1
|
Guoyun J, Yuefeng Q, Zhenglan H, Zuowei Y, Hongyan Z, Ying Y, Wenli F. CAR-macrophages targets CD26 to eliminate chronic myeloid leukemia stem cells. Exp Hematol Oncol 2025; 14:14. [PMID: 39948620 PMCID: PMC11823019 DOI: 10.1186/s40164-025-00608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Chronic myeloid leukemia stem cells (CML-LSCs), which exhibit resistance to tyrosine kinase inhibitors (TKIs), are the leading cause of treatment failure and recurrence in chronic myeloid leukemia (CML). This highlights the urgent need for novel therapies aimed at eliminating these CML-LSCs. Chimeric antigen receptor macrophages (CAR-M) not only perform phagocytosis on target cells but also function as antigen-presenting cells, thereby activating the anti-tumor immune response.CD26 (dipeptidyl peptidase 4, DPP IV) is abundantly expressed in CML-LSCs and functions as a tumor-specific antigen (TSA) in CAR-M treatment. The purpose of this study is to evaluate CAR-M's efficacy in targeting CD26-positive CML cells and to develop a novel strategy for CML treatment. METHODS CD26 CAR-M was constructed using mouse-derived macrophage Raw264.7 cells. CD26 was overexpressed in CML cell lines BP210 and BP210-T315I. The targeting phagocytosis of CAR-M was verified using confocal microscopy and flow cytometry. X-ray was used to eliminate the tumorigenicity of CAR-M, and the safety of CAR-M was verified through CCK-8, clone formation assays, and animal experiments. To assess the anti-leukemia ability of CAR-M in the CML mouse model, the survival, peripheral blood white blood cell counts, and CML cell infiltration in the liver, spleen, and bone marrow (BM) were measured. Additionally, CD26 CAR-THP1 was constructed, and its phagocytic ability against CD26-positive cells NCI-H2452 was confirmed by confocal microscopy. RESULTS We successfully constructed CD26 CAR-M and validated its targeted phagocytosis of CD26-positive CML cells both in vitro and in vivo. The data indicate that CAR-M has higher phagocytic efficiency in CD26-positive CML cells than in CD26-negative cells. CAR-M-treated CML mice demonstrated extended survival and reduced CML invasion. In addition, CAR-THP1 demonstrated targeted phagocytosis of NCI-H2452 cells that normally express CD26. CONCLUSION This study demonstrates that CD26 CAR-M effectively targets and phagocytizes CD26-positive CML cells, implying that targeting CD26 with CAR-M could be a viable method for eradicating CML-LSCs. Furthermore, our discoveries illuminate the potential application of CAR-M in treating hematological malignancies.
Collapse
Affiliation(s)
- Jiang Guoyun
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yuefeng
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Huang Zhenglan
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yuan Zuowei
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhou Hongyan
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yuan Ying
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Feng Wenli
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Kol M, Novak AJE, Morstein J, Schröer C, Sokoya T, Mensing S, Korneev SM, Trauner D, Holthuis JCM. Optical control of sphingolipid biosynthesis using photoswitchable sphingosines. J Lipid Res 2025; 66:100724. [PMID: 39672331 PMCID: PMC11782902 DOI: 10.1016/j.jlr.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites, and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis. Photo-isomerization of the azobenzene moiety enables reversible switching between a straight trans- and curved cis-form of the lipid's hydrocarbon tail. Combining in vitro enzyme assays with metabolic labeling studies, we demonstrate that trans-to-cis isomerization of caSphs profoundly stimulates their metabolic conversion by ceramide synthases and downstream sphingomyelin synthases. These light-induced changes in sphingolipid production rates are acute, reversible, and can be implemented with great efficiency in living cells. Our findings establish caSphs as versatile tools for manipulating sphingolipid biosynthesis and function with the spatiotemporal precision of light.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| | | | - Johannes Morstein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Christian Schröer
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Tolulope Sokoya
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Svenja Mensing
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Sergei M Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
3
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Silva-Gomes R, Caldeira I, Fernandes R, Cunha C, Carvalho A. Metabolic regulation of the host-fungus interaction: from biological principles to therapeutic opportunities. J Leukoc Biol 2024; 116:469-486. [PMID: 38498599 DOI: 10.1093/jleuko/qiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Fungal infections present a significant global public health concern, impacting over 1 billion individuals worldwide and resulting in more than 3 million deaths annually. Despite considerable progress in recent years, the management of fungal infections remains challenging. The limited development of novel diagnostic and therapeutic approaches is largely attributed to our incomplete understanding of the pathogenetic mechanisms involved in these diseases. Recent research has highlighted the pivotal role of cellular metabolism in regulating the interaction between fungi and their hosts. In response to fungal infection, immune cells undergo complex metabolic adjustments to meet the energy demands necessary for an effective immune response. A comprehensive understanding of the metabolic circuits governing antifungal immunity, combined with the integration of individual host traits, holds the potential to inform novel medical interventions for fungal infections. This review explores recent insights into the immunometabolic regulation of host-fungal interactions and the infection outcome and discusses how the metabolic repurposing of immune cell function could be exploited in innovative and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caldeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Yang GS, Wagenknecht-Wiesner A, Yin B, Suresh P, London E, Baird BA, Bag N. Lipid-driven interleaflet coupling of plasma membrane order regulates FcεRI signaling in mast cells. Biophys J 2024; 123:2256-2270. [PMID: 37533258 PMCID: PMC11331041 DOI: 10.1016/j.bpj.2023.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.
Collapse
Affiliation(s)
- Gil-Suk Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - Boyu Yin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; Department of Chemistry, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
6
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
8
|
Karyu H, Niki T, Sorimachi Y, Hata S, Shimabukuro-Demoto S, Hirabayashi T, Mukai K, Kasahara K, Takubo K, Goda N, Honke K, Taguchi T, Sorimachi H, Toyama-Sorimachi N. Collaboration between a cis-interacting natural killer cell receptor and membrane sphingolipid is critical for the phagocyte function. Front Immunol 2024; 15:1401294. [PMID: 38720899 PMCID: PMC11076679 DOI: 10.3389/fimmu.2024.1401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.
Collapse
Affiliation(s)
- Hitomi Karyu
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Takahiro Niki
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuriko Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shoji Hata
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kojiro Mukai
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Honke
- Department of Biochemistry and Kochi System Glycobiology Center, Kochi University Medical School, Kochi, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
9
|
Lu X, Song Z, Hao J, Kong X, Yuan W, Shen Y, Zhang C, Yang J, Yu P, Qian Y, Zhang G, Feng H, Wang J, Cai Z, Cai Z. Proton pump inhibitors enhance macropinocytosis-mediated extracellular vesicle endocytosis by inducing membrane v-ATPase assembly. J Extracell Vesicles 2024; 13:e12426. [PMID: 38532609 PMCID: PMC10966248 DOI: 10.1002/jev2.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Besides participating in diverse pathological and physiological processes, extracellular vesicles (EVs) are also excellent drug-delivery vehicles. However, clinical drugs modulating EV levels are still lacking. Here, we show that proton pump inhibitors (PPIs) reduce EVs by enhancing macropinocytosis-mediated EV uptake. PPIs accelerate intestinal cell endocytosis of autocrine immunosuppressive EVs through macropinocytosis, thereby aggravating inflammatory bowel disease. PPI-induced macropinocytosis facilitates the clearance of immunosuppressive EVs from tumour cells, improving antitumor immunity. PPI-induced macropinocytosis also increases doxorubicin and antisense oligonucleotides of microRNA-155 delivery efficiency by EVs, leading to enhanced therapeutic effects of drug-loaded EVs on tumours and acute liver failure. Mechanistically, PPIs reduce cytosolic pH, promote ATP6V1A (v-ATPase subunit) disassembly from the vacuolar membrane and enhance the assembly of plasma membrane v-ATPases, thereby inducing macropinocytosis. Altogether, our results reveal a mechanism for macropinocytic regulation and PPIs as potential modulators of EV levels, thus regulating their functions.
Collapse
Affiliation(s)
- Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Zhengbo Song
- Department of Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Jiayue Hao
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Xianghui Kong
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Weiyi Yuan
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yingying Shen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang, Cancer Center of Zhejiang UniversitySir Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhouZhejiangChina
| | - Chengyan Zhang
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jie Yang
- Department of Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Pengfei Yu
- Department of Abdominal SurgeryZhejiang Cancer HospitalHangzhouChina
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Clinical Research Center for Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang UniversityHangzhouChina
| | - Gensheng Zhang
- Department of Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huajun Feng
- Ecological‐Environment & Health CollegeZhejiang A & F UniversityHangzhouChina
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Zhenzhai Cai
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
10
|
Meiling L, Yiran C, Xiaoli S, Kaihui C, Toshihiko H, Kikuji I, Kazunori M, Hattori S, Fujisaki H, Liu W, Ikejima T. Gelatin but not type I collagen promotes bacteria phagocytosis in PMA-treated U937 human lymphoma cells. Connect Tissue Res 2024; 65:170-185. [PMID: 38526028 DOI: 10.1080/03008207.2024.2330693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Besides comprising scaffolding, extracellular matrix components modulate many biological processes including inflammation and cell differentiation. We previously found precoating cell plates with extracellular matrix collagen I, or its denatured product gelatin, causes aggregation of macrophage-like human lymphoma U937 cells, which are induced to differentiation by phorbol myristate treatment. In the present study, we investigated the influence of gelatin or collagen I precoating on the bacteria phagocytosis in PMA-stimulated U937 cells. MATERIALS AND METHODS Colony forming units of phagocytosed bacteria, Giemsa-staining of cells with phagocytosed bacteria, confocal microscopic and flow cytometric analysis of cells with phagocytosed FITC-labeled bacteria and non-bioactive latex beats were conducted. RESULTS Gelatin precoating enhances the phagocytosis of both Gram-negative and positive bacteria, as shown by the increased colony forming units of bacteria phagocytosed by cells, and increased intracellular bacteria observed after Giemsa-staining. But collagen I has no marked influence. Confocal microscopy reveals that both live and dead FITC-bacteria were phagocytosed more in the cells with gelatin-coating but not collagen-coating. Of note, both gelatin and collagen I coating had no influence on the phagocytosis of non-bioactive latex beads. Since gelatin-coating increases autophagy but collagen I has no such impact, we are curious about the role of autophagy. Inhibiting autophagy reduced the phagocytosis of bacteria, in cells with gelatin-coating, while stimulating autophagy enhanced phagocytosis. CONCLUSION This study finds the bacteria-phagocytosis stimulatory effect of gelatin in PMA-treated U937 cells and reveals the positive regulatory role of autophagy, predicting the potential use of gelatin products in anti-bacterial therapy.
Collapse
Affiliation(s)
- Li Meiling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Chen Yiran
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Sun Xiaoli
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Chen Kaihui
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Hayashi Toshihiko
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Itoh Kikuji
- Biochemical Center, Japan SLC Inc., Shizuoka, Japan
| | - Mizuno Kazunori
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Matos GS, Fernandes CM, Del Poeta M. Role of sphingolipids in the host-pathogen interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159384. [PMID: 37673393 PMCID: PMC11218662 DOI: 10.1016/j.bbalip.2023.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity. Here we discuss some of these properties as well as their role in fungal diseases, focusing on the subgroup of glycosphingolipids, as they represent promising molecules for drug discovery and for the development of fungal vaccines.
Collapse
Affiliation(s)
- Gabriel Soares Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | | | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, USA; Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
12
|
Zhu XM, Li L, Bao JD, Wang JY, Daskalov A, Liu XH, Del Poeta M, Lin FC. The biological functions of sphingolipids in plant pathogenic fungi. PLoS Pathog 2023; 19:e1011733. [PMID: 37943805 PMCID: PMC10635517 DOI: 10.1371/journal.ppat.1011733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
14
|
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains. Biophys J 2023:S0006-3495(23)00135-2. [PMID: 36869591 DOI: 10.1016/j.bpj.2023.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Sphingolipids are a structurally diverse class of lipids predominantly found in the plasma membrane of eukaryotic cells. These lipids can laterally segregate with other rigid lipids and cholesterol into liquid-ordered domains that act as organizing centers within biomembranes. Owing the vital role of sphingolipids for lipid segregation, controlling their lateral organization is of utmost significance. Hence, we made use of the light-induced trans-cis isomerization of azobenzene-modified acyl chains to develop a set of photoswitchable sphingolipids with different headgroups (hydroxyl, galactosyl, phosphocholine) and backbones (sphingosine, phytosphingosine, tetrahydropyran-blocked sphingosine) that are able to shuttle between liquid-ordered and liquid-disordered regions of model membranes upon irradiation with UV-A (λ = 365 nm) and blue (λ = 470 nm) light, respectively. Using combined high-speed atomic force microscopy, fluorescence microscopy, and force spectroscopy, we investigated how these active sphingolipids laterally remodel supported bilayers upon photoisomerization, notably in terms of domain area changes, height mismatch, line tension, and membrane piercing. Hereby, we show that the sphingosine-based (Azo-β-Gal-Cer, Azo-SM, Azo-Cer) and phytosphingosine-based (Azo-α-Gal-PhCer, Azo-PhCer) photoswitchable lipids promote a reduction in liquid-ordered microdomain area when in the UV-adapted cis-isoform. In contrast, azo-sphingolipids having tetrahydropyran groups that block H-bonding at the sphingosine backbone (lipids named Azo-THP-SM, Azo-THP-Cer) induce an increase in the liquid-ordered domain area when in cis, accompanied by a major rise in height mismatch and line tension. These changes were fully reversible upon blue light-triggered isomerization of the various lipids back to trans, pinpointing the role of interfacial interactions for the formation of stable liquid-ordered domains.
Collapse
|
15
|
Allender DW, Schick M. Extent of raft composition in a model plasma membrane. Biophys J 2022:S0006-3495(22)00723-8. [PMID: 36050886 DOI: 10.1016/j.bpj.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
"Rafts" are nanometer-size inhomogeneities in the plasma membrane that, in the outer leaflet, are enriched in sphingomyelin and cholesterol. They are thought to provide a platform for proteins to carry out biological processes (1-4). Here we employ a model asymmetric plasma membrane to address the question of the range of sphingomyelin and cholesterol compositions in which one would expect the formation of rafts. We define a weight for the likelihood of raft formation, and evaluate it as a function of the sphingomyelin mole fraction in the outer leaflet for three bilayers with total cholesterol mole fractions of 0.30, 0.40, and 0.50. Not surprisingly, the weight decreases when there is little sphingomyelin. Less expected, we find that the weight also decreases when there is a large mole fraction of sphingomyelin. The weight is largest in the bilayer with a total cholesterol mole fraction of 0.30, and decreases rapidly with increasing total cholesterol. We explicate the reasons for these behaviors. In the 0.30 cholesterol bilayer, the largest weight occurrs at a sphingomyelin mole fraction in the outer leaflet of approximately 0.23. The weight falls to one half its maximum value at sphingomylin mole fractions of 0.15 and 0.33. In terms of the sphingomyelin mole fraction of the asymmetric bilayer, the maximum weight occurs at 0.12 and falls to half maximum at 0.08 and 0.17.
Collapse
Affiliation(s)
- David W Allender
- Department of Physics, University of Washington, Seattle WA; Department of Physics, Kent State University, Kent OH
| | - Michael Schick
- Department of Physics, University of Washington, Seattle WA
| |
Collapse
|
16
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
17
|
Vaccine protection by Cryptococcus neoformans Δsgl1 is mediated by γδ T cells via TLR2 signaling. Mucosal Immunol 2022; 15:1416-1430. [PMID: 36229573 PMCID: PMC9705245 DOI: 10.1038/s41385-022-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 02/04/2023]
Abstract
We previously reported that administration of Cryptococcus neoformans Δsgl1 mutant vaccine, accumulating sterylglucosides (SGs) and having normal capsule (GXM), protects mice from a subsequent infection even during CD4+ T cells deficiency, a condition commonly associated with cryptococcosis. Here, we studied the immune mechanism that confers host protection during CD4+T deficiency. Mice receiving Δsgl1 vaccine produce IFNγ and IL-17A during CD4+ T (or CD8+ T) deficiency, and protection was lost when either cytokine was neutralized. IFNγ and/or IL-17A are produced by γδ T cells, and mice lacking these cells are no longer protected. Interestingly, ex vivo γδ T cells are highly stimulated in producing IFNγ and/or IL-17A by Δsgl1 vaccine, but this production was significantly decreased when cells were incubated with C. neoformans Δcap59/Δsgl1 mutant, accumulating SGs but lacking GXM. GXM modulates toll-like receptors (TLRs), including TLR2. Importantly, neither Δsgl1 nor Δcap59/Δsgl1 stimulate IFNγ or IL-17A production by ex vivo γδ T cells from TLR2-/- mice. Finally, TLR2-/- animals do not produce IL-17A in response to Δsgl1 vaccine and were no longer protected from WT challenge. Our results suggest that SGs may act as adjuvants for GXM to stimulate γδ T cells in producing IFNγ and IL-17A via TLR2, a mechanism that is still preserved upon CD4+ T deficiency.
Collapse
|