1
|
Hu B, Messerer M, Haberer G, Lux T, Marosi V, Mayer KFX, Oliphant KD, Kaufholdt D, Schulze J, Kreth LS, Jurgeleit J, Geffers R, Hänsch R, Rennenberg H. Genomic and transcriptomic insights into legume-rhizobia symbiosis in the nitrogen-fixing tree Robinia pseudoacacia. THE NEW PHYTOLOGIST 2025; 246:2522-2536. [PMID: 40149007 DOI: 10.1111/nph.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Robinia pseudoacacia L. (black locust) is a nitrogen (N)-fixing legume tree with significant ecological and agricultural importance. Unlike well-studied herbaceous legumes, R. pseudoacacia is a perennial woody species, representing an understudied group of legume trees that establish symbiosis with Mesorhizobium. Understanding its genomic and transcriptional responses to nodulation provides key insights into N fixation in long-lived plants and their role in ecosystem N cycling. We assembled a high-quality 699.6-Mb reference genome and performed transcriptomic analyses comparing inoculated and noninoculated plants. Differential expression and co-expression network analyses revealed organ-specific regulatory pathways, identifying key genes associated with symbiosis, nutrient transport, and stress adaptation. Unlike Medicago truncatula, which predominantly responds to nodulation in roots, R. pseudoacacia exhibited stem-centered transcriptional reprogramming, with the majority of differentially expressed genes located in stems rather than in roots. Co-expression network analysis identified gene modules associated with "leghemoglobins", metal detoxification, and systemic nutrient allocation, highlighting a coordinated long-distance response to N fixation. This study establishes R. pseudoacacia as a genomic model for nodulating trees, providing essential resources for evolutionary, ecological, and applied research. These findings have significant implications for reforestation, phytoremediation, forestry, and sustainable N management, particularly in depleted, degraded, and contaminated soil ecosystems.
Collapse
Affiliation(s)
- Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Vanda Marosi
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354, Freising, Germany
| | - Kevin D Oliphant
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - David Kaufholdt
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Jutta Schulze
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Lana-Sophie Kreth
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Jens Jurgeleit
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| |
Collapse
|
2
|
Volpe V, Chialva M, Mazzarella T, Crosino A, Capitanio S, Costamagna L, Kohlen W, Genre A. Long-lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 237:2316-2331. [PMID: 36564991 DOI: 10.1111/nph.18697] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The establishment of arbuscular mycorrhiza (AM) between plants and Glomeromycotina fungi is preceded by the exchange of chemical signals: fungal released Myc-factors, including chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCO), activate plant symbiotic responses, while root-exuded strigolactones stimulate hyphal branching and boost CO release. Furthermore, fungal signaling reinforcement through CO application was shown to promote AM development in Medicago truncatula, but the cellular and molecular bases of this effect remained unclear. Here, we focused on long-term M. truncatula responses to CO treatment, demonstrating its impact on the transcriptome of both mycorrhizal and nonmycorrhizal roots over several weeks and providing an insight into the mechanistic bases of the CO-dependent promotion of AM colonization. CO treatment caused the long-lasting regulation of strigolactone biosynthesis and fungal accommodation-related genes. This was mirrored by an increase in root didehydro-orobanchol content, and the promotion of accommodation responses to AM fungi in root epidermal cells. Lastly, an advanced downregulation of AM symbiosis marker genes was observed at the latest time point in CO-treated plants, in line with an increased number of senescent arbuscules. Overall, CO treatment triggered molecular, metabolic, and cellular responses underpinning a protracted acceleration of AM development.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Andrea Crosino
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Serena Capitanio
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Lorenzo Costamagna
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, 6708, PB, the Netherlands
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
3
|
Carrere S, Verdier J, Gamas P. MtExpress, a Comprehensive and Curated RNAseq-based Gene Expression Atlas for the Model Legume Medicago truncatula. PLANT & CELL PHYSIOLOGY 2021; 62:1494-1500. [PMID: 34245304 DOI: 10.1093/pcp/pcab110] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 05/25/2023]
Abstract
Although RNA sequencing (RNAseq) has been becoming the main transcriptomic approach in the model legume Medicago truncatula, there is currently no genome-wide gene expression atlas covering the whole set of RNAseq data published for this species. Nowadays, such a tool is highly valuable to provide a global view of gene expression in a wide range of conditions and tissues/organs. Here, we present MtExpress, a gene expression atlas that compiles an exhaustive set of published M. truncatula RNAseq data (https://medicago.toulouse.inrae.fr/MtExpress). MtExpress makes use of recent releases of M. truncatula genome sequence and annotation, as well as up-to-date tools to perform mapping, quality control, statistical analysis and normalization of RNAseq data. MtExpress combines semi-automated pipelines with manual re-labeling and organization of samples to produce an attractive and user-friendly interface, fully integrated with other available Medicago genomic resources. Importantly, MtExpress is highly flexible, in terms of both queries, e.g. allowing searches with gene names and orthologous gene IDs from Arabidopsis and other legume species, and outputs, to customize visualization and redirect gene study to relevant Medicago webservers. Thanks to its semi-automated pipeline, MtExpress will be frequently updated to follow the rapid pace of M. truncatula RNAseq data publications, as well as the constant improvement of genome annotation. MtExpress also hosts legacy GeneChip expression data originally stored in the Medicago Gene Expression Atlas, as a very valuable and complementary resource.
Collapse
Affiliation(s)
- Sebastien Carrere
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, 31320 Auzeville-Tolosane, Castanet-Tolosan 31320, France
| | - Jerome Verdier
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, 42 Rue Georges Morel, 49070 Beaucouzé, Angers 49000, France
| | - Pascal Gamas
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, 31320 Auzeville-Tolosane, Castanet-Tolosan 31320, France
| |
Collapse
|
4
|
Carrï Re SB, Verdenaud M, Gough C, Gouzy JRM, Gamas P. LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula. PLANT & CELL PHYSIOLOGY 2020; 61:203-211. [PMID: 31605615 DOI: 10.1093/pcp/pcz177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/28/2019] [Indexed: 05/28/2023]
Abstract
Medicago truncatula was proposed, about three decades ago, as a model legume to study the Rhizobium-legume symbiosis. It has now been adopted to study a wide range of biological questions, including various developmental processes (in particular root, symbiotic nodule and seed development), symbiotic (nitrogen-fixing and arbuscular mycorrhizal endosymbioses) and pathogenic interactions, as well as responses to abiotic stress. With a number of tools and resources set up in M. truncatula for omics, genetics and reverse genetics approaches, massive amounts of data have been produced, as well as four genome sequence releases. Many of these data were generated with heterogeneous tools, notably for transcriptomics studies, and are consequently difficult to integrate. This issue is addressed by the LeGOO (for Legume Graph-Oriented Organizer) knowledge base (https://www.legoo.org), which finds the correspondence between the multiple identifiers of the same gene. Furthermore, an important goal of LeGOO is to collect and represent biological information from peer-reviewed publications, whatever the technical approaches used to obtain this information. The information is modeled in a graph-oriented database, which enables flexible representation, with currently over 200,000 relations retrieved from 298 publications. LeGOO also provides the user with mining tools, including links to the Mt5.0 genome browser and associated information (on gene functional annotation, expression, methylome, natural diversity and available insertion mutants), as well as tools to navigate through different model species. LeGOO is, therefore, an innovative database that will be useful to the Medicago and legume community to better exploit the wealth of data produced on this model species.
Collapse
Affiliation(s)
| | - Marion Verdenaud
- Laboratoire Reproduction et D�veloppement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69364, France
| | - Clare Gough
- LIPM, Universit� de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Jï Rï Me Gouzy
- LIPM, Universit� de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pascal Gamas
- LIPM, Universit� de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
5
|
Sakamoto K, Ogiwara N, Kaji T, Sugimoto Y, Ueno M, Sonoda M, Matsui A, Ishida J, Tanaka M, Totoki Y, Shinozaki K, Seki M. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. JOURNAL OF PLANT RESEARCH 2019; 132:541-568. [PMID: 31165947 DOI: 10.1007/s10265-019-01117-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/25/2019] [Indexed: 05/11/2023]
Abstract
Soybean (Glycine max) roots establish associations with nodule-inducing rhizobia and arbuscular mycorrhizal (AM) fungi. Both rhizobia and AM fungi have been shown to affect the activity of and colonization by the other, and their interactions can be detected within host plants. Here, we report the transcription profiles of genes differentially expressed in soybean roots in the presence of rhizobial, AM, or rhizobial-AM dual symbiosis, compared with those in control (uninoculated) roots. Following inoculation, soybean plants were grown in a glasshouse for 6 weeks; thereafter their root transcriptomes were analyzed using an oligo DNA microarray. Among the four treatments, the root nodule number and host plant growth were highest in plants with dual symbiosis. We observed that the expression of 187, 441, and 548 host genes was up-regulated and 119, 1,439, and 1,298 host genes were down-regulated during rhizobial, AM, and dual symbiosis, respectively. The expression of 34 host genes was up-regulated in each of the three symbioses. These 34 genes encoded several membrane transporters, type 1 metallothionein, and transcription factors in the MYB and bHLH families. We identified 56 host genes that were specifically up-regulated during dual symbiosis. These genes encoded several nodulin proteins, phenylpropanoid metabolism-related proteins, and carbonic anhydrase. The nodulin genes up-regulated by the AM fungal colonization probably led to the observed increases in root nodule number and host plant growth. Some other nodulin genes were down-regulated specifically during AM symbiosis. Based on the results above, we suggest that the contribution of AM fungal colonization is crucial to biological N2-fixation and host growth in soybean with rhizobial-AM dual symbiosis.
Collapse
Affiliation(s)
- Kazunori Sakamoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
| | - Natsuko Ogiwara
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Tomomitsu Kaji
- JA ZEN-NOH Research and Development Center, 4-18-1 Higashiyawata, Hiratsuka, Kanagawa, 254-0016, Japan
| | - Yurie Sugimoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Mitsuru Ueno
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Masatoshi Sonoda
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
6
|
Burks D, Azad R, Wen J, Dickstein R. The Medicago truncatula Genome: Genomic Data Availability. Methods Mol Biol 2018; 1822:39-59. [PMID: 30043295 DOI: 10.1007/978-1-4939-8633-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Medicago truncatula emerged in 1990 as a model for legumes, comprising the third largest land plant family. Most legumes form symbiotic nitrogen-fixing root nodules with compatible soil bacteria and thus are important contributors to the global nitrogen cycle and sustainable agriculture. Legumes and legume products are important sources for human and animal protein as well as for edible and industrial oils. In the years since M. truncatula was chosen as a legume model, many genetic, genomic, and molecular resources have become available, including reference quality genome sequences for two widely used genotypes. Accessibility of genomic data is important for many different types of studies with M. truncatula as well as for research involving crop and forage legumes. In this chapter, we discuss strategies to obtain archived M. truncatula genomic data originally deposited into custom databases that are no longer maintained but are now accessible in general databases. We also review key current genomic databases that are specific to M. truncatula as well as those that contain M. truncatula data in addition to data from other plants.
Collapse
Affiliation(s)
- David Burks
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Rajeev Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA.,Department of Mathematics, University of North Texas, Denton, TX, USA
| | | | - Rebecca Dickstein
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| |
Collapse
|
7
|
Le Signor C, Vernoud V, Noguero M, Gallardo K, Thompson RD. Functional Genomics and Seed Development in Medicago truncatula: An Overview. Methods Mol Biol 2018; 1822:175-195. [PMID: 30043305 DOI: 10.1007/978-1-4939-8633-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study of seed development in the model species Medicago truncatula has made a significant contribution to our understanding of this process in crop legumes. Thanks to the availability of comprehensive proteomics and transcriptomics databases, coupled with exhaustive mutant collections, the roles of several regulatory genes in development and maturation are beginning to be deciphered and functionally validated. Advances in next-generation sequencing and the availability of a genomic sequence have made feasible high-density SNP genotyping, allowing the identification of markers tightly linked to traits of agronomic interest. A further major advance is to be expected from the integration of omics resources in functional network construction, which has been used recently to identify "hub" genes central to important traits.
Collapse
Affiliation(s)
- Christine Le Signor
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Vanessa Vernoud
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Mélanie Noguero
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Richard D Thompson
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
8
|
Curto M, Krajinski F, Schlereth A, Rubiales D. Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection. FRONTIERS IN PLANT SCIENCE 2015; 6:517. [PMID: 26217367 PMCID: PMC4496563 DOI: 10.3389/fpls.2015.00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 05/21/2023]
Abstract
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.
Collapse
Affiliation(s)
- Miguel Curto
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| | - Franziska Krajinski
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Armin Schlereth
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Diego Rubiales
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| |
Collapse
|
9
|
Mandyam KG, Jumpponen A. Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol 2015; 5:776. [PMID: 25628615 PMCID: PMC4290590 DOI: 10.3389/fmicb.2014.00776] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
Plant tissues host a variety of fungi. One important group is the dark septate endophytes (DSEs) that colonize plant roots and form characteristic intracellular structures - melanized hyphae and microsclerotia. The DSE associations are common and frequently observed in various biomes and plant taxa. Reviews suggest that the proportion of plant species colonized by DSE equal that colonized by AM and microscopic studies show that the proportion of the root system colonized by fungi DSE can equal, or even exceed, the colonization by AM fungi. Despite the high frequency and suspected ecological importance, the effects of DSE colonization on plant growth and performance have remained unclear. Here, we draw from over a decade of experimentation with the obscure DSE symbiosis and synthesize across large bodies of published and unpublished data from Arabidopsis thaliana and Allium porrum model systems as well as from experiments that use native plants to better resolve the host responses to DSE colonization. The data indicate similar distribution of host responses in model and native plant studies, validating the use of model plants for tractable dissection of DSE symbioses. The available data also permit empirical testing of the environmental modulation of host responses to DSE colonization and refining the "mutualism-parasitism-continuum" paradigm for DSE symbioses. These data highlight the context dependency of the DSE symbioses: not only plant species but also ecotypes vary in their responses to populations of conspecific DSE fungi - environmental conditions further shift the host responses similar to those predicted based on the mutualism-parasitism-continuum paradigm. The model systems provide several established avenues of inquiry that permit more detailed molecular and functional dissection of fungal endophyte symbioses, identifying thus likely mechanisms that may underlie the observed host responses to endophyte colonization.
Collapse
Affiliation(s)
| | - Ari Jumpponen
- Division of Biology, Ecological Genomics Institute, Kansas State UniversityManhattan, KS, USA
| |
Collapse
|
10
|
Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E. Unraveling the effect of arsenic on the model Medicago-Ensifer interaction: a transcriptomic meta-analysis. THE NEW PHYTOLOGIST 2015; 205:255-272. [PMID: 25252248 DOI: 10.1111/nph.13009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
The genetic regulation underlying the effect of arsenic (As(III)) on the model symbiosis Medicago-Ensifer was investigated using a combination of physiological (split-roots), microscopy and genetic (microarrays, qRT-PCR and composite plants) tools. Nodulation was very sensitive to As(III) (median inhibitory dose (ID50) = 20 μM). The effect on root elongation and on nodulation was local (nonsystemic). A battery of stress (salt, drought, heat shock, metals, etc.)-related genes were induced. Glutathione played a pivotal role in tolerance/detoxification, together with secondary metabolites ((iso)flavonoids and phenylpropanoids). However, antioxidant enzymes were not activated. Concerning the symbiotic interaction, molecular evidence suggesting that rhizobia alleviate As stress is for the first time provided. Chalcone synthase (which is involved in the first step of the legume-rhizobia cross-talk) was strongly enhanced, suggesting that the plants are biased to establish symbiotic interactions under As(III) stress. In contrast, 13 subsequent nodulation genes (involved in nodulation factors (Nod factors) perception, infection, thread initiation and progression, and nodule morphogenesis) were repressed. Overexpression of the ethylene responsive factor ERN in composite plants reduced root stress and partially restored nodulation, whereas overexpression of the early nodulin ENOD12 enhanced nodulation both in the presence and, particularly, in the absence of As, without affecting root elongation. Several transcription factors were identified, which could be additional targets for genetic engineering aiming to improve nodulation and/or alleviate root stress induced by this toxic.
Collapse
Affiliation(s)
- Alejandro Lafuente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:680. [PMID: 25520732 PMCID: PMC4251294 DOI: 10.3389/fpls.2014.00680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Sulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM) interaction improves N, P, and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis. Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.
Collapse
Affiliation(s)
- Daniel Wipf
- UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, Université de BourgogneDijon, France
| | - Gaëlle Mongelard
- CRRBM and BIOPI EA3900, Université de Picardie Jules VerneAmiens, France
| | - Diederik van Tuinen
- Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRSDijon, France
| | - Laurent Gutierrez
- CRRBM and BIOPI EA3900, Université de Picardie Jules VerneAmiens, France
| | - Leonardo Casieri
- UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, Université de BourgogneDijon, France
| |
Collapse
|
12
|
Rech SS, Heidt S, Requena N. A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:711-25. [PMID: 23662629 DOI: 10.1111/tpj.12242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 05/04/2023]
Abstract
Plant proteases and protease inhibitors are involved in plant developmental processes including those involving interactions with microbes. Here we show that a tandem between a Kunitz protease inhibitor (KPI106) and a serine carboxypeptidase (SCP1) controls arbuscular mycorrhiza development in the root cortex of Medicago truncatula. Both proteins are only induced during mycorrhiza formation and belong to large families whose members are also mycorrhiza-specific. Furthermore, the interaction between KPI106 and SCP1 analysed using the yeast two-hybrid system is specific, indicating that each family member might have a defined counterpart. In silico docking analysis predicted a putative P1 residue in KPI106 (Lys173) that fits into the catalytic pocket of SCP1, suggesting that KPI106 might inhibit the enzyme activity by mimicking the protease substrate. In vitro mutagenesis of the Lys173 showed that this residue is important in determining the strength and specificity of the interaction. The RNA interference (RNAi) inactivation of the serine carboxypeptidase SCP1 produces aberrant mycorrhizal development with an increased number of septated hyphae and degenerate arbuscules, a phenotype also observed when overexpressing KPI106. Protease and inhibitor are both secreted as observed when expressed in Nicotiana benthamiana epidermal cells. Taken together we envisage a model in which the protease SCP1 is secreted in the apoplast where it produces a peptide signal critical for proper fungal development within the root. KPI106 also at the apoplast would modulate the spatial and/or temporal activity of SCP1 by competing with the protease substrate.
Collapse
Affiliation(s)
- Stefanie S Rech
- Department of Molecular Phytopathology, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76187, Germany
| | | | | |
Collapse
|
13
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
14
|
Salvioli A, Bonfante P. Systems biology and "omics" tools: a cooperation for next-generation mycorrhizal studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:107-14. [PMID: 23415334 DOI: 10.1016/j.plantsci.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 05/12/2023]
Abstract
Omics tools constitute a powerful means of describing the complexity of plants and soil-borne microorganisms. Next generation sequencing technologies, coupled with emerging systems biology approaches, seem promising to represent a new strategy in the study of plant-microbe interactions. Arbuscular mycorrhizal fungi (AMF) are ubiquitous symbionts of plant roots, that provide their host with many benefits. However, as obligate biotrophs, AMF show a genetic, cellular and physiological complexity that makes the study of their biology as well as their effective agronomical exploitation rather difficult. Here, we speculate that the increasing availability of omics data on mycorrhiza and of computational tools that allow systems biology approaches represents a step forward in the understanding of arbuscular mycorrhizal symbiosis. Furthermore, the application of this study-perspective to agriculturally relevant model plants, such as tomato and rice, will lead to a better in-field exploitation of this beneficial symbiosis in the frame of low-input agriculture.
Collapse
Affiliation(s)
- Alessandra Salvioli
- Department of Life Sciences and Systems Biology, Viale Mattioli 25 - 10125 Torino, Italy.
| | | |
Collapse
|
15
|
Albornos L, Martín I, Iglesias R, Jiménez T, Labrador E, Dopico B. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae. BMC PLANT BIOLOGY 2012; 12:207. [PMID: 23134664 PMCID: PMC3499167 DOI: 10.1186/1471-2229-12-207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. RESULTS ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. CONCLUSIONS We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found.
Collapse
Affiliation(s)
- Lucía Albornos
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Ignacio Martín
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Rebeca Iglesias
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Teresa Jiménez
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Emilia Labrador
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| | - Berta Dopico
- Dpto. de Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Plaza Doctores de la Reina s/n. Campus Miguel Unamuno, Salamanca, 37007, Spain
| |
Collapse
|
16
|
Giovannetti M, Balestrini R, Volpe V, Guether M, Straub D, Costa A, Ludewig U, Bonfante P. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC PLANT BIOLOGY 2012; 12:186. [PMID: 23046713 PMCID: PMC3533510 DOI: 10.1186/1471-2229-12-186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/18/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arbuscular mycorrhizas (AM) are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. RESULTS A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. CONCLUSIONS Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Torino and IPP-CNR, Viale Mattioli 25, Torino, 10125, Italy
| | - Raffaella Balestrini
- Department of Life Sciences and Systems Biology, University of Torino and IPP-CNR, Viale Mattioli 25, Torino, 10125, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Torino and IPP-CNR, Viale Mattioli 25, Torino, 10125, Italy
| | - Mike Guether
- Department of Life Sciences and Systems Biology, University of Torino and IPP-CNR, Viale Mattioli 25, Torino, 10125, Italy
- Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, D-76187, Germany
| | - Daniel Straub
- Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 20, Stuttgart, 70599, Germany
| | - Alex Costa
- Department of Life Sciences, University of Milano, Via Celoria 26, Milano, 20133, Italy
| | - Uwe Ludewig
- Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 20, Stuttgart, 70599, Germany
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino and IPP-CNR, Viale Mattioli 25, Torino, 10125, Italy
| |
Collapse
|
17
|
Kamphuis LG, Williams AH, Küster H, Trengove RD, Singh KB, Oliver RP, Ellwood SR. Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula. MOLECULAR PLANT PATHOLOGY 2012; 13:593-603. [PMID: 22212347 PMCID: PMC6638703 DOI: 10.1111/j.1364-3703.2011.00767.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gene expression changes and metabolite abundances were measured during the interaction of Medicago truncatula with the fungal necrotrophic pathogen Phoma medicaginis in leaf tissue of susceptible and resistant accessions. Over 330 genes were differentially expressed in plants infected with P. medicaginis relative to mock-inoculated plants at 12 h post-inoculation. Of these, 191 were induced in either the resistant or the susceptible accession, with 143 genes repressed. Expression changes were observed in genes involved in the oxidative burst, cell wall strengthening and lipid metabolism, as well as several transcription factors. Genes related to salicylic acid, jasmonate and ethylene responses were up-regulated, as well as genes leading to the production of jasmonic acid. Significant induction of genes in the phenylpropanoid pathway leading to lignin and isoflavonoid biosynthesis occurred. High-pressure liquid chromatography with UV detection (HPLC-UV) identified several phenolic compounds induced by P. medicaginis, as well as constitutively higher levels of phenolic compounds, in the resistant M. truncatula accession. Differentially regulated genes induced in both the resistant and susceptible accessions, but with different kinetics, and constitutively more highly expressed and induced phenolic compounds provide candidates for functional analysis. Taken together, these results highlight the importance of the octadecanoid and phenylpropanoid pathways in defence against this necrotrophic pathogen.
Collapse
|
18
|
Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Dénarié J, Küster H, Hohnjec N. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. PLANT PHYSIOLOGY 2012; 159:1671-85. [PMID: 22652128 PMCID: PMC3425205 DOI: 10.1104/pp.112.195990] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The formation of root nodules and arbuscular mycorrhizal (AM) roots is controlled by a common signaling pathway including the calcium/calmodulin-dependent kinase Doesn't Make Infection3 (DMI3). While nodule initiation by lipochitooligosaccharide (LCO) Nod factors is well characterized, diffusible AM fungal signals were only recently identified as sulfated and nonsulfated LCOs. Irrespective of different outcomes, the perception of symbiotic LCOs in Medicago truncatula is mediated by the LysM receptor kinase M. truncatula Nod factor perception (MtNFP). To shed light on transcriptional responses toward symbiotic LCOs and their dependence on MtNFP and Ca(2+) signaling, we performed genome-wide expression studies of wild-type, Nod-factor-perception mutant1, and dmi3 mutant roots challenged with Myc- and Nod-LCOs. We show that Myc-LCOs lead to transient, quick responses in the wild type, whereas Nod-LCOs require prolonged incubation for maximal expression activation. While Nod-LCOs are most efficient for an induction of persistent transcriptional changes, sulfated Myc-LCOs are less active, and nonsulfated Myc-LCOs display the lowest capacity to activate and sustain expression. Although all symbiotic LCOs up-regulated a common set of genes, discrete subsets were induced by individual LCOs, suggesting common and specific functions for these in presymbiotic signaling. Surprisingly, even sulfated fungal Myc-LCOs and Sinorhizobium meliloti Nod-LCOs, having very similar structures, each elicited discrete subsets of genes, while a mixture of both Myc-LCOs activated responses deviating from those induced by single treatments. Focusing on the precontact phase, we identified signaling-related and transcription factor genes specifically up-regulated by Myc-LCOs. Comparative gene expression studies in symbiotic mutants demonstrated that transcriptional reprogramming by AM fungal LCOs strictly depends on MtNFP and largely requires MtDMI3.
Collapse
|
19
|
Takanashi K, Takahashi H, Sakurai N, Sugiyama A, Suzuki H, Shibata D, Nakazono M, Yazaki K. Tissue-specific transcriptome analysis in nodules of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:869-76. [PMID: 22432875 DOI: 10.1094/mpmi-01-12-0011-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legume plants can establish symbiotic nitrogen fixation (SNF) with rhizobia mostly in root nodules, where rhizobia-infected cells are accompanied by uninfected cells in a mosaic pattern. Inside the mature nodules of the legume, carbon and nitrogen nutrients between host plant cells and their resident bacteria are actively exchanged. To elucidate the metabolite dynamics relevant for SNF in nodules, three tissues from a nodule of a model legume, Lotus japonicus, were isolated using laser microdissesction, and transcriptome analysis was done by an oligoarray of 60-mer length representing 21,495 genes. In our tissue-specific profiling, many genes were identified as being expressed in nodules in a spatial-specific manner. Among them, genes coding for metabolic enzymes were classified according to their function, and detailed data analysis showed that a secondary metabolic pathway was highly activated in the nodule cortex. In particular, a number of metabolic genes for a phenylpropanoid pathway were found as highly expressed genes accompanied by those encoding putative transporters of secondary metabolites. These data suggest the involvement of a novel physiological function of phenylpropanoids in SNF. Moreover, five representative genes were selected, and detailed tissue-specific expression was characterized by promoter-β-glucuronidase experiments. Our results provide a new data source for investigation of both nodule differentiation and tissue-specific physiological functions in nodules.
Collapse
Affiliation(s)
- Kojiro Takanashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. PLANT PHYSIOLOGY 2011; 157:2023-43. [PMID: 22034628 PMCID: PMC3327204 DOI: 10.1104/pp.111.186635] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/26/2011] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Helge Küster
- Institut für Pflanzengenetik, Leibniz Universität Hannover, D–30419 Hannover, Germany (C.H., D.A., N.H., H.K.); Instituto Gulbenkian de Ciência, 2780–156 Oeiras, Portugal (P.A.P., J.D.B.)
| |
Collapse
|
21
|
Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 2011; 12:28. [PMID: 21226971 PMCID: PMC3027157 DOI: 10.1186/1471-2164-12-28] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/13/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Ascochyta blight, caused by Mycosphaerella pinodes is one of the most important pea pathogens. However, little is known about the genes and mechanisms of resistance acting against M. pinodes in pea. Resistance identified so far to this pathogen is incomplete, polygenic and scarce in pea, being most common in Pisum relatives. The identification of the genes underlying resistance would increase our knowledge about M. pinodes-pea interaction and would facilitate the introgression of resistance into pea varieties. In the present study differentially expressed genes in the resistant P. sativum ssp. syriacum accession P665 comparing to the susceptible pea cv. Messire after inoculation with M. pinodes have been identified using a M. truncatula microarray. RESULTS Of the 16,470 sequences analysed, 346 were differentially regulated. Differentially regulated genes belonged to almost all functional categories and included genes involved in defense such as genes involved in cell wall reinforcement, phenylpropanoid and phytoalexins metabolism, pathogenesis- related (PR) proteins and detoxification processes. Genes associated with jasmonic acid (JA) and ethylene signal transduction pathways were induced suggesting that the response to M. pinodes in pea is regulated via JA and ET pathways. Expression levels of ten differentially regulated genes were validated in inoculated and control plants using qRT-PCR showing that the P665 accession shows constitutively an increased expression of the defense related genes as peroxidases, disease resistance response protein 39 (DRR230-b), glutathione S-transferase (GST) and 6a-hydroxymaackiain methyltransferase. CONCLUSIONS Through this study a global view of genes expressed during resistance to M. pinodes has been obtained, giving relevant information about the mechanisms and pathways conferring resistance to this important disease. In addition, the M. truncatula microarray represents an efficient tool to identify candidate genes controlling resistance to M. pinodes in pea.
Collapse
Affiliation(s)
- Sara Fondevilla
- Department of Genetics, University of Córdoba, Campus de Rabanales, E-14071, Córdoba, Spain
| | - Helge Küster
- Institute for Plant Genetics, Unit IV - Plant Genomics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Franziska Krajinski
- Max-Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Muehlenberg 1, 14476,Potsdam, Germany
| | - José I Cubero
- Department of Genetics, University of Córdoba, Campus de Rabanales, E-14071, Córdoba, Spain
| | - Diego Rubiales
- CSIC, Institute for Sustainable Agriculture, Apdo. 4084, E-14080,Córdoba, Spain
| |
Collapse
|
22
|
Parádi I, van Tuinen D, Morandi D, Ochatt S, Robert F, Jacas L, Dumas-Gaudot E. Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1175-1183. [PMID: 20687807 DOI: 10.1094/mpmi-23-9-1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycorrhizal mutants of the wild-type J5 was assessed. Strictly AM-penetration-defective TRV25-C and TRV25-D (dmi3, Mtsym13), hypomycorrhizal TR25 and TR89 (dmi2, Mtsym2) mutants, and a hypermycorrhizal mutant TRV17 (sunn, Mtsym12) were compared with J5 3 and 7 weeks after inoculation. No MtBcp1 transcripts were detected in the mutants blocked at the appressoria stage. Conversely, TR25, TR89, and J5 showed a gradual increase of the expression of both MtBcp1 genes in 3- and 7-week-old plants, similar to the increase in colonization intensity and arbuscule abundance. The strong correlation between the expression level of AM-specific blue copper-binding protein-encoding genes and AM colonization may imply a basic role in symbiotic functioning for these genes, which may serve as new molecular markers of arbuscule development in M. truncatula.
Collapse
Affiliation(s)
- István Parádi
- UMR 1088 INRA/5184 CNRS/Université de Bourgogne, Plante-Microbe-Environnement, INRA-CMSE, Dijon BP 86510, 21065 Dijon Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kuznetsova E, Seddas-Dozolme PMA, Arnould C, Tollot M, van Tuinen D, Borisov A, Gianinazzi S, Gianinazzi-Pearson V. Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices. MYCORRHIZA 2010; 20:427-43. [PMID: 20094894 DOI: 10.1007/s00572-009-0292-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/11/2009] [Indexed: 05/12/2023]
Abstract
The arbuscular mycorrhiza association results from a successful interaction between genomes of the plant and fungal symbiotic partners. In this study, we analyzed the effect of inactivation of late-stage symbiosis-related pea genes on symbiosis-associated fungal and plant molecular responses in order to gain insight into their role in the functional mycorrhizal association. The expression of a subset of ten fungal and eight plant genes, previously reported to be activated during mycorrhiza development, was compared in Glomus intraradices-inoculated wild-type and isogenic genotypes of pea mutated for the PsSym36, PsSym33, and PsSym40 genes where arbuscule formation is inhibited or fungal turnover modulated, respectively. Microdissection was used to corroborate arbuscule-related fungal gene expression. Molecular responses varied between pea genotypes and with fungal development. Most of the fungal genes were downregulated when arbuscule formation was defective, and several were upregulated with more rapid fungal development. Some of the plant genes were also affected by inactivation of the PsSym36, PsSym33, and PsSym40 loci, but in a more time-dependent way during root colonization by G. intraradices. Results indicate a role of the late-stage symbiosis-related pea genes not only in mycorrhiza development but also in the symbiotic functioning of arbuscule-containing cells.
Collapse
Affiliation(s)
- Elena Kuznetsova
- UMR 1088 INRA/5184 CNRS/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, 21065 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yendrek CR, Lee YC, Morris V, Liang Y, Pislariu CI, Burkart G, Meckfessel MH, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier DJ, Journet EP, Harris JM, Dickstein R. A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:100-12. [PMID: 20088899 DOI: 10.1111/j.1365-313x.2010.04134.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Legume root architecture involves not only elaboration of the root system by the formation of lateral roots but also the formation of symbiotic root nodules in association with nitrogen-fixing soil rhizobia. The Medicago truncatula LATD/NIP gene plays an essential role in the development of both primary and lateral roots as well as nodule development. We have cloned the LATD/NIP gene and show that it encodes a member of the NRT1(PTR) transporter family. LATD/NIP is expressed throughout the plant. pLATD/NIP-GFP promoter-reporter fusions in transgenic roots establish the spatial expression of LATD/NIP in primary root, lateral root and nodule meristems and the surrounding cells. Expression of LATD/NIP is regulated by hormones, in particular by abscisic acid which has been previously shown to rescue the primary and lateral root meristem arrest of latd mutants. latd mutants respond normally to ammonium but have defects in responses of the root architecture to nitrate. Taken together, these results suggest that LATD/NIP may encode a nitrate transporter or transporter of another compound.
Collapse
Affiliation(s)
- Craig R Yendrek
- Department of Plant Biology, University of Vermont, Burlington, VT 05405-0086, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gomez SK, Harrison MJ. Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. PEST MANAGEMENT SCIENCE 2009; 65:504-511. [PMID: 19206091 DOI: 10.1002/ps.1715] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phosphorus is essential for plant growth, and in many soils phosphorus availability limits crop production. Most plants in natural ecosystems obtain phosphorus via a symbiotic partnership with arbuscular mycorrhizal (AM) fungi. While the significance of these associations is apparent, their molecular basis is poorly understood. Consequently, the potential to harness the mycorrhizal symbiosis to improve phosphorus nutrition in agriculture is not realized. Transcript profiling has recently been used to investigate gene expression changes that accompany development of the AM symbiosis. While these approaches have enabled the identification of AM-symbiosis-associated genes, they have generally involved the use of RNA from whole mycorrhizal roots. Laser microdissection techniques allow the dissection and capture of individual cells from a tissue. RNA can then be isolated from these samples and cell-type specific gene expression information can be obtained. This technology has been applied to obtain cells from plants and more recently to study plant-microbe interactions. The latter techniques, particularly those developed for root-microbe interactions, are of relevance to plant-parasitic weed research. Here, laser microdissection, its use in plant biology and in particular plant-microbe interactions are discussed. An overview of the AM symbiosis is then provided, with a focus on recent advances in understanding development of the arbuscule-cortical cell interface. Finally, the recent applications of laser microdissection for analyses of AM symbiosis are discussed.
Collapse
Affiliation(s)
- S Karen Gomez
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14850, USA
| | | |
Collapse
|
26
|
Mathesius U. Comparative proteomic studies of root–microbe interactions. J Proteomics 2009; 72:353-66. [DOI: 10.1016/j.jprot.2008.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 01/19/2023]
|
27
|
Young ND, Udvardi M. Translating Medicago truncatula genomics to crop legumes. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:193-201. [PMID: 19162532 DOI: 10.1016/j.pbi.2008.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 05/20/2023]
Abstract
Genomic resources developed in the model legume, Medicago truncatula, have the potential to accelerate practical advances in crop legumes. M. truncatula is closely related to many economically important legumes, frequently displaying genome-scale synteny. Translating genome data from M. truncatula should be highly effective in marker development, gene discovery, and positional cloning in crop legumes. The M. truncatula genome sequence also provides valuable insights about gene families of practical importance, especially those that are legume-specific. The M. truncatula genome sequence should also simplify the assembly of next-generation sequence data in closely related taxa, especially alfalfa. Genomic resources, such as whole-genome arrays, make it possible to pursue detailed questions about gene expression in both M. truncatula and related crop species, while tagged mutant populations simplify the process of determining gene function.
Collapse
Affiliation(s)
- Nevin Dale Young
- Department of Plant Pathology, 495 Borlaug Hall, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|
28
|
Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. PLANTA 2009; 229:1023-34. [PMID: 19169704 PMCID: PMC2757622 DOI: 10.1007/s00425-008-0877-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/10/2008] [Indexed: 05/20/2023]
Abstract
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by P(i) fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with P(i) or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of P(i) concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher P(i) levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices.
Collapse
Affiliation(s)
- Ulf Grunwald
- Max-Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Wenbing Guo
- Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg, 14979 Grossbeeren, Germany
- Root Biology Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Kerstin Fischer
- Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg, 14979 Grossbeeren, Germany
| | - Stanislav Isayenkov
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, POB 110432, 06018 Halle, Germany
- Biology Department, University of York, Area 9, York, YO10 5DD UK
| | - Jutta Ludwig-Müller
- Institute for Botany, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Bettina Hause
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, POB 110432, 06018 Halle, Germany
| | - Xiaolong Yan
- Root Biology Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Helge Küster
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | - Philipp Franken
- Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg, 14979 Grossbeeren, Germany
| |
Collapse
|
29
|
Seddas PMA, Arias CM, Arnould C, van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V. Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:341-351. [PMID: 19245328 DOI: 10.1094/mpmi-22-3-0341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To gain further insight into the role of the plant genome in arbuscular mycorrhiza (AM) establishment, we investigated whether symbiosis-related plant genes affect fungal gene expression in germinating spores and at the appressoria stage of root interactions. Glomus intraradices genes were identified in expressed sequence tag libraries of mycorrhizal Medicago truncatula roots by in silico expression analyses. Transcripts of a subset of genes, with predicted functions in transcription, protein synthesis, primary or secondary metabolism, or of unknown function, were monitored in spores and germinating spores and during interactions with roots of wild-type or mycorrhiza-defective (Myc-) mutants of M. truncatula. Not all the fungal genes were active in quiescent spores but all were expressed when G. intraradices spores germinated in wild-type M. truncatula root exudates or when appressoria or arbuscules were formed in association with wild-type M. truncatula roots. Most of the fungal genes were upregulated or induced at the stage of appressorium development. Inactivation of the M. truncatula genes DMI1, DMI2/MtSYM2, or DMI3/MtSYM13 was associated with altered fungal gene expression (nonactivation or inhibition), modified appressorium structure, and plant cell wall responses, providing first evidence that cell processes modified by symbiosis-related plant genes impact on root interactions by directly modulating AM fungal activity.
Collapse
Affiliation(s)
- Pascale M A Seddas
- UMR 1088 INRA/5184 CNRS/Université de Bourgogne, Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC PLANT BIOLOGY 2009; 9:10. [PMID: 19161626 PMCID: PMC2649119 DOI: 10.1186/1471-2229-9-10] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/22/2009] [Indexed: 05/06/2023]
Abstract
BACKGROUND Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR. RESULTS This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis. CONCLUSION Transcript profiling using the Affymetrix GeneChip Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser microdissection of M. truncatula root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.
Collapse
Affiliation(s)
- S Karen Gomez
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | - Hélène Javot
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
- CEA/Cadarache IBEB, Service de Biologie Végétale et de Microbiologie Environnementales, UMR 6191 CNRS-CEA-Aix Marseille Univ., F-13108 St. Paul Lez Durance, France
| | | | - Ivone Torres-Jerez
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yuhong Tang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Elison B Blancaflor
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Michael K Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Hohnjec N, Lenz F, Fehlberg V, Vieweg MF, Baier MC, Hause B, Küster H. The signal peptide of the Medicago truncatula modular nodulin MtNOD25 operates as an address label for the specific targeting of proteins to nitrogen-fixing symbiosomes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:63-72. [PMID: 19061403 DOI: 10.1094/mpmi-22-1-0063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The nodule-specific MtNOD25 gene of the model legume Medicago truncatula encodes a modular nodulin composed of different repetitive modules flanked by distinct N- and C-termini. Although similarities are low with respect to all repetitive modules, both the N-terminal signal peptide (SP) and the C-terminus are highly conserved in modular nodulins from different legumes. On the cellular level, MtNOD25 is only transcribed in the infected cells of root nodules, and this activation is mediated by a 299-bp minimal promoter containing an organ-specific element. By expressing mGFP6 translational fusions in transgenic nodules, we show that MtNOD25 proteins are exclusively translocated to the symbiosomes of infected cells. This specific targeting only requires an N-terminal MtNOD25 SP that is highly conserved across a family of legume-specific symbiosome proteins. Our finding sheds light on one possible mechanism for the delivery of host proteins to the symbiosomes of infected root nodule cells and, in addition, defines a short molecular address label of only 24 amino acids whose N-terminal presence is sufficient to translocate proteins across the peribacteroid membrane.
Collapse
Affiliation(s)
- Natalija Hohnjec
- Institute for Genome Research and Systems Biology (IGS), Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:398-410. [PMID: 18643982 DOI: 10.1111/j.1365-313x.2008.03610.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite its importance in determining seed composition, and hence quality, regulation of the development of legume seeds is incompletely understood. Because of the cardinal role played by the nucleus in gene expression and regulation, we have characterized the nuclear proteome of Medicago truncatula at the 12 days after pollination (dap) stage that marks the switch towards seed filling. Nano-liquid chromatography-tandem mass spectrometry analysis of nuclear protein bands excised from one-dimensional SDS-PAGE identified 179 polypeptides (143 different proteins), providing an insight into the complexity and distinctive feature of the seed nuclear proteome and highlighting new plant nuclear proteins with possible roles in the biogenesis of ribosomal subunits (PESCADILLO-like) or nucleocytoplasmic trafficking (dynamin-like GTPase). The results revealed that nuclei of 12-dap seeds store a pool of ribosomal proteins in preparation for intense protein synthesis activity, occurring subsequently during seed filling. Diverse proteins of the molecular machinery leading to the synthesis of ribosomal subunits were identified along with proteins involved in transcriptional regulation, RNA processing or transport. Some had already been shown to play a role during the early stages of seed formation whereas for others the findings are novel (e.g. the DIP2 and ES43 transcriptional regulators or the RNA silencing-related ARGONAUTE proteins). This study also revealed the presence of chromatin-modifying enzymes and RNA interference proteins that have roles in RNA-directed DNA methylation and may be involved in modifying genome architecture and accessibility during seed filling and maturation.
Collapse
Affiliation(s)
- Ombretta Repetto
- INRA, UMR102 Genetics and Ecophysiology of Grain Legumes, 21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, Verstappen FWA, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. PLANTA 2008; 228:789-801. [PMID: 18716794 DOI: 10.1007/s00425-008-0781-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 06/25/2008] [Indexed: 05/20/2023]
Abstract
Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC-MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formation.
Collapse
Affiliation(s)
- Zhongkui Sun
- Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Weigelt K, Küster H, Radchuk R, Müller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:909-26. [PMID: 18494854 DOI: 10.1111/j.1365-313x.2008.03560.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
SUMMARY The application of nitrogen to legumes regulates seed metabolism and composition. We recently showed that the seed-specific overexpression of amino acid permease VfAAP1 increases amino acid supply, and the levels of N and protein in the seeds. Two consecutive field trials using Pisum sativum AAP1 lines confirmed increases in the levels of N and globulin in seed; however, compensatory changes of sucrose/starch and individual seed weight were also observed. We present a comprehensive analysis of AAP1 seeds using combinatorial transcript and metabolite profiling to monitor the effects of nitrogen supply on seed metabolism. AAP1 seeds have increased amino acids and stimulated gene expression associated with storage protein synthesis, maturation, deposition and vesicle trafficking. Transcript/metabolite changes reveal the channelling of surplus N into the transient storage pools asparagine and arginine, indicating that asparagine synthase is transcriptionally activated by high N levels and/or C limitation. Increased C-acceptor demand for amino acid synthesis, resulting from elevated levels of N in seeds, initiates sucrose mobilization and sucrose-dependent pathways via sucrose synthase, glycolysis and the TCA cycle. The AAP1 seeds display a limitation in C, which leads to the catabolism of arginine, glutamic acid and methionine to putrescine, beta-alanine and succinate. Mitochondria are involved in the coordination of C/N metabolism, with branched-chain amino acid catabolism and a gamma-amino-butyric acid shunt. AAP1 seeds contain higher levels of ABA, which is possibly involved in storage-associated gene expression and the N-dependent stimulation of sucrose mobilization, indicating that a signalling network of C, N and ABA is operating during seed maturation. These results demonstrate that legume seeds have a high capacity to regulate N:C ratios, and highlight the importance of mitochondria in the control of N-C balance and amino acid homeostasis.
Collapse
Affiliation(s)
- Kathleen Weigelt
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Combier JP, Küster H, Journet EP, Hohnjec N, Gamas P, Niebel A. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1118-27. [PMID: 18616408 DOI: 10.1094/mpmi-21-8-1118] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
Collapse
Affiliation(s)
- Jean-Philippe Combier
- Laboratoire des Interactions Plantes Micro-organismes, UMR CNRS-INRA 2594/441, F-31320 Castanet Tolosan, France
| | | | | | | | | | | |
Collapse
|
36
|
Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E. A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics 2008; 6 Suppl 1:S145-55. [PMID: 16511816 DOI: 10.1002/pmic.200500403] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the most important morphological changes occurring in arbuscular mycorrhizal (AM) roots takes place when the plant plasma membrane (PM) invaginates around the fungal arbuscular structures resulting in the periarbuscular membrane formation. To investigate whether AM symbiosis-specific proteins accumulate at this stage, two complementary MS approaches targeting the root PM from the model legume Medicago truncatula were designed. Membrane extracts were first enriched in PM using a discontinuous sucrose gradient method. The resulting PM fractions were further analysed with (i) an automated 2-D LC-MS/MS using a strong cation exchange and RP chromatography, and (ii) SDS-PAGE combined with a systematic LC-MS/MS analysis. Seventy-eight proteins, including hydrophobic ones, were reproducibly identified in the PM fraction from non-inoculated roots, representing the first survey of the M. truncatula root PM proteome. Comparison between non-inoculated and Glomus intraradices-inoculated roots revealed two proteins that differed in the mycorrhizal root PM fraction. They corresponded to an H(+)-ATPase (Mtha1) and a predicted glycosylphosphatidylinositol-anchored blue copper-binding protein (MtBcp1), both potentially located on the periarbuscular membrane. The exact role of MtBcp1 in AM symbiosis remains to be investigated.
Collapse
Affiliation(s)
- Benoît Valot
- UMR 1088 INRA/CNRS 5184/UB Plante-Microbe-Environnement, Dijon, France
| | | | | | | | | |
Collapse
|
37
|
Kamphuis LG, Lichtenzveig J, Oliver RP, Ellwood SR. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC PLANT BIOLOGY 2008; 8:30. [PMID: 18366746 PMCID: PMC2324085 DOI: 10.1186/1471-2229-8-30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/26/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Knowledge of the genetic basis of plant resistance to necrotrophic pathogens is incomplete and has been characterised in relatively few pathosystems. In this study, the cytology and genetics of resistance to spring black stem and leaf spot caused by Phoma medicaginis, an economically important necrotrophic pathogen of Medicago spp., was examined in the model legume M. truncatula. RESULTS Macroscopically, the resistant response of accession SA27063 was characterised by small, hypersensitive-like spots following inoculation while the susceptible interaction with accessions A17 and SA3054 showed necrotic lesions and spreading chlorosis. No unique cytological differences were observed during early infection (<48 h) between the resistant and susceptible genotypes, except pathogen growth was restricted to one or a few host cells in SA27063. In both interactions reactive oxygen intermediates and phenolic compounds were produced, and cell death occurred. Two F2 populations segregating for resistance to spring black stem and leaf spot were established between SA27063 and the two susceptible accessions, A17 and SA3054. The cross between SA27063 and A17 represented a wider cross than between SA27063 and SA3054, as evidenced by higher genetic polymorphism, reduced fertility and aberrant phenotypes of F2 progeny. In the SA27063 x A17 F2 population a highly significant quantitative trait locus (QTL, LOD = 7.37; P < 0.00001) named resistance to the necrotroph Phoma medicaginis one (rnpm1) genetically mapped to the top arm of linkage group 4 (LG4). rnpm1 explained 33.6% of the phenotypic variance in the population's response to infection depicted on a 1-5 scale and was tightly linked to marker AW256637. A second highly significant QTL (LOD = 6.77; P < 0.00001), rnpm2, was located on the lower arm of LG8 in the SA27063 x SA3054 map. rnpm2 explained 29.6% of the phenotypic variance and was fine mapped to a 0.8 cM interval between markers h2_16a6a and h2_21h11d. rnpm1 is tightly linked to a cluster of Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) genes and disease resistance protein-like genes, while no resistance gene analogues (RGAs) are apparent in the genomic sequence of the reference accession A17 at the rnpm2 locus. CONCLUSION The induction of defence responses and cell death in the susceptible interaction following infection by P. medicaginis suggested this pathogen is not negatively affected by these responses and may promote them. A QTL for resistance was revealed in each of two populations derived from crosses between a resistant accession and two different susceptible accessions. Both loci are recessive in nature, and the simplest explanation for the existence of two separate QTLs is the occurrence of host genotype-specific susceptibility loci that may interact with undetermined P. medicaginis virulence factors.
Collapse
Affiliation(s)
- Lars G Kamphuis
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
| | - Judith Lichtenzveig
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, Private Bag No. 5, Wembley 6913, Western Australia, Australia
| | - Richard P Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
| | - Simon R Ellwood
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
| |
Collapse
|
38
|
Feddermann N, Boller T, Salzer P, Elfstrand S, Wiemken A, Elfstrand M. Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi. PLANTA 2008; 227:671-680. [PMID: 17965878 DOI: 10.1007/s00425-007-0649-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 10/09/2007] [Indexed: 05/25/2023]
Abstract
Different arbuscular mycorrhizal fungi (AMF) alter growth and nutrition of a given plant differently. Plant gene expression patterns in response to fungal colonization show a certain overlap when colonized by fungi of the Glomeraceae. However, little is known of plant responses to fungi of different fungal taxa, e.g. the Gigasporaceae. We therefore compared the impact of colonization by three taxonomically different AMF species (Glomus intraradices, Glomus mosseae and Scutellospora castanea) on Medicago truncatula at the physiological and transcriptional level using quantitative-PCR. Each AMF developed a species-typical colonization pattern, with a colonization degree of 60% for G. intraradices and 30% for G. mosseae. Both species developed appressoria, intraradical hyphae, arbuscules and vesicles. S. castanea showed a colonization degree of 10% and developed appressoria, intraradical hyphae, arbuscules and arbusculate coils. All AMF enhanced the plant biomass accumulation and nutritional status although not in correlation with the colonization degree. The expression of 10 mycorrhiza-specific or mycorrhiza-associated plant genes could be separated into two clusters. The first cluster, containing arbuscule-induced genes, was highly induced in interactions with G. intraradices and G. mosseae but also slightly induced by S. castanea. The second cluster of genes contained genes that were induced primarily by S. castanea. In conclusion, genes that respond to colonization by fungi of the genus Glomus also respond to Scutellospora. However, there is also a group of genes that is significantly induced only by Scutellospora and not by Glomus species in this study. Our data indicate that genes may be differentially regulated in response to the different AM fungi.
Collapse
Affiliation(s)
- Nadja Feddermann
- Botanical Institute of Basel University, Hebelstrasse 1, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Schliemann W, Ammer C, Strack D. Metabolite profiling of mycorrhizal roots of Medicago truncatula. PHYTOCHEMISTRY 2008; 69:112-46. [PMID: 17706732 DOI: 10.1016/j.phytochem.2007.06.032] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/27/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Metabolite profiling of soluble primary and secondary metabolites, as well as cell wall-bound phenolic compounds from roots of barrel medic (Medicago truncatula) was carried out by GC-MS, HPLC and LC-MS. These analyses revealed a number of metabolic characteristics over 56 days of symbiotic interaction with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, when compared to the controls, i.e. nonmycorrhizal roots supplied with low and high amounts of phosphate. During the most active stages of overall root mycorrhization, elevated levels of certain amino acids (Glu, Asp, Asn) were observed accompanied by increases in amounts of some fatty acids (palmitic and oleic acids), indicating a mycorrhiza-specific activation of plastidial metabolism. In addition, some accumulating fungus-specific fatty acids (palmitvaccenic and vaccenic acids) were assigned that may be used as markers of fungal root colonization. Stimulation of the biosynthesis of some constitutive isoflavonoids (daidzein, ononin and malonylononin) occurred, however, only at late stages of root mycorrhization. Increase of the levels of saponins correlated AM-independently with plant growth. Only in AM roots was the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives) observed. The structures of the unknown cyclohexenone derivatives were identified by spectroscopic methods as glucosides of blumenol C and 13-hydroxyblumenol C and their corresponding malonyl conjugates. During mycorrhization, the levels of typical cell wall-bound phenolics (e.g. 4-hydroxybenzaldehyde, vanillin, ferulic acid) did not change; however, high amounts of cell wall-bound tyrosol were exclusively detected in AM roots. Principal component analyses of nonpolar primary and secondary metabolites clearly separated AM roots from those of the controls, which was confirmed by an hierarchical cluster analysis. Circular networks of primary nonpolar metabolites showed stronger and more frequent correlations between metabolites in the mycorrhizal roots. The same trend, but to a lesser extent, was observed in nonmycorrhizal roots supplied with high amounts of phosphate. These results indicate a tighter control of primary metabolism in AM roots compared to control plants. Network correlation analyses revealed distinct clusters of amino acids and sugars/aliphatic acids with strong metabolic correlations among one another in all plants analyzed; however, mycorrhizal symbiosis reduced the cluster separation and enlarged the sugar cluster size. The amino acid clusters represent groups of metabolites with strong correlations among one another (cliques) that are differently composed in mycorrhizal and nonmycorrhizal roots. In conclusion, the present work shows for the first time that there are clear differences in development- and symbiosis-dependent primary and secondary metabolism of M. truncatula roots.
Collapse
Affiliation(s)
- Willibald Schliemann
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
40
|
Gallardo K, Firnhaber C, Zuber H, Héricher D, Belghazi M, Henry C, Küster H, Thompson R. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 2007; 6:2165-79. [PMID: 17848586 DOI: 10.1074/mcp.m700171-mcp200] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A comparative study of proteome and transcriptome changes during Medicago truncatula (cultivar Jemalong) seed development has been carried out. Transcript and protein profiles were parallel across the time course for 50% of the comparisons made, but divergent patterns were also observed, indicative of post-transcriptional events. These data, combined with the analysis of transcript and protein distribution in the isolated seed coat, endosperm, and embryo, demonstrated the major contribution made to the embryo by the surrounding tissues. First, a remarkable compartmentalization of enzymes involved in methionine biosynthesis between the seed tissues was revealed that may regulate the availability of sulfur-containing amino acids for embryo protein synthesis during seed filling. This intertissue compartmentalization, which was also apparent for enzymes of sulfur assimilation, is relevant to strategies for modifying the nutritional value of legume seeds. Second, decreasing levels during seed filling of seed coat and endosperm metabolic enzymes, including essential steps in Met metabolism, are indicative of a metabolic shift from a highly active to a quiescent state as the embryo assimilates nutrients. Third, a concomitant persistence of several proteases in seed coat and endosperm highlighted the importance of proteolysis in these tissues as a supplementary source of amino acids for protein synthesis in the embryo. Finally, the data revealed the sites of expression within the seed of a large number of transporters implied in nutrient import and intraseed translocations. Several of these, including a sulfate transporter, were preferentially expressed in seeds compared with other plant organs. These findings provide new directions for genetic improvement of grain legumes.
Collapse
Affiliation(s)
- Karine Gallardo
- UMR102 INRA/ENESAD, Genetics and Ecophysiology of Grain Legumes, F-21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Capoen W, Den Herder J, Rombauts S, De Gussem J, De Keyser A, Holsters M, Goormachtig S. Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata. PLANT PHYSIOLOGY 2007; 144:1878-89. [PMID: 17600136 PMCID: PMC1949896 DOI: 10.1104/pp.107.102178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The tropical legume Sesbania rostrata provides its microsymbiont Azorhizobium caulinodans with versatile invasion strategies to allow nodule formation in temporarily flooded habitats. In aerated soils, the bacteria enter via the root hair curling mechanism. Submergence prevents this epidermal invasion by accumulation of inhibiting concentrations of ethylene and, under these conditions, the bacterial colonization occurs via intercellular cortical infection at lateral root bases. The transcriptome of both invasion ways was compared by cDNA-amplified fragment length polymorphism analysis. Clusters of gene tags were identified that were specific for either epidermal or cortical invasion or were shared by both. The data provide insight into mechanisms that control infection and illustrate that entry via the epidermis adds a layer of complexity to rhizobial invasion.
Collapse
Affiliation(s)
- Ward Capoen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L, Selim S, Gianinazzi S, Gianinazzi-Pearson V. Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota. MYCORRHIZA 2007; 17:223-234. [PMID: 17245570 DOI: 10.1007/s00572-006-0099-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/08/2006] [Indexed: 05/13/2023]
Abstract
Plant genes exhibiting common responses to different arbuscular mycorrhizal (AM) fungi and not induced under other biological conditions have been sought for to identify specific markers for monitoring the AM symbiosis. A subset of 14 candidate Medicago truncatula genes was identified as being potentially mycorrhiza responsive in previous cDNA microarray analyses and exclusive to cDNA libraries derived from mycorrhizal root tissues. Transcriptional activity of the selected plant genes was compared during root interactions with seven AM fungi belonging to different species of Glomus, Acaulospora, Gigaspora, or Scutellospora, and under widely different biological conditions (mycorrhiza, phosphate fertilization, pathogenic/beneficial microbe interactions, incompatible plant genotype). Ten of the M. truncatula genes were commonly induced by all the tested AM fungal species, and all were activated by at least two fungi. Most of the plant genes were transcribed uniquely in mycorrhizal roots, and several were already active at the appressorium stage of fungal development. Novel data provide evidence that common recognition responses to phylogenetically different Glomeromycota exist in plants during events that are unique to mycorrhiza interactions. They indicate that plants should possess a mycorrhiza-specific genetic program which is comodulated by a broad spectrum of AM fungi.
Collapse
Affiliation(s)
- M Massoumou
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
| | - D van Tuinen
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France.
| | - O Chatagnier
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
| | - C Arnould
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
| | - L Brechenmacher
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - L Sanchez
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
- Département Ecophysiologie Végétale et de Microbiologie/DSV, CEA Cadarache, LEMiR, UMR 6191 CNRS-CEA-Université de la Méditerranée, 13108, Saint Paul Lez Durance, France
| | - S Selim
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
- Département Sciences Agronomiques, ISAB, Rue Pierre Waguet, BP 30313, 60026, Beauvais Cedex, France
| | - S Gianinazzi
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
| | - V Gianinazzi-Pearson
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
43
|
Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:529-44. [PMID: 17419842 DOI: 10.1111/j.1365-313x.2007.03069.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In natural ecosystems, the roots of many plants exist in association with arbuscular mycorrhizal (AM) fungi, and the resulting symbiosis has profound effects on the plant. The most frequently documented response is an increase in phosphorus nutrition; however, other effects have been noted, including increased resistance to abiotic and biotic stresses. Here we used a 16,000-feature oligonucleotide array and real-time quantitative RT-PCR to explore transcriptional changes triggered in Medicago truncatula roots and shoots as a result of AM symbiosis. By controlling the experimental conditions, phosphorus-related effects were minimized, and both local and systemic transcriptional responses to the AM fungus were revealed. The transcriptional response of the roots and shoots differed in both the magnitude of gene induction and the predicted functional categories of the mycorrhiza-regulated genes. In the roots, genes regulated in response to three different AM fungi were identified, and, through split-root experiments, an additional layer of regulation, in the colonized or non-colonized sections of the mycorrhizal root system, was uncovered. Transcript profiles of the shoots of mycorrhizal plants indicated the systemic induction of many genes predicted to be involved in stress or defense responses, and suggested that mycorrhizal plants might display enhanced disease resistance. Experimental evidence supports this prediction, and mycorrhizal M. truncatula plants showed increased resistance to a virulent bacterial pathogen, Xanthomonas campestris. Thus, the symbiosis is accompanied by a complex pattern of local and systemic changes in gene expression, including the induction of a functional defense response.
Collapse
Affiliation(s)
- Jinyuan Liu
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY14853, USA
| | | | | | | | | | | |
Collapse
|
44
|
Urbanczyk-Wochniak E, Sumner LW. MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 2007; 23:1418-23. [PMID: 17344243 DOI: 10.1093/bioinformatics/btm040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION There is an imperative need to integrate functional genomics data to obtain a more comprehensive systems-biology view of the results. We believe that this is best achieved through the visualization of data within the biological context of metabolic pathways. Accordingly, metabolic pathway reconstruction was used to predict the metabolic composition for Medicago truncatula and these pathways were engineered to enable the correlated visualization of integrated functional genomics data. RESULTS Metabolic pathway reconstruction was used to generate a pathway database for M. truncatula (MedicCyc), which currently features more than 250 pathways with related genes, enzymes and metabolites. MedicCyc was assembled from more than 225,000 M. truncatula ESTs (MtGI Release 8.0) and available genomic sequences using the Pathway Tools software and the MetaCyc database. The predicted pathways in MedicCyc were verified through comparison with other plant databases such as AraCyc and RiceCyc. The comparison with other plant databases provided crucial information concerning enzymes still missing from the ongoing, but currently incomplete M. truncatula genome sequencing project. MedicCyc was further manually curated to remove non-plant pathways, and Medicago-specific pathways including isoflavonoid, lignin and triterpene saponin biosynthesis were modified or added based upon available literature and in-house expertise. Additional metabolites identified in metabolic profiling experiments were also used for pathway predictions. Once the metabolic reconstruction was completed, MedicCyc was engineered to visualize M. truncatula functional genomics datasets within the biological context of metabolic pathways. AVAILABILITY freely accessible at http://www.noble.org/MedicCyc/
Collapse
|
45
|
Balestrini R, Lanfranco L. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. MYCORRHIZA 2006; 16:509-524. [PMID: 17004063 DOI: 10.1007/s00572-006-0069-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 07/05/2006] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Istituto per la Protezione delle Piante-Sezione di Torino-CNR, Viale Mattioli 25, 10125, Turin, Italy.
| | - Luisa Lanfranco
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125, Turin, Italy
| |
Collapse
|
46
|
Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Küster H. Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:737-748. [PMID: 32689284 DOI: 10.1071/fp06079] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/15/2006] [Indexed: 06/11/2023]
Abstract
The arbuscular mycorrhizal (AM) association between terrestrial plants and soil fungi of the phylum Glomeromycota is the most widespread beneficial plant-microbe interaction on earth. In the course of the symbiosis, fungal hyphae colonise plant roots and supply limiting nutrients, in particular phosphorus, in exchange for carbon compounds. Owing to the obligate biotrophy of mycorrhizal fungi and the lack of genetic systems to study them, targeted molecular studies on AM symbioses proved to be difficult. With the emergence of plant genomics and the selection of suitable models, an application of untargeted expression profiling experiments became possible. In the model legume Medicago truncatula, high-throughput expressed sequence tag (EST)-sequencing in conjunction with in silico and experimental transcriptome profiling provided transcriptional snapshots that together defined the global genetic program activated during AM. Owing to an asynchronous development of the symbiosis, several hundred genes found to be activated during the symbiosis cannot be easily correlated with symbiotic structures, but the expression of selected genes has been extended to the cellular level to correlate gene expression with specific stages of AM development. These approaches identified marker genes for the AM symbiosis and provided the first insights into the molecular basis of gene expression regulation during AM.
Collapse
Affiliation(s)
- Natalija Hohnjec
- Institute for Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Kolja Henckel
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Thomas Bekel
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Jerome Gouzy
- Laboratoire des Interactions Plantes Micro-organismes LIPM, Chemin de Borde-Rouge-Auzeville, BP 52627, 31326 Castanet Tolosan, Cedex, France
| | - Michael Dondrup
- International Graduate School in Bioinformatics and Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Helge Küster
- Institute for Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| |
Collapse
|
47
|
Benedito VA, Dai X, He J, Zhao PX, Udvardi MK. Functional genomics of plant transporters in legume nodules. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:731-736. [PMID: 32689283 DOI: 10.1071/fp06085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/25/2006] [Indexed: 06/11/2023]
Abstract
Over the past few decades, a combination of physiology, biochemistry, molecular and cell biology, and genetics has given us a basic understanding of some of the key transport processes at work in nitrogen-fixing legume nodules, especially those involved in nutrient exchange between infected plant cells and their endosymbiotic rhizobia. However, our knowledge in this area remains patchy and dispersed over numerous legume species. Recent progress in the areas of genomics and functional genomics of the two model legumes, Medicago truncatula and Lotus japonicus is rapidly filling the gap in knowledge about which plant transporter genes are expressed constitutively in nodules and other organs, and which are induced or expressed specifically in nodules. The latter class in particular is the focus of current efforts to understand specialised, nodule-specific roles of transporters. This article briefly reviews past work on the biochemistry and molecular biology of plant transporters in nodules, before describing recent work in the areas of transcriptomics and bioinformatics. Finally, we consider where functional genomics together with more classical approaches are likely to lead us in this area of research in the future.
Collapse
Affiliation(s)
- Vagner A Benedito
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Xinbin Dai
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Ji He
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Patrick X Zhao
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Michael K Udvardi
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
48
|
Stacey G, Libault M, Brechenmacher L, Wan J, May GD. Genetics and functional genomics of legume nodulation. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:110-21. [PMID: 16458572 DOI: 10.1016/j.pbi.2006.01.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 01/23/2006] [Indexed: 05/06/2023]
Abstract
Gram-negative soil bacteria (rhizobia) within the Rhizobiaceae phylogenetic family (alpha-proteobacteria) have the unique ability to infect and establish a nitrogen-fixing symbiosis on the roots of leguminous plants. This symbiosis is of agronomic importance, reducing the need for nitrogen fertilizer for agriculturally important plants (e.g. soybean and alfalfa). The establishment of the symbiosis involves a complex interplay between host and symbiont, resulting in the formation of a novel organ, the nodule, which the bacteria colonize as intracellular symbionts. This review focuses on the most recent discoveries relating to how this symbiosis is established. Two general developments have contributed to the recent explosion of research progress in this area: first, the adoption of two genetic model legumes, Medicago truncatula and Lotus japonicus, and second, the application of modern methods in functional genomics (e.g. transcriptomic, proteomic and metabolomic analyses).
Collapse
Affiliation(s)
- Gary Stacey
- National Center for Soybean Biotechnology, Division of Plant Science, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | |
Collapse
|
49
|
Domoney C, Duc G, Ellis THN, Ferrándiz C, Firnhaber C, Gallardo K, Hofer J, Kopka J, Küster H, Madueño F, Munier-Jolain NG, Mayer K, Thompson R, Udvardi M, Salon C. Genetic and genomic analysis of legume flowers and seeds. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:133-41. [PMID: 16480914 DOI: 10.1016/j.pbi.2006.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 01/25/2006] [Indexed: 05/06/2023]
Abstract
New tools, such as ordered mutant libraries, microarrays and sequence based comparative maps, are available for genetic and genomic studies of legumes that are being used to shed light on seed production, the objective of most arable farming. The new information and understanding brought by these tools are revealing the biological processes that underpin and impact on seed production.
Collapse
|
50
|
Abstract
Many microorganisms form symbioses with plants that range, on a continuous scale, from parasitic to mutualistic. Among these, the most widespread mutualistic symbiosis is the arbuscular mycorrhiza, formed between arbuscular mycorrhizal (AM) fungi and vascular flowering plants. These associations occur in terrestrial ecosystems throughout the world and have a global impact on plant phosphorus nutrition. The arbuscular mycorrhiza is an endosymbiosis in which the fungus inhabits the root cortical cells and obtains carbon provided by the plant while it transfers mineral nutrients from the soil to the cortical cells. Development of the symbiosis involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells. The aim of this review is to explore the current understanding of the signals and signaling pathways used by the symbionts for the development of the AM symbiosis. Although the signal molecules used for initial communication are not yet known, recent studies point to their existence. Within the plant, there is evidence of arbuscular mycorrhiza-specific signals and of systemic signaling that influences phosphate-starvation responses and root development. The landmark cloning of three plant signaling proteins required for the development of the symbiosis has provided the first insights into a signaling pathway that is used by AM fungi and by rhizobia for their symbiotic associations with legumes.
Collapse
Affiliation(s)
- Maria J Harrison
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.
| |
Collapse
|