1
|
Nassar A, Kaplanski J, Azab AN. A Selective Nuclear Factor-κB Inhibitor, JSH-23, Exhibits Antidepressant-like Effects and Reduces Brain Inflammation in Rats. Pharmaceuticals (Basel) 2024; 17:1271. [PMID: 39458912 PMCID: PMC11509963 DOI: 10.3390/ph17101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that nuclear factor (NF)-κB is involved in the pathophysiology of mood disorders. OBJECTIVES AND METHODS We conducted two experimental protocols in rats to investigate the effects of a selective NF-κB inhibitor (JSH-23) on (i) lipopolysaccharide (LPS)-induced inflammation and (ii) on behavioral phenotypes in rat models of depression (sucrose consumption test and forced swim test) and mania (amphetamine-induced hyperactivity test). Additionally, we tested the effects of JSH-23 on levels of inflammatory components (interleukin-6, prostaglandin E2, nuclear phospho-p65, and tumor necrosis factor-α) in the brain. RESULTS Acute treatment with JSH-23 (10 mg/kg, intraperitoneally [ip]) led to potent anti-inflammatory effects in LPS-treated rats, including a diminished hypothermic response to LPS and a reduction in pro-inflammatory mediators' levels in the brain. Chronic treatment with JSH-23 (3 mg/kg, ip, once daily, for 14 days) resulted in robust antidepressant-like effects (increased sucrose consumption and decreased immobility time). The antidepressant-like effects of JSH-23 were mostly accompanied by a reduction in levels of pro-inflammatory mediators in the brain. On the other hand, JSH-23 did not reduce amphetamine-induced hyperactivity. CONCLUSIONS Altogether, these data suggest that NF-κB may be a potential therapeutic target for pharmacological interventions for depression.
Collapse
Affiliation(s)
- Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Jacob Kaplanski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
2
|
Zeng Y, Xiao X, Yang F, Li T, Huang Y, Shi X, Lai C. Progress towards understanding the effects of artificial light on the transmission of vector-borne diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116780. [PMID: 39126816 DOI: 10.1016/j.ecoenv.2024.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Artificial light at night (ALAN) is a common form of light pollution worldwide, and the intensity, timing, duration, and wavelength of light exposure can affect biological rhythms, which can lead to metabolic, reproductive, and immune dysfunctions and consequently, host-pathogen interactions. Insect vector-borne diseases are a global problem that needs to be addressed, and ALAN plays an important role in disease transmission by affecting the habits and physiological functions of vector organisms. In this work, we describe the mechanisms by which ALAN affects host physiology and biochemistry, host-parasite interactions, and vector-borne viruses and propose preventive measures for related infectious diseases to minimize the effects of artificial light on vector-borne diseases.
Collapse
Affiliation(s)
- Ying Zeng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, and School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Tong Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chongde Lai
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, and School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory for Excavation and Utilization of Agricultural Microorganisms, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Wellington NJ, Boucas AP, Lagopoulos J, Kuballa AV. Clinical potential of epigenetic and microRNA biomarkers in PTSD. J Neurogenet 2024; 38:79-101. [PMID: 39470065 DOI: 10.1080/01677063.2024.2419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Molecular studies identifying alterations associated with PTSD have predominantly focused on candidate genes or conducted genome-wide analyses, often encountering issues with replicability. This review aims to identify robust bi-directional epigenetic and microRNA (miRNA) regulators focusing on their functional impacts on post-traumatic stress disorder (PTSD) and their utility in clinical diagnosis, whilst examining knowledge gaps in the existing research. A systematic search was conducted across multiple databases, including Web of Science, Scopus, Global Health (CABI), and PubMed, augmented by grey literature, yielding 3465 potential articles. Ultimately, 92 studies met the inclusion criteria and were analysed to pinpoint significant epigenetic changes with clinically relevant potential in PTSD. The selected studies explored histone modifications, CpG sites, single nucleotide polymorphisms (SNPs), and miRNA biomarkers. Specifically, nine studies examined epigenetic markers, detailing the influence of methylation on chromatin accessibility at histone positions H3K4, H3K9, and H3K36 within a PTSD context. Seventy-three studies investigated DNA methylation, identifying 20 hypermethylated and five hypomethylated CpG islands consistently observed in PTSD participants. Nineteen studies linked 88 SNPs to PTSD, with only one SNP replicated within these studies. Furthermore, sixteen studies focused on miRNAs, with findings indicating 194 downregulated and 24 upregulated miRNAs were associated with PTSD. Although there are epigenetic mechanisms that are significantly affected by PTSD, a granular deconstruction of these mechanisms elucidates the need to incorporate more nuanced approaches to identifying the factors that contribute to PTSD. Technological advances in diagnostic tools are driving the need to integrate detailed participant characteristics, trauma type, genetic susceptibilities, and best practices for robust reporting. This comprehensive approach will be crucial for enhancing the translational potential of PTSD research for clinical application.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, Australia
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| | | | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| |
Collapse
|
4
|
Matsumoto Y, Miwa H, Katayama KI, Watanabe A, Yamada K, Ito T, Nakagawa S, Aruga J. Slitrk4 is required for the development of inhibitory neurons in the fear memory circuit of the lateral amygdala. Front Mol Neurosci 2024; 17:1386924. [PMID: 38736483 PMCID: PMC11082273 DOI: 10.3389/fnmol.2024.1386924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
The Slitrk family consists of six synaptic adhesion molecules, some of which are associated with neuropsychiatric disorders. In this study, we aimed to investigate the physiological role of Slitrk4 by analyzing Slitrk4 knockout (KO) mice. The Slitrk4 protein was widely detected in the brain and was abundant in the olfactory bulb and amygdala. In a systematic behavioral analysis, male Slitrk4 KO mice exhibited an enhanced fear memory acquisition in a cued test for classical fear conditioning, and social behavior deficits in reciprocal social interaction tests. In an electrophysiological analysis using amygdala slices, Slitrk4 KO mice showed enhanced long-term potentiation in the thalamo-amygdala afferents and reduced feedback inhibition. In the molecular marker analysis of Slitrk4 KO brains, the number of calretinin (CR)-positive interneurons was decreased in the anterior part of the lateral amygdala nuclei at the adult stage. In in vitro experiments for neuronal differentiation, Slitrk4-deficient embryonic stem cells were defective in inducing GABAergic interneurons with an altered response to sonic hedgehog signaling activation that was involved in the generation of GABAergic interneuron subsets. These results indicate that Slitrk4 function is related to the development of inhibitory neurons in the fear memory circuit and would contribute to a better understanding of osttraumatic stress disorder, in which an altered expression of Slitrk4 has been reported.
Collapse
Affiliation(s)
- Yoshifumi Matsumoto
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Hideki Miwa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kei-ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Arata Watanabe
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Bekhbat M, Ulukaya GB, Bhasin MK, Felger JC, Miller AH. Cellular and immunometabolic mechanisms of inflammation in depression: Preliminary findings from single cell RNA sequencing and a tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100462. [PMID: 35655933 PMCID: PMC9152104 DOI: 10.1016/j.ynstr.2022.100462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Inflammation is associated with symptoms of anhedonia, a core feature of major depression (MD). We have shown that MD patients with high inflammation as measured by plasma C-reactive protein (CRP) and anhedonia display gene signatures of metabolic reprograming (e.g., shift to glycolysis) necessary to sustain cellular immune activation. To gain preliminary insight into the immune cell subsets and transcriptomic signatures that underlie increased inflammation and its relationship with behavior in MD at the single-cell (sc) level, herein we conducted scRNA-Seq on peripheral blood mononuclear cells from a subset of medically-stable, unmedicated MD outpatients. Three MD patients with high CRP (>3 mg/L) before and two weeks after anti-inflammatory challenge with the tumor necrosis factor antagonist infliximab and three patients with low CRP (≤3 mg/L) were studied. Cell clusters were identified using a Single Cell Wizard pipeline, followed by pathway analysis. CD14+ and CD16+ monocytes were more abundant in MD patients with high CRP and were reduced by 29% and 55% respectively after infliximab treatment. Within CD14+ and CD16+ monocytes, genes upregulated in high CRP patients were enriched for inflammatory (phagocytosis, complement, leukocyte migration) and immunometabolic (hypoxia-inducible factor [HIF]-1, aerobic glycolysis) pathways. Shifts in CD4+ T cell subsets included ∼30% and ∼10% lower abundance of CD4+ central memory (TCM) and naïve cells and ∼50% increase in effector memory-like (TEM-like) cells in high versus low CRP patients. TCM cells of high CRP patients displayed downregulation of the oxidative phosphorylation (OXPHOS) pathway, a main energy source in this cell type. Following infliximab, changes in the number of CD14+ monocytes and CD4+ TEM-like cells predicted improvements in anhedonia scores (r = 1.0, p < 0.001). In sum, monocytes and CD4+ T cells from MD patients with increased inflammation exhibited immunometabolic reprograming in association with symptoms of anhedonia. These findings are the first step toward determining the cellular and molecular immune pathways associated with inflammatory phenotypes in MD, which may lead to novel immunomodulatory treatments of psychiatric illnesses with increased inflammation.
Collapse
|
6
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022; 10:1107. [PMID: 35625844 PMCID: PMC9138536 DOI: 10.3390/biomedicines10051107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6-10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.
Collapse
Affiliation(s)
- Diana L. Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - José J. Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Carlos A. Orozco-Castaño
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| |
Collapse
|
7
|
Daskalakis NP, Meijer OC, de Kloet ER. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 2022; 18:100455. [PMID: 35601687 PMCID: PMC9118500 DOI: 10.1016/j.ynstr.2022.100455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
'You can't roll the clock back and reverse the effects of experiences' Bruce McEwen used to say when explaining how allostasis labels the adaptive process. Here we will for once roll the clock back to the times that the science of the glucocorticoid hormone was honored with a Nobel prize and highlight the discovery of their receptors in the hippocampus as inroad to its current status as master regulator in control of stress coping and adaptation. Glucocorticoids operate in concert with numerous neurotransmitters, neuropeptides, and other hormones with the aim to facilitate processing of information in the neurocircuitry of stress, from anticipation and perception of a novel experience to behavioral adaptation and memory storage. This action, exerted by the glucocorticoids, is guided by two complementary receptor systems, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), that need to be balanced for a healthy stress response pattern. Here we discuss the cellular, neuroendocrine, and behavioral studies underlying the MR:GR balance concept, highlight the relevance of hypothalamic-pituitary-adrenal (HPA) -axis patterns and note the limited understanding yet of sexual dimorphism in glucocorticoid actions. We conclude with the prospect that (i) genetically and epigenetically regulated receptor variants dictate cell-type-specific transcriptome signatures of stress-related neuropsychiatric symptoms and (ii) selective receptor modulators are becoming available for more targeted treatment. These two new developments may help to 'restart the clock' with the prospect to support resilience.
Collapse
Affiliation(s)
| | - Onno C. Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - E. Ron de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Friend SF, Nachnani R, Powell SB, Risbrough VB. C-Reactive Protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci 2022; 55:2297-2310. [PMID: 33131159 PMCID: PMC8087722 DOI: 10.1111/ejn.15031] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that inflammation plays a role in PTSD and stress disorder pathophysiology. PTSD is consistently associated with higher circulating inflammatory protein levels. Rodent models demonstrate that inflammation promotes enduring avoidance and arousal behaviors after severe stressors (e.g., predator exposure and social defeat), suggesting that inflammation may play a mechanistic role in trauma disorders. C-reactive protein (CRP) is an innate acute phase reactant produced by the liver after acute infection and chronic disease. A growing number of investigations report associations with PTSD diagnosis and elevated peripheral CRP, CRP gene mutations, and CRP gene expression changes in immune signaling pathways. CRP is reasonably established as a potential marker of PTSD and trauma exposure, but if and how it may play a mechanistic role is unclear. In this review, we discuss the current understanding of immune mechanisms in PTSD with a particular focus on the innate immune signaling factor, CRP. We found that although there is consistent evidence of an association of CRP with PTSD symptoms and risk, there is a paucity of data on how CRP might contribute to CNS inflammation in PTSD, and consequently, PTSD symptoms. We discuss potential mechanisms through which CRP could modulate enduring peripheral and CNS stress responses, along with future areas of investigation probing the role of CRP and other innate immune signaling factors in modulating trauma responses. Overall, we found that CRP likely contributes to central inflammation, but how it does so is an area for further study.
Collapse
Affiliation(s)
- Samantha F. Friend
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| | - Rahul Nachnani
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
| | - Susan B. Powell
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
- Research ServiceVA San Diego Healthcare SystemSan DiegoCAUSA
| | - Victoria B. Risbrough
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
9
|
Fuh KF, Withell J, Shepherd RD, Rinker KD. Fluid Flow Stimulation Modulates Expression of S100 Genes in Normal Breast Epithelium and Breast Cancer. Cell Mol Bioeng 2022; 15:115-127. [PMID: 35087607 PMCID: PMC8761192 DOI: 10.1007/s12195-021-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/07/2021] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION S100 proteins are intracellular calcium ion sensors that participate in cellular processes, some of which are involved in normal breast functioning and breast cancer development. Despite several S100 genes being overexpressed in breast cancer, their roles during disease development remain elusive. Human mammary epithelial cells (HMECs) can be exposed to fluid shear stresses and implications of such interactions have not been previously studied. The goal of this study was to analyze expression profiles of S100 genes upon exposing HMECs to fluid flow. METHODS HMECs and breast cancer cell lines were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in three independent clinical datasets. RESULTS S100 genes were among the most upregulated genes upon flow stimulation. Network analysis revealed interactions between upregulated transcripts, including interactions between S100P, S100PBP, S100A4, S100A7, S100A8 and S100A9. Overexpression of S100s was also observed in patients with early stage breast cancer compared to normal breast tissue, and in most breast cancer patients. Finally, survival analysis revealed reduced survival times for patients with elevated expression of S100A7 and S100P. CONCLUSION This study shows that exposing HMECs to fluid flow upregulates genes identified clinically to be overexpressed during breast cancer development, including S100A7 and S100P. These findings are the first to show that S100 genes are flow-responsive and might be participating in a fundamental adaptation pathway in normal tissue that is also active in breast cancer.
Collapse
Affiliation(s)
- Kenneth F. Fuh
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4 Canada
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jessica Withell
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Robert D. Shepherd
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Kristina D. Rinker
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4 Canada
- Libin Cardiovascular Institute of Canada, University of Calgary, Calgary, AB T2N 1N4 Canada
- Centre for Bioengineering Research & Education, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
10
|
Matta J, Dobrino D, Howard S, Yeboah D, Kopel J, El-Manzalawy Y, Obafemi-Ajayi T. A PheWAS Model of Autism Spectrum Disorder. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2110-2114. [PMID: 34891705 DOI: 10.1109/embc46164.2021.9629533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Children with Autism Spectrum Disorder (ASD) exhibit a wide diversity in type, number, and severity of social deficits as well as communicative and cognitive difficulties. It is a challenge to categorize the phenotypes of a particular ASD patient with their unique genetic variants. There is a need for a better understanding of the connections between genotype information and the phenotypes to sort out the heterogeneity of ASD. In this study, single nucleotide polymorphism (SNP) and phenotype data obtained from a simplex ASD sample are combined using a PheWAS-inspired approach to construct a phenotype-phenotype network. The network is clustered, yielding groups of etiologically related phenotypes. These clusters are analyzed to identify relevant genes associated with each set of phenotypes. The results identified multiple discriminant SNPs associated with varied phenotype clusters such as ASD aberrant behavior (self-injury, compulsiveness and hyperactivity), as well as IQ and language skills. Overall, these SNPs were linked to 22 significant genes. An extensive literature search revealed that eight of these are known to have strong evidence of association with ASD. The others have been linked to related disorders such as mental conditions, cognition, and social functioning.Clinical relevance- This study further informs on connections between certain groups of ASD phenotypes and their unique genetic variants. Such insight regarding the heterogeneity of ASD would support clinicians to advance more tailored interventions and improve outcomes for ASD patients.
Collapse
|
11
|
The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci 2021; 22:ijms221910743. [PMID: 34639084 PMCID: PMC8509551 DOI: 10.3390/ijms221910743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world’s population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80–90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.
Collapse
|
12
|
Chevalier CM, Krampert L, Schreckenbach M, Schubert CF, Reich J, Novak B, Schmidt MV, Rutten BPF, Schmidt U. MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: Evidence from mice and humans. Eur Neuropsychopharmacol 2021; 51:20-32. [PMID: 34022747 DOI: 10.1016/j.euroneuro.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Although matrix metalloproteinase 9 (MMP9) has been found associated with various psychiatric disorders and with threat memories in humans, its role in post-traumatic stress disorder (PTSD) and related animal models is understudied. Thus, we analyzed MMP9 mRNA expression kinetics during two different stress experiments, i.e., the Trier Social Stress Test and the dexamethasone suppression test (DST), in whole blood of two independent cohorts of PTSD patients vs. non-traumatized healthy controls (HC) and, moreover, in a mouse model of PTSD and in dexamethasone-treated mice. Besides MMP9, we quantified mRNA levels of four of its regulators, i.e., interleukin (IL)-1 receptor 1 and 2 (IL1R1, IL1R2), IL-6 receptor and tumor necrosis factor receptor 1 (TNFR1) in 10 patients exposed to the DST before vs. after successful PTSD psychotherapy vs. 13 HC and, except from Il6r, also in different brain regions of the PTSD mouse model. We are the first to show that blood MMP9 mRNA concentrations were elevated after acute dexamethasone in PTSD patients, improved upon partial remission of PTSD and were, furthermore, also elevated, together with its regulator Tnfr1, in the prefrontal cortex of PTSD-like mice. In contrast, blood TNFR1 and IL1R2 were markedly underexpressed in PTSD patients. In conclusion, we found translational evidence supporting that, I, TNFR1 and MMP9 mRNA expression might be involved in PTSD pathobiology, II, might constitute potential diagnostic blood biomarkers for PTSD and, importantly, III, post-dexamethasone blood MMP9 hyperexpression, which speculatively results from post-dexamethasone underexpression of IL1R2, might serve also as potential treatment monitoring biomarker for PTSD.
Collapse
Affiliation(s)
- Céleste M Chevalier
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Luka Krampert
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Monika Schreckenbach
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Verein zur Förderung der Klinischen Verhaltenstherapie (VFKV) - Ausbildungsinstitut München gGmbH, Lindwurmstr. 117, 80337 München, Germany
| | - Christine F Schubert
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Verein zur Förderung der Klinischen Verhaltenstherapie (VFKV) - Ausbildungsinstitut München gGmbH, Lindwurmstr. 117, 80337 München, Germany; Catholic University of Eichstätt-Ingolstadt, Ostenstraße 25, 85072 Eichstätt, Germany
| | - Johanna Reich
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Schön Klinik München Schwabing, Parzivalpl. 4, 80804 München, Germany
| | - Bozidar Novak
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Bart P F Rutten
- Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Universiteitssingel 50, 6229 ER, PO Box 616 6200 MD, Maastricht, The Netherlands
| | - Ulrike Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Universiteitssingel 50, 6229 ER, PO Box 616 6200 MD, Maastricht, The Netherlands; RG Molecular and Clinical Psychotraumatology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany; RG Traumatic Stress & Neurodegeneration & PTSD Treatment Unit, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075 Göttingen, Germany.
| |
Collapse
|
13
|
Martin CA, Vorn R, Schrieber M, Lai C, Yun S, Kim HS, Gill J. Identification of DNA Methylation Changes That Predict Onset of Post-traumatic Stress Disorder and Depression Following Physical Trauma. Front Neurosci 2021; 15:738347. [PMID: 34630024 PMCID: PMC8498101 DOI: 10.3389/fnins.2021.738347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) are commonly experienced after exposure to highly stressful events, including physical trauma, yet, biological predictors remain elusive. Methylation of DNA may provide key insights, as it likely is reflective of factors that may increase the risk in trauma patients, as DNA methylation is altered by previous stressors. Here, we compared DNA methylation patterns using bisulfite sequencing in patients with a physical trauma that required more than a 24-h hospitalization (n = 33). We then compared DNA methylation in patients who developed and compared the following groups (1) PTSD and MDD; n = 12), (2) MDD (patients with MDD only; n = 12), and (3) control (patients who did not have PTSD or MDD; n = 9), determined by the PTSD Checklist (PCL-5) and Quick Inventory of Depressive Symptomatology (QIDS) at 6-months follow-up. We identified 17 genes with hypermethylated cytosine sites and 2 genes with hypomethylated sites in comparison between PTSD and control group. In comparison between MDD and control group, we identified 12 genes with hypermethylated cytosine sites and 6 genes with hypomethylated sites. Demethylation of these genes altered the CREB signaling pathway in neurons and may represent a promising therapeutic development target for PTSD and MDD. Our findings suggest that epigenetic changes in these gene regions potentially relate to the onset and symptomology of PTSD and MDD and could be used as potential biomarkers in predicting the onset of PTSD or MDD following traumatic events.
Collapse
Affiliation(s)
- Carina A. Martin
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Rany Vorn
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Martin Schrieber
- Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health and Sciences University, Portland, OR, United States
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sijung Yun
- Yotta Biomed, Bethesda, MD, United States
| | - Hyung-Suk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Gene expression correlates of advanced epigenetic age and psychopathology in postmortem cortical tissue. Neurobiol Stress 2021; 15:100371. [PMID: 34458511 PMCID: PMC8377489 DOI: 10.1016/j.ynstr.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Psychiatric stress has been associated with accelerated epigenetic aging (i.e., when estimates of cellular age based on DNA methylation exceed chronological age) in both blood and brain tissue. Little is known about the downstream biological effects of accelerated epigenetic age on gene expression. In this study we examined associations between DNA methylation-derived estimates of cellular age that range from decelerated to accelerated relative to chronological age (“DNAm age residuals”) and transcriptome-wide gene expression. This was examined using tissue from three post-mortem cortical regions (ventromedial and dorsolateral prefrontal cortex and motor cortex, n = 97) from the VA National PTSD Brain Bank. In addition, we examined how posttraumatic stress disorder (PTSD) and alcohol-use disorders (AUD) moderated the association between DNAm age residuals and gene expression. Transcriptome-wide results across brain regions, psychiatric diagnoses, and cohorts (full sample and male and female subsets) revealed experiment-wide differential expression of 11 genes in association with PTSD or AUD in interaction with DNAm age residuals. This included the inflammation-related genes IL1B, RCOR2, and GCNT1. Candidate gene class analyses and gene network enrichment analyses further supported differential expression of inflammation/immune gene networks as well as glucocorticoid, circadian, and oxidative stress-related genes. Gene co-expression network modules suggested enrichment of myelination related processes and oligodendrocyte enrichment in association with DNAm age residuals in the presence of psychopathology. Collectively, results suggest that psychiatric stress accentuates the association between advanced epigenetic age and expression of inflammation genes in the brain. This highlights the role of inflammatory processes in the pathophysiology of accelerated cellular aging and suggests that inflammatory pathways may link accelerated cellular aging to premature disease onset and neurodegeneration, particularly in stressed populations. This suggests that anti-inflammatory interventions may be an important direction to pursue in evaluating ways to prevent or delay cellular aging and increase resilience to diseases of aging.
Collapse
|
15
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Vardavas AI, Porter AL. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol Rep 2021; 8:1616-1637. [PMID: 34485092 PMCID: PMC8406546 DOI: 10.1016/j.toxrep.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, United States
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Alexander I. Vardavas
- Laboratory of Toxicology & Forensic Sciences, Faculty of Medicine, University of Crete, Greece
| | - Alan L. Porter
- R&D, Search Technology, Inc., Peachtree Corners, GA, 30092, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
16
|
Garrett ME, Qin XJ, Mehta D, Dennis MF, Marx CE, Grant GA, Injury and Traumatic Stress (INTRuST) Clinical Consortium, Psychiatric Genomics Consortium PTSD Group, Stein MB, Kimbrel NA, Beckham JC, Hauser MA, Ashley-Koch AE. Gene Expression Analysis in Three Posttraumatic Stress Disorder Cohorts Implicates Inflammation and Innate Immunity Pathways and Uncovers Shared Genetic Risk With Major Depressive Disorder. Front Neurosci 2021; 15:678548. [PMID: 34393704 PMCID: PMC8358297 DOI: 10.3389/fnins.2021.678548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex psychiatric disorder that can develop following exposure to traumatic events. The Psychiatric Genomics Consortium PTSD group (PGC-PTSD) has collected over 20,000 multi-ethnic PTSD cases and controls and has identified both genetic and epigenetic factors associated with PTSD risk. To further investigate biological correlates of PTSD risk, we examined three PGC-PTSD cohorts comprising 977 subjects to identify differentially expressed genes among PTSD cases and controls. Whole blood gene expression was quantified with the HumanHT-12 v4 Expression BeadChip for 726 OEF/OIF veterans from the Veterans Affairs (VA) Mental Illness Research Education and Clinical Center (MIRECC), 155 samples from the Injury and Traumatic Stress (INTRuST) Clinical Consortium, and 96 Australian Vietnam War veterans. Differential gene expression analysis was performed in each cohort separately followed by meta-analysis. In the largest cohort, we performed co-expression analysis to identify modules of genes that are associated with PTSD and MDD. We then conducted expression quantitative trait loci (eQTL) analysis and assessed the presence of eQTL interactions involving PTSD and major depressive disorder (MDD). Finally, we utilized PTSD and MDD GWAS summary statistics to identify regions that colocalize with eQTLs. Although not surpassing correction for multiple testing, the most differentially expressed genes in meta-analysis were interleukin-1 beta (IL1B), a pro-inflammatory cytokine previously associated with PTSD, and integrin-linked kinase (ILK), which is highly expressed in brain and can rescue dysregulated hippocampal neurogenesis and memory deficits. Pathway analysis revealed enrichment of toll-like receptor (TLR) and interleukin-1 receptor genes, which are integral to cellular innate immune response. Co-expression analysis identified four modules of genes associated with PTSD, two of which are also associated with MDD, demonstrating common biological pathways underlying the two conditions. Lastly, we identified four genes (UBA7, HLA-F, HSPA1B, and RERE) with high probability of a shared causal eQTL variant with PTSD and/or MDD GWAS variants, thereby providing a potential mechanism by which the GWAS variant contributes to disease risk. In summary, we provide additional evidence for genes and pathways previously reported and identified plausible novel candidates for PTSD. These data provide further insight into genetic factors and pathways involved in PTSD, as well as potential regions of pleiotropy between PTSD and MDD.
Collapse
Affiliation(s)
- Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Xue Jun Qin
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Faculty of Health, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Michelle F. Dennis
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Christine E. Marx
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Murray B. Stein
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Nathan A. Kimbrel
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Jean C. Beckham
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Michael A. Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
17
|
Bekhbat M, Mukhara D, Dozmorov MG, Stansfield JC, Benusa SD, Hyer MM, Rowson SA, Kelly SD, Qin Z, Dupree JL, Tharp GK, Tansey MG, Neigh GN. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology 2021; 46:949-958. [PMID: 33558677 PMCID: PMC8115118 DOI: 10.1038/s41386-021-00970-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Adolescent exposure to chronic stress, a risk factor for mood disorders in adulthood, sensitizes the neuroinflammatory response to a subsequent immune challenge. We previously showed that chronic adolescent stress (CAS) in rats led to distinct patterns of neuroimmune priming in adult male and female rats. However, sex differences in the neuroimmune consequences of CAS and their underlying mechanisms are not fully understood. Here we hypothesized that biological sex would dictate differential induction of inflammation-related transcriptomic pathways and immune cell involvement (microglia activation and leukocyte presence) in the hippocampus of male and female rats with a history of CAS. Adolescent rats underwent CAS (six restraint and six social defeat episodes during postnatal days 38-49), and behavioral assessments were conducted in adolescence and adulthood. Neuroimmune measures were obtained following vehicle or a systemic lipopolysaccharide (LPS) challenge in adulthood. CAS led to increased time in the corners of the open field in adolescence. In males, CAS also increased social avoidance. As adults, CAS rats displayed an exaggerated enrichment of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway and chemokine induction following LPS challenge, and increased number of perivascular CD45+ cells in the hippocampus. However, CAS females, but not males, showed exaggerated glucocorticoid receptor (GR) pathway enrichment and increased microglial complexity. These results provide further insight to the mechanisms by which peripheral immune events may influence neuroimmune responses differentially among males and females and further demonstrate the importance of adolescent stress in shaping adult responses.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Deepika Mukhara
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Mikhail G. Dozmorov
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - John C. Stansfield
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - Savannah D. Benusa
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Molly M. Hyer
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sydney A. Rowson
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Sean D. Kelly
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Zhaohui Qin
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Jeffrey L. Dupree
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Gregory K. Tharp
- grid.189967.80000 0001 0941 6502Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322 USA
| | - Malú G. Tansey
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Gretchen N. Neigh
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA ,grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
18
|
Bian YY, Yang LL, Zhang B, Li W, Li ZJ, Li WL, Zeng L. Identification of key genes involved in post-traumatic stress disorder: Evidence from bioinformatics analysis. World J Psychiatry 2020; 10:286-298. [PMID: 33392005 PMCID: PMC7754529 DOI: 10.5498/wjp.v10.i12.286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a serious stress-related disorder.
AIM To identify the key genes and pathways to uncover the potential mechanisms of PTSD using bioinformatics methods.
METHODS Gene expression profiles were obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified by using GEO2R. Gene functional annotation and pathway enrichment were then conducted. The gene-pathway network was constructed with Cytoscape software. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was applied for validation, and text mining by Coremine Medical was used to confirm the connections among genes and pathways.
RESULTS We identified 973 DEGs including 358 upregulated genes and 615 downregulated genes in PTSD. A group of centrality hub genes and significantly enriched pathways (MAPK, Ras, and ErbB signaling pathways) were identified by using gene functional assignment and enrichment analyses. Six genes (KRAS, EGFR, NFKB1, FGF12, PRKCA, and RAF1) were selected to validate using qRT-PCR. The results of text mining further confirmed the correlation among hub genes and the enriched pathways. It indicated that these altered genes displayed functional roles in PTSD via these pathways, which might serve as key signatures in the pathogenesis of PTSD.
CONCLUSION The current study identified a panel of candidate genes and important pathways, which might help us deepen our understanding of the underlying mechanism of PTSD at the molecular level. However, further studies are warranted to discover the critical regulatory mechanism of these genes via relevant pathways in PTSD.
Collapse
Affiliation(s)
- Yao-Yao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Zhang
- Digestive Department, Ningbo Hospital of Traditional Chinese Medicine, Ningbo 315200, Zhejiang Province, China
| | - Wen Li
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Zheng-Jun Li
- Management School, University of St Andrews, St Andrews KY16 9AJ, United Kingdom
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
19
|
Bremner JD, Gurel NZ, Jiao Y, Wittbrodt MT, Levantsevych OM, Huang M, Jung H, Shandhi MH, Beckwith J, Herring I, Rapaport MH, Murrah N, Driggers E, Ko YA, Alkhalaf ML, Soudan M, Song J, Ku BS, Shallenberger L, Hankus AN, Nye JA, Park J, Vaccarino V, Shah AJ, Inan OT, Pearce BD. Transcutaneous vagal nerve stimulation blocks stress-induced activation of Interleukin-6 and interferon-γ in posttraumatic stress disorder: A double-blind, randomized, sham-controlled trial. Brain Behav Immun Health 2020; 9:100138. [PMID: 34589887 PMCID: PMC8474180 DOI: 10.1016/j.bbih.2020.100138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory function. Vagus nerve stimulation (VNS) decreases inflammation, however few studies have examined the effects of non-invasive VNS on physiology in human subjects, and no studies in patients with PTSD. The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on inflammatory responses to stress. Thirty subjects with a history of exposure to traumatic stress with (N = 10) and without (N = 20) PTSD underwent exposure to stressful tasks immediately followed by active or sham tcVNS and measurement of multiple biomarkers of inflammation (interleukin-(IL)-6, IL-2, IL-1β, Tumor Necrosis Factor alpha (TNFα) and Interferon gamma (IFNγ) over multiple time points. Stressful tasks included exposure to personalized scripts of traumatic events on day 1, and public speech and mental arithmetic (Mental Stress) tasks on days 2 and 3. Traumatic scripts were associated with a pattern of subjective anger measured with Visual Analogue Scales and increased IL-6 and IFNγ in PTSD patients that was blocked by tcVNS (p < .05). Traumatic stress had minimal effects on these biomarkers in non-PTSD subjects and there was no difference between tcVNS or sham. No significant differences were seen between groups in IL-2, IL-1β, or TNFα. These results demonstrate that tcVNS blocks behavioral and inflammatory responses to stress reminders in PTSD.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yunshen Jiao
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Minxuan Huang
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joy Beckwith
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaias Herring
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark H. Rapaport
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nancy Murrah
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Emily Driggers
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Yi-An Ko
- Departments of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | | | - Majd Soudan
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jiawei Song
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Benson S. Ku
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucy Shallenberger
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Allison N. Hankus
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jonathon A. Nye
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeanie Park
- Departments of Renal Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Viola Vaccarino
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Amit J. Shah
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bradley D. Pearce
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
20
|
Mehta D, Miller O, Bruenig D, David G, Shakespeare-Finch J. A Systematic Review of DNA Methylation and Gene Expression Studies in Posttraumatic Stress Disorder, Posttraumatic Growth, and Resilience. J Trauma Stress 2020; 33:171-180. [PMID: 31951051 DOI: 10.1002/jts.22472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
Most people will experience a traumatic event within their lifetime. One commonly recognized response to trauma exposure is posttraumatic stress disorder (PTSD). The biological underpinnings of PTSD, including epigenetic mechanisms of DNA methylation and gene expression, have been studied intensively. However, psychological posttrauma responses vary widely and can include positive outcomes, such as posttraumatic growth (PTG) and, more commonly, resilience. The aim of this systematic review was to summarize the current DNA methylation and gene expression data with respect to three potential posttrauma responses: PTSD, PTG, and resilience. A literature search identified 486 studies, 51 of which were deemed eligible for inclusion (total N = 10,633). All included studies examined PTSD and consistently implicated DNA methylation and gene expression changes in hypothalamic-pituitary-adrenal axis and inflammatory genes. Ten studies acknowledged resilience as a posttrauma response, but only two studies examined epigenetics and gene expression using a scale to measure resilience. Low resilience was associated with gene expression patterns in immune and dopamine genes, and high resilience was associated with a blunted inflammatory response. No studies examined epigenetic or gene expression changes associated with PTG. These findings highlight a focus on pathogenic research, which has failed to adequately acknowledge and measure positive posttrauma outcomes of PTG and resilience. Future research should examine DNA methylation and gene expression changes associated with PTG and resilience in addition to PTSD in order to gain a more comprehensive picture of an individual's well-being following exposure to trauma.
Collapse
Affiliation(s)
- Divya Mehta
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Olivia Miller
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Dagmar Bruenig
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Georgina David
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Jane Shakespeare-Finch
- School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
21
|
Canli T. A model of human endogenous retrovirus (HERV) activation in mental health and illness. Med Hypotheses 2019; 133:109404. [PMID: 31557593 DOI: 10.1016/j.mehy.2019.109404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
Despite strong evidence for the heritability of major depressive disorder (MDD), efforts to identify causal genes have been disappointing. Furthermore, although there is strong support for life stress as a major predictor of MDD, there are also considerable individual differences in susceptibility and resilience that remain poorly understood. Efforts to identify specific gene-by-environment risk factors produced results that were initially encouraging, but that were not supported by later large-scale studies. Here I propose a novel mechanism that could address the "missing heritability" of MDD, the role of environmental risk factors, and individual differences in susceptibility and resilience. This mechanism focuses on a class of transposable elements, Human Endogenous Retroviruses (HERVs), which make up approximately 8% of the human genome as the result of ancient retroviral infections that entered mammalian germ lines throughout the course of evolution. My primary hypothesis is that exposure to either exogenous viruses or traumatic experiences can activate HERVs in the brain to cause depressive (and possibly other psychiatric) symptoms. My secondary hypothesis is that individual differences in vulnerability or resilience result from the balance of activated HERVs with pathogenic versus protective functions in the brain. Future research can test these hypotheses by analysis of postmortem human brain tissue from donors with known viral or trauma histories; animal studies manipulating HERV expression; cell culture studies examining regulatory mechanisms of HERV expression; and from brain imaging studies of individuals with known HERV-expression. Such research may reveal novel functions of HERVs in neural tissue and may lead to a new generation of psychiatric interventions designed to target aberrant HERV activation.
Collapse
MESH Headings
- Animals
- Brain/virology
- Cells, Cultured
- Cytokines/physiology
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/immunology
- Depressive Disorder, Major/virology
- Disease Models, Animal
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Environmental Exposure
- Epigenesis, Genetic
- Gene Expression Regulation, Viral
- Gene-Environment Interaction
- Genes, Viral
- Humans
- Intercellular Signaling Peptides and Proteins/physiology
- Mice, Transgenic
- Models, Biological
- Models, Psychological
- Schizophrenia/pathology
- Schizophrenia/virology
- Stress, Psychological
- Terminal Repeat Sequences/genetics
- Virus Activation
- Virus Diseases/complications
- Virus Diseases/psychology
Collapse
Affiliation(s)
- Turhan Canli
- Departments of Psychology and Psychiatry, Stony Brook University, Stony Brook, NY 11794-2500, USA.
| |
Collapse
|
22
|
Rusch HL, Robinson J, Yun S, Osier ND, Martin C, Brewin CR, Gill JM. Gene expression differences in PTSD are uniquely related to the intrusion symptom cluster: A transcriptome-wide analysis in military service members. Brain Behav Immun 2019; 80:904-908. [PMID: 31039430 PMCID: PMC6752960 DOI: 10.1016/j.bbi.2019.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/19/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with wide-spread immune dysregulation; however, little is known about the gene expression differences attributed to each PTSD symptom cluster. This is an important consideration when identifying diagnostic and treatment response markers in highly comorbid populations with mental and physical health conditions that share symptoms. To this aim, we utilized a transcriptome-wide analysis of differential gene expression in peripheral blood by comparing military service members: (1) with vs. without PTSD, (2) with high vs. low PTSD cluster symptom severity, and (3) with improved vs. not improved PTSD symptoms following 4-8 weeks of evidenced-based sleep treatment. Data were analyzed at a ±2.0-fold change magnitude with subsequent gene ontology-based pathway analysis. In participants with PTSD (n = 39), 89 differentially expressed genes were identified, and 94% were upregulated. In participants with high intrusion symptoms (n = 22), 1040 differentially expressed genes were identified, and 98% were upregulated. No differentially expressed genes were identified for the remaining two PTSD symptom clusters. Ten genes (C5orf24, RBAK, CREBZF, CD69, PMAIP1, AGL, ZNF644, ANKRD13C, ESCO1, and ZCCHC10) were upregulated in participants with PTSD and high intrusion symptoms at baseline and downregulated in participants with improved PTSD symptoms following treatment. Pathway analysis identified upregulated immune response systems and metabolic networks with a NF-kB hub, which were downregulated with symptom reduction. Molecular biomarkers implicated in intrusion symptoms and PTSD symptom improvement may inform the development of therapeutic targets for precise treatment of PTSD.
Collapse
Affiliation(s)
- Heather L Rusch
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Jeffrey Robinson
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sijung Yun
- Yotta Biomed, LLC, Bethesda, MD 20817, United States
| | - Nicole D Osier
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christiana Martin
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Chris R Brewin
- University College London, London WC1E 6BT, United Kingdom
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
23
|
Kernbach ME, Newhouse DJ, Miller JM, Hall RJ, Gibbons J, Oberstaller J, Selechnik D, Jiang RHY, Unnasch TR, Balakrishnan CN, Martin LB. Light pollution increases West Nile virus competence of a ubiquitous passerine reservoir species. Proc Biol Sci 2019; 286:20191051. [PMID: 31337318 PMCID: PMC6661335 DOI: 10.1098/rspb.2019.1051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Among the many anthropogenic changes that impact humans and wildlife, one of the most pervasive but least understood is light pollution. Although detrimental physiological and behavioural effects resulting from exposure to light at night are widely appreciated, the impacts of light pollution on infectious disease risk have not been studied. Here, we demonstrate that artificial light at night (ALAN) extends the infectious-to-vector period of the house sparrow (Passer domesticus), an urban-dwelling avian reservoir host of West Nile virus (WNV). Sparrows exposed to ALAN maintained transmissible viral titres for 2 days longer than controls but did not experience greater WNV-induced mortality during this window. Transcriptionally, ALAN altered the expression of gene regulatory networks including key hubs (OASL, PLBD1 and TRAP1) and effector genes known to affect WNV dissemination (SOCS). Despite mounting anti-viral immune responses earlier, transcriptomic signatures indicated that ALAN-exposed individuals probably experienced pathogen-induced damage and immunopathology, potentially due to evasion of immune effectors. A simple mathematical modelling exercise indicated that ALAN-induced increases of host infectious-to-vector period could increase WNV outbreak potential by approximately 41%. ALAN probably affects other host and vector traits relevant to transmission, and additional research is needed to advise the management of zoonotic diseases in light-polluted areas.
Collapse
Affiliation(s)
- Meredith E. Kernbach
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J. Newhouse
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Jeanette M. Miller
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
| | - Richard J. Hall
- Center for the Ecology of Infectious Diseases, Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Justin Gibbons
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Jenna Oberstaller
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
| | - Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney 2006, Australia
| | - Rays H. Y. Jiang
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
| | | | - Lynn B. Martin
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
24
|
Morrison FG, Miller MW, Logue MW, Assef M, Wolf EJ. DNA methylation correlates of PTSD: Recent findings and technical challenges. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:223-234. [PMID: 30503303 PMCID: PMC6314898 DOI: 10.1016/j.pnpbp.2018.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that epigenetic factors play a critical role in posttraumatic stress disorder (PTSD), by mediating the impact of environmental exposures to trauma on the regulation of gene expression. DNA methylation is one epigenetic process that has been highly studied in PTSD. This review will begin by providing an overview of DNA methylation (DNAm) methods, and will then highlight two major biological systems that have been identified in the epigenetic regulation in PTSD: (a) the immune system and (b) the stress response system. In addition to candidate gene approaches, we will review novel strategies to study epigenome-wide PTSD-related effects, including epigenome-wide algorithms that distill information from many loci into a single summary score (e.g., measures of "epigenetic age" which have been associated with PTSD). This review will also cover recent epigenome wide association studies (EWAS) of PTSD, and biological pathway models used to identify gene sets enriched in PTSD. Finally, we address technical and methodological advances and challenges to the field, and highlight exciting directions for future research.
Collapse
Affiliation(s)
- Filomene G Morrison
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA.
| | - Mark W Miller
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA; Biomedical Genetics, Boston University School of Medicine, USA; Department of Biostatistics, Boston University School of Public Health, USA
| | - Michele Assef
- Boston University, College of Health & Rehabilitation Sciences: Sargent College, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA
| |
Collapse
|
25
|
Using Next-Generation Sequencing Transcriptomics To Determine Markers of Post-traumatic Symptoms: Preliminary Findings from a Post-deployment Cohort of Soldiers. G3-GENES GENOMES GENETICS 2019; 9:463-471. [PMID: 30622122 PMCID: PMC6385974 DOI: 10.1534/g3.118.200516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder is a concerning psychobehavioral disorder thought to emerge from the complex interaction between genetic and environmental factors. For soldiers exposed to combat, the risk of developing this disorder is twofold and diagnosis is often late, when much sequela has set in. To be able to identify and diagnose in advance those at “risk” of developing post-traumatic stress disorder, would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to determine whether the transcriptome can be used to track the development of post-traumatic stress disorder in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples from 85 Canadian infantry soldiers (n = 58 participants negative for symptoms of post-traumatic stress disorder and n = 27 participants with symptoms of post-traumatic stress disorder) following return from deployment to Afghanistan were determined using RNA sequencing technology. Count-based gene expression quantification, normalization and differential analysis (with thorough correction for confounders) revealed genes associated to PTSD; LRP8 and GOLM1. These preliminary results provide a proof-of-principle for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression profiles alongside a post-traumatic symptom checklist.
Collapse
|
26
|
Agorastos A, Hauger RL, Barkauskas DA, Lerman IR, Moeller-Bertram T, Snijders C, Haji U, Patel PM, Geracioti TD, Chrousos GP, Baker DG. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology 2019; 100:237-245. [PMID: 30390522 DOI: 10.1016/j.psyneuen.2018.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute and chronic stress can lead to a dysregulation of the immune response. Growing evidence suggests peripheral immune dysregulation and low-grade systemic inflammation in posttraumatic stress disorder (PTSD), with numerous reports of elevated plasma interleukin-6 (IL-6) levels. However, only a few studies have assessed IL-6 levels in the cerebrospinal fluid (CSF). Most of those have used single time-point measurements, and thus cannot take circadian level variability and CSF-plasma IL-6 correlations into account. METHODS This study used time-matched, sequential 24-h plasma and CSF measurements to investigate the effects of combat stress and PTSD on physiologic levels and biorhythmicity of IL-6 in 35 male study volunteers, divided in 3 groups: (PTSD = 12, combat controls, CC = 12, and non-deployed healthy controls, HC = 11). RESULTS Our findings show no differences in diurnal mean concentrations of plasma and CSF IL-6 across the three comparison groups. However, a significantly blunted circadian rhythm of plasma IL-6 across 24 h was observed in all combat-zone deployed participants, with or without PTSD, in comparison to HC. CSF IL-6 rhythmicity was unaffected by combat deployment or PTSD. CONCLUSIONS Although no significant group differences in mean IL-6 concentration in either CSF or plasma over a 24-h timeframe was observed, we provide first evidence for a disrupted peripheral IL-6 circadian rhythm as a sequel of combat deployment, with this disruption occurring in both PTSD and CC groups. The plasma IL-6 circadian blunting remains to be replicated and its cause elucidated in future research.
Collapse
Affiliation(s)
- Agorastos Agorastos
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Richard L Hauger
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA
| | - Donald A Barkauskas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Imanuel R Lerman
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Tobias Moeller-Bertram
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Clara Snijders
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Uzair Haji
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Piyush M Patel
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Thomas D Geracioti
- University of Cincinnati Medical Center, Department of Psychiatry and Neurobehavioral Sciences, Cincinnati, OH, USA
| | - George P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dewleen G Baker
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA.
| |
Collapse
|
27
|
Kuan PF, Yang X, Clouston S, Ren X, Kotov R, Waszczuk M, Singh PK, Glenn ST, Gomez EC, Wang J, Bromet E, Luft BJ. Cell type-specific gene expression patterns associated with posttraumatic stress disorder in World Trade Center responders. Transl Psychiatry 2019; 9:1. [PMID: 30664621 PMCID: PMC6341096 DOI: 10.1038/s41398-018-0355-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Posttraumatic stress disorder (PTSD), a chronic disorder resulting from severe trauma, has been linked to immunologic dysregulation. Gene expression profiling has emerged as a promising tool for understanding the pathophysiology of PTSD. However, to date, all but one gene expression study was based on whole blood or unsorted peripheral blood mononuclear cell (PBMC), a complex tissue consisting of several populations of cells. The objective of this study was to utilize RNA sequencing to simultaneously profile the gene expression of four immune cell subpopulations (CD4T, CD8T, B cells, and monocytes) in 39 World Trade Center responders (20 with and 19 without PTSD) to determine which immune subsets play a role in the transcriptomic changes found in whole blood. Transcriptome-wide analyses identified cell-specific and shared differentially expressed genes across the four cell types. FKBP5 and PI4KAP1 genes were consistently upregulated across all cell types. Notably, REST and SEPT4, genes linked to neurodegeneration, were among the top differentially expressed genes in monocytes. Pathway analyses identified differentially expressed gene sets involved in mast cell activation and regulation in CD4T, interferon-beta production in CD8T, and neutrophil-related gene sets in monocytes. These findings suggest that gene expression indicative of immune dysregulation is common across several immune cell populations in PTSD. Furthermore, given notable differences between cell subpopulations in gene expression associated with PTSD, the results also indicate that it may be valuable to analyze different cell populations separately. Monocytes may constitute a key cell type to target in research on gene expression profile of PTSD.
Collapse
Affiliation(s)
- Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Xiaohua Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sean Clouston
- Department of Family and Preventive Medicine, Stony Book University, Stony Brook, NY, USA
| | - Xu Ren
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Roman Kotov
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Monika Waszczuk
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Prashant K Singh
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sean T Glenn
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Evelyn Bromet
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
28
|
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 2019; 10:118. [PMID: 30914979 PMCID: PMC6421311 DOI: 10.3389/fpsyt.2019.00118] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, United States
| |
Collapse
|
29
|
Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2018; 177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA.
| | - Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| |
Collapse
|
30
|
Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain Behav Immun 2018; 74:133-142. [PMID: 30189241 DOI: 10.1016/j.bbi.2018.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a serious condition that emerges following trauma exposure and involves long-lasting psychological suffering and health-issues. Uncovering critical genes and molecular networks is essential to understanding the biology of the disorder. We performed a genome-wide scan to identify transcriptome signatures of PTSD. METHODS Genome-wide peripheral blood transcriptomic data from 380 service personnel were investigated. This included a discovery sample of 96 Australian Vietnam War veterans and two independent pre and post-deployment replication samples of U.S. Marines (N = 188 and N = 96). RESULTS A total of 60 transcripts were differentially expressed between veterans with and without PTSD, surviving Bonferroni multiple testing correction. Genes within the cytokine-cytokine receptor interaction, Jak-STAT signaling and Toll-like receptor signaling pathways were enriched. For 49% of the genes, gene expression changes were also accompanied by DNA methylation changes. Using replication data from two U.S. Marine cohorts, we observed that of the differentially expressed genes, 71% genes also showed significant gene expression changes between pre and post-deployment. Weighted gene co-expression networks revealed two modules of genes associated with PTSD. The first module (67 genes, p-value = 6e-4) was enriched for genes within the 11p13 locus including BDNF. The second module (266 genes, p-value = 0.01) was enriched for genes in 17q11 including SLC6A4, STAT5A and STAT5B. CONCLUSIONS We identified novel transcriptomic loci and biological pathways for PTSD in service personnel. Network analysis revealed enrichment of loci harboring key candidate genes in PTSD. These findings highlight the role of transcriptional biomarkers in the molecular etiology of PTSD.
Collapse
|
31
|
Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:849-865. [PMID: 29559087 DOI: 10.1016/j.biopsych.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a pathologic response to trauma that impacts ∼8% of the population and is highly comorbid with other disorders, such as traumatic brain injury. PTSD affects multiple biological systems throughout the body, including the hypothalamic-pituitary-adrenal axis, cortical function, and the immune system, and while the study of the biological underpinnings of PTSD and related disorders are numerous, the roles of noncoding RNAs (ncRNAs) are just emerging. Moreover, deep sequencing has revealed that ncRNAs represent most of the transcribed mammalian genome. Here, we present developing evidence that ncRNAs are involved in critical aspects of PTSD pathophysiology. In that regard, we summarize the roles of three classes of ncRNAs in PTSD and related disorders: microRNAs, long-noncoding RNAs, and retrotransposons. This review evaluates findings from both animal and human studies with a special focus on the role of ncRNAs in hypothalamic-pituitary-adrenal axis abnormalities and glucocorticoid dysfunction in PTSD and traumatic brain injury. We conclude that ncRNAs may prove to be useful biomarkers to facilitate personalized medicines for trauma-related brain disorders.
Collapse
|
32
|
Petrone AB, Gionis V, Giersch R, Barr TL. Immune biomarkers for the diagnosis of mild traumatic brain injury. NeuroRehabilitation 2018; 40:501-508. [PMID: 28222567 DOI: 10.3233/nre-171437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND In 2010, there were approximately 2.2 million emergency room visits associated with traumatic brain injury (TBI), with 80 percent diagnosed as mild TBI or concussion. In addition, there are a large number of TBIs, especially mild TBIs, which go either unreported by patients or initially undiagnosed by clinicians. Our team has previously identified a panel of immune-related genes that can diagnose ischemic stroke at triage, and due to shared pathophysiological mechanisms of TBI and stroke, we hypothesized that this panel of genes may also be utilized for the diagnosis of TBI. OBJECTIVES The primary aims of this pilot study were to: (1) characterize changes in a panel of immune-related genes in TBI; (2) identify immune-related biomarkers that may be used to diagnose TBI and (3) describe the peripheral immune response following TBI. METHODS Blood was drawn from TBI patients no later than 24 h of injury onset and matched control subjects. Real-time PCR was used to measure gene expression, and a white blood cell differential was performed to obtain neutrophil and lymphocyte percentages. RESULTS Relative mRNA expression of ARG1, LY96, MMP9, s100a12 was significantly increased and CCR7 was significantly decreased in peripheral blood of TBI patients within 24 hours of injury compared to control subjects. We also observed a different pattern of leukocyte dynamics following TBI between mild and severe TBI. CONCLUSIONS We have described a panel of immune-related genes that can accurately predict/diagnose TBI with higher sensitivity and specificity of other biomarkers to date.
Collapse
Affiliation(s)
- Ashley B Petrone
- Department of Family Medicine, West Virginia University, Morgantown, WV, USA.,West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
| | | | | | | |
Collapse
|
33
|
Kara T, Topkarcı Z. Interactions between Posttraumatic Stress Disorder and Alopecia Areata in Child with Trauma Exposure: Two Case Reports. Int J Trichology 2018; 10:131-134. [PMID: 30034194 PMCID: PMC6028996 DOI: 10.4103/ijt.ijt_2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Alopecia areata (AA) is a dermatologic disease that can be seen in all age groups with nonscarring hair loss. While the causes of AA are suggested to be the role of genetic, psychological stresses, cellular and humoral immunity, and endocrine and neural factors, the underlying cause is not fully known. Psychiatric diseases are frequently reported in many studies in patients with AA. In this report, children with AA and psychiatric evaluation of them and the prominence of psychiatric evaluation in AA were discussed; AA and posttraumatic stress disorder were reviewed in the light of the relevant literature.
Collapse
Affiliation(s)
- Tayfun Kara
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul, Turkey
| | - Zeynep Topkarcı
- Department of Dermatology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul, Turkey
| |
Collapse
|
34
|
Kuan PF, Waszczuk MA, Kotov R, Clouston S, Yang X, Singh PK, Glenn ST, Cortes Gomez E, Wang J, Bromet E, Luft BJ. Gene expression associated with PTSD in World Trade Center responders: An RNA sequencing study. Transl Psychiatry 2017; 7:1297. [PMID: 29249826 PMCID: PMC5802695 DOI: 10.1038/s41398-017-0050-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The gene expression approach has provided promising insights into the pathophysiology of posttraumatic stress disorder (PTSD). However, few studies used hypothesis-free transcriptome-wide approach to comprehensively understand gene expression underpinning PTSD. A transcriptome-wide expression study using RNA sequencing of whole blood was conducted in 324 World Trade Center responders (201 with never, 81 current, 42 past PTSD). Samples from current and never PTSD reponders were randomly split to form discovery (N = 195) and replication (N = 87) cohorts. Differentially expressed genes were used in pathway analysis and to create a polygenic expression score. There were 448 differentially expressed genes in the discovery cohort, of which 99 remained significant in the replication cohort, including FKBP5, which was found to be up-regulated in current PTSD regardless of the genotypes. Several enriched biological pathways were found, including glucocorticoid receptor signaling and immunity-related pathways, but these pathways did not survive FDR correction. The polygenic expression score computed by aggregating 30 differentially expressed genes using the elastic net algorithm achieved sensitivity/specificity of 0.917/0.508, respectively for identifying current PTSD in the replication cohort. Polygenic scores were similar in current and past PTSD, with both groups scoring higher than trauma-exposed controls without any history of PTSD. Together with the pathway analysis results, these findings point to HPA-axis and immune dysregulation as key biological processes underpinning PTSD. A novel polygenic expression aggregate that differentiates PTSD patients from trauma-exposed controls might be a useful screening tool for research and clinical practice, if replicated in other populations.
Collapse
Affiliation(s)
- Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Monika A Waszczuk
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Roman Kotov
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Sean Clouston
- Department of Family and Preventive Medicine, Stony Book University, Stony Brook, NY, USA
| | - Xiaohua Yang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Prashant K Singh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sean T Glenn
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Evelyn Bromet
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
35
|
Lindqvist D, Mellon SH, Dhabhar FS, Yehuda R, Grenon SM, Flory JD, Bierer LM, Abu-Amara D, Coy M, Makotkine I, Reus VI, Aschbacher K, Bersani FS, Marmar CR, Wolkowitz OM. Increased circulating blood cell counts in combat-related PTSD: Associations with inflammation and PTSD severity. Psychiatry Res 2017; 258:330-336. [PMID: 28942957 DOI: 10.1016/j.psychres.2017.08.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/18/2022]
Abstract
Inflammation is reported in post-traumatic stress disorder (PTSD). Few studies have investigated circulating blood cells that may contribute to inflammation. We assessed circulating platelets, white blood cells (WBC) and red blood cells (RBC) in PTSD and assessed their relationship to inflammation and symptom severity. One-hundred and sixty-three male combat-exposed veterans (82 PTSD, 81 non-PTSD) had blood assessed for platelets, WBC, and RBC. Data were correlated with symptom severity and inflammation. All cell counts were significantly elevated in PTSD. There were small mediation effects of BMI and smoking on these relationships. After adjusting for these, the differences in WBC and RBC remained significant, while platelet count was at trend level. In all subjects, all of the cell counts correlated significantly with inflammation. Platelet count correlated with inflammation only in the PTSD subjects. Platelet count, but none of the other cell counts, was directly correlated with PTSD severity ratings in the PTSD group. Combat PTSD is associated with elevations in RBC, WBC, and platelets. Dysregulation of all three major lineages of hematopoietic cells in PTSD, as well as their significant correlation with inflammation, suggest clinical significance of these changes.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, United States; Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden
| | - Synthia H Mellon
- Department of OB/GYN and Reproductive Sciences, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, United States
| | - Firdaus S Dhabhar
- Department of Psychiatry & Behavioral Sciences, Sylvester Comprehensive Cancer Center, University of Miami, FL, United States
| | - Rachel Yehuda
- James J. Peters Veterans Administration Medical Center Bronx, New York, United States; Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - S Marlene Grenon
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States; Department of Surgery, Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Janine D Flory
- James J. Peters Veterans Administration Medical Center Bronx, New York, United States; Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Linda M Bierer
- James J. Peters Veterans Administration Medical Center Bronx, New York, United States; Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Duna Abu-Amara
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, Department of Psychiatry, NYU, New York, United States
| | - Michelle Coy
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, United States
| | - Iouri Makotkine
- James J. Peters Veterans Administration Medical Center Bronx, New York, United States; Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Victor I Reus
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, United States
| | - Kirstin Aschbacher
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, United States
| | - F Saverio Bersani
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, United States; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Charles R Marmar
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, Department of Psychiatry, NYU, New York, United States.
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, United States.
| |
Collapse
|
36
|
Young G. PTSD in Court III: Malingering, assessment, and the law. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2017; 52:81-102. [PMID: 28366496 DOI: 10.1016/j.ijlp.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
This journal's third article on PTSD in Court focuses especially on the topic's "court" component. It first considers the topic of malingering, including in terms of its definition, certainties, and uncertainties. As with other areas of the study of psychological injury and law, generally, and PTSD (posttraumatic stress disorder), specifically, malingering is a contentious area not only definitionally but also empirically, in terms of establishing its base rate in the index populations assessed in the field. Both current research and re-analysis of past research indicates that the malingering prevalence rate at issue is more like 15±15% as opposed to 40±10%. As for psychological tests used to assess PTSD, some of the better ones include the TSI-2 (Trauma Symptom Inventory, Second Edition; Briere, 2011), the MMPI-2-RF (Minnesota Multiphasic Personality Inventory, Second Edition, Restructured Form; Ben-Porath & Tellegen, 2008/2011), and the CAPS-5 (The Clinician-Administered PTSD Scale for DSM-5; Weathers, Blake, Schnurr, Kaloupek, Marx, & Keane, 2013b). Assessors need to know their own possible biases, the applicable laws (e.g., the Daubert trilogy), and how to write court-admissible reports. Overall conclusions reflect a moderate approach that navigates the territory between the extreme plaintiff or defense allegiances one frequently encounters in this area of forensic practice.
Collapse
|
37
|
Martin CG, Kim H, Yun S, Livingston W, Fetta J, Mysliwiec V, Baxter T, Gill JM. Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans. Psychiatry Res 2017; 251:261-265. [PMID: 28222310 PMCID: PMC6065100 DOI: 10.1016/j.psychres.2017.01.081] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/12/2016] [Accepted: 01/28/2017] [Indexed: 01/03/2023]
Abstract
Posttraumatic stress disorder (PTSD) affects many returning combat veterans, but underlying biological mechanisms remain unclear. In order to compare circulating micro RNA (miRNA) of combat veterans with and without PTSD, peripheral blood from 24 subjects was collected following deployment, and isolated miRNA was sequenced. PTSD was associated with 8 differentially expressed miRNA. Pathway analysis shows that PTSD is related to the axon guidance and Wnt signaling pathways, which work together to support neuronal development through regulation of growth cones. PTSD is associated with miRNAs that regulate biological functions including neuronal activities, suggesting that they play a role in PTSD symptomatology.
Collapse
Affiliation(s)
- Christiana G Martin
- National Institutes of Nursing Research, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Hyungsuk Kim
- National Institutes of Nursing Research, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | - Whitney Livingston
- National Institutes of Nursing Research, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Joseph Fetta
- National Institutes of Nursing Research, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Vincent Mysliwiec
- Madigan Army Medical Center, 9040A Fitzsimmons Avenue, Tacoma, WA 98431, USA
| | - Tristin Baxter
- Madigan Army Medical Center, 9040A Fitzsimmons Avenue, Tacoma, WA 98431, USA
| | - Jessica M Gill
- National Institutes of Nursing Research, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Young G. PTSD in Court II: Risk factors, endophenotypes, and biological underpinnings in PTSD. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2017; 51:1-21. [PMID: 28262266 DOI: 10.1016/j.ijlp.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
The second article in the series of three for the journal on "PTSD in Court" especially concerns the biological bases that have been found to be associated with PTSD (posttraumatic stress disorder). The cohering concepts in this section relate to risk factors; candidate genes; polygenetics; "gene×environment" interactions; epigenetics; endophenotypes; biomarkers; and connective networks both structurally and functionally (in terms of intrinsic connectivity networks, ICNs, including the DMN, SN, and CEN; that is, default mode, salience, and central executive networks, respectively). Risk factors related to PTSD include pre-event, event- and post-event ones. Some of the genes related to PTSD include: FKBP5, 5-HTTLPR, and COMT (which are, respectively, FK506-binding protein 5 gene, serotonin-transporter linked polymorphic region, catechol-O-methyl-transferase). These genetic findings give an estimate of 30% for the genetic influence on PTSD. The typical brain regions involved in PTSD include the amygdala, hippocampus, and prefrontal cortex, along with the insula. Causal models of behavior are multifactorial and biopsychosocial, and these types of models apply to PTSD, as well. The paper presents a multilevel systems model of psychopathology, including PTSD, which involves three levels - a top-down psychological construct one, a bottom-up symptom connection one, and a middle one involving symptom appraisal. Legally, causality refers to the event at issue needing to meet the bar of being materially contributory to the outcome. Finally, this section of the article reviews empirically-supported therapies for PTSD and the dangers of not receiving treatment for it.
Collapse
Affiliation(s)
- Gerald Young
- Glendon Campus, York University, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Banerjee SB, Morrison FG, Ressler KJ. Genetic approaches for the study of PTSD: Advances and challenges. Neurosci Lett 2017; 649:139-146. [PMID: 28242325 DOI: 10.1016/j.neulet.2017.02.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30-40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder. This review will summarize recent research on genetic approaches to understanding PTSD risk and resilience in human populations, including candidate genes and their epigenetic modifications, genome-wide association studies and neural imaging genetics approaches. Despite challenges faced within this field of study such as inconsistent results and replications, genetic approaches still offer exciting opportunities for the identification and development of novel therapeutic targets and therapies in the future.
Collapse
Affiliation(s)
- Sunayana B Banerjee
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA
| | - Filomene G Morrison
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
40
|
|
41
|
Olff M, van Zuiden M. Neuroendocrine and neuroimmune markers in PTSD: pre-, peri- and post-trauma glucocorticoid and inflammatory dysregulation. Curr Opin Psychol 2017; 14:132-137. [PMID: 28813312 DOI: 10.1016/j.copsyc.2017.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
We review current knowledge on how posttraumatic stress disorder (PTSD) is associated with dysregulation of the most commonly studied markers of the endocrine and immune systems pre-, peri- and post-trauma. Lower basal cortisol output, enhanced glucocorticoid receptor function, and a proinflammatory state have been most consistently found in PTSD, with considerable variability among studies and participants. Longitudinal research is scarce, but there is converging evidence that biological dysregulation is present before PTSD onset. Biological dysregulation may become more apparent with increasing time since trauma, and may be reversible with and predict effective treatment. However, considering the variability of findings and the complex interplay of these systems with other factors, the current clinical application of these findings remains limited.
Collapse
Affiliation(s)
- Miranda Olff
- Department of Psychiatry, Academic Medical Center at the University of Amsterdam, The Netherlands; Arq Psychotrauma Expert Group, Diemen, The Netherlands.
| | - Mirjam van Zuiden
- Department of Psychiatry, Academic Medical Center at the University of Amsterdam, The Netherlands
| |
Collapse
|
42
|
Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 2017; 42:254-270. [PMID: 27510423 PMCID: PMC5143487 DOI: 10.1038/npp.2016.146] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
The study of inflammation in fear- and anxiety-based disorders has gained interest as growing literature indicates that pro-inflammatory markers can directly modulate affective behavior. Indeed, heightened concentrations of inflammatory signals, including cytokines and C-reactive protein, have been described in posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), panic disorder (PD), and phobias (agoraphobia, social phobia, etc.). However, not all reports indicate a positive association between inflammation and fear- and anxiety-based symptoms, suggesting that other factors are important in future assessments of inflammation's role in the maintenance of these disorders (ie, sex, co-morbid conditions, types of trauma exposure, and behavioral sources of inflammation). The most parsimonious explanation of increased inflammation in PTSD, GAD, PD, and phobias is via the activation of the stress response and central and peripheral immune cells to release cytokines. Dysregulation of the stress axis in the face of increased sympathetic tone and decreased parasympathetic activity characteristic of anxiety disorders could further augment inflammation and contribute to increased symptoms by having direct effects on brain regions critical for the regulation of fear and anxiety (such as the prefrontal cortex, insula, amygdala, and hippocampus). Taken together, the available data suggest that targeting inflammation may serve as a potential therapeutic target for treating these fear- and anxiety-based disorders in the future. However, the field must continue to characterize the specific role pro-inflammatory signaling in the maintenance of these unique psychiatric conditions.
Collapse
|
43
|
Lerman I, Davis BA, Bertram TM, Proudfoot J, Hauger RL, Coe CL, Patel PM, Baker DG. Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology 2016; 73:99-108. [PMID: 27490714 DOI: 10.1016/j.psyneuen.2016.07.202] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Although posttraumatic stress disorder (PTSD) and chronic pain frequently occur in tandem, the pathophysiological mechanisms mediating this comorbidity are poorly understood. Because excessive inflammation occurs in both conditions, we examined the cerebrospinal fluid (CSF) concentrations of inflammatory response mediators interleukin 1-beta (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor-alpha (TNFα) and interleukin 10 (IL-10) after prolonged suprathreshold pain stimulus in 21 male combat veterans; 10 with PTSD and 11 combat controls (CC). METHODS After completing baseline quantitative sensory testing (QST) and psychological profiling, all patients received an injection of capsaicin into the quadriceps muscle. Spontaneously reported pain was measured for 30min after the capsaicin injection. The evoked pain measure of temporal summation was tested between 70 and 110min post capsaicin injection. Inflammatory (IL-1β, IL-6, IL-8 TNFα) and anti-inflammatory (IL-10) CSF cytokines were measured before (baseline) and after capsaicin injection over a time frame of 110min. RESULTS Following intramuscular capsaicin injection, pro-inflammatory cytokines [TNFα, IL-6, IL-8] significantly increased (percent rise from baseline) in both groups, whereas IL-1β significantly increased in the PTSD group only. The anti-inflammatory cytokine IL-10 showed an immediate (within 10min) increase in the CC group; however, the IL-10 increase in the PTSD group was delayed and not consistently elevated until 70min post injection. CONCLUSION These findings show significant central nervous system (CNS) differences in the inflammatory response to a deep pain stimulus in combat veterans with and without PTSD. They support the concept that abnormally elevated neuroinflammatory response to pain stimuli may be one CNS mechanism accounting for the high co-occurrence of PTSD and pain.
Collapse
Affiliation(s)
- Imanuel Lerman
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, United States; University of California San Diego, San Diego, CA, United States; VA San Diego Healthcare System, San Diego, CA, United States; Clinical and Translational Research Institute, San Diego, CA, United States.
| | - Bryan A Davis
- University of California San Diego, San Diego, CA, United States
| | | | - James Proudfoot
- University of California San Diego, San Diego, CA, United States; Clinical and Translational Research Institute, San Diego, CA, United States
| | - Richard L Hauger
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, United States; University of California San Diego, San Diego, CA, United States; VA San Diego Healthcare System, San Diego, CA, United States
| | | | - Piyush M Patel
- University of California San Diego, San Diego, CA, United States; VA San Diego Healthcare System, San Diego, CA, United States
| | - Dewleen G Baker
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, United States; University of California San Diego, San Diego, CA, United States; VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
44
|
National Institutes of Health Symptom Science Model sheds light on patient symptoms. Nurs Outlook 2016; 64:499-506. [PMID: 27349632 DOI: 10.1016/j.outlook.2016.05.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 12/23/2022]
Abstract
Since the establishment of the nursing profession, identifying and alleviating the subjective symptoms experienced by patients has been at the core of nursing practice. In supporting the scientific foundation for clinical practice, nursing science has maintained a consistent commitment to prevent, manage, and eliminate symptoms. Scientists from the intramural research program at the National Institute of Nursing Research (NINR), a component of the National Institutes of Health, developed a National Institutes of Health Symptom Science Model (NIH-SSM) to guide symptom science research programs engaged in the use of emerging "omic" methods such as the genotyping of symptom phenotypes. The NIH-SSM was developed based on the NINR intramural research program's success in designing and implementing methods for examining identified symptoms or symptom clusters. The NIH-SSM identifies the research process of characterizing symptom phenotypes, identifying and testing biomarkers, and ultimately developing clinical interventions in cancer-related fatigue, gastrointestinal disorders, and traumatic brain injuries. The purpose of this article was to demonstrate how scientists can apply the NIH-SSM, leading the broader scientific community in advancing personalized and precise clinical interventions.
Collapse
|