1
|
Xue X, Zhang Y. Review of the detection of pathogenic Escherichia coli based-microchip technology. ANAL SCI 2025; 41:225-236. [PMID: 39654011 DOI: 10.1007/s44211-024-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/12/2024] [Indexed: 02/18/2025]
Abstract
Escherichia coli (E. coli) is a pathogen that has generated global concern due to the public health challenges it has created. Therefore, the rapid and accurate detection of E. coli is important to public health safety. Microchips have become a popular analytical technique for detecting E. coli due to their automation, high analytical efficiency, and low analyte consumption. Therefore, this paper highlights multiple microchip-based strategies for the detection of E. coli, reviews their limitations, and provides strategies and future perspectives for analyzing E. coli..
Collapse
Affiliation(s)
- Xudong Xue
- Xi'an Innovation College of Yan'an University, Xi'an, 710100, China
| | - Yan Zhang
- Science of Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
2
|
El-Aziz HA, Zeid AM. Label-Free Spectrofluorometric Method for Simultaneous Estimation of Methocarbamol and Aspirin in Biological and Pharmaceutical Matrices: Whiteness and Greenness Evaluation. LUMINESCENCE 2025; 40:e70139. [PMID: 40045695 DOI: 10.1002/bio.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
A combination of methocarbamol and aspirin is commonly used for the treatment of acute musculoskeletal pain, such as low back and neck pain. Simultaneous analysis of these analytes in dosage forms and biofluids using rapid, sensitive, and selective methods would be highly beneficial. Herein, we report the first direct, label-free spectrofluorometric method for simultaneously quantifying methocarbamol (MET) and aspirin (ASP) in coformulated tablets and spiked human urine. The method utilizes excitation at 274 nm with independent emission detection at 300 nm for MET and 402 nm for ASP, using methanol as the diluting solvent. The assay was rectilinear over ranges of 0.10-0.80 μg/mL for MET and 0.05-0.50 μg/mL for ASP with detection limits of 14.9 and 10.6 ng/mL for MET and ASP, respectively. The method was validated in compliance with ICH regulations. The approach was applied efficiently to assay both analytes in their tablets and spiked human urine with high % recoveries (98%-103%) and low RSD (1.7%-3.3%). In addition, the sustainability and practicality of the developed method were assessed using the RGB-12 whiteness algorithm, indicating the whiteness of the developed method. The method's greenness was also confirmed using three greenness metrics that showed excellent eco-friendliness of the developed method.
Collapse
Affiliation(s)
- Heba Abd El-Aziz
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdallah M Zeid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Liu H, Su Q, Duan S, Huang X, Yang X, Liu A, Liu S, Xu C, Lu X. Development of a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of SARS-CoV-2 Spike Protein in a Fluorescence Enzyme Immunoassay. Anal Chem 2024; 96:20519-20525. [PMID: 39699064 DOI: 10.1021/acs.analchem.4c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The continuous spread and evolution of severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) necessitate the development of convenient and rapid detection methods. In this study, we developed a fluorescence enzyme immunoassay (FEIA) based on a nanobody (Nb)-alkaline phosphatase (ALP) fusion protein for detection of SARS-CoV-2 spike protein. The genetically modified anti-SARS-CoV-2 S-RBD Nb, Nb61, gene was fused with the ALP gene sequences via a flexible linker. Recombinant cloning was used to yield a recombinant prokaryotic expression plasmid, Nb61-ALP-His. The Nb61-ALP-His construct was transformed into E. coli BL21(DE3) and expressed in bacteria. Both Nb61 properties and ALP enzymatic activity were validated by colorimetric and fluorometric analysis. FEIA was optimized and established on the basis of the Nb61-ALP fusion protein. The detection limit of the FEIA was 3.18 ng/mL, with a linear range of 1.9-62.5 ng/mL. Comparison with a commercial kit indicated the reliability of the Nb61-ALP fusion-protein-based FEIA for monitoring the SARS-CoV-2 spike protein. This study highlights the potential of Nb-based enzyme immunoassays as a valuable tool for the rapid and accurate detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Heng Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qianling Su
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Otolaryngology Head and Neck Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Siliang Duan
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, China
| | - Xianing Huang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoling Lu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
4
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
5
|
Goldman ER, Sugiharto VA, Shriver-Lake LC, Garcia AM, Wu SJ, Jenkins SA, Chen HW. A single domain antibody-based Luminex assay for the detection of SARS-CoV-2 in clinical samples. Front Immunol 2024; 15:1446095. [PMID: 39192985 PMCID: PMC11347438 DOI: 10.3389/fimmu.2024.1446095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Within the past decade, single domain antibodies (sdAbs) have been recognized as unique affinity binding reagents that can be tailored for performance in a variety of immunoassay formats. Luminex MagPlex color-coded magnetic microspheres provide a high-throughput platform that enables multiplexed immunoassays. We developed a MagPlex bead-based assay for the detection of SARS-CoV-2, using sdAbs against SARS-CoV-2 nucleocapsid (N) protein in which we engineered the sdAb capture reagents to orient them on the beads. The oriented sdAbs provided an increase in sensitivity over randomly oriented sdAbs for samples of N diluted in buffer, which also translated into better detection of SARS-CoV-2 in clinical samples. We assessed the specificity of the assay by examining seasonal coronavirus clinical samples. In summary, we provide a proof-of-concept that a bead-based assay using sdAbs to detect SARS-CoV-2 is feasible and future research combining it with other sdAb-coated beads that can detect other viruses may provide a useful diagnostic tool.
Collapse
Affiliation(s)
- Ellen R. Goldman
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Victor A. Sugiharto
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Lisa C. Shriver-Lake
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Andrew M. Garcia
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Leidos Inc., Reston, VA, United States
| | - Shuenn-Jue Wu
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Sarah A. Jenkins
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Hua-Wei Chen
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| |
Collapse
|
6
|
Zhang S, Ma J, He L, Li Q, He P, Li J, Zhang H. Generation and characterization of nanobodies targeting human pepsinogens. Protein Expr Purif 2024; 216:106431. [PMID: 38184161 DOI: 10.1016/j.pep.2024.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Human pepsinogens (mainly pepsinogen I and pepsinogen II) are the major inactive precursor forms of the digestive enzyme pepsin which play a crucial role in protein digestion. The levels and ratios of human pepsinogens have demonstrated potential as diagnostic biomarkers for gastrointestinal diseases, particularly gastric cancer. Nanobodies are promising tools for the treatment and diagnosis of diseases, owing to their unique recognition properties. In this study, recombinant human pepsinogens proteins were expressed and purified as immunized antigens. We constructed a VHH phage library and identified several nanobodies via phage display bio-panning. We determined the binding potency and cross-reactivity of these nanobodies. Our study provides technical support for developing immunodiagnostic reagents targeting human pepsinogens.
Collapse
Affiliation(s)
- Shenglan Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| | - Jieyao Ma
- School of Pharmaceutical Sciences, Hunan University of Medicine, 418000, Huaihua, China
| | - Liu He
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Qianying Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Pan He
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Jing Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Huicong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| |
Collapse
|
7
|
Fernandez-Martinez D, Kong Y, Goussard S, Zavala A, Gastineau P, Rey M, Ayme G, Chamot-Rooke J, Lafaye P, Vos M, Mechaly A, Duménil G. Cryo-EM structures of type IV pili complexed with nanobodies reveal immune escape mechanisms. Nat Commun 2024; 15:2414. [PMID: 38499587 PMCID: PMC10948894 DOI: 10.1038/s41467-024-46677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.
Collapse
Affiliation(s)
- David Fernandez-Martinez
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Youxin Kong
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403, Vitry-sur-Seine, France
| | - Sylvie Goussard
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Agustin Zavala
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Pauline Gastineau
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Martial Rey
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Gabriel Ayme
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Matthijn Vos
- NanoImaging Core Facility, Center for Technological Resources and Research, Institut Pasteur, 75015, Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Crystallography Platform-C2RT, CNRS-UMR 3528, Université Paris Cité, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
| |
Collapse
|
8
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
9
|
Romanet C, Tamietti C, Mériaux V, Bontems F, Montagutelli X, Lafaye P, Flamand M. Use of Single-Domain Antibodies Against the NSm Protein for the Detection of Cells Infected by Rift Valley Fever Virus. Methods Mol Biol 2024; 2824:147-164. [PMID: 39039412 DOI: 10.1007/978-1-0716-3926-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Single-domain antibodies, referred to as VHH (variable heavy chains of heavy chain-only antibodies) or in their commercial name as nanobodies, are potent tools for the detection of target proteins in biological samples. They have the advantage of being highly stable, specific, and sensitive, with affinities reaching the nanomolar range. We utilized this tool to develop a rapid detection method that discriminates cells infected with Rift Valley fever virus (RVFV), based on the intracellular detection of the viral nonstructural NSm protein localized on the outer membrane of mitochondria. Here we describe how NSm-specific VHHs have been produced, cloned, and characterized, highlighting their value in RVFV research and diagnosis. This work may also raise interest in other potential applications such as antiviral therapy.
Collapse
Affiliation(s)
- Charlotte Romanet
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
| | - Carole Tamietti
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
| | - Véronique Mériaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - Marie Flamand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France.
| |
Collapse
|
10
|
Saunders N, Fernandez I, Planchais C, Michel V, Rajah MM, Baquero Salazar E, Postal J, Porrot F, Guivel-Benhassine F, Blanc C, Chauveau-Le Friec G, Martin A, Grzelak L, Oktavia RM, Meola A, Ahouzi O, Hoover-Watson H, Prot M, Delaune D, Cornelissen M, Deijs M, Meriaux V, Mouquet H, Simon-Lorière E, van der Hoek L, Lafaye P, Rey F, Buchrieser J, Schwartz O. TMPRSS2 is a functional receptor for human coronavirus HKU1. Nature 2023; 624:207-214. [PMID: 37879362 PMCID: PMC11331971 DOI: 10.1038/s41586-023-06761-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.
Collapse
Affiliation(s)
- Nell Saunders
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Ignacio Fernandez
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Vincent Michel
- Pathogenesis of Vascular Infections Unit, Institut Pasteur, INSERM, Paris, France
| | - Maaran Michael Rajah
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Eduard Baquero Salazar
- Nanoimaging core, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Jeanne Postal
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Francoise Porrot
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Catherine Blanc
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Gaëlle Chauveau-Le Friec
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Augustin Martin
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Rischa Maya Oktavia
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Annalisa Meola
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Olivia Ahouzi
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Hunter Hoover-Watson
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
| | - Deborah Delaune
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Marion Cornelissen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Molecular Diagnostic Unit, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Laboratory of Experimental Virology, University of Amsterdam, Amsterdam, The Netherlands
| | - Véronique Meriaux
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
- National Reference Center for viruses of respiratory infections, Institut Pasteur, Paris, France
| | - Lia van der Hoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Laboratory of Experimental Virology, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Lafaye
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Felix Rey
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Julian Buchrieser
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France.
| | - Olivier Schwartz
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France.
- Vaccine Research Institute, Creteil, France.
| |
Collapse
|
11
|
Sun Z, Wang L, Li L, Sun Y, Zhang D, Zhou S, Li Y, Li X, Qiao H, Cui Q, Lan Z, Meng X, Xu J, Geng Y, Dai Y. Structure basis of two nanobodies neutralizing SARS-CoV-2 Omicron variant by targeting ultra-conservative epitopes. J Struct Biol 2023; 215:107996. [PMID: 37419228 DOI: 10.1016/j.jsb.2023.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The evolving SARS-CoV-2 Omicron strain has repeatedly caused widespread disease epidemics, and effective antibody drugs continue to be in short supply. Here, we identified a batch of nanobodies with high affinity for receptor binding domain (RBD) of SARS-CoV-2 spike protein, separated them into three classes using high performance liquid chromatography (HPLC), and then resolved the crystal structure of the ternary complexes of two non-competing nanobodies (NB1C6 and NB1B5) with RBD using X-ray crystallography. The structures showed that NB1B5 and NB1C6 bind to the left and right flank of the RBD, respectively, and that the binding epitopes are highly conserved cryptic sites in all SARS-CoV-2 mutant strains, as well as that NB1B5 can effectively block the ACE2. These two nanobodies were covalently linked into multivalent and bi-paratopic formats, and have a high affinity and neutralization potency for omicron, potentially inhibiting viral escape. The binding sites of these two nanobodies are relatively conserved, which help guide the structural design of antibodies targeting future variants of SARS-CoV-2 to combat COVID-19 epidemics and pandemics.
Collapse
Affiliation(s)
- Zengchao Sun
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lu Wang
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingyun Li
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Siyu Zhou
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Li
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiyang Li
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huarui Qiao
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qianqian Cui
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhongyun Lan
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China.
| | - Jianfeng Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yong Geng
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital of Chinese Academy of Medical Sciences Langfang Campus, Langfang, 065001, China.
| |
Collapse
|
12
|
Feng X, Wang H. Emerging Landscape of Nanobodies and Their Neutralizing Applications against SARS-CoV-2 Virus. ACS Pharmacol Transl Sci 2023; 6:925-942. [PMID: 37470012 PMCID: PMC10275483 DOI: 10.1021/acsptsci.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 07/21/2023]
Abstract
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019 (COVID-19) has significantly altered people's way of life. Despite widespread knowledge of vaccination, mask use, and avoidance of close contact, COVID-19 is still spreading around the world. Numerous research teams are examining the SARS-CoV-2 infection process to discover strategies to identify, prevent, and treat COVID-19 to limit the spread of this chronic coronavirus illness and restore lives to normalcy. Nanobodies have advantages over polyclonal and monoclonal antibodies (Ab) and Ab fragments, including reduced size, high stability, simplicity in manufacture, compatibility with genetic engineering methods, and lack of solubility and aggregation issues. Recent studies have shown that nanobodies that target the SARS-CoV-2 receptor-binding domain and disrupt ACE2 interactions are helpful in the prevention and treatment of SARS-CoV-2-infected animal models, despite the lack of evidence in human patients. The creation and evaluation of nanobodies, as well as their diagnostic and therapeutic applications against COVID-19, are discussed in this paper.
Collapse
Affiliation(s)
- Xuemei Feng
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, United States
| |
Collapse
|
13
|
Ma P, Liu J, Pang S, Zhou W, Yu H, Wang M, Dong T, Wang Y, Wang Q, Liu A. Biopanning of specific peptide for SARS-CoV-2 nucleocapsid protein and enzyme-linked immunosorbent assay-based antigen assay. Anal Chim Acta 2023; 1264:341300. [PMID: 37230729 DOI: 10.1016/j.aca.2023.341300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide which triggered serious public health issues. The search for rapid and accurate diagnosis, effective prevention, and treatment is urgent. The nucleocapsid protein (NP) of SARS-CoV-2 is one of the main structural proteins expressed and most abundant in the virus, and is considered a diagnostic marker for the accurate and sensitive detection of SARS-CoV-2. Herein, we report the screening of specific peptides from the pIII phage library that bind to SARS-CoV-2 NP. The phage monoclone expressing cyclic peptide N1 (peptide sequence, ACGTKPTKFC, with C&C bridged by disulfide bonding) specifically recognizes SARS-CoV-2 NP. Molecular docking studies reveal that the identified peptide is bound to the "pocket" region on the SARS-CoV-2 NP N-terminal domain mainly by forming a hydrogen bonding network and through hydrophobic interaction. Peptide N1 with the C-terminal linker was synthesized as the capture probe for SARS-CoV-2 NP in ELISA. The peptide-based ELISA was capable of assaying SARS-CoV-2 NP at concentrations as low as 61 pg/mL (∼1.2 pM). Furthermore, the as-proposed method could detect the SARS-CoV-2 virus at limits as low as 50 TCID50 (median tissue culture infective dose)/mL. This study demonstrates that selected peptides are powerful biomolecular tools for SARS-CoV-2 detection, providing a new and inexpensive method of rapidly screening infections as well as rapidly diagnosing coronavirus disease 2019 patients.
Collapse
Affiliation(s)
- Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Wenhao Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yanbo Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China.
| |
Collapse
|
14
|
Zhao Y, Yang J, Niu Q, Wang J, Jing M, Guan G, Liu M, Luo J, Yin H, Liu Z. Identification and Characterization of Nanobodies from a Phage Display Library and Their Application in an Immunoassay for the Sensitive Detection of African Swine Fever Virus. J Clin Microbiol 2023; 61:e0119722. [PMID: 37154731 PMCID: PMC10281114 DOI: 10.1128/jcm.01197-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/15/2023] [Indexed: 05/10/2023] Open
Abstract
African swine fever (ASF) is one of the most lethal and devastating diseases of domestic and wild swine. The continual spread and frequent outbreaks of ASF have seriously threatened the pig and pig-related industries, causing great socioeconomic losses at unprecedented proportions. Although ASF has been documented for a century, no effective vaccine or antiviral treatment is currently available. Nanobodies (Nbs) derived from heavy-chain-only antibodies in camelids have been discovered to be effective as therapeutics and robust biosensors in imaging and diagnostic applications. In the present study, a high-quality phage display library containing specific Nbs raised against ASFV proteins was successfully constructed, and 19 nanobodies specific to ASFV p30 were preliminarily identified by phage display technology. After extensive evaluation, nanobodies Nb17 and Nb30 were employed as immunosensors and applied to develop a sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of ASFV in clinical specimens. This immunoassay showed a detection limit of approximately 1.1 ng/mL target protein and 102.5 hemadsorption (HAD50/mL) of ASFV and exhibited high specificity with no cross-reaction with the other porcine viruses tested. The performances of the newly developed assay and a commercial kit in testing 282 clinical swine samples were very similar (93.62% agreement). However, the novel sandwich Nb-ELISA showed higher sensitivity than the commercial kit when serial dilutions of ASFV-positive samples were tested. The present study describes a valuable alternative technique for the detection and surveillance of ASF in endemic regions. Furthermore, additional nanobodies specific to ASFV may be developed using the generated VHH library and employed in different biotechnology fields.
Collapse
Affiliation(s)
- Yaru Zhao
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- China Agricultural VET. BIO, Science and Technology Co., Ltd., Lanzhou, People’s Republic of China
| | - Jifei Yang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Qingli Niu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Jinming Wang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Mengyao Jing
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Guiquan Guan
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Meng Liu
- Animal Husbandry and Veterinary Bureau of Dingxi City, Dingxi, Gansu, People’s Republic of China
| | - Jianxun Luo
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Hong Yin
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhijie Liu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
15
|
Li Q, Nemecz Á, Aymé G, Dejean de la Bâtie G, Prevost MS, Pons S, Barilone N, Baachaoui R, Maskos U, Lafaye P, Corringer PJ. Generation of nanobodies acting as silent and positive allosteric modulators of the α7 nicotinic acetylcholine receptor. Cell Mol Life Sci 2023; 80:164. [PMID: 37231269 DOI: 10.1007/s00018-023-04779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 05/27/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR), a potential drug target for treating cognitive disorders, mediates communication between neuronal and non-neuronal cells. Although many competitive antagonists, agonists, and partial-agonists have been found and synthesized, they have not led to effective therapeutic treatments. In this context, small molecules acting as positive allosteric modulators binding outside the orthosteric, acetylcholine, site have attracted considerable interest. Two single-domain antibody fragments, C4 and E3, against the extracellular domain of the human α7-nAChR were generated through alpaca immunization with cells expressing a human α7-nAChR/mouse 5-HT3A chimera, and are herein described. They bind to the α7-nAChR but not to the other major nAChR subtypes, α4β2 and α3β4. E3 acts as a slowly associating positive allosteric modulator, strongly potentiating the acetylcholine-elicited currents, while not precluding the desensitization of the receptor. An E3-E3 bivalent construct shows similar potentiating properties but displays very slow dissociation kinetics conferring quasi-irreversible properties. Whereas, C4 does not alter the receptor function, but fully inhibits the E3-evoked potentiation, showing it is a silent allosteric modulator competing with E3 binding. Both nanobodies do not compete with α-bungarotoxin, localizing at an allosteric extracellular binding site away from the orthosteric site. The functional differences of each nanobody, as well as the alteration of functional properties through nanobody modifications indicate the importance of this extracellular site. The nanobodies will be useful for pharmacological and structural investigations; moreover, they, along with the extracellular site, have a direct potential for clinical applications.
Collapse
Affiliation(s)
- Qimeng Li
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
- Lanzhou Institute of Biological Product Co., Lanzhou, China
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Ákos Nemecz
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France.
| | - Gabriel Aymé
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France.
| | | | - Marie S Prevost
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit, Paris, France
| | - Nathalie Barilone
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Rayen Baachaoui
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France.
| |
Collapse
|
16
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
17
|
Wang W, Hu Y, Li B, Wang H, Shen J. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. Biochem Pharmacol 2023; 208:115401. [PMID: 36592707 PMCID: PMC9801699 DOI: 10.1016/j.bcp.2022.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China,Corresponding author
| | - Yue Hu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Bohan Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Zhumadian, Henan 463000, PR China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| |
Collapse
|
18
|
Zeid AM, Abdussalam A, Hanif S, Anjum S, Lou B, Xu G. Recent advances in microchip electrophoresis for analysis of pathogenic bacteria and viruses. Electrophoresis 2023; 44:15-34. [PMID: 35689426 DOI: 10.1002/elps.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,College of Natural and Pharmaceutical Sciences, Department of Chemistry, Bayero University, Kano, Nigeria.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab, Pakistan
| | - Saima Anjum
- Department of Chemistry, Govt. Sadiq College Women University, Bahawalpur, Pakistan
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
19
|
Zhou B, Cheng L, Song S, Guo H, Shen S, Wang H, Ge X, Liu L, Ju B, Zhang Z. Identification and application of a pair of noncompeting monoclonal antibodies broadly binding to the nucleocapsid proteins of SARS-CoV-2 variants including Omicron. Virol J 2022; 19:96. [PMID: 35643510 PMCID: PMC9142731 DOI: 10.1186/s12985-022-01827-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractThe SARS-CoV-2 nucleocapsid protein (NP) is an important indicator for the virus infection, highlighting the crucial role of NP-specific monoclonal antibodies (mAbs) used in multiple biochemical assays and clinical diagnosis for detecting the NP antigen. Here, we reported a pair of noncompeting human NP-specific mAbs, named P301-F7 and P301-H5, targeting two distinct linear epitopes on SARS-CoV-2 or SARS-CoV. We evaluated the application of P301-F7 in the analysis of enzyme linked immunosorbent assay, western blot, flow cytometry, immunofluorescence, and focus reduction neutralization test. We for the first time report a broad mAb effectively recognizing various live viruses of SARS-CoV-2 variants including Alpha, Beta, Delta, and Omicron, indicating a wide range of application prospects.
Collapse
|
20
|
Aria H, Mahmoodi F, Ghaheh HS, Faranak Mavandadnejad, Zare H, Heiat M, Bakherad H. Outlook of therapeutic and diagnostic competency of nanobodies against SARS-CoV-2: A systematic review. Anal Biochem 2022; 640:114546. [PMID: 34995616 PMCID: PMC8730734 DOI: 10.1016/j.ab.2022.114546] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE The newly emerged coronavirus (SARS-CoV-2) continues to infect humans, and no completely efficient treatment has yet been found. Antibody therapy is one way to control infection caused by COVID-19, but the use of classical antibodies has many disadvantages. Heavy chain antibodies (HCAbs) are single-domain antibodies derived from the Camelidae family. The variable part of these antibodies (Nanobodies or VHH) has interesting properties such as small size, identify criptic epitopes, stability in harsh conditions, good tissue permeability and cost-effective production causing nanobodies have become a good candidate in the treatment and diagnosis of viral infections. METHODS Totally 157 records (up to November 10, 2021), were recognized to be reviewed in this study. 62 studies were removed after first step screening due to their deviation from inclusion criteria. The remaining 95 studies were reviewed in details. After removing articles that were not in the study area, 45 remaining studies met the inclusion criteria and were qualified to be included in the systematic review. RESULTS In this systematic review, the application of nanobodies in the treatment and detection of COVID-19 infection was reviewed. The results of this study showed that extensive and sufficient studies have been performed in the field of production of nanobodies against SARS-CoV-2 virus and the obtained nanobodies have a great potential for use in patients infected with SARS-CoV-2 virus. CONCLUSION According to the obtained results, it was found that nanobodies can be used effectively in the treatment and diagnosis of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mahmoodi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Hooria Seyedhosseini Ghaheh
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faranak Mavandadnejad
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|