1
|
Ding Q, Rha H, Yoon C, Kim Y, Hong SJ, Kim HJ, Li Y, Lee MH, Kim JS. Regulated cell death mechanisms in mitochondria-targeted phototherapy. J Control Release 2025; 382:113720. [PMID: 40228665 DOI: 10.1016/j.jconrel.2025.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Phototherapy, comprising photodynamic therapy (PDT) and photothermal therapy (PTT), was first introduced over a century ago and has since evolved into a versatile cancer treatment modality. While numerous studies have explored regulated cell death (RCD) mechanisms induced by phototherapy, a comprehensive synthesis centered on mitochondria-targeted phototherapeutic strategies and agents as mediators of RCD is still lacking. This review provides a systematic and in-depth analysis of recent advances in mitochondria-centered mechanisms driving phototherapy-induced death pathways, including apoptosis, autophagy, pyroptosis, immunogenic cell death, ferroptosis, and cuproptosis. We highlight the critical role of mitochondria as central regulators of these death pathways in response to phototherapeutic interventions. Moreover, we discuss fundamental design strategies for developing precision-targeted phototherapeutic materials to enhance efficacy and minimize off-target effects. Finally, we identify prevailing challenges and propose future research directions to address these hurdles, paving the way for next-generation mitochondria-targeted phototherapy as a highly effective strategy for cancer management.
Collapse
Affiliation(s)
- Qihang Ding
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Changyu Yoon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - So Jin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hui Ju Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yang Li
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Min Hee Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Liang C, Liu Y, Xi T, Liu J, Ge S, Zhang X, Jia Z, Ye N. Dual impacts of elevated pCO 2 on the ecological effects induced by microplastics and nanoplastics: A study with Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107358. [PMID: 40220510 DOI: 10.1016/j.aquatox.2025.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Aquatic organisms face increased complexity and severity when exposed to the combined stressors of climate change and micro- and nanoplastics (MNPs), as opposed to facing these stressors individually. This study examined the effects and underlying mechanisms of elevated pCO2, which leads to freshwater acidification, as well as amino-modified polystyrene MNPs (PS-NH2 MNPs) of varying sizes (5 μm, 300 nm, 80 nm), on Chlamydomonas reinhardtii under both individual and combined conditions. The results showed a size-dependent toxicity of PS MNPs, with the smaller nanoparticles (80 nm) causing greater toxic inhibition than the larger microparticles (5 μm and 300 nm), primarily attributed to oxidative stress-related cellular damage. In contrast, freshwater acidification (FA) appeared to promote the growth of C. reinhardtii, possibly by upregulating transcripts associated with energy metabolism. However, when C. reinhardtii was exposed to both FA and MNPs simultaneously, distinct toxic effects were observed. The co-exposure to FA and NPs induced the most severe oxidative stress, implying the greatest energetic cost. This stress resulted in the downregulation of pathways involved in fatty acid biosynthesis and protein folding, ultimately causing significant damage to cellular structure and function. The increased energy from the upregulation of the TCA cycle was mainly allocated for DNA damage repair and cell division, which induced an energy deficit necessary for stress resistance. In contrast, during co-exposure to FA and MPs, energy was redirected towards DNA replication and the synthesis of anti-stress substances, facilitating recovery and promoting growth. Our study highlighted the decisive influence of climate change and particle size in assessing the ecological effects and risks associated with MNPs.
Collapse
Affiliation(s)
- Chengwei Liang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Key Laboratory of Intelligent Marine Ranch (under preparation), Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yajing Liu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianle Xi
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia Liu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shanshan Ge
- Shandong Key Laboratory of Intelligent Marine Ranch (under preparation), Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Center, Qingdao 266071, China
| | - Zhihua Jia
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Center, Qingdao 266071, China.
| |
Collapse
|
3
|
Fink EE, Zhang Y, Santo B, Siddavatam A, Ou R, Nanavaty V, Lee BH, Ting AH. Heat shock induces alternative polyadenylation through dynamic DNA methylation and chromatin looping. Cell Stress Chaperones 2025:100084. [PMID: 40412548 DOI: 10.1016/j.cstres.2025.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/18/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
Alternative cleavage and polyadenylation (APA) is a gene regulatory mechanism used by cells under stress to upregulate proteostasis-promoting transcripts, but how cells achieve this remains poorly understood. Previously, we elucidated a DNA methylation-regulated APA mechanism, in which gene body DNA methylation enhances distal poly(A) isoform expression by blocking CTCF binding and chromatin loop formation at APA control regions. We hypothesized that DNA methylation-regulated APA is one mechanism cells employ to induce proteostasis-promoting poly(A) isoforms. At the DNAJB6 co-chaperone locus, acute heat shock resulted in binding of stress response transcription factors HSF1, ATF6, and YY1 at the APA control region and an increase in the expression of the proximal poly(A) isoform known to prevent protein aggregation. Furthermore, TET1 was recruited to rapidly demethylate DNA, facilitating CTCF binding and chromatin loop formation, thereby reinforcing preferential proximal poly(A) isoform expression. As cells recovered, the transcription factors vacated the APA control region, and DNMT1 was recruited to remethylate the region. This process resolved chromatin looping and reset the poly(A) isoform expression pattern. Our findings unveil an epigenetic mechanism enabling cells to dynamically modulate poly(A) isoforms in response to stress while shedding light on the interplay between DNA methylation, transcription factor binding, and chromatin looping.
Collapse
Affiliation(s)
- Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Yi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Briana Santo
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anwita Siddavatam
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosie Ou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vishal Nanavaty
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA; Department of Life Science, Food and Nutrition Science, Gujarat University, Ahmedabad, Gujarat, 380009, India; Neuberg Center for Genomic Medicine, Neuberg Supratec Reference Laboratory, Ahmedabad, Gujarat, 380009, India; Sandip Bhavini Research Institute, Ahmedabad, Gujarat, 380009, India
| | - Byron H Lee
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA; Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Tomuro K, Iwasaki S. Advances in ribosome profiling technologies. Biochem Soc Trans 2025:BST20253061. [PMID: 40380882 DOI: 10.1042/bst20253061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
Ribosome profiling (or Ribo-seq) has emerged as a powerful approach for revealing the regulatory mechanisms of protein synthesis, on the basis of deep sequencing of ribosome footprints. Recent innovations in Ribo-seq technologies have significantly enhanced their sensitivity, specificity, and resolution. In this review, we outline emerging Ribo-seq derivatives that overcome barriers in low inputs, rRNA contamination, data calibration, and single-cell applications. These advances enable detailed insights into translational control across diverse biological contexts.
Collapse
Affiliation(s)
- Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, Pioneering Research Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, Pioneering Research Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
5
|
Ghadanian T, Iyer S, Lazzari L, Vera M. Selective Translation Under Heat Shock: Integrating HSP70 mRNA Regulation with Cellular Stress Responses in Yeast and Mammals. Mol Biol Cell 2025; 36:re2. [PMID: 40198146 DOI: 10.1091/mbc.e24-12-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Under stress, cells orchestrate a complex regulatory response to maintain protein homeostasis, leveraging differential translational regulation for constitutively expressed mRNAs and the transcriptionally induced heat shock protein HSP70 transcripts. Constitutive mRNAs typically experience partial translational suppression, consistent with their partitioning into stress-induced phase-separated condensates and the global reduction in protein synthesis. In contrast, inducible HSP70 mRNAs bypass this repression to remain in the cytosol where they recruit the available components of the translational machinery to ensure the rapid synthesis of HSP70. Although the components involved in the preferential translation of HSP70 mRNA during heat stress have not been fully elucidated, differences in the mRNA and translation factors between yeast and mammals suggest organism-specific mechanisms of HSP70 mRNA translation. In this review, we consider these differences to discuss the current knowledge on heat shock regulation of translation. We extend the discussion to go beyond the cytosolic needs of HSP70 to ponder the important interplay between the cytosol and mitochondria in activating HSP70 accumulation, which becomes vital for preserving intercompartmental proteostasis and cell survival.
Collapse
Affiliation(s)
- Talar Ghadanian
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
| | - Shruti Iyer
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
| | - Luca Lazzari
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
6
|
Thota S, Begum R, Mutyala D, Bidarimath N, Thakur M, Sarkar B, Morehouse J, Yang S, Deb PK, Dorsey W, Batra S. Unraveling the Hsp70-ROS-autophagy axis in pentachlorophenol-challenged lung and liver epithelial cells. Arch Toxicol 2025; 99:2039-2062. [PMID: 40189663 DOI: 10.1007/s00204-025-03983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/05/2025] [Indexed: 05/18/2025]
Abstract
Pentachlorophenol (PCP) was extensively utilized as an organochlorine pesticide and wood preservative in the United States from the 1930s until the Environmental Protection Agency (EPA) imposed restrictions due to concerns about its toxicity and potential carcinogenic properties. Although it is no longer widely used, PCP remains a concern due to its environmental persistence and potential for long-term health effects. Significant occupational and environmental exposures have likely occurred, with the health and economic costs of PCP exposure potentially being substantial given its known toxicity. Notably, PCP exhibits rapid absorption through both the skin and respiratory system and has been shown to cause hepatotoxicity, developmental toxicity, immunotoxicity, irritation, and carcinogenicity in laboratory animal studies. PCP exposure induces oxidative stress, a key mechanism underlying its inflammatory and toxic effects, which can activate cellular stress responses including upregulation of heat shock protein 70 (Hsp70). Previous studies in lung and liver epithelial cells have shown that Hsp70 and oxidative stress play pivotal roles in triggering autophagy. This study establishes the critical role of the Hsp70-reactive oxygen species (ROS)-autophagy axis in regulating cellular responses to PCP exposure in human alveolar (A549) and liver carcinoma (HepG2) epithelial cells. Our research elucidated the molecular mechanisms underlying PCP's cellular effects, demonstrating that its exposure resulted in increased expression of autophagy-related proteins (Beclin-1, LC3B, ATG12, and ATG16), subunits of NADPH oxidase (NCF-1, NCF-2, NOX2, and Rac), and antioxidant proteins (SOD and GPx) in both lung and liver cell types. Notably, PCP augmented the interaction between Hsp70 and the autophagy regulator Beclin-1. Pretreatment with the ROS inhibitor N-acetylcysteine or Hsp70 knockdown markedly reversed PCP-induced responses. Our in-silico protein-protein docking analysis and molecular dynamics simulation studies revealed enhanced interactions and/or stable confirmations maintained throughout the simulations for TLR4-Hsp70 and Hsp70-Beclin-1 complexes in the presence of PCP. These findings provide a strong foundation for future studies, employing in vivo experimental models and human populations to identify promising targets for PCP-induced toxicity and cellular injury. Furthermore, these findings may have far-reaching implications for public health and environmental policy, ultimately leading to the identification of biomarkers and the development of more effective interventions for environmentally induced toxicity and diseases.
Collapse
Affiliation(s)
- S Thota
- Department of Environmental Toxicology, Laboratory of Pulmonary Immunotoxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, LA, 70813, USA
| | - R Begum
- Department of Environmental Toxicology, Laboratory of Pulmonary Immunotoxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, LA, 70813, USA
| | - D Mutyala
- Department of Environmental Toxicology, Laboratory of Pulmonary Immunotoxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, LA, 70813, USA
| | - N Bidarimath
- Department of Environmental Toxicology, Laboratory of Pulmonary Immunotoxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, LA, 70813, USA
| | - M Thakur
- Department of Environmental Toxicology, Laboratory of Pulmonary Immunotoxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, LA, 70813, USA
| | - B Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - J Morehouse
- Department of Computer Sciences, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - S Yang
- Department of Computer Sciences, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - P K Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - W Dorsey
- Department of Biological Sciences, Grambling State University, Grambling, LA, USA
| | - S Batra
- Department of Environmental Toxicology, Laboratory of Pulmonary Immunotoxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
7
|
Li S, Li H, Bennewitz K, Poschet G, Buettner M, Hausser I, Szendroedi J, Nawroth PP, Kroll J. Combined loss of glyoxalase 1 and aldehyde dehydrogenase 3a1 amplifies dicarbonyl stress, impairs proteasome activity resulting in hyperglycemia and activated retinal angiogenesis. Metabolism 2025; 165:156149. [PMID: 39892865 DOI: 10.1016/j.metabol.2025.156149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND & AIMS Any energy consumption results in the generation of highly reactive dicarbonyls and the need to prevent excessive dicarbonyls accumulation through the activity of several interdependent detoxification enzymes. Glyoxalase 1 (GLO1) knockout zebrafish showed only moderately elevated methylglyoxal (MG) levels, but increased Aldehyde Dehydrogenases (ALDH) activity and increased aldh3a1 expression. Elevated levels of 4-hydroxynonenal (4-HNE) but no MG increase were observed in ALDH3A1KO. The question of whether ALDH3A1 prevents MG formation as a compensatory mechanism in the absence of GLO1 remained unclear. METHODS To investigate whether ALDH3A1 detoxifies MG as a compensatory mechanism in the absence of GLO1, the GLO1/ALDH3A1 double knockout (DKO) zebrafish was first generated. Various metabolites including advanced glycation end products (AGEs), as well as glucose metabolism and hyaloid vasculature were analyzed in GLO1KO, ALDH3A1KO and GLO1/ALDH3A1DKO zebrafish. RESULTS In the absence of GLO1 and ALDH3A1, MG-H1 levels were increased. MG-H1 accumulation led to a severe deterioration of proteasome function, resulting in impaired glucose homeostasis and consequently amplified angiogenic activation of the hyaloid and retinal vasculature. Rescue of these pathological processes could be observed by using L-carnosine, and proteasome activator betulinic acid. CONCLUSION The present data, together with previous studies, suggest that ALDH3A1 and GLO1 are important detoxification enzymes that prevent the deleterious effects of MG-H1 accumulation on proteasome function, glucose homeostasis and vascular function.
Collapse
Affiliation(s)
- Shu Li
- Department of Vascular Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Hao Li
- German Cancer Research Center (DKFZ), Unit D400, Heidelberg 69120, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Michael Buettner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Peter Paul Nawroth
- Medical Clinic and Polyclinic II, University Hospital Dresden, Dresden 01307, Germany
| | - Jens Kroll
- Department of Vascular Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany.
| |
Collapse
|
8
|
Han J, Tang X, Wang L, Chen H, Liu R, Zhao M. GlSIRT1 deacetylates and activates pyruvate kinase to improve pyruvate content and enhance heat stress resistance in Ganoderma lucidum. Microbiol Res 2025; 293:128055. [PMID: 39808950 DOI: 10.1016/j.micres.2025.128055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Heat stress is a prevalent environmental stressor. Previous studies have shown that heat stress drives many cellular changes in Ganoderma lucidum. Interestingly, glycolysis is activated during heat stress, which could contribute to increased heat resistance. However, the molecular mechanisms underlying the enhanced heat resistance of G. lucidum following heat exposure are not yet fully understood. In this study, we explored the possibility that acetylation modification plays a significant role in responses to abiotic stress. After heat treatment, an enhanced interaction between the deacetylase GlSIRT1 and pyruvate kinase (PK) was observed, and the acetylation level of PK was decreased. Further studies revealed that GlSIRT1 increases PK activity through deacetylation, thereby increasing pyruvate content. Consistent with these findings, both PK activity and pyruvate content were reduced in GlSIRT1 knockdown strains, which exhibited greater sensitivity to heat stress compared to the wild-type (WT) strain. Collectively, our results reveal a novel molecular mechanism by which heat treatment increases pyruvate content.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Xin Tang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Lingshuai Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Huhui Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
9
|
Fang SJ, Shao SC, Ni MQ, Yang YN, Cui ZX. DNA Methylation Patterns Provide Insights into the Epigenetic Regulation of Intersex Formation in the Chinese Mitten Crab ( Eriocheir sinensis). Int J Mol Sci 2025; 26:3224. [PMID: 40244073 PMCID: PMC11989155 DOI: 10.3390/ijms26073224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
DNA methylation is a form of epigenetic regulation that plays an important role in regulating gene expression of organisms. However, the DNA methylation pattern of intersex crabs has not yet been clarified. In order to reveal the DNA methylation in intersex Eriocheir sinensis, this study investigated the genome-wide DNA methylation profiles of female, male, and intersex individuals. The similar results across samples showed that the levels of cytosine methylation in the CG context were significantly higher than that in the CHG and CHH contexts. The methylation levels in the promoter region were higher than those in other functional element regions. We screened 149 differentially methylated genes (DMGs) in the promoter region between female and intersex crabs and 110 DMGs between male and intersex crabs. Three core gene networks were found in a comparison group of female and intersex crabs that involved heat shock proteins, ribosomes, and metabolism pathways; two core gene networks were found in the comparison group of male and intersex crabs that involved ribosomes and metabolism pathways. The six confirmed genes of Hsc70, Hsp90, Rpl18, Acsl1, Yip2, and Rpl7 had lower methylation levels in the promoter region of intersex crabs than that of female and male crabs. However, six genes showed higher expression in intersex crabs than in female and male crabs. Our results reveal that DNA methylation is involved in the formation and maintenance of life activities of intersex crabs through the regulation of gene expression, enriching the DNA methylation library of the whole genome of E. sinensis and providing new insights for a better understanding of the epigenetic regulation of the formation of intersex E. sinensis.
Collapse
Affiliation(s)
- Shu-Jian Fang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shu-Cheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Meng-Qi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Ya-Nan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhao-Xia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
10
|
Solano LE, Keshet U, Reinschmidt A, Chavez Y, Hulsy WD, Fiehn O, Nikolaidis N. Dynamic Lipidome Reorganization in Response to Heat Shock Stress. Int J Mol Sci 2025; 26:2843. [PMID: 40243420 PMCID: PMC11989226 DOI: 10.3390/ijms26072843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The heat shock response (HSR) is a conserved cellular mechanism critical for adaptation to environmental and physiological stressors, with broad implications for cell survival, immune responses, and cancer biology. While the HSR has been extensively studied at the proteomic and transcriptomic levels, the role of lipid metabolism and membrane reorganization remains underexplored. Here, we integrate mass spectrometry-based lipidomics with RNA sequencing to characterize global lipidomic and transcriptomic changes in HeLa cells exposed to three conditions: control, heat shock (HS), and HS with eight hours of recovery. Heat shock-induced extensive lipid remodeling, including significant increases in fatty acids, glycerophospholipids, and sphingolipids, with partial normalization during recovery. Transcriptomic analysis identified over 2700 upregulated and 2300 downregulated genes under heat shock, with GO enrichment suggesting potential transcriptional contributions to lipid metabolism. However, transcriptional changes alone did not fully explain the observed lipidomic shifts, suggesting additional layers of regulation. Joint pathway analysis revealed enrichment in glycerophospholipid and sphingolipid metabolism, while network analysis identified lipid transport regulators (STAB2, APOB), stress-linked metabolic nodes (KNG1), and persistent sphingolipid enrichment during recovery. These findings provide a comprehensive framework for understanding lipid-mediated mechanisms of the HSR and highlight the importance of multi-omics integration in stress adaptation and disease biology.
Collapse
Affiliation(s)
- Luis E. Solano
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (L.E.S.); (A.R.); (Y.C.); (W.D.H.)
| | - Uri Keshet
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (U.K.); (O.F.)
| | - Andrew Reinschmidt
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (L.E.S.); (A.R.); (Y.C.); (W.D.H.)
| | - Yonny Chavez
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (L.E.S.); (A.R.); (Y.C.); (W.D.H.)
| | - William Drew Hulsy
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (L.E.S.); (A.R.); (Y.C.); (W.D.H.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (U.K.); (O.F.)
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (L.E.S.); (A.R.); (Y.C.); (W.D.H.)
| |
Collapse
|
11
|
Lacerda JT, David DD, Castrucci AML. The effect of thermal stress on the X-organ/sinus gland proteome of the estuarine blue crab Callinectes sapidus during the intermolt and premolt stages. J Proteomics 2025; 313:105382. [PMID: 39800185 DOI: 10.1016/j.jprot.2025.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Survival of brachyuran crabs is temperature-dependent and thermal stress promotes changes during molting. We aimed to decipher the impact of thermal stresses on the X-organ/sinus gland (XO/SG) complex, a temperature-sensitive neuroendocrine tissue involved in the molting regulation of Callinectes sapidus during the intermolt and premolt phases. We employed a proteogenomic approach using specimens subjected to control (24 °C), cold (19 °C), and heat (29 °C) temperatures. A total of 1463 protein groups with at least two unique peptides were identified and quantified. C. sapidus in the premolt stage exposed to the cold condition exhibited a proteome closely resembling that of the intermolt stage, as evidenced by measurements of circulating ecdysteroid levels. Compared to the intermolt at control temperature, the premolt stage exhibited increased energy metabolism, structural changes in the cuticle mediated by chitin metabolism and glycoproteins, biosynthesis of methyl farnesoate (MF), and elevated tissue levels of molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), indicating lower secretion rates. Heat temperature (29 °C) seems to induce mitochondrial metabolism in the intermolt XO/SG, while cold temperature elicited a delayed molt cycle in the premolt phase, marked by reduced tissue levels of CHH, indicating increased secretion and Y-organ (YO) inhibition, and decreased MF production (reduced YO stimulation). SIGNIFICANCE STATEMENT: Temperature plays a pivotal role in regulating the metabolism, growth, molting, reproduction, and survival of crabs, such as the blue crab (Callinectes sapidus). Despite the blue crab's significance on both economic and ecological realms, there has been a notable lack of molecular information related to this species and therefore a gap in our knowledge of the blue crab's molecular makeup and genetic diversity. This research established a comprehensive proteome landscape to elucidate the molecular and functional changes in the XO/SG complex involved in the molting process of C. sapidus, and how thermal stresses significantly influence biotransformation processes. Utilizing a proteogenomics approach with multi-round homologous database analysis, we have generated a highly accurate protein repertoire with at least two unique peptide of XO/SG tissue proteome. This resource will be invaluable for future molecular analyses of this species. Our findings demonstrate that thermal stresses induced specific modifications in the XO/SG tissue, depending on the molt cycle phase. Temperature-mediated responses influences the biological processes, enhancing the functional morphogenesis and comprehensive metabolic adaptations on molting cycle supported by a relationship between the XO/SG tissue proteome and circulating ecdysteroid levels.
Collapse
Affiliation(s)
- José Thalles Lacerda
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | - Daniela Dantas David
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria L Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA
| |
Collapse
|
12
|
Verma N, Chouhan D, Meghana A, Tiwari V. Heat shock proteins in chronic pain: From molecular chaperones to pain modulators. Neuropharmacology 2025; 266:110263. [PMID: 39667433 DOI: 10.1016/j.neuropharm.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Chronic pain is the most prevalent and complex clinical disorder,affecting approximately 30% of people globally. Various intricate alterations in nociceptive pathways responsible for chronic pain are linked to long-term tissue damage or injury to the peripheral or central nervous systems. These include remolding in the phenotype of cells and fluctuations in the expression of proteins such as ion channels, neurotransmitters, and receptors. Heat shock proteins are important molecular chaperone proteins in cell responses to stress, including inflammation, neurodegeneration, and pain signaling. They play a key role in activating glial and endothelial cells and in the production of inflammatory mediators and excitatory amino acids in both peripheral and central nervous systems. In particular, they contribute to central sensitization and hyperactivation within the dorsal horn of the spinal cord. The expression of some HSPs plays a remarkable role in upregulating pain response by acting as scavengers of ROS, controlling inflammatory cytokines. Different HSPs act by different mechanisms and several important pathways have been implicated in targeting HSPs for the treatment of neuropathic pain including p38-mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases (ERKs), brain-derived neurotrophic factors (BDNF). We summarize the role of HSPs in various preclinical and clinical studies and the crosstalk of HSPs with various nociceptors and other pain models. We also highlighted some artificial intelligence tools and machine learning-assisted drug discovery methods for rapid screening of HSPs in various diseases. Focusing on HSPs could lead to the development of new therapeutics that modulate pain responses and enhance our understanding of pain in various pathological conditions and neurological disorders.
Collapse
Affiliation(s)
- Nivedita Verma
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Allani Meghana
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
13
|
Osorio OA, Kluender CE, Raphael HE, Hassan GF, Cohen LS, Steinberg D, Katz-Kiriakos E, Payne MD, Luo EM, Hicks JL, Byers DE, Alexander-Brett J. HSP70 chaperones IL-33 in chronic airway disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635799. [PMID: 39974890 PMCID: PMC11838530 DOI: 10.1101/2025.01.30.635799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
RATIONALE IL-33 is a key driver of type 2 inflammation relevant to airway epithelial biology. However, the mechanisms for IL-33 secretion and regulation in the context of chronic airway disease is poorly understood. OBJECTIVES We sought to define how a disease associated isoform IL-33d34 that escapes nuclear sequestration and is tonically secreted from epithelial cells can be recruited to non-canonical secretory pathways. METHODS IL-33d34 interaction with HSP70 was assessed and validated by affinity purification, mass-spectrometry and miniTurboID proximity labeling. Secretion and activity reporter assays were used to probe the effect of HSP70 on epithelial IL-33d34 secretion and receptor binding. Human airway disease biospecimens were analyzed for dysregulation of heat shock pathways revealing modulation of TCP1 complex intermediates. MEASUREMENTS AND MAIN RESULTS We confirmed that HSP70 interacts directly with IL-33d34, recruits the cytokine to a vesicular compartment and enhances stability upon secretion. IL-33, HSP70 and other key mediators of proteostasis were found to be dysregulated in airway disease biospecimens and secreted extracellular vesicles. The IL-33d34 interactome was characterized and novel secretion modulators were identified. CONCLUSIONS This study confirms a role for HSP70 in non-canonical IL-33d34 secretion and function that may be amenable for therapeutic targeting in airway diseases.
Collapse
|
14
|
Xu SM, Liu XZ, Wang L, Huang WH, Hu YT, Chen SB, Huang ZS, Huang SL. Synergistic anticancer activity of HSP70 and HSF1 inhibitors in colorectal cancer cells: A new strategy for combination therapy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167630. [PMID: 39675530 DOI: 10.1016/j.bbadis.2024.167630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND The heat shock response (HSR) is a highly conserved mechanism that maintains intracellular homeostasis in response to various environmental and physiological stresses. Heat shock proteins (HSPs), particularly HSP70, play a pivotal role in this process as molecular chaperones. Although HSP70 inhibitors have demonstrated anti-cancer activity, their therapeutic potential has been limited by the negative feedback mechanism between HSP70 and heat shock factor 1 (HSF1). The combination of HSP70 inhibitors with HSF1 inhibitors has been proposed to overcome this limitation and enhance anti-cancer effects. METHODS We combined HSP70 inhibitors (VER-155008 and YK-5) with an HSF1 inhibitor (DTHIB) in CRC cells and evaluated their effects on cell survival, apoptosis, and protein homeostasis. RESULTS Strong synergistic effects were observed (combination index <0.5, ZIP score > 10) with the combination treatment, leading to decreased cell survival and increased apoptosis in CRC cells. Mechanistic studies revealed that HSP70 inhibitors activated the phosphorylation of HSF1, inducing HSP70 expression, and that the combination therapy resulted in more pronounced HSR inhibition and protein homeostasis disturbances. CONCLUSION The combination therapy of HSP 70 and HSF 1 inhibitors showed significant synergistic antitumor activity. GENERAL SIGNIFICANCE Combining HSP70 and HSF1 inhibitors may be a promising anti-cancer strategy, offering a potential solution to overcome the negative feedback mechanism and enhance anti-cancer effects.
Collapse
Affiliation(s)
- Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing-Zi Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Hao Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Solano L, Keshet U, Reinschmidt A, Chavez Y, Hulsy WD, Fiehn O, Nikolaidis N. Dynamic Lipidome Reorganization in Response to Heat Shock Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638884. [PMID: 40027697 PMCID: PMC11870493 DOI: 10.1101/2025.02.18.638884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The heat shock response (HSR) is a conserved cellular mechanism critical for adaptation to environmental and physiological stressors, with broad implications for cell survival, immune responses, and cancer biology. While the HSR has been extensively studied at the proteomic and transcriptomic levels, the role of lipid metabolism and membrane reorganization remains underexplored. Here, we integrate mass spectrometry-based lipidomics with RNA sequencing to characterize global lipidomic and transcriptomic changes in HeLa cells exposed to three conditions: control, heat shock (HS), and HS with eight hours of recovery. Heat shock-induced extensive lipid remodeling, including significant increases in fatty acids, glycerophospholipids, and sphingolipids, with partial normalization during recovery. Transcriptomic analysis identified over 2,700 upregulated and 2,300 downregulated genes under heat shock, with GO enrichment suggesting potential transcriptional contributions to lipid metabolism. However, transcriptional changes alone did not fully explain the observed lipidomic shifts, suggesting additional layers of regulation. Joint pathway analysis revealed enrichment in glycerophospholipid and sphingolipid metabolism, while network analysis identified lipid transport regulators (STAB2, APOB), stress-linked metabolic nodes (KNG1), and persistent sphingolipid enrichment during recovery. These findings provide a comprehensive framework for understanding lipid-mediated mechanisms of the HSR and highlight the importance of multi-omics integration in stress adaptation and disease biology.
Collapse
Affiliation(s)
- Luis Solano
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Uri Keshet
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Andrew Reinschmidt
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Yonny Chavez
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - William Drew Hulsy
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
16
|
Arce A, Altman R, Badolian A, Low J, Cuaresma AB, Keshet U, Fiehn O, Stahelin RV, Nikolaidis N. Heat Shock-Induced PI(4)P Increase Drives HSPA1A Translocation to the Plasma Membrane in Cancer and Stressed Cells through PI4KIII Alpha Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638537. [PMID: 40027828 PMCID: PMC11870583 DOI: 10.1101/2025.02.16.638537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
HSPA1A, a major heat shock protein, is known to translocate to the plasma membrane (PM) in response to cellular stress and cancer, where it plays protective roles in membrane integrity and stress resistance. Although phosphatidylinositol 4-phosphate [PI(4)P] is essential in this translocation, the signals that trigger and facilitate HSPA1A's movement remain undefined.Given that membrane lipid composition dynamically shifts during stress, we hypothesized that heat shock-induced PI(4)P changes are crucial for HSPA1A's PM localization. To test this hypothesis, we investigated the mechanisms driving PI(4)P changes and HSPA1A PM localization under heat shock. Lipidomic analysis, enzyme-linked immunosorbent assay (ELISA), and confocal imaging revealed a rapid PI(4)P increase at the PM post-heat shock, with levels peaking at 0 hours and declining by 8 hours. RNA sequencing and protein quantification indicated no transcriptional increase in PI4KIII alpha, the kinase responsible for PI(4)P synthesis, suggesting an alternative regulatory mechanism. Hypothesizing that heat shock enhances PI4KIII alpha activity, we performed ELISA coupled with immunoprecipitation, confirming a significant rise in PI4KIII alpha activity following heat shock. Functional analyses further demonstrated that RNAi-mediated PI4KIII alpha depletion or pharmacological PI(4)P reduction, using GSK-A1, impairs HSPA1A's localization to the PM, confirming that HSPA1A translocation is PI(4)P-dependent. Our findings identify PI4KIII alpha activity as a key regulator of PI(4)P accumulation and subsequent HSPA1A recruitment to the PM in stressed and cancer cells. This lipid-mediated response offers new insights into stress adaptation and potentially modifiable pathways for therapeutic interventions to control HSPA1A function in cancer.
Collapse
Affiliation(s)
- Alberto Arce
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Rachel Altman
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Allen Badolian
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Jensen Low
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Azalea Blythe Cuaresma
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Uri Keshet
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Cancer Research, Purdue University, 47907, West Lafayette, IN, USA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
17
|
Bravo-Jimenez MA, Sharma S, Karimi-Abdolrezaee S. The integrated stress response in neurodegenerative diseases. Mol Neurodegener 2025; 20:20. [PMID: 39972469 PMCID: PMC11837473 DOI: 10.1186/s13024-025-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
The integrated stress response (ISR) is a conserved network in eukaryotic cells that mediates adaptive responses to diverse stressors. The ISR pathway ensures cell survival and homeostasis by regulating protein synthesis in response to internal or external stresses. In recent years, the ISR has emerged as an important regulator of the central nervous system (CNS) development, homeostasis and pathology. Dysregulation of ISR signaling has been linked to several neurodegenerative diseases. Intriguingly, while acute ISR provide neuroprotection through the activation of cell survival mechanisms, prolonged ISR can promote neurodegeneration through protein misfolding, oxidative stress, and mitochondrial dysfunction. Understanding the molecular mechanisms and dynamics of the ISR in neurodegenerative diseases aids in the development of effective therapies. Here, we will provide a timely review on the cellular and molecular mechanisms of the ISR in neurodegenerative diseases. We will highlight the current knowledge on the dual role that ISR plays as a protective or disease worsening pathway and will discuss recent advances on the therapeutic approaches that have been developed to target ISR activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Astrid Bravo-Jimenez
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Shivangi Sharma
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
18
|
Tapken I, Schweitzer T, Paganin M, Schüning T, Detering NT, Sharma G, Niesert M, Saffari A, Kuhn D, Glynn A, Cieri F, Santonicola P, Cannet C, Gerstner F, Faller KME, Huang YT, Kothary R, Gillingwater TH, Di Schiavi E, Simon CM, Hensel N, Ziegler A, Viero G, Pich A, Claus P. The systemic complexity of a monogenic disease: the molecular network of spinal muscular atrophy. Brain 2025; 148:580-596. [PMID: 39183150 DOI: 10.1093/brain/awae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal muscular atrophy (SMA) is one such monogenic model, caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow the identification of crucial disease-driving molecules. Here, we analysed the systemic characteristics of SMA, using proteomics, phosphoproteomics, translatomics and interactomics, from two mouse models with different disease severities and genetics. This systems approach revealed subnetworks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes, creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.
Collapse
Affiliation(s)
- Ines Tapken
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Theresa Schweitzer
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | | | - Tobias Schüning
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Nora T Detering
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Gaurav Sharma
- CNR Unit, Institute of Biophysics, Trento 38123, Italy
| | - Moritz Niesert
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Afshin Saffari
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Daniela Kuhn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover 30625, Germany
| | - Amy Glynn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Federica Cieri
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
- Department of Biology, University of Naples Federico II, Naples 80131, Italy
| | - Pamela Santonicola
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | | | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Rashmi Kothary
- Faculty of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Elia Di Schiavi
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Niko Hensel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Andreas Ziegler
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | | | - Andreas Pich
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
19
|
Azaharuddin M, Dasgupta R, Das A, Nandi S, Pal A, Chakrabarty S, Bandopadhyay P, Ghosh S, Nandy S, Sett U, Basu T. Two new oligomers of E. coli small heat-shock protein IbpB identified under heat stress exhibit maximum holding chaperone activity. FEBS Lett 2025; 599:400-414. [PMID: 39284787 DOI: 10.1002/1873-3468.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 02/11/2025]
Abstract
Escherichia coli small heat-shock protein IbpB (MW: 16 KDa) has holding chaperone activity and is present in cells at 30 °C as two large oligomers of MW 2.0-3.0 MDa and 600-700 KDa. We report here about the presence of two additional oligomers of MW around 400 and 130 KDa in cells under heat-stress at 50 °C. These two smaller oligomers possess the most chaperone activity, as observed from the extent of inhibition of inactivation and aggregation separately, of L-Lactate dehydrogenase in the presence of the individual oligomers at 52 and 60 °C, respectively. It is suggested here that the two larger oligomers act as poorly active storage forms, which under heat stress dissociate partially into smaller oligomers with high holdase activity.
Collapse
Affiliation(s)
- Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Rakhi Dasgupta
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | | | | | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, India
| |
Collapse
|
20
|
Amissah HA, Antwi MH, Amissah TA, Combs SE, Shevtsov M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025; 14:204. [PMID: 39936995 PMCID: PMC11817126 DOI: 10.3390/cells14030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The epichaperome, a dynamic and integrated network of chaperone proteins, extends its roles beyond basic protein folding to protein stabilization and intracellular signal transduction to orchestrating a multitude of cellular processes critical for tumor survival. In this review, we explore the multifaceted roles of the epichaperome, delving into its diverse cellular locations, factors that modulate its formation and function, its liquid-liquid phase separation, and the key signaling and crosstalk pathways it regulates, including cellular metabolism and intracellular signal transduction. We further highlight techniques for isolating and identifying epichaperome networks, pitfalls, and opportunities. Further, we review the profound implications of the epichaperome for cancer treatment and therapy design, underscoring the need for strategic engineering that hinges on a comprehensive insight into the comprehensive structure and workings of the epichaperome across the heterogeneous cell subpopulations in the tumor milieu. By presenting a holistic view of the epichaperome's functions and mechanisms, we aim to underscore its potential as a key target for novel anti-cancer strategies, revealing that the epichaperome is not merely a piece of protein folding machinery but a mastermind that facilitates the malignant phenotype.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, Winneba CE-122-2486, Central Region, Ghana
| | - Maxwell Hubert Antwi
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Tawfeek Ahmed Amissah
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Saint Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
21
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Comaduran MF, Verbrugghe M, Xu JMS, Minotti S, Lynch J, Biswas J, Wu T, Durham HD, Yeo GW, Vera M. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. Nat Commun 2024; 15:10796. [PMID: 39737952 PMCID: PMC11685665 DOI: 10.1038/s41467-024-55055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhances HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites is impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured spinal cord mouse motor neurons or by expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Phuong Le
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Suleima Jacob-Tomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Mario Fernandez Comaduran
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | - Sandra Minotti
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - James Lynch
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tad Wu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Heather D Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Zhou L, Zhuo H, Jin J, Pu A, Liu Q, Song J, Tong X, Tang H, Dai F. Temperature perception by ER UPR promotes preventive innate immunity and longevity. Cell Rep 2024; 43:115071. [PMID: 39675004 DOI: 10.1016/j.celrep.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Microbial infectivity increases with rising environmental temperature, heightening the risk of infection to host organisms. The host's basal immunity is activated accordingly to mitigate upcoming pathogenic threats; still, how animals sense temperature elevation to adjust their preventive immune response remains elusive. This study reports that high temperature enhances innate immunity differently from pathogen infection. Unlike pathogen invasion requiring the mitochondrial unfolded protein response (UPR), high temperature engages the endoplasmic reticulum (ER) UPR to trigger the innate immune response. Furthermore, chronic activation of the XBP-1 UPR branch represses nucleolar ribosome biogenesis, a highly energy-consuming process, leading to lipid accumulation. The subsequent increase in oleic acid promotes the activation of the PMK-1 immune pathway. Additionally, ribosome biogenesis was identified as a regulator of longevity, wherein its impact is dependent on lipid metabolism and innate immunity. Collectively, our findings reveal the crucial role of ER-nucleolus crosstalk in shaping preventive immune responses and lifespan regulation.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haoyu Zhuo
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Jin
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Anrui Pu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Guha P, Chini A, Rishi A, Mandal SS. Long noncoding RNAs in ubiquitination, protein degradation, and human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195061. [PMID: 39341591 DOI: 10.1016/j.bbagrm.2024.195061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Protein stability and turnover is critical in normal cellular and physiological process and their misregulation may contribute to accumulation of unwanted proteins causing cellular malfunction, neurodegeneration, mitochondrial malfunction, and disrupted metabolism. Signaling mechanism associated with protein degradation is complex and is extensively studied. Many protein and enzyme machineries have been implicated in regulation of protein degradation. Despite these insights, our understanding of protein degradation mechanisms remains limited. Emerging studies suggest that long non-coding RNAs (lncRNAs) play critical roles in various cellular and physiological processes including metabolism, cellular homeostasis, and protein turnover. LncRNAs, being large nucleic acids (>200 nt long) can interact with various proteins and other nucleic acids and modulate protein structure and function leading to regulation of cell signaling processes. LncRNAs are widely distributed across cell types and may exhibit tissue specific expression. They are detected in body fluids including blood and urine. Their expressions are also altered in various human diseases including cancer, neurological disorders, immune disorder, and others. LncRNAs are being recognized as novel biomarkers and therapeutic targets. This review article focuses on the emerging role of noncoding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), in the regulation of protein polyubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
24
|
Huang Y, Qiu H, Chen Q, Meng Z, Qiao D, Yue X. Exploring Potential Diagnostic Biomarkers for Mechanical Asphyxia in the Heart Based on Proteomics Technology. Int J Mol Sci 2024; 25:12710. [PMID: 39684422 DOI: 10.3390/ijms252312710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Mechanical asphyxia presents a challenging diagnostic issue in forensic medicine due to its often covert nature, and the signs visible during an autopsy are usually not specific. Despite some progress in understanding hypoxia's effects, traditional methods' inherent limitations might overlook new biomarkers in mechanical asphyxia. This study employed 4D-DIA proteomics to explore the protein expression profiles of cardiac samples under conditions of mechanical asphyxia. Proteomic analysis identified 271 and 371 differentially expressed proteins in the strangulation and suffocation groups, respectively, compared to the control group. Seventy-eight differentially expressed proteins were identified across different mechanical asphyxia groups compared to the control group. GO and KEGG analysis showed enrichment in pathways, including complement and coagulation cascades, cAMP and cGMP-PKG signaling pathways, inflammatory mediator regulation of TRP channels, and phagosomes. Through stringent selection based on protein interactions, ALKBH5, NAA10, and CLPB were identified as potential diagnostic biomarkers. ALKBH5 showed increased expression in asphyxia models, while NAA10 and CLPB were downregulated; these biomarker changes were validated in both animal models and human cardiac samples. This study highlights the potential of proteomics in discovering reliable biomarkers, which can enhance the specificity of mechanical asphyxia diagnosis in forensic practice, provide new insights into the pathophysiological mechanisms of mechanical asphyxia, and offer new perspectives for diagnosing mechanical asphyxia.
Collapse
Affiliation(s)
- Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hai Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zilin Meng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
25
|
Huang Y, Chen M, Chen D, Chen H, Xie Z, Dai S. Enhanced HSP70 binding to m 6A-methylated RNAs facilitates cold stress adaptation in mango seedlings. BMC PLANT BIOLOGY 2024; 24:1114. [PMID: 39578738 PMCID: PMC11585147 DOI: 10.1186/s12870-024-05818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Cold stress poses a serious challenge to tropical fruit production, particularly in mango. N6-methyladenosine (m6A) modifications are key regulators of gene expression, enabling plants to respond to stress responses, enhance adaptation and improve resilience to environmental challenges. RESULTS In our study, transcriptome-wide m6A methylation profiling under cold stress identified 6,499 differentially methylated m6A peaks and 2,164 differentially expressed genes (DEGs) in mango seedlings. Among these genes, six exhibited both significant increases in m6A modification levels and gene expression, 21 showed a significant increase in m6A levels but a concurrent downregulation of gene expression, and 26 showed reduced m6A levels but exhibited increased gene expression, highlighting distinct regulatory patterns in m6A-mediated gene expression control. Gene Ontology (GO) enrichment analysis revealed significant involvement in pathways such as potassium ion import, nitrate response, and transcription regulation. Notably, HSP70 was one of the upregulated genes in response to cold stress. RNA immunoprecipitation (RNA-IP) assays confirmed the association of HSP70 with m6A-modified RNAs in vivo, supporting its role in regulating stress-responsive transcripts. Additionally, immunofluorescence analysis demonstrated the formation of HSP70 condensates in plant cells under cold stress, indicating a potential mechanism for localized RNA stabilization. Fluorescence polarization assays demonstrated that HSP70 binds preferentially to m6A-modified RNAs, suggesting its role in forming protective condensates under cold conditions. This interaction between m6A modification and HSP70 points to a potential mechanism that helps stabilize stress-responsive transcripts, contributing to the plant's enhanced cold tolerance. CONCLUSIONS m6A modifications play a vital role in regulating gene expression under cold stress, offering new insights into mango's stress responses and potential breeding strategies for cold tolerance.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong, 518108, China.
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haomin Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhihao Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
26
|
Alekhya C, Tejaswi A, Harika G, Bomma N, Gangashetty PI, Tyagi W, Yogendra K. Identification and evaluation of BAG (B-cell lymphoma-2 associated athanogene) family gene expression in pigeonpea ( Cajanus cajan) under terminal heat stress. Front Genet 2024; 15:1418380. [PMID: 39610829 PMCID: PMC11602463 DOI: 10.3389/fgene.2024.1418380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Heat stress poses a significant environmental challenge, impacting plant growth, diminishing crop production, and reducing overall productivity. Plants employ various mechanisms to confront heat stress, and their ability to survive hinges on their capacity to perceive and activate appropriate physiological and biochemical responses. One such mechanism involves regulating multiple genes and coordinating their expression through different signaling pathways. The BAG (B-cell lymphoma-2 associated athanogene) gene family plays a multifunctional role by interacting with heat shock proteins, serving as co-chaperones, or regulating chaperones during the response to heat stress and development. While numerous studies have explored BAG proteins in model plants, there still remains a knowledge gap concerning crop plants. Methods Our study successfully identified nine BAG genes in pigeonpea through genome-wide scanning. A comprehensive in silico analysis was conducted to ascertain their chromosomal location, sub-cellular localization, and the types of regulatory elements present in the putative promoter region. Additionally, an expression analysis was performed on contrasting genotypes exhibiting varying heat stress responses. Results The results revealed eight CcBAG genes with higher expression levels in the tolerant genotype, whereas BAG6 (Cc_02358) exhibited lower expression. Upstream sequence analysis identified BAG members potentially involved in multiple stresses. Discussion The functional characterization of these BAG genes is essential to unravel their roles in signaling pathways, facilitating the identification of candidate genes for precise breeding interventions to produce heat-resilient pigeonpea.
Collapse
Affiliation(s)
| | | | | | | | | | - Wricha Tyagi
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Kalenahalli Yogendra
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
27
|
Zhang Y, Song L, Xia Y. MaPom1, a Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase, Positively Regulates Thermal and UV-B Tolerance in Metarhizium acridum. Int J Mol Sci 2024; 25:11860. [PMID: 39595934 PMCID: PMC11594272 DOI: 10.3390/ijms252211860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Fungi play irreplaceable roles in the functioning of natural ecosystems, but global warming poses a significant threat to them. However, the mechanisms underlying fungal tolerance to thermal and UV-B stresses remain largely unknown. Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) Pom1 is crucial for fungal growth, conidiation, and virulence. However, its role in stress tolerance within kingdom fungi has not been explored. In this study, we analyzed the function of MaPom1 (a Pom1 homologous gene) in the entomopathogenic fungus Metarhizium acridum and its regulatory roles in stress tolerance. Conidial thermal and UV-B tolerance significantly decreased in the MaPom1 disruption strain (ΔMaPom1), whereas conidial yield and virulence were unaffected. RNA-Seq analysis indicated that the differentially expressed genes (DEGs) were primarily related to amino sugar, nucleotide sugar metabolism, cell wall components, growth and development, and stress response pathways. Under heat shock treatment, the expression levels of heat shock protein genes decreased significantly, leading to reduced thermotolerance. Moreover, under UV-B treatment, MaPom1 expression and the enzyme activity significantly changed, indicating its involvement in regulating UV-B tolerance. The percentage of nuclear damage in ΔMaPom1 under UV-B treatment was higher than that in the wild-type strain (WT) and the complementary strain (CP). Additionally, the transcription levels of DNA damage-related genes significantly decreased, whereas those of several genes involved in the DNA damage repair response increased significantly. Overall, MaPom1 contributed to thermal and UV-B tolerance by regulating the expression of heat shock protein genes and DNA damage repair genes.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Y.Z.); (L.S.)
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Lei Song
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Y.Z.); (L.S.)
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Y.Z.); (L.S.)
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
28
|
Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, Du X. An insight into heat stress response and adaptive mechanism in cotton. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154324. [PMID: 39167998 DOI: 10.1016/j.jplph.2024.154324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.
Collapse
Affiliation(s)
- Washu Dev
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fahmida Sultana
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Waqas
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China
| | - Isah Mansur Aminu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China.
| |
Collapse
|
29
|
Liu Y, Liu S, Wan S, Li Z, Li H, Tang S. Anti-inflammatory properties of Bacillus pumilus TS1 in lipopolysaccharide-induced inflammatory damage in broilers. Anim Biotechnol 2024; 35:2418516. [PMID: 39460459 DOI: 10.1080/10495398.2024.2418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study investigates whether Bacillus pumilus TS1 improves growth performance and alleviates inflammatory damage in broilers and explored its feasibility as an antibiotic alternative. We divided 240 one-day-old AA308 white-finned broilers into five groups (con, LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS). The TS1L + LPS, TS1M + LPS and TS1H + LPS groups were fed TS1 for 15 days by gavage. The LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS groups were injected intraperitoneally with 1 mg/kg LPS for three days. We investigated the probiotic and anti-inflammatory activities by measuring body weight, sequencing the intestinal flora and examining the structure of tissues by using pathological stain, real-time PCR, Western blotting and immunohistochemical detection. TS1 could improve growth performance and intestinal flora composition, also reduced different organ damage and inflammatory cytokine expression in serum and organs. The mechanism may involve upregulating HSP60 and HSP70 expression, targeting and regulating Nrf2 and P38 MAPK and modulating NF-κB and HO-1 expression at the transcriptional level in different organs. B. pumilus TS1 alleviated Inflammatory injury caused by LPS and attenuated the inflammatory response in broilers, and these effects were achieved through MAPK and Nrf2 regulation of HSPs/HO-1 in different organs. The above results suggested broilers fed with TS1 could release the LPS caused organ damage, and the most suggested dosage was 1.4 × 108 CFU/mL.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sirui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Fernandez-Comaduran M, Verbrugghe M, Xu JSM, Minotti S, Lynch J, Biswas J, Wu T, Durham H, Yeo GW, Vera M. Localized synthesis of molecular chaperones sustains neuronal proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560761. [PMID: 37873158 PMCID: PMC10592939 DOI: 10.1101/2023.10.03.560761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.
Collapse
|
31
|
Snyder CM, Mateo B, Patel K, Fahrenholtz CD, Rohde MM, Carpenter R, Singh RN. Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1564. [PMID: 39404291 PMCID: PMC11477547 DOI: 10.3390/nano14191564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Metal nanoparticles have been tested for therapeutic and imaging applications in pre-clinical models of cancer, but fears of toxicity have limited their translation. An emerging concept in nanomedicine is to exploit the inherent drug-like properties of unmodified nanomaterials for cancer therapy. To be useful clinically, there must be a window between the toxicity of the nanomaterial to cancer and toxicity to normal cells. This necessitates identification of specific vulnerabilities in cancers that can be targeted using nanomaterials without inducing off-target toxicity. Previous studies point to proteotoxic stress as a driver of silver nanoparticle (AgNPs) toxicity. Two key cell stress responses involved in mitigating proteotoxicity are the heat shock response (HSR) and the integrated stress response (ISR). Here, we examine the role that these stress responses play in AgNP-induced cytotoxicity in triple-negative breast cancer (TNBC) and immortalized mammary epithelial cells. Furthermore, we investigate HSR and ISR inhibitors as potential drug partners to increase the anti-cancer efficacy of AgNPs without increasing off-target toxicity. We showed that AgNPs did not strongly induce the HSR at a transcriptional level, but instead decreased expression of heat shock proteins (HSPs) at the protein level, possibly due to degradation in AgNP-treated TNBC cells. We further showed that the HSR inhibitor, KRIBB11, synergized with AgNPs in TNBC cells, but also increased off-target toxicity in immortalized mammary epithelial cells. In contrast, we found that salubrinal, a drug that can sustain pro-death ISR signaling, enhanced AgNP-induced cell death in TNBC cells without increasing toxicity in immortalized mammary epithelial cells. Subsequent co-culture studies demonstrated that AgNPs in combination with salubrinal selectively eliminated TNBCs without affecting immortalized mammary epithelial cells grown in the same well. Our findings provide additional support for proteotoxic stress as a mechanism by which AgNPs selectively kill TNBCs and will help guide future efforts to identify drug partners that would be beneficial for use with AgNPs for cancer therapy.
Collapse
Affiliation(s)
- Christina M. Snyder
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Beatriz Mateo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Khushbu Patel
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Cale D. Fahrenholtz
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
- Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Monica M. Rohde
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Richard Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN 47405, USA;
| | - Ravi N. Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
32
|
Shevtsov M, Pitkin E, Combs SE, Meulen GVD, Preucil C, Pitkin M. Comparison In Vitro Study on the Interface between Skin and Bone Cell Cultures and Microporous Titanium Samples Manufactured with 3D Printing Technology Versus Sintered Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1484. [PMID: 39330641 PMCID: PMC11434446 DOI: 10.3390/nano14181484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Percutaneous implants osseointegrated into the residuum of a person with limb amputation need to provide mechanical stability and protection against infections. Although significant progress has been made in the biointegration of percutaneous implants, the problem of forming a reliable natural barrier at the level of the surface of the implant and the skin and bone tissues remains unresolved. The use of a microporous implant structure incorporated into the Skin and Bone Integrated Pylon (SBIP) should address the issue by allowing soft and bone tissues to grow directly into the implant structure itself, which, in turn, should form a reliable barrier to infections and support strong osseointegration. To evaluate biological interactions between dermal fibroblasts and MC3T3-E1 osteoblasts in vitro, small titanium discs (with varying pore sizes and volume fractions to achieve deep porosity) were fabricated via 3D printing and sintering. The cell viability MTT assay demonstrated low cytotoxicity for cells co-cultured in the pores of the 3D-printed and sintered Ti samples during the 14-day follow-up period. A subsequent Quantitative Real-Time Polymerase Chain Reaction (RT-PCR) analysis of the relative gene expression of biomarkers that are associated with cell adhesion (α2, α5, αV, and β1 integrins) and extracellular matrix components (fibronectin, vitronectin, type I collagen) demonstrated that micropore sizes ranging from 200 to 500 µm of the 3D printed and sintered Ti discs were favorable for dermal fibroblast adhesion. For example, for representative 3D-printed Ti sample S6 at 72 h the values were 4.71 ± 0.08 (α2 integrin), 4.96 ± 0.08 (α5 integrin), 4.71 ± 0.08 (αV integrin), and 1.87 ± 0.12 (β1 integrin). In contrast, Ti discs with pore sizes ranging from 400 to 800 µm demonstrated the best results (in terms of marker expression related to osteogenic differentiation, including osteopontin, osteonectin, osteocalcin, TGF-β1, and SMAD4) for MC3T3-E1 cells. For example, for the representative 3D sample S4 on day 14, the marker levels were 11.19 ± 0.77 (osteopontin), 7.15 ± 0.29 (osteonectin), and 6.08 ± 0.12 (osteocalcin), while for sintered samples the levels of markers constituted 5.85 ± 0.4 (osteopontin), 4.45 ± 0.36 (osteonectin), and 4.46 ± 0.3 (osteocalcin). In conclusion, the data obtained show the high biointegrative properties of porous titanium structures, while the ability to implement several pore options in one structure using 3D printing makes it possible to create personalized implants for the best one-time integration with both skin and bone tissues.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Emil Pitkin
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | - Mark Pitkin
- Department of Orthopaedics and Rehabilitation Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Poly-Orth International, Sharon, MA 02067, USA
| |
Collapse
|
33
|
Overstreet AMC, Burge M, Bellar A, McMullen M, Czarnecki D, Huang E, Pathak V, Finney C, Vij R, Dasarathy S, Dasarathy J, Streem D, Welch N, Rotroff D, Schmitt AM, Nagy LE, Messer JS. Evidence that extracellular HSPB1 contributes to inflammation in alcohol-associated hepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313193. [PMID: 39281760 PMCID: PMC11398598 DOI: 10.1101/2024.09.06.24313193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background and aims Alcohol-associated hepatitis (AH) is the most life-threatening form of alcohol-associated liver disease (ALD). AH is characterized by severe inflammation attributed to increased levels of ethanol, microbes or microbial components, and damage-associated molecular pattern (DAMP) molecules in the liver. HSPB1 (Heat Shock Protein Family B (Small) Member 1; also known as Hsp25/27) is a DAMP that is rapidly increased in and released from cells experiencing stress, including hepatocytes. The goal of this study was to define the role of HSPB1 in AH pathophysiology. Methods Serum HSPB1 was measured in a retrospective study of 184 heathy controls (HC), heavy alcohol consumers (HA), patients with alcohol-associated cirrhosis (AC), and patients with AH recruited from major hospital centers. HSPB1 was also retrospectively evaluated in liver tissue from 10 HC and AH patients and an existing liver RNA-seq dataset. Finally, HSPB1 was investigated in a murine Lieber-DeCarli diet model of early ALD as well as cellular models of ethanol stress in hepatocytes and hepatocyte-macrophage communication during ethanol stress. Results Circulating HSPB1 was significantly increased in AH patients and levels positively correlated with disease-severity scores. Likewise, HSPB1 was increased in the liver of patients with severe AH and in the liver of ethanol-fed mice. In vitro , ethanol-stressed hepatocytes released HSPB1, which then triggered TNFα-mediated inflammation in macrophages. Anti-HSPB1 antibody prevented TNFα release from macrophages exposed to media conditioned by ethanol-stressed hepatocytes. Conclusions Our findings support investigation of HSPB1 as both a biomarker and therapeutic target in ALD. Furthermore, this work demonstrates that anti-HSPB1 antibody is a rational approach to targeting HSPB1 with the potential to block inflammation and protect hepatocytes, without inactivating host defense. GRAPHICAL ABSTRACT HIGHLIGHTS HSPB1 is significantly increased in serum and liver of patients with alcohol-associated hepatitis.Ethanol consumption leads to early increases in HSPB1 in the mouse liver.Hepatocytes subjected to ethanol stress release HSPB1 into the extracellular environment where it activates TNFα-mediated inflammation in macrophages.Anti-HSPB1 antibody blocks hepatocyte-triggered TNFα in a model of hepatocyte-macrophage communication during ethanol stress.
Collapse
|
34
|
Mao J, Zhang H, Chen Y, Wei L, Liu J, Nielsen J, Chen Y, Xu N. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms. Biotechnol Adv 2024; 74:108401. [PMID: 38944217 DOI: 10.1016/j.biotechadv.2024.108401] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Metabolic burden is defined by the influence of genetic manipulation and environmental perturbations on the distribution of cellular resources. The rewiring of microbial metabolism for bio-based chemical production often leads to a metabolic burden, followed by adverse physiological effects, such as impaired cell growth and low product yields. Alleviating the burden imposed by undesirable metabolic changes has become an increasingly attractive approach for constructing robust microbial cell factories. In this review, we provide a brief overview of metabolic burden engineering, focusing specifically on recent developments and strategies for diminishing the burden while improving robustness and yield. A variety of examples are presented to showcase the promise of metabolic burden engineering in facilitating the design and construction of robust microbial cell factories. Finally, challenges and limitations encountered in metabolic burden engineering are discussed.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Hongyu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
35
|
Tomuro K, Mito M, Toh H, Kawamoto N, Miyake T, Chow SYA, Doi M, Ikeuchi Y, Shichino Y, Iwasaki S. Calibrated ribosome profiling assesses the dynamics of ribosomal flux on transcripts. Nat Commun 2024; 15:7061. [PMID: 39187487 PMCID: PMC11347596 DOI: 10.1038/s41467-024-51258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Ribosome profiling, which is based on deep sequencing of ribosome footprints, has served as a powerful tool for elucidating the regulatory mechanism of protein synthesis. However, the current method has substantial issues: contamination by rRNAs and the lack of appropriate methods to measure ribosome numbers in transcripts. Here, we overcome these hurdles through the development of "Ribo-FilterOut", which is based on the separation of footprints from ribosome subunits by ultrafiltration, and "Ribo-Calibration", which relies on external spike-ins of stoichiometrically defined mRNA-ribosome complexes. A combination of these approaches estimates the number of ribosomes on a transcript, the translation initiation rate, and the overall number of translation events before its decay, all in a genome-wide manner. Moreover, our method reveals the allocation of ribosomes under heat shock stress, during aging, and across cell types. Our strategy of modified ribosome profiling measures kinetic and stoichiometric parameters of cellular translation across the transcriptome.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05782 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02306 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP22fk0108570 Japan Agency for Medical Research and Development (AMED)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23H00095 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP22K20765 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K14173 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2178 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- Pioneering Project MEXT | RIKEN
- RIKEN TRIP initiative "TRIP-AGIS" MEXT | RIKEN
- Pioneering Project MEXT | RIKEN
- JPMJBS2418 MEXT | Japan Science and Technology Agency (JST)
- JPMJFR226F MEXT | Japan Science and Technology Agency (JST)
Collapse
Affiliation(s)
- Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Hirotaka Toh
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
36
|
Ifeduba AM, Zhen S, Pandey J, Vales MI. Leaf Membrane Stability under High Temperatures as an Indicator of Heat Tolerance in Potatoes and Genome-Wide Association Studies to Understand the Underlying Genetics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2175. [PMID: 39204611 PMCID: PMC11359314 DOI: 10.3390/plants13162175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
High temperatures during the crop growing season are becoming more frequent and unpredictable, resulting in reduced crop productivity and quality. Heat stress disrupts plant metabolic processes that affect cell membrane composition and integrity. Cell membrane permeability, ion leakage, and heat shock proteins have been evaluated to screen for heat tolerance in plants. In potatoes, it is unclear whether leaf membrane stability under heat stress is correlated with underground tuber productivity and quality. The main goal of this study was to evaluate if leaf membrane relative electrolyte conductivity (REC) under high temperatures could be used to identify heat-tolerant potato genotypes. Electrolyte leakage assays, correlation estimations, and genome-wide association studies were carried out in 215 genotypes. Expression levels of small heat shock protein 18 (sHSP18) were evaluated in the heat-sensitive potato variety Russet Burbank and compared with those of the heat-tolerant variety Vanguard Russet using Western blotting. Significant differences were observed among genotypes for leaf membrane REC under extreme heat (50°C); REC values ranged from 47.0-99.5%. Leaf membrane REC was positively correlated with tuber external and internal defects and negatively correlated with yield. REC was negatively correlated with the content of several tuber minerals, such as nitrogen, magnesium, and manganese. Eleven quantitative trait loci (QTLs) were identified for leaf membrane REC, explaining up to 13.8% of the phenotypic variance. Gene annotation in QTL areas indicated associations with genes controlling membrane solute transport and plant responses to abiotic stresses. Vanguard Russet had lower leaf REC and higher expression of sHSP18 under high-temperature stress. Our findings indicate that leaf membrane REC under high temperatures can be used as an indicator of potato heat tolerance.
Collapse
Affiliation(s)
- Amaka M. Ifeduba
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (S.Z.); (J.P.)
| | | | | | - M. Isabel Vales
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (S.Z.); (J.P.)
| |
Collapse
|
37
|
Zhang R, Farshadyeganeh P, Ohkawara B, Nakajima K, Takeda JI, Ito M, Zhang S, Miyasaka Y, Ohno T, Mori-Yoshimura M, Masuda A, Ohno K. Muscle-specific lack of Gfpt1 triggers ER stress to alleviate misfolded protein accumulation. Dis Model Mech 2024; 17:dmm050768. [PMID: 38903011 PMCID: PMC11554261 DOI: 10.1242/dmm.050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.
Collapse
Affiliation(s)
- Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Paniz Farshadyeganeh
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8775, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| |
Collapse
|
38
|
Shevtsov M, Bobkov D, Yudintceva N, Likhomanova R, Kim A, Fedorov E, Fedorov V, Mikhailova N, Oganesyan E, Shabelnikov S, Rozanov O, Garaev T, Aksenov N, Shatrova A, Ten A, Nechaeva A, Goncharova D, Ziganshin R, Lukacheva A, Sitovskaya D, Ulitin A, Pitkin E, Samochernykh K, Shlyakhto E, Combs SE. Membrane-bound Heat Shock Protein mHsp70 Is Required for Migration and Invasion of Brain Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2025-2044. [PMID: 39015084 PMCID: PMC11317918 DOI: 10.1158/2767-9764.crc-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Danila Bobkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - Natalia Yudintceva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Ruslana Likhomanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Alexander Kim
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Evegeniy Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Elena Oganesyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Sergey Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Oleg Rozanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Timur Garaev
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Nikolay Aksenov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Anastasiya Nechaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Daria Goncharova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anastasiya Lukacheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Daria Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Alexey Ulitin
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Evgeny Shlyakhto
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Stephanie E Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
40
|
Dukic B, Ruppert Z, Tóth ME, Hunya Á, Czibula Á, Bíró P, Tiszlavicz Á, Péter M, Balogh G, Erdélyi M, Timinszky G, Vígh L, Gombos I, Török Z. Mild Hyperthermia-Induced Thermogenesis in the Endoplasmic Reticulum Defines Stress Response Mechanisms. Cells 2024; 13:1141. [PMID: 38994992 PMCID: PMC11240596 DOI: 10.3390/cells13131141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.
Collapse
Affiliation(s)
- Barbara Dukic
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
- Doctoral School of Environmental Sciences, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Zsófia Ruppert
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Melinda E. Tóth
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| | - Ákos Hunya
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| | - Ágnes Czibula
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Immunology, University of Szeged, 6720 Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Ádám Tiszlavicz
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| | - Mária Péter
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| | - Gábor Balogh
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - László Vígh
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| | - Imre Gombos
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| | - Zsolt Török
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.D.); (L.V.); (I.G.)
| |
Collapse
|
41
|
Zhang LL, Zhu QY, Sun JL, Yao ZW, Qing T, Ma H, Liu JX. XBAT31 regulates reproductive thermotolerance through controlling the accumulation of HSFB2a/B2b under heat stress conditions. Cell Rep 2024; 43:114349. [PMID: 38870009 DOI: 10.1016/j.celrep.2024.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Heat shock transcription factors (HSFs) play a crucial role in heat stress tolerance in vegetative tissues. However, their involvement in reproductive tissues and their post-translational modifications are not well understood. In this study, we identify the E3 ligase XB3 ORTHOLOG 1 IN ARABIDOPSIS THALIANA (XBAT31) as a key player in the ubiquitination and degradation of HSFB2a/B2b. Our results show that the xbat31 mutant exhibits a higher percentage of unfertile siliques and decreased expression of HSPs in flowers under heat stress conditions compared to the wild type. Conversely, the hsfb2a hsfb2b double mutant displays improved reproductive thermotolerance. We find that XBAT31 interacts with HSFB2a/B2b and mediates their ubiquitination. Furthermore, HSFB2a/B2b ubiquitination is reduced in the xbat31-1 mutant, resulting in higher accumulation of HSFB2a/B2b in flowers under heat stress conditions. Overexpression of HSFB2a or HSFB2b leads to an increase in unfertile siliques under heat stress conditions. Thus, our results dissect the important role of the XBAT31-HSFB2a/B2b module in conferring reproductive thermotolerance in plants.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Qiao-Yun Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jing-Liang Sun
- College of Environment and Resources, Dalian Nationalities University, Dalian 116600, China
| | - Zi-Wei Yao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Tao Qing
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hong Ma
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
42
|
Alaiya A, Alharbi BM, Shinwari Z, Rashid M, Albinhassan TH, Bouchama A, Alwesmi MB, Mohammad S, Malik SS. Proteomics Analysis of Proteotoxic Stress Response in In-Vitro Human Neuronal Models. Int J Mol Sci 2024; 25:6787. [PMID: 38928492 PMCID: PMC11204259 DOI: 10.3390/ijms25126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heat stroke, a hazardous hyperthermia-related illness, is characterized by CNS injury, particularly long-lasting brain damage. A root cause for hyperthermic neurological damage is heat-induced proteotoxic stress through protein aggregation, a known causative agent of neurological disorders. Stress magnitude and enduring persistence are highly correlated with hyperthermia-associated neurological damage. We used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify and characterize time-series proteome-wide changes in dose-responsive proteotoxic stress models in medulloblastoma [Daoy], neuroblastoma [SH-SY5Y], and differentiated SH-SY5Y neuron-like cells [SH(D)]. An integrated analysis of condition-time datasets identified global proteome-wide differentially expressed proteins (DEPs) as part of the heat-induced proteotoxic stress response. The condition-specific analysis detected higher DEPs and upregulated proteins in extreme heat stress with a relatively conservative and tight regulation in differentiated SH-SY5Y neuron-like cells. Functional network analysis using ingenuity pathway analysis (IPA) identified common intercellular pathways associated with the biological processes of protein, RNA, and amino acid metabolism and cellular response to stress and membrane trafficking. The condition-wise temporal pathway analysis in the differentiated neuron-like cells detects a significant pathway, functional, and disease association of DEPs with processes like protein folding and protein synthesis, Nervous System Development and Function, and Neurological Disease. An elaborate dose-dependent stress-specific and neuroprotective cellular signaling cascade is also significantly activated. Thus, our study provides a comprehensive map of the heat-induced proteotoxic stress response associating proteome-wide changes with altered biological processes. This helps to expand our understanding of the molecular basis of the heat-induced proteotoxic stress response with potential translational connotations.
Collapse
Affiliation(s)
- Ayodele Alaiya
- Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Zakia Shinwari
- Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mamoon Rashid
- Department of AI and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia
| | - Tahani H. Albinhassan
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Mai B. Alwesmi
- Medical-Surgical Nursing Department, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
43
|
Kitamura A, Fujimoto A, Kawashima R, Lyu Y, Sasaki K, Hamada Y, Moriya K, Kurata A, Takahashi K, Brielmann R, Bott LC, Morimoto RI, Kinjo M. Hetero-oligomerization of TDP-43 carboxy-terminal fragments with cellular proteins contributes to proteotoxicity. Commun Biol 2024; 7:743. [PMID: 38902525 PMCID: PMC11190292 DOI: 10.1038/s42003-024-06410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Carboxy terminal fragments (CTFs) of TDP-43 contain an intrinsically disordered region (IDR) and form cytoplasmic condensates containing amyloid fibrils. Such condensates are toxic and associated with pathogenicity in amyotrophic lateral sclerosis. However, the molecular details of how the domain of TDP-43 CTFs leads to condensation and cytotoxicity remain elusive. Here, we show that truncated RNA/DNA-recognition motif (RRM) at the N-terminus of TDP-43 CTFs leads to the structural transition of the IDR, whereas the IDR itself of TDP-43 CTFs is difficult to assemble even if they are proximate intermolecularly. Hetero-oligomers of TDP-43 CTFs that have recruited other proteins are more toxic than homo-oligomers, implicating loss-of-function of the endogenous proteins by such oligomers is associated with cytotoxicity. Furthermore, such toxicity of TDP-43 CTFs was cell-nonautonomously affected in the nematodes. Therefore, misfolding and oligomeric characteristics of the truncated RRM at the N-terminus of TDP-43 CTFs define their condensation properties and toxicity.
Collapse
Affiliation(s)
- Akira Kitamura
- Laboratory of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan.
- PRIME, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, 100-0004, Japan.
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan.
| | - Ai Fujimoto
- Laboratory of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Rei Kawashima
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yidan Lyu
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Kotetsu Sasaki
- Laboratory of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yuta Hamada
- Laboratory of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Kanami Moriya
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Ayumi Kurata
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Kazuho Takahashi
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Reneé Brielmann
- Department of Molecular Bioscience, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, 60208, USA
| | - Laura C Bott
- Department of Molecular Bioscience, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, 60208, USA
| | - Richard I Morimoto
- Department of Molecular Bioscience, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, 60208, USA
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
44
|
Toniolo A, Maccari G, Camussi G. mRNA Technology and Mucosal Immunization. Vaccines (Basel) 2024; 12:670. [PMID: 38932399 PMCID: PMC11209623 DOI: 10.3390/vaccines12060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Current mRNA vaccines are mainly administered via intramuscular injection, which induces good systemic immunity but limited mucosal immunity. Achieving mucosal immunity through mRNA vaccination could diminish pathogen replication at the entry site and reduce interhuman transmission. However, delivering mRNA vaccines to mucosae faces challenges like mRNA degradation, poor entry into cells, and reactogenicity. Encapsulating mRNA in extracellular vesicles may protect the mRNA and reduce reactogenicity, making mucosal mRNA vaccines possible. Plant-derived extracellular vesicles from edible fruits have been investigated as mRNA carriers. Studies in animals show that mRNA vehiculated in orange-derived extracellular vesicles can elicit both systemic and mucosal immune responses when administered by the oral, nasal, or intramuscular routes. Once lyophilized, these products show remarkable stability. The optimization of mRNA to improve translation efficiency, immunogenicity, reactogenicity, and stability can be obtained through adjustments of the 5'cap region, poly-A tail, codons selection, and the use of nucleoside analogues. Recent studies have also proposed self-amplifying RNA vaccines containing an RNA polymerase as well as circular mRNA constructs. Data from parenterally primed animals demonstrate the efficacy of nasal immunization with non-adjuvanted protein, and studies in humans indicate that the combination of a parenteral vaccine with the natural exposure of mucosae to the same antigen provides protection and reduces transmission. Hence, mucosal mRNA vaccination would be beneficial at least in organisms pre-treated with parenteral vaccines. This practice could have wide applications for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Antonio Toniolo
- Global Virus Network, University of Insubria Medical School, 21100 Varese, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
| | - Giovanni Camussi
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| |
Collapse
|
45
|
Kim JA, Kim MJ, Park YS, Kim JH, Choi CY. Melatonin injection and red light irradiation affect the antioxidant response and cell damage in disk abalone (Haliotis discus hannai) exposed to high water temperatures. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:487-498. [PMID: 38390697 DOI: 10.1002/jez.2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The effects of red light-emitting diode (LED) light irradiation (630 nm, 0.5 W/m2) and melatonin (10-8 and 10-7 M) on oxidative stress and physiological responses in abalones exposed to high temperatures (28°C) were investigated. Changes in messenger RNA (mRNA) expressions of melatonin receptor (MT-R), heat shock protein 70 (HSP70), and antioxidant enzymes, as well as alterations in H2O2 levels in the hemolymph, were examined. The results revealed that high-temperature-stressed abalones treated with melatonin injections or exposed to red LED light showed a significant increase in MT-R mRNA expression, while HSP70 mRNA expression decreased. Notably, HSP70 mRNA expression levels in the red LED light-irradiated group were similar to those in the group injected with 10-8 M melatonin after 24 h exposure. Abalones treated with melatonin at 20°C or irradiated with red LED light exhibited decreased H2O2 levels and reduced antioxidant enzyme mRNA expression compared with those of the control group. However, the high-temperature environment induced oxidative stress in abalones, leading to increased antioxidant enzyme mRNA expression compared with that under 20°C conditions. Moreover, abalones exposed to high-temperature stress exhibited hepatopancreatic DNA damage, which was attenuated by melatonin treatment or red LED light irradiation. Hence, red LED light reduces oxidative stress, boosts antioxidant enzymes, and alleviates DNA damage in high-temperature-stressed abalones, akin to 10-8 M melatonin treatment. Therefore, considering the practical challenges of continuous melatonin administration to abalones, utilizing red LED light emerges as a practical, effective alternative to protect abalones from oxidative stress compared to 10-8 M melatonin treatment.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
| | - Min Ju Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan, Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Korea
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Korea
| |
Collapse
|
46
|
Sojka DR, Gogler A, Kania D, Vydra N, Wiecha K, Adamiec-Organiściok M, Wilk A, Chumak V, Matyśniak D, Scieglinska D. The human testis-enriched HSPA2 interacts with HIF-1α in epidermal keratinocytes, yet HIF-1α stability and HIF-1-dependent gene expression rely on the HSPA (HSP70) activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119735. [PMID: 38641179 DOI: 10.1016/j.bbamcr.2024.119735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
The Hypoxia-Inducible Factor 1 (HIF-1) is essential for cellular adaptation to reduced oxygen levels. It also facilitates the maintenance and re-establishment of skin homeostasis. Among others, it is involved in regulating keratinocyte differentiation. The stability of the oxygen-liable HIF-1α subunit is regulated by various non-canonical oxygen-independent mechanisms, which among others involve Heat Shock Proteins of the A family (HSPA/HSP70). This group of highly homologous chaperones and proteostasis-controlling factors includes HSPA2, a unique member crucial for spermatogenesis and implicated in the regulation of keratinocyte differentiation. HIF-1 can control the HSPA2 gene expression. In this study, we revealed that HIF-1α is the first confirmed client of HSPA2 in human somatic cells. It colocalises and interacts directly with HSPA2 in the epidermis in situ and immortalised keratinocytes in vitro. Using an in vitro model based on HSPA2-overexpressing and HSPA2-deficient variants of immortalised keratinocytes we showed that changes in HSPA2 levels do not affect the levels and intracellular localisation of HIF-1α or influence the ability of HIF-1 to modulate target gene expression. However, HIF-1α stability in keratinocytes appears critically reliant on HSPAs as a group of functionally overlapping chaperones. In addition to HSPA2, HIF-1α colocalises and forms complexes with HSPA8 and HSPA1, representing housekeeping and stress-inducible HSPA family paralogs, respectively. Chemical inhibition of HSPA activity, but not paralog-specific knockdown of HSPA8 or HSPA1 expression reduced HIF-1α levels and HIF-1-dependent gene expression. These observations suggest that pharmacological targeting of HSPAs could prevent excessive HIF-1 signalling in pathological skin conditions.
Collapse
Affiliation(s)
- Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Agnieszka Gogler
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Daria Kania
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Natalia Vydra
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Klaudia Wiecha
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Małgorzata Adamiec-Organiściok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Agata Wilk
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Vira Chumak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Damian Matyśniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland.
| |
Collapse
|
47
|
Lotfy M, Khattab A, Shata M, Alhasbani A, Almesmari A, Alsaeedi S, Alyassi S, Kundu B. Destructive effects of UVC radiation on Drosophila melanogaster: Mortality, fertility, mutations, and molecular mechanisms. PLoS One 2024; 19:e0303115. [PMID: 38776353 PMCID: PMC11111075 DOI: 10.1371/journal.pone.0303115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
The detrimental effects of ultraviolet C (UVC) radiation on living organisms, with a specific focus on the fruit fly Drosophila melanogaster, were examined. This study investigated the impact of heightened UVC radiation exposure on D. melanogaster by assessing mortality and fertility rates, studying phenotypic mutations, and investigating the associated molecular mechanisms. The findings of this study revealed that UVC radiation increases mortality rates and decreases fertility rates in D. melanogaster. Additionally, phenotypic wing mutations were observed in the exposed flies. Furthermore, the study demonstrated that UVC radiation downregulates the expression of antioxidant genes, including superoxide dismutase (SOD), manganese-dependent superoxide dismutase (Mn-SOD), zinc-dependent superoxide dismutase (Cu-Zn-SOD), and the G protein-coupled receptor methuselah (MTH) gene. These results suggest that UVC radiation exerts a destructive effect on D. melanogaster by inducing oxidative stress, which is marked by the overexpression of harmful oxidative processes and a simultaneous reduction in antioxidant gene expression. In conclusion, this study underscores the critical importance of comprehending the deleterious effects of UVC radiation, not only to safeguard human health on Earth, but also to address the potential risks associated with space missions, such as the ongoing Emirate astronaut program.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aalaa Khattab
- Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, Egypt
| | - Mohammed Shata
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Alhasbani
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulla Almesmari
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Alsaeedi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Alyassi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Biduth Kundu
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
48
|
Wani AK, Khan Z, Sena S, Akhtar N, Alreshdi MA, Yadav KK, Alkahtani AM, Wani AW, Rahayu F, Tafakresnanto C, Latifah E, Hariyono B, Arifin Z, Eltayeb LB. Carbon nanotubes in plant dynamics: Unravelling multifaceted roles and phytotoxic implications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108628. [PMID: 38636256 DOI: 10.1016/j.plaphy.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| | - Zehra Khan
- Department of Biology, College of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 4620044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Chendy Tafakresnanto
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Evy Latifah
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Budi Hariyono
- Research Center for Estate Crops, Research Organization for Agriculture and Food, National Research Innovation Agenc (BRIN), Bogor, 16911, Indonesia
| | - Zainal Arifin
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Sciences, Prince Sattam Bin AbdulAziz University-Al-Kharj, 11942, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
50
|
Sun D, Yu H, Kong L, Liu S, Xu C, Li Q. The role of DNA methylation reprogramming during sex determination and sex reversal in the Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 259:128964. [PMID: 38219938 DOI: 10.1016/j.ijbiomac.2023.128964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
DNA methylation is instrumental in vertebrate sex reversal. However, the mechanism of DNA methylation regulation regarding sex reversal in invertebrates is unclear. In this study, we used whole genome bisulfite sequencing (WGBS) to map single-base resolution methylation profiles of the Pacific oyster, including female-to-male (FMa-to-FMb) and male-to-female (MFa-to-MFb) sex reversal, as well as sex non-reversed males and females (MMa-to-MMb and FFa-to-FFb). The results showed that global DNA methylation levels increase during female-to-male sex reversals, with a particular increase in the proportion of high methylation levels (mCGs >0.75) and a decrease in the proportion of intermediate methylation levels (0.25 < mCGs <0.75). This increase in DNA methylation was mainly associated with the elevated expression of DNA methylase genes. Genome-wide methylation patterns of females were accurately remodeled to those of males after sex reversal, while the opposite was true for the male-to-female reversal. Those findings directly indicate that alterations in DNA methylation play a significant role in sex reversal in Pacific oysters. Comparative analysis of the DNA methylomes of pre- and post- sex reversal gonadal tissues (FMb-vs-FMa or MFb-vs-MFa) revealed that differentially methylated genes were mainly involved in the biological processes of sex determination or gonadal development. However critical genes such as Dmrt1, Foxl2 and Sox-like, which are involved in the putative sex determination pathway in Pacific oysters, showed almost an absence of methylation modifications, varying greatly from vertebrates. Additionally, comparative analysis of the DNA methylomes of sexual reversal and sex non-reversal (FMa-vs-FFa or MFa-vs-MMa) revealed that heat shock protein genes, such as Hsp68-like and Hsp70B, were important for the occurrence of sex reversal. These findings shed light on the epigenetic mechanisms underlying the maintenance of gonadal plasticity and the reversal of organ architecture in oysters.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|