1
|
Sinha JK, Jorwal K, Singh KK, Han SS, Bhaskar R, Ghosh S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol Neurobiol 2025; 62:6748-6763. [PMID: 39230868 DOI: 10.1007/s12035-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.
Collapse
Affiliation(s)
| | - Khanak Jorwal
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
2
|
Lu L, Xu Z, Miao Z, Zuo X, Shi D, Chang S, Luo P, Li G. Higher systemic immune-inflammation index associates with vertebral marrow proton density fat fraction in postmenopausal women. J Bone Miner Metab 2025:10.1007/s00774-025-01609-8. [PMID: 40425866 DOI: 10.1007/s00774-025-01609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
INTRODUCTION The systemic immune-inflammation index (SII) may influence bone homeostasis through inflammatory modulation. Although bone marrow adipocytes regulate bone metabolism via adipokine secretion, their interaction with SII remains unexplored. We investigated the SII-marrow adiposity relationship in postmenopausal women. MATERIALS AND METHODS This retrospective study included 187 postmenopausal women. Lumbar spine MRI using chemical shift encoding generated proton density fat fraction (PDFF) maps, with bone mineral density (BMD) measured by dual x-ray absorptiometry. The relationship between SII and marrow PDFF was evaluated through multivariable-adjusted linear regression, smooth curve fittings, and threshold analysis. RESULTS The results revealed a negative correlation between marrow PDFF values and BMD (r = - 0.438, P < 0.001). After accounting for age, time since menopause, body mass index, physical activity, C-reactive protein, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and BMD in the regression analysis, each unit increase in SII was found to be inked to an increase of 0.247 (β = 0.247; 95% confidence interval [CI], 0.212 to 0.281; P <0.001) in PDFF. After converting SII to a categorical variable (quartiles), participants in the highest SII quartile had a 16.8% higher vertebral marrow PDFF than those in the lowest SII quartile (β = 16.753, 95% CI: 11.036-18.522, P <0.001). Furthermore, a curvilinear relationship and threshold effect were also identified. Turning point was identified at the SII value of 441 on the adjusted smooth curve. CONCLUSIONS SII levels were positively associated with marrow adiposity in postmenopausal women.
Collapse
Affiliation(s)
- Li Lu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Zheng Xu
- Changshou Community Health Center, Shanghai, China
| | - Zeyang Miao
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Xiaoyong Zuo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Dan Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Peng Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China.
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China.
| |
Collapse
|
3
|
Lin Y, Wu H, Wang J, He W, Hou J, Martin VT, Zhu C, Chen Y, Zhong J, Yu B, Lu A, Guan D, Qin G, Chen W. Nicotinamide Adenine Dinucleotide-Loaded Lubricated Hydrogel Microspheres with a Three-Pronged Approach Alleviate Age-Related Osteoarthritis. ACS NANO 2025; 19:17606-17626. [PMID: 40315404 PMCID: PMC12080321 DOI: 10.1021/acsnano.5c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
Chondrocyte senescence, synovitis, and decreased level of lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (AROA). However, there are currently no effective therapeutic interventions capable of altering the progression of OA until it reaches advanced stages, necessitating joint replacement. In this study, lubricious and drug-loaded hydrogel microspheres were designed and fabricated by utilizing microfluidic technology for radical polymerization of chondroitin sulfate methacrylate and incorporating nicotinamide adenine dinucleotide (NAD)-loaded liposomes modified with lactoferrin that are positively charged. Mechanical, tribological, and drug release analyses demonstrated enhanced lubrication properties and an extended drug dissemination time for the NAD@NPs@HM microspheres. In vitro assays unveiled the ability of NAD@NPs@HM to counteract chondrocyte senescence. RNA sequencing analysis, untargeted metabolomics analysis, and in vitro experiments on macrophages revealed that NAD@NPs@HM can regulate the metabolic reprogramming of synovial macrophages, promoting their repolarization from the M1 to M2 phenotype, thereby alleviating synovitis. Intra-articular injection of NAD@NPs@HM in aged mice reduced the mechanisms associated with AROA. These results suggest that NAD@NPs@HM may provide extended drug release, improved joint lubrication leading to better gait, and attenuation of AROA pathogenic processes, indicating its potential as a therapeutic approach for AROA.
Collapse
Affiliation(s)
- Yanpeng Lin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hangtian Wu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jun Wang
- School
of Animal Science and Technology, Foshan
University, Foshan, Guangdong 528231, People’s Republic of China
| | - Wanling He
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jiahui Hou
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Vidmi Taolam Martin
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Chencheng Zhu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yupeng Chen
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Junyuan Zhong
- Department
of Medical Imaging, Ganzhou People’s
Hospital, Ganzhou, Jiangxi 341000, P. R. China
| | - Bin Yu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Aiping Lu
- Institute
of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong 999077, P. R. China
- Guangdong-Hong
Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510515, P. R. China
| | - Daogang Guan
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Genggeng Qin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Weiguo Chen
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
4
|
Coperchini F, Greco A, Teliti M, Croce L, Chytiris S, Magri F, Gaetano C, Rotondi M. Inflamm-ageing: How cytokines and nutrition shape the trajectory of ageing. Cytokine Growth Factor Rev 2025; 82:31-42. [PMID: 39237438 DOI: 10.1016/j.cytogfr.2024.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Population ageing is increasing in prevalence in most developed countries. Ageing is the decline of functional properties at the cellular, tissue, and organ level. Biochemical changes that occur in all organisms that experience biological ageing are referred to as the "Hallmarks of ageing". Inflammation is a common denominator of the hallmarks of ageing, being mechanistically involved in most age-related health consequences. Inflamm-ageing refers to age-related changes in the inflammatory and immune systems which somehow drive the ageing process towards healthy or unhealthy ageing. Current evidences, support that, reversing the age-related pro-inflammatory status of inflamm-ageing, is able to modulate most hallmarks of ageing. Inflamm-ageing is associated with increased levels of pro-inflammatory molecules (e.g. cytokines, chemokines), ultimately producing a chronic low-grade inflammatory state typically observed in older individuals. It is commonly accepted that, the balance between pro- and anti-inflammatory cytokines/chemokines is one of the factors determining whether healthy or unhealthy ageing occurs. Malnutrition and nutritional imbalances, are highly prevalent in the elderly, playing a role in driving the balance of pro- and anti-inflammatory immunoactive molecules. In particular, malnutrition is a major risk factor for sarcopenia, a phenomenon characterized by loss of muscle mass, which is often referred to as the biological basis for frailty. Given the close relationship between malnutrition and sarcopenia, there is also evidence for a link between malnutrition and frailty. Indeed, changes in cytokine/chemokine levels in elderly patients with malnutrition were demonstrated. The demonstration that specific cytokines play a role in modulating appetite and nutrient sensing and taste reception, provided further evidence for the existence of a link between inflamm-ageing, nutrition and cytokines in shaping the trajectory of ageing. The present review will overview current evidence supporting the role of specific circulating cytokines and chemokines in the relationship between ageing, inflammation, and malnutrition.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy.
| |
Collapse
|
5
|
Beglarian E, Chen JC, Li Z, Costello E, Wang H, Hampson H, Alderete TL, Chen Z, Valvi D, Rock S, Chen W, Rianon N, Aung MT, Gilliland FD, Goran MI, McConnell R, Eckel SP, Lee M, Conti DV, Goodrich JA, Chatzi L. Proteins and pathways involved in inflammation are longitudinally associated with total body bone mineral density among primarily Hispanic overweight/obese adolescents and young adults. J Bone Miner Res 2025; 40:372-381. [PMID: 39808688 PMCID: PMC11909736 DOI: 10.1093/jbmr/zjaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025]
Abstract
BMD, an important marker of bone health, is regulated by a complex interaction of proteins. Plasma proteomic analyses can contribute to identification of proteins associated with changes in BMD. This may be especially informative in stages of bone accrual and peak BMD achievement (ie, adolescence and young adulthood), but existing research has focused on older adults. This analysis in the Study of Latino Adolescents at Risk for Type 2 Diabetes (SOLAR; n = 304; baseline age 8-13, 100% Hispanic) explored associations between baseline proteins (n = 653 proteins) measured with Olink plasma protein profiling and repeated annual DXA measures of BMD (average of 3.2 visits per participant). Covariate-adjusted linear mixed effect regression models were applied to estimate longitudinal protein-BMD associations using an adjusted p value cutoff (p < .00068). Identified proteins were imported into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database to determine significantly enriched protein pathways. Forty-four proteins, many of which are involved in inflammatory processes, were associated with longitudinal changes in total body BMD, including several proteins previously linked to bone health such as osteopontin (SPP1) and microfibrillar-associated protein 5 (MFAP5; both p < .00068). These 44 proteins were associated with enrichment of pathways including PI3K-Akt signaling pathway and cytokine-cytokine receptor interaction, supporting results from existing proteomics analyses in older adults. To evaluate whether protein associations were consistent into young adulthood, linear mixed effect models were repeated in a young adult cohort (n = 169; baseline age 17-22; 62.1% Hispanic) with 346 available overlapping Olink protein measures. While there were no significant overlapping longitudinal protein associations between the cohorts, these findings suggest differences in protein regulation at different ages and provide novel insight on longitudinal protein associations with BMD in overweight/obese adolescents and young adults of primarily Hispanic origin, which may inform the development of biomarkers for bone health in youth.
Collapse
Affiliation(s)
- Emily Beglarian
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Jiawen Carmen Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Zhenjiang Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hailey Hampson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Wu Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Nahid Rianon
- Department of Internal Medicine, UTHealth McGovern Medical School, Houston, TX 77030, United States
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Michael I Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Miryoung Lee
- Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Brownsville, TX 77030, United States
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| |
Collapse
|
6
|
García-Domínguez M. Pathological and Inflammatory Consequences of Aging. Biomolecules 2025; 15:404. [PMID: 40149940 PMCID: PMC11939965 DOI: 10.3390/biom15030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Aging is a complex, progressive, and irreversible biological process that entails numerous structural and functional changes in the organism. These changes affect all bodily systems, reducing their ability to respond and adapt to the environment. Chronic inflammation is one of the key factors driving the development of age-related diseases, ultimately causing a substantial decline in the functional abilities of older individuals. This persistent inflammatory state (commonly known as "inflammaging") is characterized by elevated levels of pro-inflammatory cytokines, an increase in oxidative stress, and a perturbation of immune homeostasis. Several factors, including cellular senescence, contribute to this inflammatory milieu, thereby amplifying conditions such as cardiovascular disease, neurodegeneration, and metabolic disorders. Exploring the mechanisms of chronic inflammation in aging is essential for developing targeted interventions aimed at promoting healthy aging. This review explains the strong connection between aging and chronic inflammation, highlighting potential therapeutic approaches like pharmacological treatments, dietary strategies, and lifestyle changes.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
7
|
Johnson T, Su J, Henning A, Ren J. A 7T MRI Study of Fibular Bone Thickness and Density: Impact of Age, Sex and Body Weight, and Correlation with Bone Marrow Expansion and Muscle Fat Infiltration. Diagnostics (Basel) 2025; 15:564. [PMID: 40075811 PMCID: PMC11899192 DOI: 10.3390/diagnostics15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Reduced bone mass and density, hallmark features of osteopenia and osteoporosis, significantly increase the risk of fractures, falls, and loss of mobility, especially in post-menopausal women and the elderly. Methods: This quantitative 7T MRI study examines the features of fibular bone thinning and bone mineral density loss (BMD) in 107 individuals (43F/64M) across various ages, body mass indices (BMIs), and ethnicities. Results: Women had significantly lower cross-sectional bone wall thickness (BT) and bone tissue area (BA), along with greater BMD loss compared to men in those over age 50 (n = 77), but not in the younger group (n = 30). The bone g-factor, defined as the ratio of inner-to-outer bone diameters, increased with bone thinning, bone marrow expansion (BME), and muscle fat infiltration (MFI) but was independent of subcutaneous fat thickness (SFT). Bone thinning and BMD loss both tend to increase with BME and MFI. Additionally, bone density decrease correlated with bone mass loss, with a stronger association observed with BT than BA. Conclusions: These findings offer insights into the effects of aging and sex on skeletomuscular health, with implications for strategies to mitigate bone loss in osteoporosis and osteosarcopenia.
Collapse
Affiliation(s)
- Talon Johnson
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Kase Y, Morikawa S, Okano Y, Hosoi T, Yasui T, Taki-Miyashita Y, Yakabe M, Goto M, Ishihara K, Ogawa S, Nakagawa T, Okano H. Multi-organ frailty is enhanced by periodontitis-induced inflammaging. Inflamm Regen 2025; 45:3. [PMID: 39894806 PMCID: PMC11789345 DOI: 10.1186/s41232-025-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND The incidence of periodontitis is high in older individuals. However, its impact on multi-organ frailty remains unclear. We developed mouse models with varying severity and duration of periodontitis to examine its effects. METHODS We generated mouse models with mild and severe periodontitis, categorizing the disease duration into 3-month and 5-month periods for analysis. The organs assessed for frailty included the gastrocnemius muscle, soleus muscle, brain, and femur. RESULTS Our study found that periodontitis induced systemic inflammation resembling inflammaging and other symptoms characteristic of age-induced frailty. Notably, muscle impairment developed specifically in slow-twitch muscles, and the femur emerged as the most vulnerable bone, exhibiting reduced bone mineral density even with mild and short-duration periodontitis. This condition resulted in the co-occurrence of bone fragility and slow-twitch muscle dysfunction. Cognitive function assessment revealed increased activated microglia and decreased adult neurogenesis in the hippocampus, impairing spatial learning. Thus, periodontitis induced both physical and cognitive frailties. Therapeutic intervention for the periodontitis, which halted the exacerbation of bone resorption markers, did not restore femur bone mineral density. CONCLUSION This study underscores the role of periodontitis in inducing multifaceted organ frailty with vulnerability, varying by organ, and the necessity of early intervention, particularly regarding bone density loss.
Collapse
Affiliation(s)
- Yoshitaka Kase
- Regenerative Medicine Research Center, Keio University, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, 210-0821, Japan
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake-Shi, Aichi, 470-1192, Japan
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuji Okano
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake-Shi, Aichi, 470-1192, Japan
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, 35Shinjuku-Ku, ShinanomachiTokyo, 160-8582, Japan
| | - Tatsuya Hosoi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takazumi Yasui
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yoko Taki-Miyashita
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Maraku Goto
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake-Shi, Aichi, 470-1192, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, 2-9-18, Kanda-Misaki-Cho, Chiyodaku, Tokyo, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Hideyuki Okano
- Regenerative Medicine Research Center, Keio University, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, 210-0821, Japan.
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake-Shi, Aichi, 470-1192, Japan.
| |
Collapse
|
9
|
Papa V, Li Pomi F, Minciullo PL, Borgia F, Gangemi S. Skin Disorders and Osteoporosis: Unraveling the Interplay Between Vitamin D, Microbiota, and Epigenetics Within the Skin-Bone Axis. Int J Mol Sci 2024; 26:179. [PMID: 39796035 PMCID: PMC11720247 DOI: 10.3390/ijms26010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Growing scientific evidence suggests a strong interconnection between inflammatory skin diseases and osteoporosis (OP), a systemic condition characterized by decreased bone density and structural fragility. These conditions seem to share common pathophysiological mechanisms, including immune dysregulation, chronic inflammation, and vitamin D deficiency, which play a crucial role in both skin and bone health. Additionally, the roles of gut microbiota (GM) and epigenetic regulation via microRNAs (miRNAs) emerge as key elements influencing the progression of both conditions. This review aims to examine the skin-bone axis, exploring how factors such as vitamin D, GM, and miRNAs interact in a subtle pathophysiological interplay driving skin inflammation and immune-metabolic bone alterations. Recent research suggests that combined therapeutic approaches-including vitamin D supplementation, targeted microbiota interventions, and miRNA-based therapies-could be promising strategies for managing comorbid inflammatory skin diseases and OP. This perspective highlights the need for multidisciplinary approaches in the clinical management of conditions related to the skin-bone axis.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Paola Lucia Minciullo
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| |
Collapse
|
10
|
Kiseleva OI, Arzumanian VA, Ikhalaynen YA, Kurbatov IY, Kryukova PA, Poverennaya EV. Multiomics of Aging and Aging-Related Diseases. Int J Mol Sci 2024; 25:13671. [PMID: 39769433 PMCID: PMC11677528 DOI: 10.3390/ijms252413671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Despite their astonishing biological diversity, surprisingly few shared traits connect all or nearly all living organisms. Aging, i.e., the progressive and irreversible decline in the function of multiple cells and tissues, is one of these fundamental features of all organisms, ranging from single-cell creatures to complex animals, alongside variability, adaptation, growth, healing, reproducibility, mobility, and, finally, death. Age is a key determinant for many pathologies, shaping the risks of incidence, severity, and treatment outcomes for cancer, neurodegeneration, heart failure, sarcopenia, atherosclerosis, osteoporosis, and many other diseases. In this review, we aim to systematically investigate the age-related features of the development of several diseases through the lens of multiomics: from genome instability and somatic mutations to pathway alterations and dysregulated metabolism.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Viktoriia A. Arzumanian
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Yuriy A. Ikhalaynen
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Polina A. Kryukova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| |
Collapse
|
11
|
Guo Y, Wang P, Hu B, Wang L, Zhang Y, Wang J. Kongensin A targeting PI3K attenuates inflammation-induced osteoarthritis by modulating macrophage polarization and alleviating inflammatory signaling. Int Immunopharmacol 2024; 142:112948. [PMID: 39217884 DOI: 10.1016/j.intimp.2024.112948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The inflammatory microenvironment, polarization of macrophages towards the M1 phenotype, and consequent matrix degradation and senescence of chondrocytes are primary contributors to the degeneration of knee joint cartilage, further exacerbating the progression of osteoarthritis (OA). Kongensin A (KA) is a recently identified natural plant extract exhibiting anti-necrotic apoptosis and anti-inflammatory properties, but the potential efficacy in alleviating OA remains uncertain. The current research lucubrated the effect of KA on the inflammatory microenvironment and macrophage polarization, as well as its regulatory function in extracellular matrix (ECM) metabolism and chondrocyte senescence. Our findings demonstrated that KA can suppress inflammatory signaling, maintain homeostasis between ECM anabolism and catabolism, and suppress chondrocytes senescence. Further investigation elucidated that the mechanism involves the suppression of the PI3K/AKT/NF-κB axis in chondrocytes under inflammatory conditions. Moreover, KA impeded M1 polarization of macrophages via inhibiting PI3K/AKT/NF-κB axis. Subsequently, we treated chondrocytes with macrophages-derived conditioned medium (CM) and revealed that KA can promote ECM anabolism and alleviate chondrocytes senescence by reprogramming macrophage polarization. Consistent with in vitro experiments, in vivo administration of KA demonstrated alleviated cartilage degeneration and delayed progression of OA. Collectively, through obstructing the PI3K/AKT/NF-κB axis, KA can reprogram macrophage polarization, promote matrix metabolism equilibrium, and alleviate chondrocytes senescence, thereby attenuating the pathology of OA. In conclusion, KA may emerge as a promising therapy for OA.
Collapse
Affiliation(s)
- Yuhui Guo
- Department of Orthopaedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Peng Wang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Wang
- Department of Orthopaedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| | - Yingze Zhang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Juan Wang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| |
Collapse
|
12
|
Zhu G, Guo B, Liang J. Evaluating the role of biological age in osteoporosis risk among middle-aged and older adults: A nationwide perspective. Bone 2024; 189:117255. [PMID: 39278456 DOI: 10.1016/j.bone.2024.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVES This study aimed to investigate the association between biological age acceleration and osteoporosis (OP) risk in middle-aged and older adults using data from the National Health and Nutrition Examination Survey (NHANES). The research focused on analyzing the relationship between two biological aging metrics, Klemera-Doubal Method Age (KDMAge) and Phenotypic Age (PhenoAge), and OP risk. METHODS The study analyzed data from NHANES, which included 6550 participants aged 50 and above from survey cycles 2005-2010 and 2017-2018. Linear and logistic regression were used to investigate the relationship between biological age acceleration (KDMAgeAccel and PhenoAgeAccel) and OP. Subgroup analysis was performed by age, gender and other factors. Multivariable Cox regression analysis yielded Hazard Ratios (HRs) relating biological age acceleration to mortality were evaluated. The study also considered the mediating roles of body mass index (BMI). RESULTS KDMAgeAccel (odds ratio [OR] = 2.34, 95 % CI, 1.72-3.18) and PhenoAgeAccel (OR = 2.03, 95 % CI, 1.48-2.78) were significantly associated with increased OP risk and reduced bone mineral density (BMD). Specifically, higher KDMAgeAccel and PhenoAgeAccel were linked to higher OP prevalence and lower BMD at multiple sites. Subgroup analyses indicated that the association between accelerated biological age acceleration and OP risk was consistent across different demographics. Mediation analysis revealed that BMI partially mediated the relationship between accelerated biological age and OP, although other mechanisms are likely involved. Statistical analysis indicated that individuals with higher biological age metrics had increased mortality risk related to OP. CONCLUSION The findings suggest that accelerated biological age is a robust predictor of OP risk and related mortality. KDMAgeAccel and PhenoAgeAccel could serve as valuable biomarkers for identifying individuals at high risk for OP, guiding preventive strategies.
Collapse
Affiliation(s)
- Guomao Zhu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Jinqian Liang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
13
|
Veronesi F, Salamanna F, Borsari V, Ruffilli A, Faldini C, Giavaresi G. Unlocking diagnosis of sarcopenia: The role of circulating biomarkers - A clinical systematic review. Mech Ageing Dev 2024; 222:112005. [PMID: 39521148 DOI: 10.1016/j.mad.2024.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Sarcopenia, the gradual loss of muscle mass, strength, and function with age, poses a significant risk to older adults, making early diagnosis crucial for preventing disability and enhancing quality of life. Biomarkers are vital for the early detection, monitoring progression, and assessing the efficacy of treatments for sarcopenia, offering a detailed evaluation of muscle health. This systematic review examined the clinical potential of circulating biomarkers in sarcopenia by analyzing studies up to May 2024 from PubMed, Scopus, Web of Science. A total of 45 studies involving 641,730 patients were reviewed, revealing notable biomarker differences between sarcopenic and non-sarcopenic individuals. Sarcopenic patients exhibited lower levels of certain microRNAs, hemoglobin, albumin, and anti-inflammatory factors, alongside higher levels of red and white blood cells, pro-inflammatory factors, growth factors, matrix proteins, free thyroxine, cortisol, and adiponectin. Additionally, they had lower levels of irisin, free triiodothyronine, and insulin, with reduced phosphatidylcholines and elevated spermidine. The studies were generally of fair to good quality, but due to heterogeneity, a meta-analysis was not feasible. The review underscores the need for standardized biomarkers and diagnostic criteria and suggests that improving outcomes for sarcopenic patients may involve addressing inflammation, metabolic, and hormonal issues through nutrition, medication, and exercise.
Collapse
Affiliation(s)
- F Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - F Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| | - V Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - A Ruffilli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy; Department of Biomedical and Neuromotor Science - DIBINEM, University of Bologna, Bologna, Italy
| | - C Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy; Department of Biomedical and Neuromotor Science - DIBINEM, University of Bologna, Bologna, Italy
| | - G Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| |
Collapse
|
14
|
Han Y, Kim DH, Pack SP. Marine-Derived Bioactive Ingredients in Functional Foods for Aging: Nutritional and Therapeutic Perspectives. Mar Drugs 2024; 22:496. [PMID: 39590776 PMCID: PMC11595256 DOI: 10.3390/md22110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Aging is closely linked to various health challenges, including cardiovascular disease, metabolic disorders, and neurodegenerative conditions. This study emphasizes the critical role of bioactive compounds derived from marine sources, such as antioxidants, omega-3 fatty acids, vitamins, minerals, and polysaccharides, in addressing oxidative stress, inflammation, and metabolic disorders closely related to aging. Incorporating these materials into functional foods not only provides essential nutrients but also delivers therapeutic effects, thereby promoting healthy aging and mitigating age-related diseases. The growth of the global anti-aging market, particularly in North America, Europe, and Asia, underscores the significance of this study. This review systematically analyzes the current research, identifying key bioactive compounds, their mechanisms of action, and their potential health benefits, thus highlighting the broad applicability of marine-derived bioactive compounds to enhancing healthy aging and improving the quality of life of aging populations.
Collapse
Affiliation(s)
- Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| |
Collapse
|
15
|
Zhang B, Pei Z, Tian A, He W, Sun C, Hao T, Ariben J, Li S, Wu L, Yang X, Zhao Z, Wu L, Meng C, Xue F, Wang X, Ma X, Zheng F. Multi-omics Analysis to Identify Key Immune Genes for Osteoporosis based on Machine Learning and Single-cell Analysis. Orthop Surg 2024; 16:2803-2820. [PMID: 39238187 PMCID: PMC11541141 DOI: 10.1111/os.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Osteoporosis is a severe bone disease with a complex pathogenesis involving various immune processes. With the in-depth understanding of bone immune mechanisms, discovering new therapeutic targets is crucial for the prevention and treatment of osteoporosis. This study aims to explore novel bone immune markers related to osteoporosis based on single-cell and transcriptome data, utilizing bioinformatics and machine learning methods, in order to provide novel strategies for the diagnosis and treatment of the disease. METHODS Single cell and transcriptome data sets were acquired from Gene Expression Omnibus (GEO). The data was then subjected to cell communication analysis, pseudotime analysis, and high dimensional WGCNA (hdWGCNA) analysis to identify key immune cell subpopulations and module genes. Subsequently, ConsensusClusterPlus analysis was performed on the key module genes to identify different diseased subgroups in the osteoporosis (OP) training set samples. The immune characteristics between subgroups were evaluated using Cibersort, EPIC, and MCP counter algorithms. OP's hub genes were screened using 10 machine learning algorithms and 113 algorithm combinations. The relationship between hub genes and immunity and pathways was established by evaluating the immune and pathway scores of the training set samples through the ESTIMATE, MCP-counter, and ssGSEA algorithms. Real-time fluorescence quantitative PCR (RT-qPCR) testing was conducted on serum samples collected from osteoporosis patients and healthy adults. RESULTS In OP samples, the proportions of bone marrow-derived mesenchymal stem cells (BM-MSCs) and neutrophils increased significantly by 6.73% (from 24.01% to 30.74%) and 6.36% (from 26.82% to 33.18%), respectively. We found 16 intersection genes and four hub genes (DND1, HIRA, SH3GLB2, and F7). RT-qPCR results showed reduced expression levels of DND1, HIRA, and SH3GLB2 in clinical blood samples of OP patients. Moreover, the four hub genes showed positive correlations with neutrophils (0.65-0.90), immature B cells (0.76-0.92), and endothelial cells (0.79-0.87), while showing negative correlations with myeloid-derived suppressor cells (negative 0.54-0.73), T follicular helper cells (negative 0.71-0.86), and natural killer T cells (negative 0.75-0.85). CONCLUSION Neutrophils play a crucial role in the occurrence and development of osteoporosis. The four hub genes potentially inhibit metabolic activities and trigger inflammation by interacting with other immune cells, thereby significantly contributing to the onset and diagnosis of OP.
Collapse
Affiliation(s)
- Baoxin Zhang
- Suzhou Medical College of Soochow UniversitySuzhouPeople's Republic of China
- Department of Hepatic HydatidosisQinghai Provincial People's HospitalXiningPeople's Republic of China
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
- Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Zhiwei Pei
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Aixian Tian
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Wanxiong He
- Sanya People's HospitalSanyaPeople's Republic of China
| | - Chao Sun
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | | | - Siqin Li
- Bayannur City HospitalBayannurPeople's Republic of China
| | - Lina Wu
- Aier Eye HospitalTianjin UniversityTianjinPeople's Republic of China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Lina Wu
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Fei Xue
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Xing Wang
- Bayannur City HospitalBayannurPeople's Republic of China
| | - Xinlong Ma
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Feng Zheng
- Suzhou Medical College of Soochow UniversitySuzhouPeople's Republic of China
- Department of Hepatic HydatidosisQinghai Provincial People's HospitalXiningPeople's Republic of China
| |
Collapse
|
16
|
Li Z, Yin S, Zhao G, Cao X. Association between sarcopenic obesity and osteoarthritis: The potential mediating role of insulin resistance. Exp Gerontol 2024; 197:112611. [PMID: 39423937 DOI: 10.1016/j.exger.2024.112611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Sarcopenic obesity (SO) and osteoarthritis (OA) are highly prevalent musculoskeletal conditions that significantly impair health-related quality of life. AIM This study investigated the association between SO and OA, and explored the potential mediating role of insulin resistance in this relationship. We utilized data from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. METHODS This cross-sectional analysis employs NHANES data collected from 1999 to 2018, including participants aged 18 years and older. SO was assessed using dual-energy X-ray absorptiometry (DXA) measurements. Insulin resistance was estimated using the triglyceride-glucose (TyG) index. OA status was based on self-reported physician diagnosis. Statistical analyses included weighted logistic regression, restricted cubic spline (RCS) interaction analysis, mediation analysis using structural equation modeling (SEM), and receiver operating characteristic (ROC) curve analysis. Subgroup analyses were conducted based on age, sex, and diabetes status. RESULTS The sarcopenic obese group demonstrated the highest prevalence of OA (23.4 %), hypertension (47.8 %), and diabetes (12.0 %). Additionally, they exhibited elevated levels of triglycerides, cholesterol, glucose, blood urea nitrogen (BUN), creatinine, and uric acid. Logistic regression revealed significant positive associations between sarcopenic obesity, the TyG index, and OA risk. RCS analysis identified significant non-linear relationships and interactions of the TyG index with age, sex, and diabetes status on OA risk. Mediation analysis indicated that the TyG index mediated approximately 4.9 % of the effect of sarcopenic obesity on OA risk. ROC curve analysis demonstrated moderate diagnostic accuracy for the TyG index (AUC = 0.65), which improved when incorporated into the multivariate model (AUC = 0.78). Subgroup analyses confirmed significant associations between the TyG index and sarcopenic obesity with OA risk across different age, sex, and diabetes status categories. CONCLUSION Our findings suggest a significant correlation between insulin resistance, as measured by the TyG index, and elevated OA risk in individuals with sarcopenic obesity. Targeting insulin resistance through future research may be a promising avenue to lower OA risk in this population.
Collapse
Affiliation(s)
- Zijian Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Shishu Yin
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Gang Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xianglong Cao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
17
|
Jo HG, Baek CY, Lee J, Hwang Y, Baek E, Song A, Song HS, Lee D. Inhibitory Effects of Reynoutria japonica Houtt. on Pain and Cartilage Breakdown in Osteoarthritis Based on Its Multifaceted Anti-Inflammatory Activity: An In Vivo and In Vitro Approach. Int J Mol Sci 2024; 25:10647. [PMID: 39408977 PMCID: PMC11476456 DOI: 10.3390/ijms251910647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
In the past 30 years, the number of years lived with disability due to osteoarthritis (OA) has doubled, making it an increasing global health burden. To address this issue, interventions that inhibit the progressive pathology driven by age-related low-grade inflammation, the primary mechanism of OA, are being actively pursued. Recent investigations have focused on modulating the age-related low-grade inflammatory pathology of this disease as a therapeutic target. However, no agent has successfully halted the disease's progression or reversed its irreversible course. Reynoutria japonica Houtt. (RJ), a promising East Asian herbal medicine, has been utilized for several diseases due to its potent anti-inflammatory activity. This study aims to determine RJ's capacity to inhibit OA symptoms and associated inflammation, exploring its potential for further development. In vivo and in vitro experiments demonstrated RJ's anti-OA activity and modulation of multifaceted inflammatory targets. RJ significantly inhibited pain, gait deterioration, and cartilage destruction in a monosodium iodoacetate-induced OA rat model, with its analgesic effect further confirmed in an acetic acid-induced writhing model. RJ exhibited consistent anti-inflammatory activity against multiple targets in serum and cartilage of the OA rat model and lipopolysaccharide-induced RAW 264.7 cells. The inhibition of inflammatory cytokines, including interleukin-1β, interleukin-6, matrix metalloproteinase-13, tumor necrosis factor-α, and nitric oxide synthase 2, suggests that RJ's alleviation of OA manifestations relates to its multifaceted anti-inflammatory activity. These results indicate that RJ merits further investigation as a disease-modifying drug candidate targeting OA's inflammatory pathology. To further characterize the pharmacological properties of RJ, future studies with expanded designs are warranted.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Juni Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Aejin Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13306, Republic of Korea
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13306, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| |
Collapse
|
18
|
Liu M, Wang J, Han Y, Fu X, Pan Y, Yang C, Sun G. Comprehensive landscapes of the causal network between immunity and sarcopenia. Front Immunol 2024; 15:1443885. [PMID: 39229276 PMCID: PMC11368746 DOI: 10.3389/fimmu.2024.1443885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Inflammaging, an immune status characterized by a sustained increase in pro-inflammatory markers and a decline in anti-inflammatory mechanisms, is a critical risk factor in the development of sarcopenia. Landscapes of the causal relationships between immunity and sarcopenia are needed to understand the mechanism of sarcopenia and provide novel treatments comprehensively. Methods We used Mendelian Randomization (MR) as the basic method in this study. By setting immune proteins, immune cells, and sarcopenia as exposures and outcomes alternatively, and then combining them in different directions, we potentially estimated their causal relationships and directions and subsequently mapped the comprehensive causal landscape based on this information efficiently. To further understand the network, we developed a method based on rank-sums to integrate multiple algorithms and identify the key immune cells and proteins. Results More than 1,000 causal relationships were identified between immune cell phenotypes, proteins, and sarcopenia traits (p < 0.05), and the causal maps of these linkages were established. In the threshold of FDR < 0.05, hundreds of causal linkages were still significant. The final comprehensive map included 13 immune cell phenotypes and 8 immune proteins. The star factors in the final map included EM CD8br %CD8br, EM DN (CD4- CD8-) %DN, SIRT2, and so on. Conclusion By reading the landscapes in this study, we may not only find the factors and the pathways that have been reported and proven but also identify multiple novel immunity cell phenotypes and proteins with enriched upstream and downstream pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Sabatelli S, Scarpa ES, Giuliani A, Giordani C, Sabbatinelli J, Rippo MR, Cabodi S, Petrini B, Balercia G, Giacchetti G. Pro-Osteogenic Effect of the Nutraceutical BlastiMin Complex ® in Women with Osteoporosis or Osteopenia: An Open Intervention Clinical Trial. Int J Mol Sci 2024; 25:8565. [PMID: 39201253 PMCID: PMC11354786 DOI: 10.3390/ijms25168565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Osteoporosis is a chronic disease that affects millions of patients worldwide and is characterized by low bone mineral density (BMD) and increased risk of fractures. Notably, natural molecules can increase BMD and exert pro-osteogenic effects. Noteworthily, the nutraceutical BlastiMin Complex® (Mivell, Italy, European Patent Application EP4205733A1) can induce differentiation of human bone marrow mesenchymal stem cells (BM-MSCs) in osteoblasts and can exert in vitro pro-osteogenic and anti-inflammatory effects. Thus, the purpose of this study was to verify the effects of BlastiMin Complex® on bone turnover markers (BTMs) and BMD in patients with senile and postmenopausal osteopenia or osteoporosis. The efficacy of BlastiMin Complex® on BTMs in serum was evaluated through biochemical assays. BMD values were analyzed by dual-energy X-ray absorptiometry (DXA) and Radiofrequency Echographic Multi Spectrometry (R.E.M.S.) techniques, and the SNPs with a role in osteoporosis development were evaluated by PCR. Clinical data obtained after 12 months of treatment showed an increase in bone turnover index, a decrease in C-reactive protein levels, and a remarkable increase in P1NP levels, indicating the induction of osteoblast proliferation and activity in the cohort of 100% female patients recruited for the study. These findings show that the nutraceutical BlastiMin Complex® could be used as an adjuvant in combination with synthetic drugs for the treatment of osteoporosis pathology.
Collapse
Affiliation(s)
- Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | | | - Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy; (A.G.); (J.S.); (M.R.R.)
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, IRCCS Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), 60126 Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy; (A.G.); (J.S.); (M.R.R.)
- Clinic of Laboratory and Precision Medicine, IRCCS Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), 60126 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy; (A.G.); (J.S.); (M.R.R.)
| | - Sara Cabodi
- R&D Department, Diatech Pharmacogenetics S.r.l., 60035 Jesi, Italy; (S.C.); (B.P.)
| | - Barbara Petrini
- R&D Department, Diatech Pharmacogenetics S.r.l., 60035 Jesi, Italy; (S.C.); (B.P.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
20
|
Jo HG, Baek CY, Lee J, Hwang Y, Baek E, Hwang JH, Lee D. Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study. Nutrients 2024; 16:1035. [PMID: 38613068 PMCID: PMC11013172 DOI: 10.3390/nu16071035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
- Naturalis Inc., 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - JunI Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Hye Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| |
Collapse
|
21
|
Wang Z, Wang W, Zuo B, Lu H. Identification of potential pathogenic genes related to osteoporosis and osteoarthritis. Technol Health Care 2024; 32:4431-4444. [PMID: 39213112 PMCID: PMC11613085 DOI: 10.3233/thc-240574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoarthritis (OA) and osteoporosis (OS) are the most common orthopedic diseases. OBJECTIVE To identify important genes as biomarkers for the pathogenesis of OA and OS. METHODS Microarray data for OA and OS were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the OA and healthy control groups and between the OS and healthy control groups were identified using the Limma software package. Overlapping hub DEGs were selected using MCC, MNC, DEGREE, and EPC. Weighted gene co-expression network analysis (WGCNA) was used to mine OA- and OS-related modules. Shared hub DEGs were identified, human microRNA disease database was used to screen microRNAs associated with OA and OS, and an miRNA-target gene network was constructed. Finally, the expression of shared hub DEGs was evaluated. RESULTS A total of 104 overlapping DEGs were identified in both the OA and OS groups, which were mainly related to inflammatory biological processes, such as the Akt and TNF signaling pathways Forty-six hub DEGs were identified using MCC, MNC, DEGREE, and EPC modules using different algorithms. Seven modules with 392 genes that highly correlated with disease were identified in the WGCNA. Furthermore, 10 shared hub DEGs were identified between the OA and OS groups, including OGN, FAP, COL6A3, THBS4, IGFBP2, LRRC15, DDR2, RND3, EFNB2, and CD48. A network consisting of 8 shared hub DEGs and 55 miRNAs was constructed. Furthermore, CD48 was significantly upregulated in the OA and OS groups, whereas EFNB2, DR2, COL6A3, and RND3 were significantly downregulated in OA and OS. Other hub DEGs were significantly upregulated in OA and downregulated in OS. CONCLUSIONS The ten genes may be promising biomarkers for modulating the development of both OA and OS.
Collapse
Affiliation(s)
| | | | - Bin Zuo
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Lu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|