1
|
Bi H, Wang F, Lin L, Zhang D, Chen M, Shang Y, Hua L, Chen H, Wu B, Peng Z. The T-type voltage-gated Ca 2+ channel Ca V3.1 involves in the disruption of respiratory epithelial barrier induced by Pasteurella multocida toxin. Virulence 2025; 16:2466482. [PMID: 39950866 PMCID: PMC11834503 DOI: 10.1080/21505594.2025.2466482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025] Open
Abstract
Pasteurella multocida toxin (PMT) is an exotoxin produced by several members of the zoonotic respiratory pathogen P. multocida. The role of PMT in disrupting the mammalian respiratory barrier remains to be elucidated. In this study, we showed that inoculation of recombinantly expressed PMT increased the permeability of the respiratory epithelial barrier in mouse and respiratory cell models. This was evidenced by a decreased expression of tight junctions (ZO-1, occludin) and adherens junctions (β-catenin, E-cadherin), as well as enhanced cytoskeletal rearrangement. In mechanism, we demonstrated that PMT inoculation induced cytoplasmic Ca2+ inflow, leading to an imbalance of cellular Ca2+ homoeostasis and endoplasmic reticulum stress. This process further stimulated the RhoA/ROCK signalling, promoting cytoskeletal rearrangement and reducing the expression of tight junctions and adherens junctions. Notably, the T-type voltage-gated Ca2+ channel CaV3.1 was found to participate in PMT-induced cytoplasmic Ca2+ inflow. Knocking out CaV3.1 significantly reduced the cytotoxicity induced by PMT on swine respiratory epithelial cells and mitigated cytoplasmic Ca2+ inflow stimulated by PMT. These findings suggest CaV3.1 contributes to PMT-induced respiratory epithelial barrier disruption.
Collapse
Affiliation(s)
- Haixin Bi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fei Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dajun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Menghan Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuyao Shang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 PMCID: PMC11974651 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
3
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
4
|
Cruz-Mirón R, Pandey N, Alexandros Katelas D, Kuchipudi A, Sriram D, Gangopadhyay A, Chakraborti S, Srivastav RK, Gupta N. Sarcoendoplasmic reticulum calcium ATPase is an essential and druggable lipid-dependent ion pump in Toxoplasma gondii. Commun Biol 2025; 8:702. [PMID: 40329047 PMCID: PMC12056192 DOI: 10.1038/s42003-025-08058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Toxoplasma gondii is a common intracellular pathogenic protist causing acute and chronic infections in many warm-blooded organisms. Calcium homeostasis is pivotal for its asexual reproduction in mammalian host cells, and sarcoendoplasmic reticulum calcium-ATPase (SERCA) is considered vital for maintaining ion homeostasis within the parasite. This work studied the physiological relevance, structure-function relationship, mechanism, and therapeutic value of SERCA in the acutely-infectious tachyzoite stage of T. gondii. A conditional depletion of SERCA, located in the endoplasmic reticulum, by auxin-inducible degradation is lethal for the parasite due to severe defects in its replication, gliding motility, and invasion. The observed phenotypes are caused by dysregulated calcium ion homeostasis and microneme secretion in the absence of TgSERCA. Furthermore, ectopic expression of TgSERCA restored the lytic cycle of a phosphatidylthreonine-null and phosphatidylserine-enriched mutant with perturbed calcium homeostasis, motility and invasion. These lipids are expressed in the parasite ER, co-localizing with TgSERCA. Last but not least, the structure-function modeling and ligand docking of TgSERCA with a library comprising >5000 chemicals identified two compounds (RB-15, NR-301) that inhibited the lytic cycle by affecting the tachyzoite locomotion, invasion, microneme discharge, and calcium levels. In conclusion, we demonstrate TgSERCA as an indispensable lipid-assisted calcium pump in T. gondii and report small molecules with therapeutic potential against toxoplasmosis.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India
| | - Namita Pandey
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India
| | - Dimitrios Alexandros Katelas
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Arunakar Kuchipudi
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India
| | - Aditi Gangopadhyay
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Soumyananda Chakraborti
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India
| | - Ratnesh Kumar Srivastav
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India
| | - Nishith Gupta
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India.
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad, India.
| |
Collapse
|
5
|
Sun Z, Nie M, Wang X, Jiao B, Fu J, Du A. Aminooxyacetic acid ameliorates alcohol-induced learning and memory deficits through BDNF-TrkB pathway and calcium homeostasis. Eur J Med Res 2025; 30:365. [PMID: 40325392 PMCID: PMC12054319 DOI: 10.1186/s40001-025-02630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Chronic alcohol-related brain damage (ARBD) is mainly manifested as learning and memory impairment and cognitive decline in the long term. Ca2+ plays a key role in learning and memory impairment. The increase of intracellular Ca2+ concentration can directly cause mitochondrial dysfunction, destroy normal physiological signal transduction, and accelerate the process of learning and memory decline. Aminooxyacetic acid (AOAA), a selective inhibitor of Cystathionineβ-synthase (CBS), has a good effect on a variety of diseases, including improving stroke and reducing the incidence of convulsions. However, its potential in maintaining learning and memory functions by regulating Ca2+ and mitochondrial functional status remains uncertain. In this study, chronic alcoholism rats and human neuroblastoma cells (SHSY-5Y) were used as the research objects to establish a chronic alcohol-related brain damage model. We aimed to elucidate the specific mechanisms by which AOAA protects learning and memory functions in alcohol-induced learning and memory impairment. Through Morris water maze test, LTP test, Western blot (WB), immunohistochemistry (IHC), mitochondrial observation under electron microscope, calcium ion concentration measurement and mitochondrial membrane potential measurement, it was found that AOAA could not only regulate the level of endoplasmic reticulum stress (ERS) caused by H2S elevation, but also maintain the role of valve of Sec61 channel on Ca2+ by restoring the level of BIP, a key indicator of ERS, significantly alleviate mitochondrial dysfunction caused by Ca2+ overload, and optimize learning and memory function. The mechanism may be closely related to the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Zhen Sun
- Sino-UK International Joint Laboratory of Brain Injury in Henan Province, Henan International Joint Laboratory of Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, China
| | - Meinan Nie
- Sino-UK International Joint Laboratory of Brain Injury in Henan Province, Henan International Joint Laboratory of Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, China
| | - Xunling Wang
- Sino-UK International Joint Laboratory of Brain Injury in Henan Province, Henan International Joint Laboratory of Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, China
| | - Bolin Jiao
- Sino-UK International Joint Laboratory of Brain Injury in Henan Province, Henan International Joint Laboratory of Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, China
| | - Jiayi Fu
- Sino-UK International Joint Laboratory of Brain Injury in Henan Province, Henan International Joint Laboratory of Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, China
| | - Ailin Du
- Sino-UK International Joint Laboratory of Brain Injury in Henan Province, Henan International Joint Laboratory of Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, China.
| |
Collapse
|
6
|
Lee J, Istianah N, Jang H, Hong SC, Lee JW, Kim DH, Jung YH, Ha JH. Preparation of cellulose microfibrils from Gelidium amansii relieving ocular endoplasmic reticulum stress and inflammatory responses in human retinal pigmented epithelial cells. Int J Biol Macromol 2025; 308:142265. [PMID: 40120910 DOI: 10.1016/j.ijbiomac.2025.142265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
This study investigated the physicochemical properties of cellulose microfibrils (CMFs) derived from Gelidium amansii (GA) and their potential functionality in preventing retinal pathologies. GA was subjected to microwave-assisted extraction, microfibrillation, centrifugation, and autoclave sterilization, yielding G, GM, GC, and GS, respectively. Each processing steps induced distinct microstructural modifications affecting the final functional properties of the CMFs. To explore their protective effects against anti-endoplasmic reticulum (ER) stress and anti-inflammatory effects, ARPE-19 cells were pretreated with these processed CMFs before exposure to either thapsigargin or lipopolysaccharide. Among the variants, GS most effectively alleviated ocular ER stress by suppressing unfolded protein responses, reducing vascular endothelial growth factor gene and protein expressions, and lowering intracellular calcium levels. Moreover, GS significantly mitigated ocular inflammatory responses by inhibiting the translocation of nuclear factor-kappa B (NF-κB) into the nucleus; consequently preserving tight-junction integrity and downregulating inflammatory cytokine gene expressions. These findings highlight the potential of GS as a protective agent against retinal stress and inflammation.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Nur Istianah
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea; Department of Food Science and Biotechnology, Universitas Brawijaya, Malang, Indonesia
| | - Hyunsoo Jang
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Sung-Chul Hong
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan, Republic of Korea
| | - Jae Won Lee
- Department of Biotechnology, Sungshin Women's University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea.
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea; Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Republic of Korea.
| |
Collapse
|
7
|
Gilardi C, Martins HC, Levone BR, Bianco AL, Bicker S, Germain PL, Gross F, Sungur AÖ, Kisko TM, Stein F, Meinert S, Schwarting RKW, Wöhr M, Dannlowski U, Kircher T, Schratt G. miR-708-5p is elevated in bipolar patients and can induce mood disorder-associated behavior in mice. EMBO Rep 2025; 26:2121-2145. [PMID: 40065182 PMCID: PMC12019553 DOI: 10.1038/s44319-025-00410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025] Open
Abstract
Mood disorders (MDs) are caused by an interplay of genetic and environmental (GxE) risk factors. However, molecular pathways engaged by GxE risk factors are poorly understood. Using small-RNA sequencing in peripheral blood mononuclear cells (PBMCs), we show that the bipolar disorder (BD)-associated microRNA miR-708-5p is upregulated in healthy human subjects with a high genetic or environmental predisposition for MDs. miR-708-5p is further upregulated in the hippocampus of rats which underwent juvenile social isolation, a model of early life stress. Hippocampal overexpression of miR-708-5p in adult male mice is sufficient to elicit MD-associated behavioral endophenotypes. We further show that miR-708-5p directly targets Neuronatin (Nnat), an endoplasmic reticulum protein. Restoring Nnat expression in the hippocampus of miR-708-5p-overexpressing mice rescues miR-708-5p-dependent behavioral phenotypes. Finally, miR-708-5p is upregulated in PBMCs from patients diagnosed with MD. Peripheral miR-708-5p expression allows to differentiate male BD patients from patients suffering from major depressive disorder (MDD). In summary, we describe a potential functional role for the miR-708-5p/Nnat pathway in MD etiology and identify miR-708-5p as a potential biomarker for the differential diagnosis of MDs.
Collapse
Affiliation(s)
- Carlotta Gilardi
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Helena C Martins
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Brunno Rocha Levone
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Alessandra Lo Bianco
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Silvia Bicker
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
- Laboratory of Molecular and Behavioural Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
- Lab of Statistical Bioinformatics, IMLS, University of Zürich, 8057, Zurich, Switzerland
| | - Fridolin Gross
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Ayse Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, D-35032, Marburg, Germany
- Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000, Leuven, Belgium
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, D-35032, Marburg, Germany
- Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000, Leuven, Belgium
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, D-35032, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, D-35032, Marburg, Germany
- Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000, Leuven, Belgium
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Jiao J, Liu W, Gao G, Yang H. Serine-129 phosphorylated α-synuclein drives mitochondrial dysfunction and calcium dysregulation in Parkinson's disease model. Front Aging Neurosci 2025; 17:1538166. [PMID: 40230488 PMCID: PMC11994663 DOI: 10.3389/fnagi.2025.1538166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Phosphorylation of α-synuclein at serine-129 (p-α-syn) is a hallmark of Parkinson's disease (PD) and constitutes nearly 90% of α-synuclein in Lewy bodies, playing a critical role in disease progression. Despite its pathological significance, the molecular targets and mechanisms driving p-α-syn-induced toxicity, particularly mitochondrial dysfunction, remain poorly understood. In this study, we observed mitochondrial dysfunction in primary cortical neurons derived from mice overexpressing human α-synuclein (h-α-syn), which also exhibit elevated levels of p-α-syn. Notably, inhibiting Ser129 phosphorylation improved mitochondrial function, underscoring the role of p-α-syn in mitochondrial damage. To investigate the molecular mechanism, we performed co-immunoprecipitation (CO-IP) combined with mass spectrometry (MS) to identify p-α-syn binding proteins. This analysis identified protein tyrosine phosphatase interacting protein 51 (PTPIP51) and vesicle-associated membrane protein-associated protein B (VAPB) as key binding partners. Both proteins are localized in the mitochondria-associated endoplasmic reticulum mem-brane (MAM) and essential for calcium transfer between the endoplasmic reticulum (ER) and mitochondria. Our results showed that p-α-syn binds to PTPIP51 and VAPB, disrupting calcium signaling between the ER and mitochondria. Importantly, inhibition of Ser129 phosphorylation partially rescued calcium homeostasis. These findings uncover a novel mechanism by which p-α-syn drives mitochondrial dysfunction and calcium dysregulation through its interactions with MAM-associated proteins, providing new insights into its role in PD pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Jie Jiao
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Weijin Liu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Ning S, Li J, He M, Yu Y, Guo Z. Androgen receptor alleviates doxorubicin-induced endoplasmic reticulum stress and myocardial injury by interacting with SERCA2a. Free Radic Biol Med 2025; 230:127-137. [PMID: 39947494 DOI: 10.1016/j.freeradbiomed.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
The clinical use of the anticancer drug doxorubicin (DOX) is limited due to its time- and dose-dependent cardiotoxicity. Therefore, there is an urgent need to explore the molecular mechanism and coping strategies for alleviating DOX-induced cardiotoxicity (DIC) and solve the difficulties in clinical application. The role and mechanism of androgen receptor (AR), which is the target of androgen, in DIC remain unclear. Here, we elucidated the molecular mechanisms of AR in DOX-induced cardiotoxicity. Inhibition of AR aggravated the DOX-induced cardiac function impairment, while the activation of AR showed obvious therapeutic effect and rescued cardiac function of rats. AR can physically interact with SERCA2a. Activation of AR participates in the regulation of DOX-induced myocardial injury by modulating SERCA2a, attenuating DOX-induced endoplasmic reticulum stress, improving calcium (Ca2+) cycling homeostasis, and inhibiting ROS levels and apoptosis, thereby participating in the regulation of DOX induced myocardial injury. Altogether, these findings reveal for the first time the relationship and role between AR and SERCA2a in regulating the progression of DIC, suggesting that AR may play a therapeutic role as a new target against DIC.
Collapse
Affiliation(s)
- Shuwei Ning
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital, Xuchang, 461000, China
| | - Mei He
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Peng C, Wang J, Wang S, Zhao Y, Wang H, Wang Y, Ma Y, Yang J. Endoplasmic Reticulum Stress: Triggers Microenvironmental Regulation and Drives Tumor Evolution. Cancer Med 2025; 14:e70684. [PMID: 40035165 PMCID: PMC11877002 DOI: 10.1002/cam4.70684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) serves as a crucial hub for protein synthesis and processing, playing an essential role in maintaining protein homeostasis. Perturbations, such as hypoxia, oxidative stress, inadequate amino acid supply, Ca2+ imbalance, and acidosis, can disrupt cellular equilibrium and result in the accumulation of misfolded/unfolded proteins within the ER lumen. This triggers ER stress. In response to this stress, an unfolded protein response (UPR) is activated as a mechanism to cope with the stress and restore internal balance. The UPR is regulated by three sensors located in the ER: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). However, the UPR can promote tumor growth in vivo by affecting tumor angiogenesis, cell migration, cell metabolism, and treatment resistance, and has a huge impact on the tumor microenvironment. MATERIALS AND METHODS We conducted a literature review of scientific papers on the topic of ER stress in the tumor microenvironment. RESULTS AND DISCUSSION This review focuses on the inducing factors of ER stress, the mechanism of the UPR signaling pathway induced by ER stress, and the effect of ER stress on the tumor microenvironment and immune-infiltrating cells. Tumors can regulate their evolution by affecting themselves and the tumor microenvironment through endoplasmic reticulum stress. This study reveals the important role of endoplasmic reticulum stress in the occurrence and development of tumors, and provides new ideas and potential therapeutic targets for the precision treatment of tumors. Future studies can further explore the molecular mechanism of ER stress regulating tumor microenvironment and explore its application potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chaosheng Peng
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Juan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Shu Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yan Zhao
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Haoyuan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuhao Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuxuan Ma
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Jianjun Yang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
11
|
Townson J, Progida C. The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction. J Cell Sci 2025; 138:JCS263503. [PMID: 39976266 DOI: 10.1242/jcs.263503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Cells are continuously subjected to physical and chemical cues from the extracellular environment, and sense and respond to mechanical cues via mechanosensation and mechanotransduction. Although the role of the cytoskeleton in these processes is well known, the contribution of intracellular membranes has been long neglected. Recently, it has become evident that various organelles play active roles in both mechanosensing and mechanotransduction. In this Review, we focus on mechanosensitive roles of the endoplasmic reticulum (ER), the functions of which are crucial for maintaining cell homeostasis. We discuss the effects of mechanical stimuli on interactions between the ER, the cytoskeleton and other organelles; the role of the ER in intracellular Ca2+ signalling via mechanosensitive channels; and how the unfolded protein response and lipid homeostasis contribute to mechanosensing. The expansive structure of the ER positions it as a key intracellular communication hub, and we additionally explore how this may be leveraged to transduce mechanical signals around the cell. By synthesising current knowledge, we aim to shed light on the emerging roles of the ER in cellular mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Jonathan Townson
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| |
Collapse
|
12
|
Brownlee C, Wheeler GL. Cellular calcium homeostasis and regulation of its dynamic perturbation. QUANTITATIVE PLANT BIOLOGY 2025; 6:e5. [PMID: 40070722 PMCID: PMC11894410 DOI: 10.1017/qpb.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
Calcium ions (Ca2+) play pivotal roles in a host of cellular signalling processes. The requirement to maintain resting cytosolic Ca2+ levels in the 100-200 nM range provides a baseline for dynamic excursions from resting levels that determine the nature of many physiological responses to external stimuli and developmental processes. This review provides an overview of the key components of the Ca2+ homeostatic machinery, including known channel-mediated Ca2+ entry pathways along with transporters that act to shape the cytosolic Ca2+ signature. The relative roles of the vacuole and endoplasmic reticulum as sources or sinks for cytosolic Ca2+ are considered, highlighting significant gaps in our understanding. The components contributing to mitochondrial, chloroplast and nuclear Ca2+ homeostasis and organellar Ca2+ signals are also considered. Taken together, a complex picture of the cellular Ca2+ homeostatic machinery emerges with some clear differences from mechanisms operating in many animal cells.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Glen L. Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
13
|
Naziębło A, Bemowska-Kałabun O, Wierzbicka M, Zienkiewicz M. Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants. J Trace Elem Med Biol 2025; 87:127592. [PMID: 39798232 DOI: 10.1016/j.jtemb.2025.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain. Our previous study showed that foliar application of calcium nitrate reduces the intensity of lead uptake by different plant species. A significant decrease in metal concentration was observed both in the roots and in the shoots of three crops: tomato, cucumber, and flax. The present research investigated the mechanism for limiting lead accumulation in plant tissues. The experiments were conducted on Cucumis sativus L. seedlings, grown in hydroponic conditions. To compare the role of Ca2 + and NO3- ions in the restriction of lead uptake three different calcium salts (nitrate, chloride, and formate), and two nitrates (calcium and potassium) were applied foliarly to plants. The results show that Ca(NO3)2 is more efficient in decreasing lead accumulation in tissues than other calcium salts which suggests an important role of NO3- ions in the process. In addition, the study demonstrated that the exogenous supply of nitrates helps compensate for nitrogen deficiency caused by lead action and supports the mineral balance. The reduction in lead toxicity to plants after foliar application of nitrates may be due to the stimulation of the biosynthesis of nitric oxide - a key molecule responsible for stress response.
Collapse
Affiliation(s)
- Aleksandra Naziębło
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland; Institute of Technology and Life Sciences - State Research Institute, Al. Hrabska 3, Raszyn 05-090, Poland.
| | - Olga Bemowska-Kałabun
- Isotope Laboratory, Faculty's Independent Centres, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland
| | - Małgorzata Wierzbicka
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland
| | - Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland
| |
Collapse
|
14
|
Okura GC, Bharadwaj AG, Waisman DM. Calreticulin-From the Endoplasmic Reticulum to the Plasma Membrane-Adventures of a Wandering Protein. Cancers (Basel) 2025; 17:288. [PMID: 39858072 PMCID: PMC11764459 DOI: 10.3390/cancers17020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca2+-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca2+ homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER. However, the identification of CRT in the nucleus and cytosol has established that CRT is a multi-compartmental, multifunctional protein. CRT also plays an important role in cancer progression. Most recently, CRT was identified on the cell surface and shown to be a potent 'eat-me' signal that plays a key role in the uptake of apoptotic and viable cancer cells by phagocytes. Elevated CRT exposure on the outer leaflet of cancer cells has been linked with anticancer immunity and superior therapeutic outcomes in patients with non-small cell lung carcinoma, colorectal carcinoma, acute myeloid leukemia, ovarian cancer, and high-grade serous carcinomas. Mutations in the CRT gene have been identified in a subset of patients with myeloproliferative neoplasms. The most recent studies from our laboratory have revealed a new and significant function for extracellular CRT as a plasminogen receptor. This discovery has profound implications for our understanding of the role of CRT in myeloproliferative neoplasms, specifically, essential thrombocythemia.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
15
|
Boonrungsiman S, Allen C, Nudelman F, Shefelbine S, Farquharson C, Porter AE, Fleck RA. Endochondral ossification: Insights into the cartilage mineralization processes achieved by an anhydrous freeze substitution protocol. Acta Biomater 2025; 191:149-157. [PMID: 39542200 DOI: 10.1016/j.actbio.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Growth plate cartilage (GP) serves as a dynamic site of active mineralization and offers a unique opportunity to investigate the cell-regulated matrix mineralization process. Transmission electron microscopy (TEM) provides a means for the direct observation of these mechanisms, offering the necessary resolution and chemical analysis capabilities. However, as mineral crystallinity is prone to artifacts using aqueous fixation protocols, sample preparation techniques are critical to preserve the mineralized tissue in its native form. We optimized cryofixation by high-pressure freezing followed by freeze substitution in anhydrous acetone containing 0.5 % uranyl acetate to prepare murine GP for TEM analysis. This sample preparation workflow maintains cellular and extracellular protein structural integrity with sufficient contrast for observation and without compromising mineral crystallinity. By employing appropriate sample preparation techniques, we were able to observe two parallel mineralization processes driven by chondrocytes: 1) intracellular- and 2) extracellular-originating mineralized vesicles. Both mechanisms are based on sequestering calcium phosphate (CaP) within a membrane-limited structure, albeit originating from different compartments of the chondrocytes. In the intracellular originating pathway, CaP accumulates within mitochondria as globular CaP granules, which are incorporated into intracellular vesicles (500-1000 nm) and transported as granules to the extracellular matrix (ECM). In contrast, membrane budding vesicles with a size of approximately 100-200 nm, filled with needle-shaped minerals were observed only in the ECM. Both processes transport CaP to the collagenous matrix via vesicles, they can be differentiated based on the vesicle size and mineral morphologies. Their individual importance to the cartilage mineralization process is yet to be determined. STATEMENT OF SIGNIFICANCE: We do not fully understand the process by which epiphyseal cartilage mineralizes - a vital step in endochondral bone formation. Previous work has proposed that mitochondria and intracellular vesicles are storage sites for the delivery of mineral to collagen fibrils. However, these concepts are founded on results from in vitro models of mineralization; no prior work has observed mineral-containing intracellular vesicles or mitochondria in developing epiphyseal cartilage. Here we developed a new cryofixation preparation route for transmission electron microscopy (TEM) imaging that has disclosed a cell-regulated process of mineralization in epiphyseal cartilage. High resolution TEM images revealed an involvement of mitochondria and intracellular and extracellular vesicles in delivering transient mineral phases to the collagen fibrils to promote cartilage mineralization.
Collapse
Affiliation(s)
- Suwimon Boonrungsiman
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Christopher Allen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Fabio Nudelman
- School of Chemistry, University of Edinburgh, King's Buildings, Edinburgh EH9 3FJ, UK
| | - Sandra Shefelbine
- Department of Mechanical and Industrial Engineering and Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Colin Farquharson
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
16
|
Dos Santos BM, Pecenin MF, Borges-Pereira L, Springer E, Przyborski JM, Martins-Jr DC, Hashimoto RF, Garcia CRS. The genetically encoded calcium indicator GCaMP3 reveals spontaneous calcium oscillations at asexual stages of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2024; 260:111650. [PMID: 39151473 DOI: 10.1016/j.molbiopara.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Most protocols used to study the dynamics of calcium (Ca2+) in the malaria parasite are based on dyes, which are invasive and do not allow discrimination between the signal from the host cell and the parasite. To avoid this pitfall, we have generated a parasite line expressing the genetically encoded calcium sensor GCaMP3. The PfGCaMP3 parasite line is an innovative tool for studying spontaneous intracellular Ca2+ oscillations without external markers. Using this parasite line, we demonstrate the occurrence of spontaneous Ca2+ oscillations in the ring, trophozoite, and schizont stages in Plasmodium falciparum. Using the Fourier transform to fluorescence intensity data extracted from different experiments, we observe cytosolic Ca2+ fluctuations. These spontaneous cytosolic Ca2+ oscillations occur in the three intraerythrocytic stages of the parasite, with most oscillations occurring in the ring and trophozoite stages. A control parasite line expressing only a GFP control did not reveal such fluctuations, demonstrating the specificity of the observations. Our results clearly show dynamic, spontaneous Ca2+ oscillations during the asexual stage in P. falciparum, independent from external stimuli.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Mateus F Pecenin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Eric Springer
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - David C Martins-Jr
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André 09606-045, Brazil
| | - Ronaldo F Hashimoto
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-000, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
17
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Mitochondrial Dysfunction in Cardiac Disease: The Fort Fell. Biomolecules 2024; 14:1534. [PMID: 39766241 PMCID: PMC11673776 DOI: 10.3390/biom14121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Myocardial cells and the extracellular matrix achieve their functions through the availability of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on the balance between energy production and consumption. The energy produced is utilized in various forms, including kinetic, dynamic, and thermal energy. Although total energy remains nearly constant, the contribution of each form changes over time. Thermal energy increases, while dynamic and kinetic energy decrease, ultimately becoming insufficient to adequately support cardiac function. As a result, toxic byproducts, unfolded or misfolded proteins, free radicals, and other harmful substances accumulate within the myocardium. This leads to the failure of crucial processes such as myocardial contraction-relaxation coupling, ion exchange, cell growth, and regulation of apoptosis and necrosis. Consequently, both the micro- and macro-architecture of the heart are altered. Energy production and consumption depend on the heart's metabolic resources and the functional state of the cardiac structure, including cardiomyocytes, non-cardiomyocyte cells, and their metabolic and energetic behavior. Mitochondria, which are intracellular organelles that produce more than 95% of ATP, play a critical role in fulfilling all these requirements. Therefore, it is essential to gain a deeper understanding of their anatomy, function, and homeostatic properties.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Dimitrios Farmakis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
18
|
Braun MM, Sheehan BK, Shapiro SL, Ding Y, Rubinstein CD, Lehman BP, Puglielli L. Ca +2 and Nε-lysine acetylation regulate the CALR-ATG9A interaction in the lumen of the endoplasmic reticulum. Sci Rep 2024; 14:25532. [PMID: 39462136 PMCID: PMC11513142 DOI: 10.1038/s41598-024-76854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The acetylation of autophagy protein 9 A (ATG9A) in the lumen of the endoplasmic reticulum (ER) by ATase1 and ATase2 regulates the induction of reticulophagy. Analysis of the ER-specific ATG9A interactome identified calreticulin (CALR), an ER luminal Ca+2-binding chaperone, as key for ATG9A activity. Specifically, if acetylated, ATG9A is sequestered by CALR and prevented from engaging FAM134B and SEC62. Under this condition, ATG9A is unable to activate the autophagy core machinery. In contrast, when non-acetylated, ATG9A is released by CALR and able to engage FAM134B and SEC62. In this study, we report that Ca+2 dynamics across the ER membrane regulate the ATG9A-CALR interaction as well as the ability of ATG9A to trigger reticulophagy. We show that the Ca+2-binding sites situated on the C-domain of CALR are essential for the ATG9A-CALR interaction. Finally, we show that K359 and K363 on ATG9A can influence the ATG9A-CALR interaction. Collectively, our results disclose a previously unidentified aspect of the complex mechanisms that regulate ATG9A activity. They also offer a possible area of intersection between Ca+2 metabolism, acetyl-CoA metabolism, and ER proteostasis.
Collapse
Affiliation(s)
- Megan M Braun
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brendan K Sheehan
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Samantha L Shapiro
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Yun Ding
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Lilly Oncology, San Diego, CA, 92121, USA
| | - C Dustin Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brent P Lehman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Luigi Puglielli
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
19
|
Scott ZC, Steen SB, Huber G, Westrate LM, Koslover EF. The endoplasmic reticulum as an active liquid network. Proc Natl Acad Sci U S A 2024; 121:e2409755121. [PMID: 39392663 PMCID: PMC11494354 DOI: 10.1073/pnas.2409755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The peripheral endoplasmic reticulum (ER) forms a dense, interconnected, and constantly evolving network of membrane-bound tubules in eukaryotic cells. While individual structural elements and the morphogens that stabilize them have been described, a quantitative understanding of the dynamic large-scale network topology remains elusive. We develop a physical model of the ER as an active liquid network, governed by a balance of tension-driven shrinking and new tubule growth. This minimalist model gives rise to steady-state network structures with density and rearrangement timescales predicted from the junction mobility and tubule spawning rate. Several parameter-independent geometric features of the liquid network model are shown to be representative of ER architecture in live mammalian cells. The liquid network model connects the timescales of distinct dynamic features such as ring closure and new tubule growth in the ER. Furthermore, it demonstrates how the steady-state network morphology on a cellular scale arises from the balance of microscopic dynamic rearrangements.
Collapse
Affiliation(s)
| | - Samuel B. Steen
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Greg Huber
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA94158
| | - Laura M. Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
20
|
De Pascali F, Inoue A, Benovic JL. Diverse pathways in GPCR-mediated activation of Ca 2+ mobilization in HEK293 cells. J Biol Chem 2024; 300:107882. [PMID: 39395798 PMCID: PMC11570840 DOI: 10.1016/j.jbc.2024.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
G protein-coupled receptors transduce extracellular stimuli into intracellular signaling. Ca2+ is a well-known second messenger that can be induced by G protein-coupled receptor activation through the primary canonical pathways involving Gαq- and Gβγ-mediated activation of phospholipase C-β (PLCβ). While some Gs-coupled receptors are shown to trigger Ca2+ mobilization, underlying mechanisms remain elusive. Here, we evaluated whether Gs-coupled receptors including the β2-adrenergic receptor (β2AR) and the prostaglandin EP2 and EP4 receptors (EP2R and EP4R) that are endogenously expressed in human embryonic kidney 293 (HEK293) cells utilize common pathways for mediating Ca2+ mobilization. For the β2AR, we found an essential role for Gq in agonist-promoted Ca2+ mobilization while genetic or pharmacological inhibition of Gs or Gi had minimal effect. β-agonist-promoted Ca2+ mobilization was effectively blocked by the Gq-selective inhibitor YM-254890 and was not observed in ΔGαq/11 or ΔPLCβ cells. Bioluminescence resonance energy transfer analysis also suggests agonist-dependent association of the β2AR with Gq. For the EP2R, which couples to Gs, agonist treatment induced Ca2+ mobilization in a pertussis toxin-sensitive but YM-254890-insensitive manner. In contrast, EP4R, which couples to Gs and Gi, exhibited Ca2+ mobilization that was sensitive to both pertussis toxin and YM-254890. Interestingly, both EP2R and EP4R were largely unable to induce Ca2+ mobilization in ΔGαs or ΔPLCβ cells, supporting a strong dependency on Gs signaling in HEK293 cells. Taken together, we identify differences in the signaling pathways that are used to mediate Ca2+ mobilization in HEK293 cells where the β2AR primarily uses Gq, EP2R uses Gs and Gi, and EP4R uses Gs, Gi, and Gq.
Collapse
Affiliation(s)
- Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Martínez-Carrasco R, Fini ME. Dynasore modulates store-operated calcium entry and mitochondrial calcium release in corneal epithelial cells. Exp Eye Res 2024; 247:110029. [PMID: 39127237 PMCID: PMC11413707 DOI: 10.1016/j.exer.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Dysregulation of calcium homeostasis can precipitate a cascade of pathological events that lead to tissue damage and cell death. Dynasore is a small molecule that inhibits endocytosis by targeting classic dynamins. In a previous study, we showed that dynasore can protect human corneal epithelial cells from damage due to tert-butyl hydroperoxide (tBHP) exposure by restoring cellular calcium (Ca2+) homeostasis. Here we report results of a follow-up study aimed at identifying the source of the damaging Ca2+. Store-operated Ca2+ entry (SOCE) is a cellular mechanism to restore intracellular calcium stores from the extracellular milieu. We found that dynasore effectively blocks SOCE in cells treated with thapsigargin (TG), a small molecule that inhibits pumping of Ca2+ into the endoplasmic reticulum (ER). Unlike dynasore however, SOCE inhibitor YM-58483 did not interfere with the cytosolic Ca2+ overload caused by tBHP exposure. We also found that dynasore effectively blocks Ca2+ release from internal sources. The inefficacy of inhibitors of ER Ca2+ channels suggested that this compartment was not the source of the Ca2+ surge caused by tBHP exposure. However, using a Ca2+-measuring organelle-entrapped protein indicator (CEPIA) reporter targeted to mitochondria, we found that dynasore can block mitochondrial Ca2+ release due to tBHP exposure. Our results suggest that dynasore exerts multiple effects on cellular Ca2+ homeostasis, with inhibition of mitochondrial Ca2+ release playing a key role in protection of corneal epithelial cells against oxidative stress due to tBHP exposure.
Collapse
Affiliation(s)
- Rafael Martínez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA; Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, USA; Program in Pharmacology & Drug Development, Tufts Graduate School of Biomedical Sciences, 136 Harrison Ave, Tufts University, Boston, MA, USA.
| |
Collapse
|
22
|
Xu Y, Qu X, Liang M, Huang D, Jin M, Sun L, Chen X, Liu F, Qiu Z. Focus on the role of calcium signaling in ferroptosis: a potential therapeutic strategy for sepsis-induced acute lung injury. Front Med (Lausanne) 2024; 11:1457882. [PMID: 39355841 PMCID: PMC11442327 DOI: 10.3389/fmed.2024.1457882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
By engaging in redox processes, ferroptosis plays a crucial role in sepsis-induced acute lung injury (ALI). Although iron stimulates calcium signaling through the stimulation of redox-sensitive calcium pathways, the function of calcium signals in the physiological process of ferroptosis in septic ALI remains unidentified. Iron homeostasis disequilibrium in ferroptosis is frequently accompanied by aberrant calcium signaling. Intracellular calcium overflow can be a symptom of dysregulation of the cellular redox state, which is characterized by iron overload during the early phase of ferroptosis. This can lead to disruptions in calcium homeostasis and calcium signaling. The mechanisms controlling iron homeostasis and ferroptosis are reviewed here, along with their significance in sepsis-induced acute lung injury, and the potential role of calcium signaling in these processes is clarified. We propose that the development of septic acute lung injury is a combined process involving the bidirectional interaction between iron homeostasis and calcium signaling. Our goal is to raise awareness about the pathophysiology of sepsis-induced acute lung injury and investigate the relationship between these mechanisms and ferroptosis. We also aimed to develop calcium-antagonistic therapies that target ferroptosis in septic ALI and improve the quality of survival for patients suffering from acute lung injury.
Collapse
Affiliation(s)
- Yifei Xu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintian Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minyan Jin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianhai Chen
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fen Liu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhanjun Qiu
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
23
|
Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res 2024; 208:107409. [PMID: 39284429 DOI: 10.1016/j.phrs.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, China
| | - Fukun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
24
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
25
|
Zhuang Z, Meng Y, Xue Y, Wang Y, Cheng X, Jing J. Adaptation of STIM1 structure-function relationships for optogenetic control of calcium signaling. J Biol Chem 2024; 300:107636. [PMID: 39122007 PMCID: PMC11402311 DOI: 10.1016/j.jbc.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.
Collapse
Affiliation(s)
- Zirui Zhuang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yu Xue
- School of Life Science, Tianjin University, Tianjin, China
| | - Yan Wang
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Xu Z, Shi Y, Zhu L, Luo J, Hu Q, Jiang S, Xiao M, Jiang X, Wang H, Xu Y, Jin W, Zhou Y, Wang P, Wang K. Novel SERCA2 inhibitor Diphyllin displays anti-tumor effect in non-small cell lung cancer by promoting endoplasmic reticulum stress and mitochondrial dysfunction. Cancer Lett 2024; 598:217075. [PMID: 38909775 DOI: 10.1016/j.canlet.2024.217075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Abnormal calcium signaling is associated with non-small cell lung cancer (NSCLC) malignant progression, poor survival and chemotherapy resistance. Targeting endoplasmic reticulum (ER) Ca2+ channels or pumps to block calcium uptake in the ER induces ER stress and concomitantly promotes mitochondrial calcium uptake, leading to mitochondrial dysfunction and ultimately inducing cell death. Here, we identified Diphyllin was a potential specific inhibitor of endoplasmic reticulum (ER) calcium-importing protein sarco/endoplasmic-reticulum Ca2+ ATPase 2 (SERCA2). In vitro and in vivo studies showed that Diphyllin increased NSCLC cell apoptosis, along with inhibition of cell proliferation and migration. Mechanistically, Diphyllin promoted ER stress by directly inhibiting SERCA2 activity and decreasing ER Ca2+ levels. At the same time, the accumulated Ca2+ in cytoplasm flowed into mitochondria to increase reactive oxygen species (ROS) and decrease mitochondrial membrane potential (MMP), leading to cytochrome C (Cyto C) release and mitochondrial dysfunction. In addition, we found that Diphyllin combined with cisplatin could have a synergistic anti-tumor effect in vitro and in vivo. Taken together, our results suggested that Diphyllin, as a potential novel inhibitor of SERCA2, exerts anti-tumor effects by blocking ER Ca2+ uptake and thereby promoting ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Liang Zhu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jianhua Luo
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China; Department of Respiratory Medicine, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| | - Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Sujing Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Xinyuan Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huan Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Wei Jin
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Pingli Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
27
|
Chhajer R, Bhattacharyya A, Ali N. Cell Death in Leishmania donovani promastigotes in response to Mammalian Aurora Kinase B Inhibitor- Hesperadin. Biomed Pharmacother 2024; 177:116960. [PMID: 38936193 DOI: 10.1016/j.biopha.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Deciphering how hesperadin, a repurposed mammalian aurora kinase B inhibitor, affects the cellular pathways in Leishmania donovani might be beneficial. This investigation sought to assess the physiological effects of hesperadin on promastigotes of L. donovani, by altering the duration of treatment following exposure to hesperadin. Groups pre-treated with inhibitors such as EGTA, NAC, and z-VAD-fmk before hesperadin exposure were also included. Morphological changes by microscopy, ATP and ROS changes by luminometry; DNA degradation using agarose gel electrophoresis and metacaspase levels through RT-PCR were assessed. Flow cytometry was used to study mitochondrial depolarization using JC-1 and MitoTracker Red; mitochondrial-superoxide accumulation using MitoSOX; plasma membrane modifications using Annexin-V and propidium iodide, and lastly, caspase activation using ApoStat. Significant alterations in promastigote morphology were noted. Caspase activity and mitochondrial-superoxide rose early after exposure whereas mitochondrial membrane potential demonstrated uncharacteristic variations, with significant functional disturbances such as leakage of superoxide radicals after prolonged treatments. ATP depletion and ROS accumulation demonstrated inverse patterns, genomic DNA showed fragmentation and plasma membrane showed Annexin-V binding, soon followed by propidium iodide uptake. Multilobed macronuclei and micronuclei accumulated in hesperadin exposed cells before they disintegrated into necrotic debris. The pathologic alterations were unlike the intrinsic or extrinsic pathways of classical apoptosis and suggest a caspase-mediated cell death most akin to mitotic-catastrophe. Most likely, a G2/M transition block caused accumulation of death signals, disorganized spindles and mechanical stresses, causing changes in morphology, organellar functions and ultimately promastigote death. Thus, death was a consequence of mitotic-arrest followed by ablation of kinetoplast functions, often implicated in L. donovani killing.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Anirban Bhattacharyya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
28
|
Zhou C, Cui H, Yang Y, Chen L, Feng M, Gao Y, Li D, Li L, Chen X, Li X, Cao Y. SEC61 translocon gamma subunit is correlated with glycolytic activity, epithelial mesenchymal transition and the immune suppressive phenotype of lung adenocarcinoma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1748-1760. [PMID: 38978503 PMCID: PMC11693863 DOI: 10.3724/abbs.2024109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 07/10/2024] Open
Abstract
Lung adenocarcinoma (LUAD) remains a predominant cause of cancer-related mortality globally, underscoring the urgency for targeted therapeutic strategies. The specific role and impact of the SEC61 translocon gamma subunit (SEC61G) in LUAD progression and metastasis remain largely unexplored. In this study, we use a multifaceted approach, combining bioinformatics analysis with experimental validation, to elucidate the pivotal role of SEC61G and its associated molecular mechanisms in LUAD. Our integrated analyses reveal a significant positive correlation between SEC61G expression and the glycolytic activity of LUAD, as evidenced by increased fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET)/CT scans. Further investigations show the potential influence of SEC61G on metabolic reprogramming, which contributes to the immunosuppressive tumor microenvironment (TME). Remarkably, we identify a negative association between SEC61G expression levels and the infiltration of critical immune cell populations within the TME, along with correlations with immune checkpoint gene expression and tumor heterogeneity scores in LUAD. Functional studies demonstrate that SEC61G knockdown markedly inhibits the migration of A549 and H2030 LUAD cells. This inhibitory effect is accompanied by a significant downregulation of key regulators of tumor progression, including hypoxia-inducible factor-1 alpha (HIF-1α), lactate dehydrogenase A, and genes involved in the epithelial-mesenchymal transition pathway. In conclusion, our comprehensive analyses position SEC61G as a potential prognostic biomarker intricately linked to glycolytic metabolism, the EMT pathway, and the establishment of an immune-suppressive phenotype in LUAD. These findings underscore the potential of SEC61G as a therapeutic target and predictive marker for immunotherapeutic responses in LUAD patients.
Collapse
Affiliation(s)
- Changshuai Zhou
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Huanhuan Cui
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yuechao Yang
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lei Chen
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Mingtao Feng
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yang Gao
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Deheng Li
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Liangdong Li
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xin Chen
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiaoqiu Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yiqun Cao
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
29
|
Wang D, Jia H, Cao H, Hou X, Wang Q, Lin J, Liu J, Yang L, Liu J. A Dual-Channel Ca 2+ Nanomodulator Induces Intracellular Ca 2+ Disorders via Endogenous Ca 2+ Redistribution for Tumor Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401222. [PMID: 38690593 DOI: 10.1002/adma.202401222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Tumor cells harness Ca2+ to maintain cellular homeostasis and withstand external stresses from various treatments. Here, a dual-channel Ca2+ nanomodulator (CAP-P-NO) is constructed that can induce irreversible intracellular Ca2+ disorders via the redistribution of tumor-inherent Ca2+ for disrupting cellular homeostasis and thus improving tumor radiosensitivity. Stimulated by tumor-overexpressed acid and glutathione, capsaicin and nitric oxide are successively escaped from CAP-P-NO to activate the transient receptor potential cation channel subfamily V member 1 and the ryanodine receptor for the influx of extracellular Ca2+ and the release of Ca2+ in the endoplasmic reticulum, respectively. The overwhelming level of Ca2+ in tumor cells not only impairs the function of organelles but also induces widespread changes in the gene transcriptome, including the downregulation of a set of radioresistance-associated genes. Combining CAP-P-NO treatment with radiotherapy achieves a significant suppression against both pancreatic and patient-derived hepatic tumors with negligible side effects. Together, the study provides a feasible approach for inducing tumor-specific intracellular Ca2+ overload via endogenous Ca2+ redistribution and demonstrates the great potential of Ca2+ disorder therapy in enhancing the sensitivity for tumor radiotherapy.
Collapse
Affiliation(s)
- Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Qian Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jia Lin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lijun Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
30
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
31
|
Song T, Hui W, Huang M, Guo Y, Yu M, Yang X, Liu Y, Chen X. Dynamic Changes in Ion Channels during Myocardial Infarction and Therapeutic Challenges. Int J Mol Sci 2024; 25:6467. [PMID: 38928173 PMCID: PMC11203447 DOI: 10.3390/ijms25126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
In different areas of the heart, action potential waveforms differ due to differences in the expressions of sodium, calcium, and potassium channels. One of the characteristics of myocardial infarction (MI) is an imbalance in oxygen supply and demand, leading to ion imbalance. After MI, the regulation and expression levels of K+, Ca2+, and Na+ ion channels in cardiomyocytes are altered, which affects the regularity of cardiac rhythm and leads to myocardial injury. Myocardial fibroblasts are the main effector cells in the process of MI repair. The ion channels of myocardial fibroblasts play an important role in the process of MI. At the same time, a large number of ion channels are expressed in immune cells, which play an important role by regulating the in- and outflow of ions to complete intracellular signal transduction. Ion channels are widely distributed in a variety of cells and are attractive targets for drug development. This article reviews the changes in different ion channels after MI and the therapeutic drugs for these channels. We analyze the complex molecular mechanisms behind myocardial ion channel regulation and the challenges in ion channel drug therapy.
Collapse
Affiliation(s)
- Tongtong Song
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenting Hui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Min Huang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yan Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Meiyi Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xiaoyu Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yanqing Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| |
Collapse
|
32
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
33
|
Dobson JR, Jacobson DA. Disrupted Endoplasmic Reticulum Ca 2+ Handling: A Harβinger of β-Cell Failure. BIOLOGY 2024; 13:379. [PMID: 38927260 PMCID: PMC11200644 DOI: 10.3390/biology13060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The β-cell workload increases in the setting of insulin resistance and reduced β-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in β-cell ER stress. The depletion of β-cell Ca2+ER during ER stress activates the unfolded protein response, leading to β-cell dysfunction. Ca2+ER is involved in many pathways that are critical to β-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote β-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving β-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve β-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control β-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to β-cell failure.
Collapse
Affiliation(s)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
34
|
Acreman S, Ma J, Denwood G, Gao R, Tarasov A, Rorsman P, Zhang Q. The endoplasmic reticulum plays a key role in α-cell intracellular Ca 2+ dynamics and glucose-regulated glucagon secretion in mouse islets. iScience 2024; 27:109665. [PMID: 38646167 PMCID: PMC11033163 DOI: 10.1016/j.isci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.
Collapse
Affiliation(s)
- Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Hwangbo H, Park C, Bang E, Kim HS, Bae SJ, Kim E, Jung Y, Leem SH, Seo YR, Hong SH, Kim GY, Hyun JW, Choi YH. Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress. Biomol Ther (Seoul) 2024; 32:349-360. [PMID: 38602043 PMCID: PMC11063479 DOI: 10.4062/biomolther.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngmi Jung
- Department of Biological Sciences, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang 10326, Republic of Korea
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| |
Collapse
|
36
|
Skowyra ML, Feng P, Rapoport TA. Towards solving the mystery of peroxisomal matrix protein import. Trends Cell Biol 2024; 34:388-405. [PMID: 37743160 PMCID: PMC10957506 DOI: 10.1016/j.tcb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Peroxisomes are vital metabolic organelles that import their lumenal (matrix) enzymes from the cytosol using mobile receptors. Surprisingly, the receptors can even import folded proteins, but the underlying mechanism has been a mystery. Recent results reveal how import receptors shuttle cargo into peroxisomes. The cargo-bound receptors move from the cytosol across the peroxisomal membrane completely into the matrix by a mechanism that resembles transport through the nuclear pore. The receptors then return to the cytosol through a separate retrotranslocation channel, leaving the cargo inside the organelle. This cycle concentrates imported proteins within peroxisomes, and the energy for cargo import is supplied by receptor export. Peroxisomal protein import thus fundamentally differs from other previously known mechanisms for translocating proteins across membranes.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Zeng Y, Zhao J, Wu Z, Huang Y, Wang A, Zhu J, Xu M, Zhang W, Zhang X, Li J, Huang JA, Liu Z. Targeting TYK2 alleviates Rab27A-induced malignant progression of non-small cell lung cancer via disrupting IFNα-TYK2-STAT-HSPA5 axis. NPJ Precis Oncol 2024; 8:74. [PMID: 38521810 PMCID: PMC10960821 DOI: 10.1038/s41698-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024] Open
Abstract
Rab27A is a small GTPase-mediating exosome secretion, which participates in tumorigenesis of multiple cancer types. Understanding the biological role of Rab27A in non-small cell lung cancer (NSCLC) is of great importance for oncological research and clinical treatment. In this study, we investigate the function and internal mechanism of Rab27A in NSCLC. Results show that Rab27A is overexpressed in NSCLC, and regulates the tumor proliferation, migration, invasion, and cell motility in vitro and in vivo, and is negatively regulated by miR-124. Further research reveals that upregulated Rab27A can induce the production of IFNα in the medium by mediating exosome secretion. Then IFNα activates TYK2/STAT/HSPA5 signaling to promote NSCLC cell proliferation and metastasis. This process can be suppressed by TYK2 inhibitor Cerdulatinib. These results suggest that Rab27A is involved in the pathogenesis of NSCLC by regulating exosome secretion and downstream signaling, and inhibitors targeting this axis may become a promising strategy in future clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China
| | - Jian Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Zhengyan Wu
- Department of Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Suzhou, China
| | - Yongkang Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China
| | - Mengmeng Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Xiaohui Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China.
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China.
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China.
| |
Collapse
|
38
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
39
|
Song SE, Shin SK, Ju HY, Im SS, Song DK. Role of cytosolic and endoplasmic reticulum Ca 2+ in pancreatic beta-cells: pros and cons. Pflugers Arch 2024; 476:151-161. [PMID: 37940681 DOI: 10.1007/s00424-023-02872-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic beta cells utilize Ca2+ to secrete insulin in response to glucose. The glucose-dependent increase in cytosolic Ca2+ concentration ([Ca2+]C) activates a series of insulin secretory machinery in pancreatic beta cells. Therefore, the amount of insulin secreted in response to glucose is determined in a [Ca2+]C-dependent manner, at least within a moderate range. However, the demand for insulin secretion may surpass the capability of beta cells. Abnormal elevation of [Ca2+]C levels beyond the beta-cell endurance capacity can damage them by inducing endoplasmic reticulum (ER) stress and cell death programs such as apoptosis. Therefore, while Ca2+ is essential for the insulin secretory functions of beta cells, it could affect their survival at pathologically higher levels. Because an increase in beta-cell [Ca2+]C is inevitable under certain hazardous conditions, understanding the regulatory mechanism for [Ca2+]C is important. Therefore, this review discusses beta-cell function, survival, ER stress, and apoptosis associated with intracellular and ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Seung-Eun Song
- Department of Physiology & Obesity-Mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-Daeroro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, South Korea
| | - Hyeon Yeong Ju
- Department of Physiology & Obesity-Mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-Daeroro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung-Soon Im
- Department of Physiology & Obesity-Mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-Daeroro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Dae-Kyu Song
- Department of Physiology & Obesity-Mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-Daeroro, Dalseo-Gu, Daegu, 42601, South Korea.
| |
Collapse
|
40
|
Zhao J, He C, Fan X, Wang L, Zhao L, Liu H, Shen W, Jiang S, Pei K, Gao J, Qi Y, Liu Y, Zhao J, Zhang R, Lu C, Tong J, Huai J. Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1. Theranostics 2024; 14:1390-1429. [PMID: 38389851 PMCID: PMC10879859 DOI: 10.7150/thno.92571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Tripeptidyl peptidase II (TPP2) has been proven to be related to human immune and neurological diseases. It is generally considered as a cytosolic protein which forms the largest known protease complex in eukaryotic cells to operate mostly downstream of proteasomes for degradation of longer peptides. However, this canonical function of TPP2 cannot explain its role in a wide variety of biological and pathogenic processes. The mechanistic interrelationships and hierarchical order of these processes have yet to be clarified. Methods: Animals, cells, plasmids, and viruses established and/or used in this study include: TPP2 knockout mouse line, TPP2 conditional knockout mouse lines (different neural cell type oriented), TRE-TPP2 knockin mouse line on the C57BL/6 background; 293T cells with depletion of TPP2, ATF6, IRE1, PERK, SYVN1, UCHL1, ATG5, CEPT1, or CCTα, respectively; 293T cells stably expressing TPP2, TPP2 S449A, TPP2 S449T, or CCTα-KDEL proteins on the TPP2-depleted background; Plasmids for eukaryotic transient expression of rat CYP19A1-Flag, CYP19A1 S118A-Flag, CYP19A1 S118D-Flag, Sac I ML GFP Strand 11 Long, OMMGFP 1-10, G-CEPIA1er, GCAMP2, CEPIA3mt, ACC-GFP, or SERCA1-GFP; AAV2 carrying the expression cassette of mouse CYP19A1-3 X Flag-T2A-ZsGreen. Techniques used in this study include: Flow cytometry, Immunofluorescence (IF) staining, Immunohistochemical (IHC) staining, Luxol fast blue (LFB) staining, β-galactosidase staining, Lipid droplet (LD) staining, Calcium (Ca2+) staining, Stimulated emission depletion (STED) imaging, Transmission electron microscopic imaging, Two-photon imaging, Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end Labeling (TUNEL) assay, Bromodeoxyuridine (BrdU) assay, Enzymatic activity assay, Proximity ligation assay (PLA), In vivo electrophysiological recording, Long-term potentiation (LTP) recording, Split-GFP-based mitochondria-associated membrane (MAM) detection, Immunoprecipitation (IP), Cellular fractionation, In situ hybridization, Semi-quantitative RT-PCR, Immunoblot, Mass spectrometry-based lipidomics, metabolomics, proteomics, Primary hippocampal neuron culture and Morris water maze (MWM) test. Results: We found that TPP2, independent of its enzymatic activity, plays a crucial role in maintaining the homeostasis of intracellular Ca2+ and phosphatidylcholine (PC) in the central nervous system (CNS) of mice. In consistence with the critical importance of Ca2+ and PC in the CNS, TPP2 gene ablation causes presenile dementia in female mice, which is closely associated with Ca2+/PC dysregulation-induced endoplasmic reticulum (ER) stress, abnormal autophagic degradation of CYP19A1 (aromatase), and estrogen depletion. This work therefore uncovers a new role of TPP2 in lipogenesis and neurosteroidogenesis which is tightly related to cognitive function of adult female mice. Conclusion: Our study reveals a crucial role of TPP2 in controlling homeostasis of Ca2+ and lipids in CNS, and its deficiency causes sexual dimorphism in dementia. Thus, this study is not only of great significance for elucidating the pathogenesis of dementia and its futural treatment, but also for interpreting the role of TPP2 in other systems and their related disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Chengtong He
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Lin Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Liao Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Hui Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Wujun Shen
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Sanwei Jiang
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
| | - Kaixuan Pei
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jingjing Gao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yawei Qi
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yang Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Junqiang Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Ruiling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Chengbiao Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
- Senior author for electrophysiological experiments and related analysis
| | - Jia Tong
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| |
Collapse
|
41
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. Cell Commun Signal 2024; 22:39. [PMID: 38225580 PMCID: PMC10789007 DOI: 10.1186/s12964-023-01461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). METHODS We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 µM acetaldehyde (ALD), or e-Cig (1.75 µg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. RESULTS ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. CONCLUSION Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
Affiliation(s)
- Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Namdev Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
42
|
Gao X, Keller KR, Bonzerato CG, Li P, Laemmerhofer M, Wojcikiewicz RJH. The ubiquitin-proteasome pathway inhibitor TAK-243 has major effects on calcium handling in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119618. [PMID: 37907195 DOI: 10.1016/j.bbamcr.2023.119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major route for protein degradation and a key regulatory mechanism in mammalian cells. UPP inhibitors, including TAK-243, a first-in-class inhibitor of the E1 ubiquitin-activating enzyme, are currently being used and tested for treatment of a range of diseases, particularly cancer. Here, we reveal that TAK-243 has major effects on Ca2+ handling in a range of cultured mammalian cells (αT3, HeLa and SH-SY5Y). Effects were seen on agonist-induced Ca2+ mobilization, basal cytosolic Ca2+ levels, Ca2+ leak from the endoplasmic reticulum (ER), store-operated Ca2+ entry and mitochondrial Ca2+ uptake. These effects correlated with induction of ER stress, as measured by PERK activation / eIF2α phosphorylation, and most seemed to be underpinned by enhanced Ca2+ leak from the ER. Overall, these data indicate that TAK-243 reprograms the Ca2+-handling properties of mammalian cells and that these effects should be considered when UPP inhibitors are employed as therapeutic agents.
Collapse
Affiliation(s)
- Xiaokong Gao
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Peng Li
- Institute of Pharmaceutical Sciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Michael Laemmerhofer
- Institute of Pharmaceutical Sciences, University of Tuebingen, Tuebingen 72076, Germany
| | | |
Collapse
|
43
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
44
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. RESEARCH SQUARE 2023:rs.3.rs-3552555. [PMID: 38014253 PMCID: PMC10680944 DOI: 10.21203/rs.3.rs-3552555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). Methods We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 μM acetaldehyde (ALD), or e-Cig (1.75μg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. Results ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. Conclusion Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
|
45
|
Davis-Anderson K, Micheva-Viteva S, Solomon E, Hovde B, Cirigliano E, Harris J, Twary S, Iyer R. CRISPR/Cas9 Directed Reprogramming of iPSC for Accelerated Motor Neuron Differentiation Leads to Dysregulation of Neuronal Fate Patterning and Function. Int J Mol Sci 2023; 24:16161. [PMID: 38003351 PMCID: PMC10671572 DOI: 10.3390/ijms242216161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Neurodegeneration causes a significant disease burden and there are few therapeutic interventions available for reversing or slowing the disease progression. Induced pluripotent stem cells (iPSCs) hold significant potential since they are sourced from adult tissue and have the capacity to be differentiated into numerous cell lineages, including motor neurons. This differentiation process traditionally relies on cell lineage patterning factors to be supplied in the differentiation media. Genetic engineering of iPSC with the introduction of recombinant master regulators of motor neuron (MN) differentiation has the potential to shorten and streamline cell developmental programs. We have established stable iPSC cell lines with transient induction of exogenous LHX3 and ISL1 from the Tet-activator regulatory region and have demonstrated that induction of the transgenes is not sufficient for the development of mature MNs in the absence of neuron patterning factors. Comparative global transcriptome analysis of MN development from native and Lhx-ISL1 modified iPSC cultures demonstrated that the genetic manipulation helped to streamline the neuronal patterning process. However, leaky gene expression of the exogenous MN master regulators in iPSC resulted in the premature activation of genetic pathways characteristic of the mature MN function. Dysregulation of metabolic and regulatory pathways within the developmental process affected the MN electrophysiological responses.
Collapse
Affiliation(s)
- Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Sofiya Micheva-Viteva
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Emilia Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Blake Hovde
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Elisa Cirigliano
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer Harris
- Information Systems and Modeling Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Rashi Iyer
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| |
Collapse
|
46
|
Sakai‐Takemura F, Saito F, Nogami K, Maruyama Y, Elhussieny A, Matsumura K, Takeda S, Aoki Y, Miyagoe‐Suzuki Y. Antioxidants restore store-operated Ca 2+ entry in patient-iPSC-derived myotubes with tubular aggregate myopathy-associated Ile484ArgfsX21 STIM1 mutation via upregulation of binding immunoglobulin protein. FASEB Bioadv 2023; 5:453-469. [PMID: 37936920 PMCID: PMC10626159 DOI: 10.1096/fba.2023-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.
Collapse
Affiliation(s)
- Fusako Sakai‐Takemura
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Fumiaki Saito
- Department of Neurology, School of MedicineTeikyo UniversityTokyoJapan
| | - Ken'ichiro Nogami
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Neurological Institute, Graduate School of Medical ScienceKyushu UniversityFukuokaJapan
| | - Yusuke Maruyama
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Gene Regulation, Faculty of Pharmaceutical ScienceTokyo University of ScienceChibaJapan
| | - Ahmed Elhussieny
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Faculty of MedicineMinia UniversityMiniaEgypt
| | | | - Shin'ichi Takeda
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuko Miyagoe‐Suzuki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
47
|
Dhureja M, Arthur R, Soni D, Upadhayay S, Temgire P, Kumar P. Calcium channelopathies in neurodegenerative disorder: an untold story of RyR and SERCA. Expert Opin Ther Targets 2023; 27:1159-1172. [PMID: 37971192 DOI: 10.1080/14728222.2023.2277863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Recent neuroscience breakthroughs have shed light on the sophisticated relationship between calcium channelopathies and movement disorders, exposing a previously undiscovered tale focusing on the Ryanodine Receptor (RyR) and the Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA). Calcium signaling mainly orchestrates neural communication, which regulates synaptic transmission and total network activity. It has been determined that RyR play a significant role in managing neuronal functions, most notably in releasing intracellular calcium from the endoplasmic reticulum. AREAS COVERED It highlights the involvement of calcium channels such as RyR and SERCA in physiological and pathophysiological conditions. EXPERT OPINION Links between RyR and SERCA activity dysregulation, aberrant calcium levels, motor and cognitive dysfunction have brought attention to the importance of RyR and SERCA modulation in neurodegenerative disorders. Understanding the obscure function of these proteins will open up new therapeutic possibilities to address the underlying causes of neurodegenerative diseases. The unreported RyR and SERCA narrative broadens the understanding of calcium channelopathies in movement disorders and calls for more research into cutting-edge therapeutic approaches.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
48
|
Woo TT, Williams JM, Tsai B. How host ER membrane chaperones and morphogenic proteins support virus infection. J Cell Sci 2023; 136:jcs261121. [PMID: 37401530 PMCID: PMC10357032 DOI: 10.1242/jcs.261121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
The multi-functional endoplasmic reticulum (ER) is exploited by viruses to cause infection. Morphologically, this organelle is a highly interconnected membranous network consisting of sheets and tubules whose levels are dynamic, changing in response to cellular conditions. Functionally, the ER is responsible for protein synthesis, folding, secretion and degradation, as well as Ca2+ homeostasis and lipid biosynthesis, with each event catalyzed by defined ER factors. Strikingly, these ER host factors are hijacked by viruses to support different infection steps, including entry, translation, replication, assembly and egress. Although the full repertoire of these ER factors that are hijacked is unknown, recent studies have uncovered several ER membrane machineries that are exploited by viruses - ranging from polyomavirus to flavivirus and coronavirus - to facilitate different steps of their life cycle. These discoveries should provide better understanding of virus infection mechanisms, potentially leading to the development of more effective anti-viral therapies.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109,USA
| | - Jeffrey M. Williams
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109,USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109,USA
| |
Collapse
|
49
|
Martinez-Amaro FJ, Garcia-Padilla C, Franco D, Daimi H. LncRNAs and CircRNAs in Endoplasmic Reticulum Stress: A Promising Target for Cardiovascular Disease? Int J Mol Sci 2023; 24:9888. [PMID: 37373035 DOI: 10.3390/ijms24129888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The endoplasmic reticulum (ER) is a principal subcellular organelle responsible for protein quality control in the secretory pathway, preventing protein misfolding and aggregation. Failure of protein quality control in the ER triggers several molecular mechanisms such as ER-associated degradation (ERAD), the unfolded protein response (UPR) or reticulophagy, which are activated upon ER stress (ERS) to re-establish protein homeostasis by transcriptionally and translationally regulated complex signalling pathways. However, maintenance over time of ERS leads to apoptosis if such stress cannot be alleviated. The presence of abnormal protein aggregates results in loss of cardiomyocyte protein homeostasis, which in turn results in several cardiovascular diseases such as dilated cardiomyopathy (DCM) or myocardial infarction (MI). The influence of a non-coding genome in the maintenance of proper cardiomyocyte homeostasis has been widely proven. To date, the impact of microRNAs in molecular mechanisms orchestrating ER stress response has been widely described. However, the role of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) is just beginning to be addressed given the potential role of these RNA classes as therapeutic molecules. Here, we provide a current state-of-the-art review of the roles of distinct lncRNAs and circRNAs in the modulation of ERS and UPR and their impact in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Carlos Garcia-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Houria Daimi
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
- Department of Biology, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia
| |
Collapse
|
50
|
Sharma A, Sari E, Lee Y, Patel S, Brenner M, Marambaud P, Wang P. Extracellular CIRP Induces Calpain Activation in Neurons via PLC-IP 3-Dependent Calcium Pathway. Mol Neurobiol 2023; 60:3311-3328. [PMID: 36853429 PMCID: PMC10506840 DOI: 10.1007/s12035-023-03273-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Abnormal calcium homeostasis, activation of protease calpain, generation of p25 and hyperactivation of cyclin-dependent kinase 5 (Cdk5) have all been implicated in the pathogenesis of neurogenerative diseases including Alzheimer's disease. We have recently shown that extracellular cold-inducible RNA-binding protein (eCIRP) induces Cdk5 activation via p25. However, the precise molecular mechanism by which eCIRP regulates calcium signaling and calpain remains to be addressed. We hypothesized that eCIRP regulates p25 via Ca2+-dependent calpain activation. eCIRP increased calpain activity and decreased the endogenous calpain inhibitor calpastatin in Neuro 2a (N2a) cells. Calpain inhibition with calpeptin attenuated eCIRP-induced calpain activity and p25. eCIRP specifically upregulated cytosolic calpain 1, and calpain 1 silencing attenuated the eCIRP-induced increase in p25. eCIRP stimulation increased cytosolic free Ca2+, especially in hippocampal neuronal HT22 cells, which was attenuated by the eCIRP inhibitor Compound 23 (C23). Endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor (IP3R) inhibition using 2-aminoethoxy-diphenyl-borate or xestospongin-C (X-C), interleukin-6 receptor alpha (IL-6Rα)-neutralization, and phospholipase C (PLC) inhibition with U73122 attenuated eCIRP-induced Ca2+ increase, while Ca2+ influx across the plasma membrane remained unaffected by eCIRP. Finally, C23, IL-6Rα antibody, U73122 and X-C attenuated eCIRP-induced p25 in HT-22 cells. In conclusion, the current study uncovers eCIRP-triggered Ca2+ release from ER stores in an IL-6Rα/PLC/IP3-dependent manner as a novel molecular mechanism underlying eCIRP's induction of Cdk5 activity and potential involvement in neurodegeneration.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Ezgi Sari
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Shivani Patel
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- The Litwin-Zucker Center for Alzheimer's Disease Research, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|