propose key areas of needed research as a call to basic and translational scientists to accelerate AD prevention. Specifically, we review (1) sporadic and dominantly inherited primary and secondary AD prevention trials, (2) proposed targets, mechanisms, and drugs including the amyloid, tau, and inflammatory pathways and combination treatments, (3) the need for more appropriate prevention animal models and experiments, and (4) biomarkers and outcome measures needed to design human asymptomatic prevention trials. We conclude with actions needed to effectively move prevention targets and trials forward.
Collapse
Affiliation(s)
- Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Jorge J. Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - John C. Morris
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Randall J. Bateman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| |
Collapse
|
21
|
Wen LY, Wan L, Lai JN, Chen CS, Chen JJY, Wu MY, Hu KC, Chiu LT, Tien PT, Lin HJ. Increased risk of Alzheimer's disease among patients with age-related macular degeneration: A nationwide population-based study. PLoS One 2021; 16:e0250440. [PMID: 33961642 PMCID: PMC8104445 DOI: 10.1371/journal.pone.0250440] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/07/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the risk of Alzheimer's disease among patients with age-related macular degeneration and its association with confounding comorbidities. METHOD This was a population-based, retrospective cohort study. By accessing data from the National Health Insurance Research Database of Taiwan, we identified 10,578 patients aged 50-100 years who were newly diagnosed with age-related macular degeneration between 2000 and 2012 and 10,578 non- age-related macular degeneration individuals. The comorbidities assessed were osteoporosis, diabetes, cirrhosis, cerebrovascular disease, chronic kidney disease, hypertension, hyperlipidemia, coronary artery disease, and chronic obstructive pulmonary disease. RESULTS Patients with age-related macular degeneration had a 1.23-fold increased risk of their condition advancing to Alzheimer's disease (aHR = 1.23, 95% CI = 1.04-1.46). The younger patients were diagnosed with age-related macular degeneration, the more likely patients got Alzheimer's disease (50-64 age group: aHR = 1.97, 95% CI = 1.04-3.73; 65-79 age group: aHR = 1.27, 95% CI = 1.02-1.58; 80-100 age group: aHR = 1.06, 95% CI = 0.78-1.45). In addition, there were significantly higher risks of Alzheimer's disease for patients with cirrhosis (aHR = 1.50, 95% CI = 1.09-2.06) in the age-related macular degeneration cohort than in the non-age-related macular degeneration cohort. CONCLUSION Patients with age-related macular degeneration may exhibit a higher risk of Alzheimer's disease than people without age-related macular degeneration.
Collapse
Affiliation(s)
- Li-Yen Wen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Nien Lai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih Sheng Chen
- Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Jamie Jiin-Yi Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Ophthalmology and Department of Molecular Genetics, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yen Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Ophthalmology and Department of Molecular Genetics, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Chieh Hu
- Management office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Lu-Ting Chiu
- Management office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Peng-Tai Tien
- Department of Ophthalmology and Department of Molecular Genetics, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Ophthalmology and Department of Molecular Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Michalicova A, Majerova P, Kovac A. Tau Protein and Its Role in Blood-Brain Barrier Dysfunction. Front Mol Neurosci 2020; 13:570045. [PMID: 33100967 PMCID: PMC7554615 DOI: 10.3389/fnmol.2020.570045] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining the specialized microenvironment of the central nervous system (CNS). In aging, the stability of the BBB declines and the permeability increases. The list of CNS pathologies involving BBB dysfunction is growing. The opening of the BBB and subsequent infiltration of serum components to the brain can lead to a host of processes resulting in progressive synaptic, neuronal dysfunction, and detrimental neuroinflammatory changes. Such processes have been implicated in different diseases, including vascular dementia, stroke, Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, hypoxia, ischemia, and diabetes mellitus. The BBB damage is also observed in tauopathies that lack amyloid-β overproduction, suggesting a role for tau in BBB damage. Tauopathies represent a heterogeneous group of around 20 different neurodegenerative diseases characterized by abnormal deposition of the MAPT in cells of the nervous system. Neuropathology of tauopathies is defined as intracellular accumulation of neurofibrillary tangles (NFTs) consisting of aggregated hyper- and abnormal phosphorylation of tau protein and neuroinflammation. Disruption of the BBB found in tauopathies is driven by chronic neuroinflammation. Production of pro-inflammatory signaling molecules such as cytokines, chemokines, and adhesion molecules by glial cells, neurons, and endothelial cells determine the integrity of the BBB and migration of immune cells into the brain. The inflammatory processes promote structural changes in capillaries such as fragmentation, thickening, atrophy of pericytes, accumulation of laminin in the basement membrane, and increased permeability of blood vessels to plasma proteins. Here, we summarize the knowledge about the role of tau protein in BBB structural and functional changes.
Collapse
Affiliation(s)
- Alena Michalicova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| |
Collapse
|
23
|
Fu J, Bao F, Gu M, Liu J, Zhang Z, Ding J, Xie SS, Ding J. Design, synthesis and evaluation of quinolinone derivatives containing dithiocarbamate moiety as multifunctional AChE inhibitors for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2019; 35:118-128. [PMID: 31694418 PMCID: PMC6844382 DOI: 10.1080/14756366.2019.1687460] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A series of novel quinolinone derivatives bearing dithiocarbamate moiety were designed and synthesised as multifunctional AChE inhibitors for the treatment of AD. Most of these compounds exhibited strong and clearly selective inhibition to eeAChE. Among them, compound 4c was identified as the most potent inhibitor to both eeAChE and hAChE (IC50 = 0.22 μM for eeAChE; IC50 = 0.16 μM for hAChE), and it was also the best inhibitor to AChE-induced Aβ aggregation (29.02% at 100 μM) and an efficient inhibitor to self-induced Aβ aggregation (30.67% at 25 μM). Kinetic and molecular modelling studies indicated that compound 4c was a mixed-type inhibitor, which could interact simultaneously with the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4c had good ability to cross the BBB, showed no toxicity on SH-SY5Y neuroblastoma cells and was well tolerated in mice at doses up to 2500 mg/kg (po).
Collapse
Affiliation(s)
- Jie Fu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Jiangsu Zeyun Pharmaceutical Co., Ltd, Xibei Town Industrial Park, Wuxi, China
| | - Fengqi Bao
- Jiangsu Zeyun Pharmaceutical Co., Ltd, Xibei Town Industrial Park, Wuxi, China
| | - Min Gu
- Jiangsu Zeyun Pharmaceutical Co., Ltd, Xibei Town Industrial Park, Wuxi, China
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Zhipeng Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiaoli Ding
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
24
|
Dorsey MP, Nguelifack BM, Yates EA. Colorimetric Detection of Mutant β-Amyloid(1–40) Membrane-Active Aggregation with Biosensing Vesicles. ACS APPLIED BIO MATERIALS 2019; 2:4966-4977. [DOI: 10.1021/acsabm.9b00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael P. Dorsey
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - Brice M. Nguelifack
- Department of Mathematics, United States Naval Academy, 572C Holloway Road, Annapolis, Maryland 21402, United States
| | - Elizabeth A. Yates
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| |
Collapse
|
25
|
Aminyavari S, Zahmatkesh M, Khodagholi F, Sanati M. Anxiolytic impact of Apelin-13 in a rat model of Alzheimer's disease: Involvement of glucocorticoid receptor and FKBP5. Peptides 2019; 118:170102. [PMID: 31199948 DOI: 10.1016/j.peptides.2019.170102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/18/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023]
Abstract
Apelin-13 is known to be one of the predominant neuropeptides with marked protective role in circuits involved in mood disturbances. The most putative hypothesis in pathophysiology of Alzheimer's disease (AD) is Amyloid beta (Aβ) aggregation which interrupt proper function of hypothalamic-pituitary-adrenal (HPA) axis and are associated with anxiety. Here, we assessed the potential anxiolytic effect of Apelin-13 in a rodent cognitive impairment model induced by intrahippocampal Aβ 25-35 administration. We evaluated the memory impairment and anxiogenic behavior using shuttle box and Elevated plus maze apparatuses. We also measured the glucocorticoid receptor (GR) and FK506 binding protein 51 (FKBP5) expression as important markers showing the proper feedback mechanism within the HPA axis. Our findings showed that Aβ 25-35 administration induced memory impairment and anxiety behaviors. Apelin-13 exerted the anxiolytic effects and provided protection against Aβ 25-35 -induced passive avoidance memory impairment. Moreover, Apelin-13 caused an increase in GR and a decrease in FKBP5 expression levels in Aβ 25-35 treated animals. Taken together, these findings showed the anxiolytic effect of Apelin-13. This effect at least in part, may be mediated through the regulation of GR and FKBP5 expression levels which have a pivotal role in the appropriate negative feedback mechanism within the HPA axis. These data suggest that Apelin-13 might be considered as a potential neuropeptide defense that reduces anxiety along with neuroprotective effect against the Aβ 25-35 -induced injury.
Collapse
Affiliation(s)
- Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Electrophysiology Research Center, Neuroscience Institute, Tehran, Iran, Tehran University of Medical Sciences, Tehran, Iran; Cognitive Sciences and Behavioral Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
26
|
Does SCFD1 rs10139154 Polymorphism Decrease Alzheimer’s Disease Risk? J Mol Neurosci 2019; 69:343-350. [DOI: 10.1007/s12031-019-01363-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
|
27
|
Verkhratsky A. Astroglial Calcium Signaling in Aging and Alzheimer's Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035188. [PMID: 31110130 DOI: 10.1101/cshperspect.a035188] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrocytes are the homeostatic and protective cells of the central nervous system (CNS). In neurological diseases, astrocytes undergo complex changes, which are subclassified into (1) reactive astrogliosis, an evolutionary conserved defensive rearrangement of cellular phenotype aimed at neuroprotection; (2) pathological remodeling, when astrocytes acquire new features driving pathology; and (3) astrodegeneration, which is manifested by astroglial atrophy and loss of homeostatic functions. In aging brains as well as in the brains affected by Alzheimer's disease (AD), astrocytes acquire both atrophic and reactive phenotypes in a region- and disease-stage-dependent manner. Prevalence of atrophy overreactivity, observed in certain brain regions and in terminal stages of the disease, arguably facilitates the development of neurological deficits. Astrocytes exhibit ionic excitability mediated by changes in intracellular concentration of ions, most importantly of Ca2+ and Na+, with intracellular ion dynamics triggered by the activity of neural networks. AD astrocytes associated with senile plaques demonstrate Ca2+ hyperactivity in the form of aberrant Ca2+ oscillations and pathological long-range Ca2+ waves. Astroglial Ca2+ signaling originating from Ca2+ release from the endoplasmic reticulum is a key factor in initiating astrogliotic response; deficient Ca2+ signaling toolkits observed in entorhinal and prefrontal cortices of AD model animals may account for vulnerability of these regions to the pathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
28
|
Thomas J, Ooms S, Verbeek M, Booij J, Rijpkema M, Kessels RPC, Overeem S, Claassen J. Sleep-Cognition Hypothesis In maritime Pilots, what is the effect of long-term work-related poor sleep on cognition and amyloid accumulation in healthy middle-aged maritime pilots: methodology of a case-control study. BMJ Open 2019; 9:e026992. [PMID: 31248923 PMCID: PMC6597630 DOI: 10.1136/bmjopen-2018-026992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Evidence indicates a bidirectional relationship between poor sleep and Alzheimer's disease (AD). While AD may lead to disruption of normal sleep, poor sleep in itself may play a causal role in the development of AD by influencing the production and/or clearance of the amyloid-beta (Aβ) protein. This led to the hypothesis that extended periods (>10 years) of sleep loss could lead to Aβ accumulation with subsequent cognitive AD-related decline. This manuscript describes the methodology of the SCHIP study, a cohort study in maritime pilots that aims at investigating the relationship between prolonged work-related sleep loss, cognitive function and amyloid accumulation among healthy middle-aged maritime pilots, to test the hypothesis that prolonged sleep loss increases the risk of AD-related cognitive decline. METHODS Our study sample consists of a group of healthy middle-aged maritime pilots (n=20), who have been exposed to highly irregular work schedules for more than 15 years. The maritime pilots will be compared to a group of healthy, age and education-matched controls (n=20) with normal sleep. Participants will complete 10 days of actigraphy (Actiwatch 2, Philips Respironics) combined with a sleep-wake diary. They will undergo one night of polysomnography, followed by comprehensive assessment of cognitive function. Additionally, participants will undergo amyloid positron emission tomography-CT to measure brain amyloid accumulation and MRI to investigate atrophy and vascular changes. ANALYSIS All analyses will be performed using IBM SPSS V.20.0 (SPSS). We will perform independent samples t-tests to compare all outcome parameters. ETHICS AND DISSEMINATION The study protocol was approved by our institutional ethical review board (NL55712.091.16, file number 2016-2337) and will be performed according to Good Clinical Practice rules. Data and results will be published in 2020.
Collapse
Affiliation(s)
- Jana Thomas
- Geriatric Medicine, Radboudumc, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sharon Ooms
- Geriatric Medicine, Radboudumc, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Verbeek
- Radboud Alzheimer Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Neurology, Radboudumc, Nijmegen, The Netherlands
| | - Jan Booij
- Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Roy P C Kessels
- Radboud Alzheimer Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Medical Psychology, Radboudumc, Nijmegen, The Netherlands
| | - Sebastiaan Overeem
- Eindhoven Medtech Innovation Center, Eindhoven University of Technology, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Jurgen Claassen
- Geriatric Medicine, Radboudumc, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Jiang N, Ding J, Liu J, Sun X, Zhang Z, Mo Z, Li X, Yin H, Tang W, Xie SS. Novel chromanone-dithiocarbamate hybrids as multifunctional AChE inhibitors with β-amyloid anti-aggregation properties for the treatment of Alzheimer's disease. Bioorg Chem 2019; 89:103027. [PMID: 31176237 DOI: 10.1016/j.bioorg.2019.103027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
Abstract
By connecting chromanone with dithiocarbamate moieties through flexible linkers, a series of hybrids as novel multifunctional AChE inhibitors have been designed and synthesized. Most of these compounds displayed strong and excellently selective inhibition to eeAChE as well as potent inhibition to self- and AChE-induced Aβ aggregation. Among them, compound 6c showed the best activity to inhibit eeAChE (IC50 = 0.10 μM) and AChE-induced Aβ aggregation (33.02% at 100 μM), and could effectively inhibit self-induced Aβ aggregation (38.25% at 25 μM). Kinetic analysis and docking study indicated that compound 6c could target both the CAS and PAS, suggesting that it was a dual binding site inhibitor for AChE. Besides, it exhibited good ability to penetrate the BBB and low neurotoxicity in SH-SY5Y cells. More importantly, compound 6c was well tolerated in mice (2500 mg/kg, po) and could attenuate the memory impairment in a scopolamine-induced mouse model. Overall, these results highlight 6c as a promising multifunctional agent for treating AD and also demonstrate that the dithiocarbamate is a valid scaffold for design of multifunctional AChE inhibitors.
Collapse
Affiliation(s)
- Neng Jiang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China; Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, PR China
| | - Jiaoli Ding
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Xiaona Sun
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhipeng Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Zhongxia Mo
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, PR China
| | - Xiao Li
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, PR China
| | - Hong Yin
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, PR China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, PR China.
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.
| |
Collapse
|
30
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
31
|
Verkhratsky A, Parpura V, Rodriguez-Arellano JJ, Zorec R. Astroglia in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:273-324. [PMID: 31583592 DOI: 10.1007/978-981-13-9913-8_11] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is the most common cause of dementia. Cellular changes in the brains of the patients suffering from Alzheimer's disease occur well in advance of the clinical symptoms. At the cellular level, the most dramatic is a demise of neurones. As astroglial cells carry out homeostatic functions of the brain, it is certain that these cells are at least in part a cause of Alzheimer's disease. Historically, Alois Alzheimer himself has recognised this at the dawn of the disease description. However, the role of astroglia in this disease has been understudied. In this chapter, we summarise the various aspects of glial contribution to this disease and outline the potential of using these cells in prevention (exercise and environmental enrichment) and intervention of this devastating disease.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.,University of Rijeka, Rijeka, Croatia
| | - Jose Julio Rodriguez-Arellano
- BioCruces Health Research Institute, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neuroscience, The University of the Basque Country UPV/EHU, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
32
|
Yu M, Chen X, Liu J, Ma Q, Zhuo Z, Chen H, Zhou L, Yang S, Zheng L, Ning C, Xu J, Gao T, Hou ST. Gallic acid disruption of Aβ 1-42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol Dis 2018; 124:67-80. [PMID: 30447302 DOI: 10.1016/j.nbd.2018.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) treatment represents one of the largest unmet medical needs. Developing small molecules targeting Aβ aggregation is an effective approach to prevent and treat AD. Here, we show that gallic acid (GA), a naturally occurring polyphenolic small molecule rich in grape seeds and fruits, has the capacity to alleviate cognitive decline of APP/PS1 transgenic mouse through reduction of Aβ1-42 aggregation and neurotoxicity. Oral administration of GA not only improved the spatial reference memory and spatial working memory of 4-month-old APP/PS1 mice, but also significantly reduced the more severe deficits developed in the 9-month-old APP/PS1 mice in terms of spatial learning, reference memory, short-term recognition and spatial working memory. The hippocampal long-term-potentiation (LTP) was also significantly elevated in the GA-treated 9-month-old APP/PS1 mice with increased expression of synaptic marker proteins. Evidence from atomic force microscopy (AFM), dynamic light scattering (DLS) and thioflavin T (ThT) fluorescence densitometry analyses showed that GA significantly reduces Aβ1-42 aggregation both in vitro and in vivo. Further, pre-incubating GA with oligomeric Aβ1-42 reduced Aβ1-42-mediated intracellular calcium influx and neurotoxicity. Molecular docking studies identified that the 3,4,5-hydroxyle groups of GA were essential in noncovalently stabilizing GA binding to the Lys28-Ala42 salt bridge and the -COOH group is critical for disrupting the salt bridge of Aβ1-42. The predicated covalent interaction through Schiff-base formation between the carbonyl group of the oxidized product and ε-amino group of Lys16 is also critical for the disruption of Aβ1-42 S-shaped triple-β-motif and toxicity. Together, these studies demonstrated that GA can be further developed as a drug to treat AD through disrupting the formation of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Mei Yu
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Xuwei Chen
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Jihong Liu
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou 510515, PR China
| | - Quan Ma
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Zhan Zhuo
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Hao Chen
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Lin Zhou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Sen Yang
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Lifeng Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Chengqing Ning
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Jing Xu
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Tianming Gao
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou 510515, PR China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
33
|
Verheggen I, Van Boxtel M, Verhey F, Jansen J, Backes W. Interaction between blood-brain barrier and glymphatic system in solute clearance. Neurosci Biobehav Rev 2018; 90:26-33. [DOI: 10.1016/j.neubiorev.2018.03.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 02/03/2023]
|
34
|
Gu K, Li Q, Lin H, Zhu J, Mo J, He S, Lu X, Jiang X, Sun H. Gamma secretase inhibitors: a patent review (2013 - 2015). Expert Opin Ther Pat 2017; 27:851-866. [PMID: 28350212 DOI: 10.1080/13543776.2017.1313231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Gamma secretase (GS) is an intricate and multi-subunits complex, and it can cut various transmembrane proteins. Now it is a therapeutic target for a number of diseases. However, due to some side effects, the clinical development of GSI is not successful. Therefore, searching for effective GSIs has become a key point in drug discovery. Areas covered: This review discusses the structure and function of GS and various types of GSIs. And this article seeks to give an overview of the patents or applications published from 2013 to 2015 in which novel chemical classes are claimed to inhibit the GS. Expert opinion: Firstly, further understanding the structure and function of GS to elucidate the disease mechanism and develop AD therapies is urgent. Secondly, if the bioequivalence, pharmacokinetics and selectivity can be improved greatly, some failed clinical inhibitors still can become the promising compounds for clinical trials. Thirdly, some weaknesses are exposed during the development of GSI, especially the insufficient potency, low brain penetration and poor selectivity. Finally, to find potent and selective GSI is the major direction in future. Moreover, to find new indications and dosing regimens in a trial of GSIs also can be seen as new ways.
Collapse
Affiliation(s)
- Kai Gu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qi Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Hongzhi Lin
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jie Zhu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jun Mo
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Siyu He
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xin Lu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xueyang Jiang
- b Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , China
| | - Haopeng Sun
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
35
|
Castro P, Zaman S, Holland A. Alzheimer's disease in people with Down's syndrome: the prospects for and the challenges of developing preventative treatments. J Neurol 2017; 264:804-813. [PMID: 27778163 PMCID: PMC5374178 DOI: 10.1007/s00415-016-8308-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
People with Down's syndrome (DS) are at high risk for developing Alzheimer's disease (AD) at a relatively young age. This increased risk is not observed in people with intellectual disabilities for reasons other than DS and for this reason it is unlikely to be due to non-specific effects of having a neurodevelopmental disorder but, instead, a direct consequence of the genetics of DS (trisomy 21). Given the location of the amyloid precursor protein (APP) gene on chromosome 21, the amyloid cascade hypothesis is the dominant theory accounting for this risk, with other genetic and environmental factors modifying the age of onset and the course of the disease. Several potential therapies targeting the amyloid pathway and aiming to modify the course of AD are currently being investigated, which may also be useful for treating AD in DS. However, given that the neuropathology associated with AD starts many years before dementia manifests, any preventative treatment must start well before the onset of symptoms. To enable trials of such interventions, plasma, CSF, brain, and retinal biomarkers are being studied as proxy early diagnostic and outcome measures for AD. In this systematic review, we consider the prospects for the development of potential preventative treatments of AD in the DS population and their evaluation.
Collapse
Affiliation(s)
- Paula Castro
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK
| | - Anthony Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.
| |
Collapse
|
36
|
Gupta A, Goyal R. Amyloid beta plaque: a culprit for neurodegeneration. Acta Neurol Belg 2016; 116:445-450. [PMID: 27118573 DOI: 10.1007/s13760-016-0639-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Increasing life expectancy has resulted in an increase in neurodegenerative disorders like Alzheimer's disease. None of the hypothesis proposed till date explains the exact pathobiology of the disease. It is therefore imperative to understand the underlying mechanisms. Amyloid beta (Aβ) is regarded as the main culprit and maximum therapeutic efforts are centered towards Aβ. This review will discuss about the biosynthesis, the physiological role of Aβ including the pathogenic aggregation of Aβ resulting neurodegenerative cognitive disabilities. Most studies of Alzheimer's disease have focused on the biochemical mechanisms involved in the neurodegenerative processes triggered by Aβ aggregates. Aβ is generated from mature amyloid precursor protein being metabolized by two competing pathways, α-secretase pathway (non-amyloidogenic pathway) and β-secretase (amyloidogenic pathway). The physiological roles of Aβ reported in neurotrophic properties, neurogenesis, synaptic plasticity, metal ion sequestration and specificity of blood brain barrier. The neuronal injury is the result of Aβ oligomerization and it is reported that oligomerization of Aβ contributes to neurodegeneration in Alzheimer's disease. The physiological role of Aβ must be considered in the development of medications that intended to decrease its oligomerization forming plaques in a disease like Alzheimer's disease. The biosynthetic pathways for transport and accumulation of Aβ need to be ascertained as an attempt to develop future strategies for prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankita Gupta
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
37
|
Wang QH, Wang YR, Zhang T, Jiao SS, Liu YH, Zeng F, Li J, Yao XQ, Zhou HD, Zhou XF, Wang YJ. Intramuscular delivery of p75NTR ectodomain by an AAV vector attenuates cognitive deficits and Alzheimer's disease-like pathologies in APP/PS1 transgenic mice. J Neurochem 2016; 138:163-73. [PMID: 26991827 DOI: 10.1111/jnc.13616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023]
Abstract
The neurotrophin receptor p75 (p75NTR) is a receptor for amyloid-beta (Aβ) and mediates Aβ-induced neurodegenerative signals. The ectodomain of p75NTR (p75ECD) is a physiological protective factor against Aβ in Alzheimer's disease (AD). We have previously demonstrated that the shedding of p75ECD from the cell surface is down-regulated in AD brains and restoration of the p75ECD level in the brain, through intracranial administration of p75ECD by adeno-associated virus vectors, attenuates AD-like pathologies in an AD mouse model. In this study, we further investigated the feasibility and efficacy of peripheral administration of AAV-p75ECD on brain amyloid burden and associated pathogenesis. We found that intramuscular delivery of AAV-p75ECD increased the level of p75ECD in the blood, significantly improved the behavioral phenotype of amyloid precursor protein/PS1 transgenic mice, and reduced brain amyloid burden, attenuated Tau hyperphosphorylation, and neuroinflammation. Furthermore, intramuscular delivery of AAV-p75ECD was well tolerated. Our results indicate that peripheral delivery of p75ECD represents a safe and effective therapeutic strategy for AD. The ectodomain of p75NTR (p75ECD) is a physiological protective factor against amyloid-beta (Aβ) in Alzheimer's disease (AD). Intramuscular delivery of AAV-p75ECD increased the p75ECD levels in the blood, reduced brain amyloid burden through a 'peripheral sink' mechanism and alleviates AD-type pathologies. Peripheral delivery of p75ECD represents a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Qing-Hua Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ye-Ran Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Tao Zhang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Shu-Sheng Jiao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Hui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fan Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hua-Dong Zhou
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xin-Fu Zhou
- Division of Health Sciences, School of Pharmacy and Medical Sciences and Sansom Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
39
|
Mandal M, Wu Y, Misiaszek J, Li G, Buevich A, Caldwell JP, Liu X, Mazzola RD, Orth P, Strickland C, Voigt J, Wang H, Zhu Z, Chen X, Grzelak M, Hyde LA, Kuvelkar R, Leach PT, Terracina G, Zhang L, Zhang Q, Michener MS, Smith B, Cox K, Grotz D, Favreau L, Mitra K, Kazakevich I, McKittrick BA, Greenlee W, Kennedy ME, Parker EM, Cumming JN, Stamford AW. Structure-Based Design of an Iminoheterocyclic β-Site Amyloid Precursor Protein Cleaving Enzyme (BACE) Inhibitor that Lowers Central Aβ in Nonhuman Primates. J Med Chem 2016; 59:3231-48. [DOI: 10.1021/acs.jmedchem.5b01995] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mihirbaran Mandal
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yusheng Wu
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jeffrey Misiaszek
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Guoqing Li
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alexei Buevich
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John P. Caldwell
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaoxiang Liu
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Robert D. Mazzola
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Peter Orth
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Corey Strickland
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Johannes Voigt
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hongwu Wang
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhaoning Zhu
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xia Chen
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Michael Grzelak
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lynn A. Hyde
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Reshma Kuvelkar
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Prescott T. Leach
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Giuseppe Terracina
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lili Zhang
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qi Zhang
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Maria S. Michener
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Brad Smith
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kathleen Cox
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Diane Grotz
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Leonard Favreau
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kaushik Mitra
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Irina Kazakevich
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Brian A. McKittrick
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - William Greenlee
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Matthew E. Kennedy
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Eric M. Parker
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jared N. Cumming
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andrew W. Stamford
- Department of Global Chemistry, ‡Department of Neuroscience, §Department of Safety Assessment and
Laboratory Animal Research, ∥Department of Discovery Pharmaceutical Sciences, and ⊥Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
40
|
Lv L, Tang F, Lan G. Preparation and characterization of a chitin/platelet-poor plasma composite as a hemostatic material. RSC Adv 2016. [DOI: 10.1039/c6ra20782k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of life-saving hemostatic materials for emergencies can reduce death caused by uncontrolled hemorrhaging.
Collapse
Affiliation(s)
- Lingmei Lv
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Fengling Tang
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Guangqian Lan
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| |
Collapse
|
41
|
Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, Vali L, Abdollahi M, Ghahremani MH, Sharifzadeh M. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 2015; 139:47-58. [DOI: 10.1016/j.pbb.2015.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/25/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022]
|
42
|
Yang SH, Li W, Sumien N, Forster M, Simpkins JW, Liu R. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol 2015; 157:273-291. [PMID: 26603930 DOI: 10.1016/j.pneurobio.2015.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Brain has exceptional high requirement for energy metabolism with glucose as the exclusive energy source. Decrease of brain energy metabolism and glucose uptake has been found in patients of Alzheimer's, Parkinson's and other neurodegenerative diseases, providing a clear link between neurodegenerative disorders and energy metabolism. On the other hand, cancers, including glioblastoma, have increased glucose uptake and rely on aerobic glycolysis for energy metabolism. The switch of high efficient oxidative phosphorylation to low efficient aerobic glycolysis pathway (Warburg effect) provides macromolecule for biosynthesis and proliferation. Current research indicates that methylene blue, a century old drug, can receive electron from NADH in the presence of complex I and donates it to cytochrome c, providing an alternative electron transfer pathway. Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro. Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment. In addition, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer's, Parkinson's, and Huntington's disease. In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation. Accordingly, methylene blue activates AMP-activated protein kinase, inhibits downstream acetyl-coA carboxylase and cyclin-dependent kinases. In summary, there is accumulating evidence providing a proof of concept that enhancement of mitochondrial oxidative phosphorylation via alternative mitochondrial electron transfer may offer protective action against neurodegenerative diseases and inhibit cancers proliferation.
Collapse
Affiliation(s)
- Shao-Hua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathalie Sumien
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michael Forster
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, Center for Neuroscience, Health Science Center, West Virginia University, Medical Center Drive, Morgantown, WV 26506, USA
| | - Ran Liu
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
43
|
Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer's disease subjects. Acta Neuropsychiatr 2015; 27:270-8. [PMID: 25858158 DOI: 10.1017/neu.2015.18] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We undertook a non-targeted lipidomics analysis of post-mortem cerebrospinal fluid (CSF), frontal cortex grey matter, and subjacent white matter to define potential biomarkers that distinguish cognitively intact subjects from those with incipient or established dementia. Our objective was to increase our understanding of the role of brain lipids in pathophysiology of aging and age-related cognitive impairment. METHODS Levels of 650 individual lipids, across 26 lipid subclasses, were measured utilising a high-resolution mass spectrometric analysis platform. RESULTS Monoacylglycerols (MAG), diacylglycerols (DAG), and the very-long-chain fatty acid 26:0 were elevated in the grey matter of the mild cognitive impairment (MCI) and old dementia (OD) cohorts. Ethanolamine plasmalogens (PlsEtn) were decreased in the grey matter of the young dementia (YD) and OD cohorts while and phosphatidylethanolamines (PtdEth) were lower in the MCI, YD and OD cohorts. In the white matter, decrements in sulphatide levels were detected in the YD group, DAG levels were elevated in the MCI group, and MAG levels were increased in the YD and OD groups. CONCLUSION The parallel changes in grey matter MAGs and DAGs in the MCI and OD groups suggest that these two cohorts may have a similar underlying pathophysiology; consistent with this, MCI subjects were more similar in age to OD than to YD subjects. While PlsEtn and phosphatidylethanolamine were decreased in the YD and OD groups they were unaltered in the MCI group indicating that alterations in plasmalogen synthesis are unlikely to represent an initiating event in the transition from MCI to dementia.
Collapse
|
44
|
Desai P, Shete H, Adnaik R, Disouza J, Patravale V. Therapeutic targets and delivery challenges for Alzheimer’s disease. World J Pharmacol 2015; 4:236-264. [DOI: 10.5497/wjp.v4.i3.236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Dementia, including Alzheimer’s disease, the 21st Century epidemic, is one of the most significant social and health crises which has currently afflicted nearly 44 million patients worldwide and about new 7.7 million cases are reported every year. This portrays the unmet need towards better understanding of Alzheimer’s disease pathomechanisms and related research towards more effective treatment strategies. The review thus comprehensively addresses Alzheimer’s disease pathophysiology with an insight of underlying multicascade pathway and elaborates possible therapeutic targets- particularly anti-amyloid approaches, anti-tau approaches, acetylcholinesterase inhibitors, glutamatergic system modifiers, immunotherapy, anti-inflammatory targets, antioxidants, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors and insulin. In spite of extensive research leading to identification of newer targets and potent drugs, complete cure of Alzheimer’s disease appears to be an unreached holy grail. This can be attributed to their ineffective delivery across blood brain barrier and ultimately to the brain. With this understanding, researchers are now focusing on development of drug delivery systems to be delivered via suitable route that can circumvent blood brain barrier effectively with enhanced patient compliance. In this context, we have summarized current drug delivery strategies by oral, transdermal, intravenous, intranasal and other miscellaneous routes and have accentuated the future standpoint towards promising therapy ultimately leading to Alzheimer’s disease cure.
Collapse
|
45
|
Jiao SS, Yao XQ, Liu YH, Wang QH, Zeng F, Lu JJ, Liu J, Zhu C, Shen LL, Liu CH, Wang YR, Zeng GH, Parikh A, Chen J, Liang CR, Xiang Y, Bu XL, Deng J, Li J, Xu J, Zeng YQ, Xu X, Xu HW, Zhong JH, Zhou HD, Zhou XF, Wang YJ. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits. Proc Natl Acad Sci U S A 2015; 112:5225-5230. [PMID: 25847999 PMCID: PMC4413288 DOI: 10.1073/pnas.1422998112] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.
Collapse
Affiliation(s)
- Shu-Sheng Jiao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiu-Qing Yao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yu-Hui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qing-Hua Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fan Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jian-Jun Lu
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jia Liu
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Chi Zhu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin-Lin Shen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Hui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Ye-Ran Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Gui-Hua Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Ankit Parikh
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jia Chen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chun-Rong Liang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yang Xiang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xian-Le Bu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Juan Deng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jing Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Juan Xu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yue-Qin Zeng
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650031, China
| | - Xiang Xu
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China; and
| | - Hai-Wei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jin-Hua Zhong
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Hua-Dong Zhou
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650031, China;
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China;
| |
Collapse
|
46
|
Jacobs HI, Wiese S, van de Ven V, Gronenschild EH, Verhey FR, Matthews PM. Relevance of parahippocampal-locus coeruleus connectivity to memory in early dementia. Neurobiol Aging 2015; 36:618-26. [DOI: 10.1016/j.neurobiolaging.2014.10.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 10/10/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
47
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Verkhratsky A, Marutle A, Rodríguez-Arellano JJ, Nordberg A. Glial Asthenia and Functional Paralysis: A New Perspective on Neurodegeneration and Alzheimer's Disease. Neuroscientist 2014; 21:552-568. [PMID: 25125026 DOI: 10.1177/1073858414547132] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuroglia are represented by several population of cells heterogeneous in structure and function that provide for the homeostasis of the brain and the spinal cord. Neuroglial cells are also central for neuroprotection and defence of the central nervous system against exo- and endogenous insults. At the early stages of neurodegenerative diseases including Alzheimer's disease neuroglial cells become asthenic and lose some of their homeostatic, neuroprotective, and defensive capabilities. Astroglial reactivity, for example, correlates with preservation of cognitive function in patients with mild cognitive impairment and prodromal Alzheimer's disease. Here, we overview the experimental data indicating glial paralysis in neurodegeneration and argue that loss of glial function is fundamental for defining the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Amelia Marutle
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Novum, Huddinge, Sweden
| | - J J Rodríguez-Arellano
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Agneta Nordberg
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Novum, Huddinge, Sweden Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
49
|
Yu M, Ryan TM, Ellis S, Bush AI, Triccas JA, Rutledge PJ, Todd MH. Neuroprotective peptide–macrocycle conjugates reveal complex structure–activity relationships in their interactions with amyloid β. Metallomics 2014; 6:1931-40. [DOI: 10.1039/c4mt00122b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel neuroprotective peptide–macrocycle conjugates exhibit complex, multifaceted structure–activity relationships in their interactions with amyloid β.
Collapse
Affiliation(s)
- Mingfeng Yu
- School of Chemistry
- The University of Sydney
- Sydney, Australia
| | - Timothy M. Ryan
- The Florey Institute of Neuroscience and Mental Health
- Parkville, Australia
| | - Samantha Ellis
- Sydney Medical School
- The University of Sydney
- Sydney, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- Parkville, Australia
| | | | | | - Matthew H. Todd
- School of Chemistry
- The University of Sydney
- Sydney, Australia
| |
Collapse
|
50
|
[Pathogenesis and prevention of Alzheimer's disease: when and in what way does the pathological process begin?]. DER NERVENARZT 2013; 84:477-82. [PMID: 23508204 DOI: 10.1007/s00115-012-3688-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abnormal tau lesions (e.g., pretangles, neuropil threads, and neurofibrillary tangles) that develop in a few types of nerve cells in the central nervous system are essential to the pathogenesis of Alzheimer's disease. Pretangles begin to occur in puberty and even during early childhood in the locus coeruleus. Evolutionally speaking, the propensity to develop tau lesions may be related to late developing and maturing nerve cell types in the human brain.
Collapse
|