1
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Yap RS, Kumar J, Teoh SL. Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1189-1202. [PMID: 38279761 DOI: 10.2174/0118715273289222231219094225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.
Collapse
Affiliation(s)
- Rei Shian Yap
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Husn M, Amin Z, Ali Y, Kanwal L, Sabir K, Shah SA, Shah SF. Neuroprotective effects of vitamin B1 on memory impairment and suppression of pro-inflammatory cytokines in traumatic brain injury. Metab Brain Dis 2023; 38:2175-2184. [PMID: 37314619 DOI: 10.1007/s11011-023-01245-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Traumatic Brain Injury (TBI) remains one of the prevailing disorders that affect millions of people around the globe. There is a cascade of secondary attributes attached to TBI including excitotoxicity, axonal degeneration, neuroinflammation, oxidative stress, and apoptosis. Neuroinflammation is caused due to the activation of microglia along with pro-inflammatory cytokines. The activation of microglia triggers TNF-α which sequentially results in the triggering and upregulation of NF-kB. The aim of the current research was to investigate vitamin B1's potential as neuroprotective agent against TBI-induced neuroinflammation arbitrated memory impairment together with pre- and post-synaptic dysfunction in an adult albino male mice model. TBI was induced using the weight-drop method which caused the microglial activation resulting in neuroinflammation along with synaptic dysfunction leading to the memory impairment of the adult mice. Vitamin B1 was administered for seven days via the intraperitoneal pathway. To analyze the memory impairment and efficacy of vitamin B1, Morris water maze and Y-maze tests were performed. The escape latency time and short-term memories of the experimental mice treated with vitamin B1 were significantly different from the reference mice. The western blot results showed that vitamin B1 has reduced neuroinflammation by downregulating proinflammatory cytokines (NFκ-B, TNF- α). Vitamin B1 also proved its worthiness as a convincing neuroprotective agent by reducing memory dysfunction and recovering the activities of pre- and post-synapse via upregulation of synaptophysin and Postsynaptic density protein 95 (PSD-95).
Collapse
Affiliation(s)
- Mansoor Husn
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Zarnosh Amin
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Yousaf Ali
- Department of Chemistry, Federal Government College Batkhela, FGEIs (C/G), Khyber Pakhtunkhwa, Pakistan.
- Faculty of Allied Health Sciences, Iqra National University Swat Campus, Khyber Pakhtunkhwa, Pakistan.
| | - Lubna Kanwal
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, 0000-0003-2618-3004, Pakistan
| | - Kehkashan Sabir
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
- Department of Biology The University of Haripur, Haripur, Pakistan
| | - Syed Farhan Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| |
Collapse
|
4
|
Shin SS, Gottschalk AC, Mazandi VM, Kilbaugh TJ, Hefti MM. Transcriptional Profiling in a Novel Swine Model of Traumatic Brain Injury. Neurotrauma Rep 2022; 3:178-184. [PMID: 35558731 PMCID: PMC9081013 DOI: 10.1089/neur.2021.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transcriptomic investigations of traumatic brain injury (TBI) can give us deep insights into the pathological and compensatory processes post-injury. Thus far, transcriptomic studies in TBI have mostly used microarrays and have focused on rodent models. However, a large animal model of TBI bears a much stronger resemblance to human TBI with regard to the anatomical details, mechanics of injury, genetics, and, possibly, molecular response. Because of the advantages of a large animal TBI model, we investigated the gene expression changes between injured and uninjured sides of pig cerebral cortex after TBI. Given acute inflammation that follows after TBI and the important role that immune response plays in neuroplasticity and recovery, we hypothesized that transcriptional changes involving immune function will be upregulated. Eight female 4-week-old piglets were injured on the right hemisphere with controlled cortical impact (CCI). At 5 days after TBI, pericontusional cortex tissues from the injured side and contralateral cortical tissues were collected. After RNA extraction, library preparation and sequencing as well as gene expression changes between the ipsi- and contralateral sides were compared. There were 6642 genes that were differentially expressed between the ipsi- and contralateral sides, and 1993 genes among them had at least 3-fold differences. Differentially expressed genes were enriched for biological processes related to immune system activation, regulation of immune response, and leukocyte activation. Many of the differentially expressed genes, such as CD4, CD86, IL1A, IL23R, and IL1R1, were major regulators of immune function. This study demonstrated some of the major transcriptional changes between the pericontusional and contralateral tissue at an acute time point after TBI in pigs.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, Hospital of University of Pennsylvania, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy C. Gottschalk
- College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Menon PK, Patnaik R, Wiklund L, Sharma HS. Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. PROGRESS IN BRAIN RESEARCH 2021; 265:139-230. [PMID: 34560921 DOI: 10.1016/bs.pbr.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims. Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224N results in profound progressive functional deficit, memory impairment and brain pathology from 5h after trauma that continued over several weeks of injury. In this investigation we report that TiO2 nanowired delivery of oxiracetam (50mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Farkhondeh T, Samarghandian S, Roshanravan B, Peivasteh-Roudsari L. Impact of Curcumin on Traumatic Brain Injury and Involved Molecular Signaling Pathways. Recent Pat Food Nutr Agric 2021; 11:137-144. [PMID: 31288732 DOI: 10.2174/2212798410666190617161523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury (TBI) is one of the main causes of mortality and morbidity worldwide with no suitable treatment. The present study was designed to review the present literature about the protective effects of curcumin and the underlying mechanism against TBI. All published English language papers from beginning to 2019 were selected in this study. The findings indicate that curcumin may be effective against TBI outcomes by modulating the molecular signaling pathways involved in oxidative stress, inflammation, apoptosis, and autophagy. However, more experimental studies should be done to identify all mechanisms involved in the pathogenesis of TBI. Patents for Curcumin and chronic inflammation and traumatic brain injury management (WO2017097805A1 and US9101580B2) were published. In conclusion, the present study confirmed the potential therapeutic impact of curcumin for treating TBI.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Peivasteh-Roudsari
- Devision of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
9
|
Mullins RJ, Mustapic M, Chia CW, Carlson O, Gulyani S, Tran J, Li Y, Mattson MP, Resnick S, Egan JM, Greig NH, Kapogiannis D. A Pilot Study of Exenatide Actions in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:741-752. [PMID: 31518224 DOI: 10.2174/1567205016666190913155950] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 07/10/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Strong preclinical evidence suggests that exenatide, a glucagon-like peptide-1 (GLP- 1) receptor agonist used for treating type 2 diabetes, is neuroprotective and disease-modifying in Alzheimer's Disease (AD). OBJECTIVE We performed an 18-month double-blind randomized placebo-controlled Phase II clinical trial to assess the safety and tolerability of exenatide and explore treatment responses for clinical, cognitive, and biomarker outcomes in early AD. METHOD Eighteen participants with high probability AD based on cerebrospinal fluid (CSF) biomarkers completed the entire study prior to its early termination by the sponsor; partial outcomes were available for twentyone. RESULTS Exenatide was safe and well-tolerated, showing an expectedly higher incidence of nausea and decreased appetite compared to placebo and decreasing glucose and GLP-1 during Oral Glucose Tolerance Tests. Exenatide treatment produced no differences or trends compared to placebo for clinical and cognitive measures, MRI cortical thickness and volume, or biomarkers in CSF, plasma, and plasma neuronal extracellular vesicles (EV) except for a reduction of Aβ42 in EVs. CONCLUSION The positive finding of lower EV Aβ42 supports emerging evidence that plasma neuronal EVs provide an effective platform for demonstrating biomarker responses in clinical trials in AD. The study was underpowered due to early termination and therefore we cannot draw any firm conclusions. However, the analysis of secondary outcomes shows no trends in support of the hypothesis that exenatide is diseasemodifying in clinical AD, and lowering EV Aβ42 in and of itself may not improve cognitive outcomes in AD.
Collapse
Affiliation(s)
- Roger J Mullins
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Olga Carlson
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Seema Gulyani
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Joyce Tran
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Yazhou Li
- Translational Gerontology Branch, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| |
Collapse
|
10
|
Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol 2020; 57:5026-5043. [PMID: 32829453 PMCID: PMC7541367 DOI: 10.1007/s12035-020-02073-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
11
|
Avgerinos KI, Vrysis C, Chaitidis N, Kolotsiou K, Myserlis PG, Kapogiannis D. Effects of saffron (Crocus sativus L.) on cognitive function. A systematic review of RCTs. Neurol Sci 2020; 41:2747-2754. [PMID: 32445136 DOI: 10.1007/s10072-020-04427-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Improvement of cognitive function may be desirable for healthy individuals and clinically beneficial for those with cognitive impairment such as from Alzheimer's disease (AD) or mild cognitive impairment (MCI). The aim of this systematic review is to investigate the cognitive effects of oral saffron intake, in patients with MCI/AD and/or in non-demented individuals, by following the PRISMA guidelines. METHODS We performed a literature search on MedLine, Cochrane library, and ClinicalTrials.gov to identify randomized controlled trials (RCTs) investigating the effects of oral saffron administration in patients with MCI/AD and/or in non-demented individuals. RESULTS Five studies (enrolling 325 individuals) met our inclusion criteria. Four studies included patients with MCI/AD, and one study included cognitively normal individuals. Saffron was well-tolerated in all groups. Regarding cognitively impaired patients, scores on Alzheimer's Disease Assessment Scale-cognitive subscale or Mini mental state examination were significantly better when saffron was compared with placebo and did not differ significantly when saffron was compared with donepezil or memantine. Saffron effects on functional status were similar with its effects on cognition. CONCLUSIONS Saffron was shown to be equally effective to common symptomatic drugs for MCI/AD and resulted in no difference in the incidence of side effects, when compared with placebo or drugs. The promising results should be seen cautiously, since the evidence was derived from studies with potentially high risk of bias (ROB). RCTs with larger sample sizes and low ROB are required to definitively assess the potential role of saffron as an MCI/AD treatment.
Collapse
Affiliation(s)
- Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aginga, National Institutes of Health, Baltimore, 3001 S Hanover St, Baltimore, MD, 21225, USA
| | - Christos Vrysis
- 251 Hellenic Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece
| | - Nikolaos Chaitidis
- 401 General Military Hospital of Athens, Kanellopoulou, 11525, Athens, Greece
| | - Katerina Kolotsiou
- 251 Hellenic Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece
| | - Pavlos G Myserlis
- 401 General Military Hospital of Athens, Kanellopoulou, 11525, Athens, Greece
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aginga, National Institutes of Health, Baltimore, 3001 S Hanover St, Baltimore, MD, 21225, USA. .,Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd, 8C228, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Si T, Xing G, Han Y. Subjective Cognitive Decline and Related Cognitive Deficits. Front Neurol 2020; 11:247. [PMID: 32508729 PMCID: PMC7248257 DOI: 10.3389/fneur.2020.00247] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Since late stage dementia, including Alzheimer's disease (AD), cannot be reversed by any available drugs, there is increasing research interest in the preclinical stage of AD, i.e., subjective cognitive decline (SCD). SCD is characterized by self-perceptive cognitive decline but is difficult to detect using objective tests. At SCD stage, the cognitive deficits can be more easily reversed compared to that of mild cognitive impairment (MCI) and AD only if accurate diagnosis of SCD and early intervention can be developed. In this paper, we review the recent progress of SCD research including current assessment tools, biomarkers, neuroimaging, intervention and expected prognosis, and the potential relevance to traumatic brain injury (TBI)-induced cognitive deficits.
Collapse
Affiliation(s)
- Tong Si
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoqiang Xing
- The Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical University, Nanchong Central Hospital, Nanchong, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
13
|
Hook V, Yoon M, Mosier C, Ito G, Podvin S, Head BP, Rissman R, O'Donoghue AJ, Hook G. Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140428. [PMID: 32305689 DOI: 10.1016/j.bbapap.2020.140428] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Investigations of Alzheimer's disease (AD), traumatic brain injury (TBI), and related brain disorders have provided extensive evidence for involvement of cathepsin B, a lysosomal cysteine protease, in mediating the behavioral deficits and neuropathology of these neurodegenerative diseases. This review integrates findings of cathepsin B regulation in clinical biomarker studies, animal model genetic and inhibitor evaluations, structural studies, and lysosomal cell biological mechanisms in AD, TBI, and related brain disorders. The results together indicate the role of cathepsin B in the behavioral deficits and neuropathology of these disorders. Lysosomal leakage occurs in AD and TBI, and related neurodegeneration, which leads to the hypothesis that cathepsin B is redistributed from the lysosome to the cytosol where it initiates cell death and inflammation processes associated with neurodegeneration. These results together implicate cathepsin B as a major contributor to these neuropathological changes and behavioral deficits. These findings support the investigation of cathepsin B as a potential drug target for therapeutic discovery and treatment of AD, TBI, and TBI-related brain disorders.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States of America; Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, United States of America.
| | - Michael Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States of America
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Brian P Head
- VA San Diego Healthcare System, La Jolla, CA, United States of America; Department of Anesthesia, University of California San Diego, La Jolla, CA, United States of America
| | - Robert Rissman
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, United States of America; VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, CA, United States of America
| |
Collapse
|
14
|
Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Dhaliwal AS, Dubova I, Mentor S, Premkumar K, Saeed D, Zahoor H, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. Brain Injury-Mediated Neuroinflammatory Response and Alzheimer's Disease. Neuroscientist 2020; 26:134-155. [PMID: 31092147 PMCID: PMC7274851 DOI: 10.1177/1073858419848293] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Arshdeep S. Dhaliwal
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shireen Mentor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Keerthivaas Premkumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Daniyal Saeed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Haris Zahoor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
15
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
16
|
Pradeep T, Bray MJC, Arun S, Richey LN, Jahed S, Bryant BR, LoBue C, Lyketsos CG, Kim P, Peters ME. History of traumatic brain injury interferes with accurate diagnosis of Alzheimer's dementia: a nation-wide case-control study. Int Rev Psychiatry 2020; 32:61-70. [PMID: 31707905 PMCID: PMC6952566 DOI: 10.1080/09540261.2019.1682529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) bear a complex relationship, potentially increasing risk of one another reciprocally. However, recent evidence suggests post-TBI dementia exists as a distinct neurodegenerative syndrome, confounding AD diagnostic accuracy in clinical settings. This investigation sought to evaluate TBI's impact on the accuracy of clinician-diagnosed AD using gold standard neuropathological criteria. In this preliminary analysis, data were acquired from the National Alzheimer's Coordinating Centre (NACC), which aggregates clinical and neuropathologic information from Alzheimer's disease centres across the United States. Modified National Institute on Aging-Reagan criteria were applied to confirm AD by neuropathology. Among participants with clinician-diagnosed AD, TBI history was associated with misdiagnosis (false positives) (OR = 1.351 [95% CI: 1.091-1.674], p = 0.006). Among participants without clinician-diagnosed AD, TBI history was not associated with false negatives. TBI moderates AD diagnostic accuracy. Possible AD misdiagnosis can mislead patients, influence treatment decisions, and confound research study designs. Further work examining the influence of TBI on dementia diagnosis is warranted.
Collapse
Affiliation(s)
- Tejus Pradeep
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael J. C. Bray
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Siddharth Arun
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Lisa N. Richey
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sahar Jahed
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Barry R. Bryant
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Christian LoBue
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Paul Kim
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Matthew E. Peters
- Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Krishna G, Beitchman JA, Bromberg CE, Currier Thomas T. Approaches to Monitor Circuit Disruption after Traumatic Brain Injury: Frontiers in Preclinical Research. Int J Mol Sci 2020; 21:ijms21020588. [PMID: 31963314 PMCID: PMC7014469 DOI: 10.3390/ijms21020588] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) often results in pathophysiological damage that can manifest as both acute and chronic neurological deficits. In an attempt to repair and reconnect disrupted circuits to compensate for loss of afferent and efferent connections, maladaptive circuitry is created and contributes to neurological deficits, including post-concussive symptoms. The TBI-induced pathology physically and metabolically changes the structure and function of neurons associated with behaviorally relevant circuit function. Complex neurological processing is governed, in part, by circuitry mediated by primary and modulatory neurotransmitter systems, where signaling is disrupted acutely and chronically after injury, and therefore serves as a primary target for treatment. Monitoring of neurotransmitter signaling in experimental models with technology empowered with improved temporal and spatial resolution is capable of recording in vivo extracellular neurotransmitter signaling in behaviorally relevant circuits. Here, we review preclinical evidence in TBI literature that implicates the role of neurotransmitter changes mediating circuit function that contributes to neurological deficits in the post-acute and chronic phases and methods developed for in vivo neurochemical monitoring. Coupling TBI models demonstrating chronic behavioral deficits with in vivo technologies capable of real-time monitoring of neurotransmitters provides an innovative approach to directly quantify and characterize neurotransmitter signaling as a universal consequence of TBI and the direct influence of pharmacological approaches on both behavior and signaling.
Collapse
Affiliation(s)
- Gokul Krishna
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Joshua A. Beitchman
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Caitlin E. Bromberg
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
- Correspondence: ; Tel.: +1-602-827-2348
| |
Collapse
|
18
|
Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020; 16:365-383. [PMID: 31943780 DOI: 10.1002/alz.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
19
|
Xiao X, Jiang Y, Liang W, Wang Y, Cao S, Yan H, Gao L, Zhang L. miR-212-5p attenuates ferroptotic neuronal death after traumatic brain injury by targeting Ptgs2. Mol Brain 2019; 12:78. [PMID: 31533781 PMCID: PMC6749650 DOI: 10.1186/s13041-019-0501-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis, a newly discovered form of iron-dependent regulated cell death, has been implicated in traumatic brain injury (TBI). MiR-212-5p has previously been reported to be downregulated in extracellular vesicles following TBI. To investigate whether miR-212-5p is involved in the ferroptotic neuronal death in TBI mice, we first examined the accumulation of malondialdehyde (MDA) and ferrous ion, and the expression of ferroptosis-related molecules at 6 h, 12 h, 24 h, 48 h and 72 h following controlled cortical impact (CCI) in mice. There was a significant upregulation in the expression of Gpx4 and Acsl4 at 6 h, Slc7a11 from 12 h to 72 h, and Nox2 and Sat1 from 6 h to 72 h post injury. Similarly, an upregulation in the expression of Gpx4 at 6 h, Nox2 from 6 h to 72 h, xCT from 12 h to 72 h, and Sat1 at 72 h after CCI was observed at the protein level. Interestingly, MDA and ferrous ion were increased whereas miR-212-5p was decreased in the CCI group compared to the sham group. Furthermore, we found that overexpression of miR-212-5p attenuated ferroptosis while downregulation of miR-212-5p promoted ferroptotic cell death partially by targeting prostaglandin-endoperoxide synthase-2 (Ptgs2) in HT-22 and Neuro-2a cell lines. In addition, administration of miR-212-5p in CCI mice significantly improved learning and spatial memory. Collectively, these findings indicate that miR-212-5p may protect against ferroptotic neuronal death in CCI mice partially by targeting Ptgs2.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China
| | - Youjing Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China
| | - He Yan
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
20
|
Manolopoulos A, Andreadis P, Malandris K, Avgerinos I, Karagiannis T, Kapogiannis D, Tsolaki M, Tsapas A, Bekiari E. Intravenous Immunoglobulin for Patients With Alzheimer's Disease: A Systematic Review and Meta-Analysis. Am J Alzheimers Dis Other Demen 2019; 34:281-289. [PMID: 30987435 DOI: 10.1177/1533317519843720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM To assess the efficacy and safety of intravenous immunoglobulin (IVIg) for patients with Alzheimer's disease (AD). MATERIALS AND METHODS We searched electronic databases and other sources for randomized controlled trials comparing IVIg with placebo or other treatment for adults with AD. Primary outcome was change from baseline in Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog). RESULTS Five placebo-controlled trials were included in the meta-analysis. Compared to placebo, IVIg 0.2 and 0.4 g/kg once every two weeks did not change ADAS-Cog score (weighted mean difference: 0.37, 95% confidence interval: -1.46 to 2.20 and 0.77, -1.34 to 2.88, respectively). Furthermore, except for an increase in the incidence of rash, IVIg did not affect the incidence of other adverse events. CONCLUSION IVIg, albeit safe, is inefficacious for treatment of patients with AD. Future trials targeting earlier stages of disease or applying different dosing regimens may be warranted to clarify its therapeutic potential.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Panagiotis Andreadis
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Konstantinos Malandris
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Ioannis Avgerinos
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Thomas Karagiannis
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Dimitrios Kapogiannis
- 2 Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Magda Tsolaki
- 3 First Department of Neurology, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Apostolos Tsapas
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,4 Harris Manchester College, University of Oxford, Oxford, United Kingdom
| | - Eleni Bekiari
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
21
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
22
|
Traumatic Brain Injury by Weight-Drop Method Causes Transient Amyloid- β Deposition and Acute Cognitive Deficits in Mice. Behav Neurol 2019; 2019:3248519. [PMID: 30944661 PMCID: PMC6421814 DOI: 10.1155/2019/3248519] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
There has been growing awareness of the correlation between an episode of traumatic brain injury (TBI) and the development of Alzheimer's disease (AD) later in life. It has been reported that TBI accelerated amyloid-β (Aβ) pathology and cognitive decline in the several lines of AD model mice. However, the short-term and long-term effects of TBI by the weight-drop method on amyloid-β pathology and cognitive performance are unclear in wild-type (WT) mice. Hence, we examined AD-related histopathological changes and cognitive impairment after TBI in wild-type C57BL6J mice. Five- to seven-month-old WT mice were subjected to either TBI by the weight-drop method or a sham treatment. Seven days after TBI, the WT mice exhibited significantly lower spatial learning than the sham-treated WT mice. However, 28 days after TBI, the cognitive impairment in the TBI-treated WT mice recovered. Correspondingly, while significant amyloid-β (Aβ) plaques and amyloid precursor protein (APP) accumulation were observed in the TBI-treated mouse hippocampus 7 days after TBI, the Aβ deposition was no longer apparent 28 days after TBI. Thus, TBI induced transient amyloid-β deposition and acute cognitive impairments in the WT mice. The present study suggests that the TBI could be a risk factor for acute cognitive impairment even when genetic and hereditary predispositions are not involved. The system might be useful for evaluating and developing a pharmacological treatment for the acute cognitive deficits.
Collapse
|
23
|
Cheng Y, Pereira M, Raukar N, Reagan JL, Queseneberry M, Goldberg L, Borgovan T, LaFrance WC, Dooner M, Deregibus M, Camussi G, Ramratnam B, Quesenberry P. Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. J Cell Physiol 2019; 234:14377-14388. [PMID: 30644102 PMCID: PMC6478516 DOI: 10.1002/jcp.28139] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of death and acquired disability in adults and children. Identifying biomarkers for mild TBI (mTBI) that can predict functional impairments on neuropsychiatric and neurocognitive testing after head trauma is yet to be firmly established. Extracellular vesicles (EVs) are known to traffic from the brain to the oral cavity and can be detected in saliva. We hypothesize the genetic profile of salivary EVs in patients who have suffered head trauma will differ from normal healthy controls, thus constituting a unique expression signature for mTBI. We enrolled a total of 54 subjects including for saliva sampling, 23 controls with no history of head traumas, 16 patients enrolled from an outpatient concussion clinic, and 15 patients from the emergency department who had sustained a head trauma within 24 hr. We performed real‐time PCR of the salivary EVs of the 54 subjects profiling 96 genes from the TaqMan Human Alzheimer's disease array. Real‐time PCR analysis revealed 57 (15 genes, p < 0.05) upregulated genes in emergency department patients and 56 (14 genes,
p < 0.05) upregulated genes in concussion clinic patients when compared with controls. Three genes were upregulated in both the emergency department patients and concussion clinic patients: CDC2, CSNK1A1, and CTSD (
p < 0.05). Our results demonstrate that salivary EVs gene expression can serve as a viable source of biomarkers for mTBI. This study shows multiple Alzheimer's disease genes present after an mTBI.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mandy Pereira
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Neha Raukar
- Department of Emergency Medicine, Rhode Island Hospital, Providence, Rhode Island
| | - John L Reagan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mathew Queseneberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Laura Goldberg
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Theodor Borgovan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - W Curt LaFrance
- Department of Psychiatry/Neurology, Rhode Island Hospital, Providence, Rhode Island
| | - Mark Dooner
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Maria Deregibus
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Bharat Ramratnam
- Department of Medicine Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island
| | - Peter Quesenberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
24
|
Abstract
Neuronal death is the final step in the progression of preclinical Alzheimer's disease (AD) pathologies into clinically evident AD and its profound dementia. As such, a drug candidate proposed to be effective in AD must successfully prevent neuronal losses. The lack of preclinical demonstrated abilities to prevent neuronal programmed cell death may explain the recent failure of 300-400 AD drug candidates, identify a flaw in the Amyloid Hypothesis, and a risk for subsequent drug candidate interventions against AD. We propose that investigators use either animal models or small early translational clinical trials to test for AD drug candidates' efficacy against clinically critical features of the disease, such as prevention of neuronal death. Such stringent testing would more effectively shelter AD patients from being recruited into clinical trials that are destined to fail in Phase II or III.
Collapse
Affiliation(s)
- Robert E. Becker
- Aristea Translational Medicine Corporation, UT, USA
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Nigel H. Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
25
|
Tsai YR, Chang CF, Lai JH, Wu JCC, Chen YH, Kang SJ, Hoffer BJ, Tweedie D, Luo W, Greig NH, Chiang YH, Chen KY. Pomalidomide Ameliorates H₂O₂-Induced Oxidative Stress Injury and Cell Death in Rat Primary Cortical Neuronal Cultures by Inducing Anti-Oxidative and Anti-Apoptosis Effects. Int J Mol Sci 2018; 19:ijms19103252. [PMID: 30347766 PMCID: PMC6213994 DOI: 10.3390/ijms19103252] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Due to its high oxygen demand and abundance of peroxidation-susceptible lipid cells, the brain is particularly vulnerable to oxidative stress. Induced by a redox state imbalance involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system, oxidative stress plays a central role in a common pathophysiology that underpins neuronal cell death in acute neurological disorders epitomized by stroke and chronic ones such as Alzheimer’s disease. After cerebral ischemia, for example, inflammation bears a key responsibility in the development of permanent neurological damage. ROS are involved in the mechanism of post-ischemic inflammation. The activation of several inflammatory enzymes produces ROS, which subsequently suppress mitochondrial activity, leading to further tissue damage. Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent. Using H2O2-treated rat primary cortical neuronal cultures, we found POM displayed neuroprotective effects against oxidative stress and cell death that associated with changes in the nuclear factor erythroid derived 2/superoxide dismutase 2/catalase signaling pathway. POM also suppressed nuclear factor kappa-light-chain-enhancer (NF-κB) levels and significantly mitigated cortical neuronal apoptosis by regulating Bax, Cytochrome c and Poly (ADP-ribose) polymerase. In summary, POM exerted neuroprotective effects via its anti-oxidative and anti-inflammatory actions against H2O2-induced injury. POM consequently represents a potential therapeutic agent against brain damage and related disorders and warrants further evaluation.
Collapse
Affiliation(s)
- Yan-Rou Tsai
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
| | - Cheng-Fu Chang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei City Hospital, Zhongxiao Branch, Taipei 11556, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jing-Huei Lai
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - John Chung-Che Wu
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Yen-Hua Chen
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shuo-Jhen Kang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Barry J Hoffer
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA.
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA.
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA.
| | - Yung-Hsiao Chiang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Kai-Yun Chen
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
26
|
Mullane K, Williams M. Alzheimer's disease (AD) therapeutics - 2: Beyond amyloid - Re-defining AD and its causality to discover effective therapeutics. Biochem Pharmacol 2018; 158:376-401. [PMID: 30273552 DOI: 10.1016/j.bcp.2018.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
Abstract
Compounds targeted for the treatment of Alzheimer's Disease (AD) have consistently failed in clinical trials despite evidence for target engagement and pharmacodynamic activity. This questions the relevance of compounds acting at current AD drug targets - the majority of which reflect the seminal amyloid and, to a far lesser extent, tau hypotheses - and limitations in understanding AD causality as distinct from general dementia. The preeminence of amyloid and tau led to many alternative approaches to AD therapeutics being ignored or underfunded to the extent that their causal versus contributory role in AD remains unknown. These include: neuronal network dysfunction; cerebrovascular disease; chronic, local or systemic inflammation involving the innate immune system; infectious agents including herpes virus and prion proteins; neurotoxic protein accumulation associated with sleep deprivation, circadian rhythm and glymphatic/meningeal lymphatic system and blood-brain-barrier dysfunction; metabolic related diseases including diabetes, obesity hypertension and hypocholesterolemia; mitochondrial dysfunction and environmental factors. As AD has become increasingly recognized as a multifactorial syndrome, a single treatment paradigm is unlikely to work in all patients. However, the biomarkers required to diagnose patients and parse them into mechanism/disease-based sub-groups remain rudimentary and unvalidated as do non-amyloid, non-tau translational animal models. The social and economic impact of AD is also discussed in the context of new FDA regulatory draft guidance and a proposed biomarker-based Framework (re)-defining AD and its stages as part of the larger landscape of treating dementia via the 2013 G8 initiative to identify a disease-modifying therapy for dementia/AD by 2025.
Collapse
Affiliation(s)
- Kevin Mullane
- Gladstone Institutes, San Francisco, CA, United States
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, United States.
| |
Collapse
|