1
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
2
|
Pompeiano M, Colonnese MT. cFOS as a biomarker of activity maturation in the hippocampal formation. Front Neurosci 2023; 17:929461. [PMID: 37521697 PMCID: PMC10374841 DOI: 10.3389/fnins.2023.929461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
We explored the potential for cFOS expression as a marker of functional development of "resting-state" waking activity in the extended network of the hippocampus and entorhinal cortex. We examined sleeping and awake mice at (P)ostnatal days 5, 9, 13, and 17 as well as in adulthood. We find that cFOS expression is state-dependent even at 5 days old, with reliable staining occurring only in the awake mice. Even during waking, cFOS expression was rare and weak at P5. The septal nuclei, entorhinal cortex layer (L)2, and anterodorsal thalamus were exceptional in that they had robust cFOS expression at P5 that was similar to or greater than in adulthood. Significant P5 expression was also observed in the dentate gyrus, entorhinal cortex L6, postsubiculum L4-6, ventral subiculum, supramammillary nucleus, and posterior hypothalamic nucleus. The expression in these regions grew stronger with age, and the expression in new regions was added progressively at P9 and P13 by which point the overall expression pattern in many regions was qualitatively similar to the adult. Six regions-CA1, dorsal subiculum, postsubiculum L2-3, reuniens nucleus, and perirhinal and postrhinal cortices-were very late developing, mostly achieving adult levels only after P17. Our findings support a number of developmental principles. First, early spontaneous activity patterns induced by muscle twitches during sleep do not induce robust cFOS expression in the extended hippocampal network. Second, the development of cFOS expression follows the progressive activation along the trisynaptic circuit, rather than birth date or cellular maturation. Third, we reveal components of the egocentric head-direction and theta-rhythm circuits as the earliest cFOS active circuits in the forebrain. Our results suggest that cFOS staining may provide a reliable and sensitive biomarker for hippocampal formation activity development, particularly in regard to the attainment of a normal waking state and synchronizing rhythms such as theta and gamma.
Collapse
Affiliation(s)
- Maria Pompeiano
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Matthew T. Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Fenik VB, Rukhadze I. Activity of Pontine A7 Noradrenergic Neurons is suppressed during REM sleep. J Appl Physiol (1985) 2022; 133:130-143. [PMID: 35616303 PMCID: PMC9255708 DOI: 10.1152/japplphysiol.00771.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of hypoglossal motoneurons plays a key role in the maintenance of upper airway patency. The withdrawal of noradrenergic excitatory drive and increase of cholinergic inhibition markedly decreases excitability of hypoglossal motoneurons during sleep and especially during rapid-eye-movement (REM) stage. This leads to increased collapsibility of upper airway during sleep, which is the major neurological factor of obstructive sleep apnea (OSA) pathophysiology. Anatomical and functional data suggests that noradrenergic A7 neurons are the main source of noradrenergic drive to hypoglossal motoneurons. However, it is unknown whether the behavior of A7 neurons during sleep-wake cycle is in accord with their proposed involvement in sleep-related depression of hypoglossal motoneuron activity. Therefore, we sought to assess the behavior of A7 neurons during sleep and wakefulness in naturally sleeping head-restrained rats. We have found that, similar to other pontine noradrenergic neurons, the putative A7 noradrenergic neurons fired with relatively long-lasting action potentials with a low frequency regular discharge. Importantly, all noradrenergic A7 neurons were predominantly silent during REM sleep. The REM-off activity of the A7 neurons supports our hypothesis that these neurons may significantly contribute to the withdrawal of excitatory noradrenergic drive from upper airway motoneurons during REM sleep and, consequently, play a critical role in maintaining upper airway patency and pathophysiology of OSA. Therefore, noradrenergic A7 neurons may serve as an additional target for designing pharmacological approaches to treat OSA.
Collapse
Affiliation(s)
- Victor B Fenik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States.,VA Greater Los Angeles Healthcare System, West Los Angeles, CA, United States
| | - Irma Rukhadze
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States.,VA Greater Los Angeles Healthcare System, West Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Raitiere MN. The Elusive "Switch Process" in Bipolar Disorder and Photoperiodism: A Hypothesis Centering on NADPH Oxidase-Generated Reactive Oxygen Species Within the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2022; 13:847584. [PMID: 35782417 PMCID: PMC9243387 DOI: 10.3389/fpsyt.2022.847584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most striking and least understood aspects of mood disorders involves the "switch process" which drives the dramatic state changes characteristic of bipolar disorder. In this paper we explore the bipolar switch mechanism as deeply grounded in forms of seasonal switching (for example, from summer to winter phenotypes) displayed by many mammalian species. Thus we develop a new and unifying hypothesis that involves four specific claims, all converging to demonstrate a deeper affinity between the bipolar switch process and the light-sensitive (photoperiodic) nonhuman switch sequence than has been appreciated. First, we suggest that rapid eye movement (REM) sleep in both human and nonhuman plays a key role in probing for those seasonal changes in length of day that trigger the organism's characteristic involutional response (in certain animals, hibernation) to shorter days. Second, we claim that this general mammalian response requires the integrity of a neural circuit centering on the anterior bed nucleus of the stria terminalis. Third, we propose that a key molecular mediator of the switch process in both nonhumans and seasonal humans involves reactive oxygen species (ROS) of a particular provenance, namely those created by the enzyme NADPH oxidase (NOX). This position diverges from one currently prominent among students of bipolar disorder. In that tradition, the fact that patients afflicted with bipolar-spectrum disorders display indices of oxidative damage is marshaled to support the conclusion that ROS, escaping adventitiously from mitochondria, have a near-exclusive pathological role. Instead, we believe that ROS, originating instead in membrane-affiliated NOX enzymes upstream from mitochondria, take part in an eminently physiological signaling process at work to some degree in all mammals. Fourth and finally, we speculate that the diversion of ROS from that purposeful, genetically rooted seasonal switching task into the domain of human pathology represents a surprisingly recent phenomenon. It is one instigated mainly by anthropogenic modifications of the environment, especially "light pollution."
Collapse
Affiliation(s)
- Martin N Raitiere
- Department of Psychiatry, Providence St. Vincent Medical Center, Portland, OR, United States
| |
Collapse
|
5
|
Owen JE, Zhu Y, Fenik P, Zhan G, Bell P, Liu C, Veasey S. Late-in-life neurodegeneration after chronic sleep loss in young adult mice. Sleep 2021; 44:zsab057. [PMID: 33768250 PMCID: PMC8361366 DOI: 10.1093/sleep/zsab057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic short sleep (CSS) is prevalent in modern societies and has been proposed as a risk factor for Alzheimer's disease (AD). In support, short-term sleep loss acutely increases levels of amyloid β (Aβ) and tau in wild type (WT) mice and humans, and sleep disturbances predict cognitive decline in older adults. We have shown that CSS induces injury to and loss of locus coeruleus neurons (LCn), neurons with heightened susceptibility in AD. Yet whether CSS during young adulthood drives lasting Aβ and/or tau changes and/or neural injury later in life in the absence of genetic risk for AD has not been established. Here, we examined the impact of CSS exposure in young adult WT mice on late-in-life Aβ and tau changes and neural responses in two AD-vulnerable neuronal groups, LCn and hippocampal CA1 neurons. Twelve months following CSS exposure, CSS-exposed mice evidenced reductions in CA1 neuron counts and volume, spatial memory deficits, CA1 glial activation, and loss of LCn. Aβ 42 and hyperphosphorylated tau were increased in the CA1; however, amyloid plaques and tau tangles were not observed. Collectively the findings demonstrate that CSS exposure in the young adult mouse imparts late-in-life neurodegeneration and persistent derangements in amyloid and tau homeostasis. These findings occur in the absence of a genetic predisposition to neurodegeneration and demonstrate for the first time that CSS can induce lasting, significant neural injury consistent with some, but not all, features of late-onset AD.
Collapse
Affiliation(s)
- Jessica E Owen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Yan Zhu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Polina Fenik
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Guanxia Zhan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Patrick Bell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Cathy Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Sigrid Veasey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med Hypotheses 2020; 135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
7
|
Yoon SJ, Long NP, Jung KH, Kim HM, Hong YJ, Fang Z, Kim SJ, Kim TJ, Anh NH, Hong SS, Kwon SW. Systemic and Local Metabolic Alterations in Sleep-Deprivation-Induced Stress: A Multiplatform Mass-Spectrometry-Based Lipidomics and Metabolomics Approach. J Proteome Res 2019; 18:3295-3304. [PMID: 31313932 DOI: 10.1021/acs.jproteome.9b00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is known to be associated with metabolic disorders and chronic diseases. Complex metabolic alterations induced by SD at omics scale and the associated biomarker candidates have been proposed. However, in vivo systemic and local metabolic shift patterns of the metabolome and lipidome in acute and chronic partial SD models remain to be elucidated. In the present study, the serum, hypothalamus, and hippocampus CA1 of sleep-deprived rats (SD rats) from acute and chronic sleep restriction models were analyzed using three different omics platforms for the discovery and mechanistic assessment of systemic and local SD-induced dysregulated metabolites. We found a similar pattern of systemic metabolome alterations between two models, for which the area under the curve (AUC) of receiver operating characteristic curves was AUC = 0.847 and 0.930 with the pseudotargeted and untargeted metabolomics approach, respectively. However, SD-induced systemic lipidome alterations were significantly different and appeared to be model-dependent (AUC = 0.374). Comprehensive pathway analysis of the altered lipidome and metabolome in the hypothalamus indicated the abnormal behavior of eight metabolic and lipid metabolic pathways. The metabolic alterations of the hippocampus CA1 was subtle in two SD models. Collectively, these results extend our understanding of the quality of sleep and suggest metabolic targets in developing diagnostic biomarkers for better SD control.
Collapse
Affiliation(s)
- Sang Jun Yoon
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Nguyen Phuoc Long
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kyung-Hee Jung
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Hyung Min Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Yu Jin Hong
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae Joon Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
8
|
Chronic Sleep Disruption Advances the Temporal Progression of Tauopathy in P301S Mutant Mice. J Neurosci 2018; 38:10255-10270. [PMID: 30322903 PMCID: PMC6262148 DOI: 10.1523/jneurosci.0275-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/09/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Brainstem locus ceruleus neurons (LCn) are among the first neurons across the lifespan to evidence tau pathology, and LCn are implicated in tau propagation throughout the cortices. Yet, events influencing LCn tau are poorly understood. Activated persistently across wakefulness, LCn experience significant metabolic stress in response to chronic short sleep (CSS). Here we explored whether CSS influences LCn tau and the biochemical, neuroanatomical, and/or behavioral progression of tauopathy in male and female P301S mice. CSS in early adult life advanced the temporal progression of neurobehavioral impairments and resulted in a lasting increase in soluble tau oligomers. Intriguingly, CSS resulted in an early increase in AT8 and MC1 tau pathology in the LC. Over time tau pathology, including tangles, was evident in forebrain tau-vulnerable regions. Sustained microglial and astrocytic activation was observed as well. Remarkably, CSS resulted in significant loss of neurons in the two regions examined: the basolateral amygdala and LC. A second, distinct form of chronic sleep disruption, fragmentation of sleep, during early adult life also increased tau deposition and imparted early neurobehavioral impairment. Collectively, the findings demonstrate that early life sleep disruption has important lasting effects on the temporal progression in P301S mice, influencing tau pathology and hastening neurodegeneration, neuroinflammation, and neurobehavioral impairments. SIGNIFICANCE STATEMENT Chronic short sleep (CSS) is pervasive in modern society. Here, we found that early life CSS influences behavioral, biochemical, and neuroanatomic aspects of the temporal progression of tauopathy in a mouse model of the P301S tau mutation. Specifically, CSS hastened the onset of motor impairment and resulted in a greater loss of neurons in both the locus ceruleus and basolateral/lateral amygdala. Importantly, despite a protracted recovery opportunity after CSS, mice evidenced a sustained increase in pathogenic tau oligomers, and increased pathogenic tau in the locus ceruleus and limbic system nuclei. These findings unveil early life sleep habits as an important determinant in the progression of tauopathy.
Collapse
|
9
|
Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2018; 140:77-92. [PMID: 30118737 PMCID: PMC6403104 DOI: 10.1016/j.neures.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
REM sleep was discovered in the 1950s. Many hypothalamic and brainstem areas have been found to contribute to REM sleep. An up-to-date picture of REM-sleep-regulating circuits is reviewed. A brief overview of computational models for REM sleep regulation is provided. Outstanding issues for future studies are discussed.
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be responsible for REM sleep, it has since been revealed that many components in the hypothalamus, midbrain, pons, and medulla also contribute to REM sleep. In this review, we first provide an up-to-date overview of REM sleep-regulating circuits in the brainstem and hypothalamus by summarizing experimental evidence from neuroanatomical, neurophysiological and gain- and loss-of-function studies. Second, because quantitative approaches are essential for understanding the complexity of REM sleep-regulating circuits and because mathematical models have provided valuable insights into the dynamics underlying REM sleep genesis and maintenance, we summarize computational studies of the sleep-wake cycle, with an emphasis on REM sleep regulation. Finally, we discuss outstanding issues for future studies.
Collapse
Affiliation(s)
- Charlotte Héricé
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
10
|
Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018; 38:2505-2518. [PMID: 29431649 DOI: 10.1523/jneurosci.2179-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep-wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep-wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep-wake behavior.SIGNIFICANCE STATEMENT Sleep-wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Collapse
|
11
|
Thomasson J, Canini F, Poly-Thomasson B, Trousselard M, Granon S, Chauveau F. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. Eur Neuropsychopharmacol 2017; 27:1308-1318. [PMID: 28941995 DOI: 10.1016/j.euroneuro.2017.08.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour.
Collapse
Affiliation(s)
- Julien Thomasson
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France
| | - Frédéric Canini
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | | | - Marion Trousselard
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - Frédéric Chauveau
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France.
| |
Collapse
|
12
|
Song G, Poon CS. α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea. JCI Insight 2017; 2:e91456. [PMID: 28239660 DOI: 10.1172/jci.insight.91456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Decreased noradrenergic excitation of hypoglossal motoneurons during sleep causing hypotonia of pharyngeal dilator muscles is a major contributor to the pathogenesis of obstructive sleep apnea (OSA), a widespread disease for which treatment options are limited. Previous OSA drug candidates targeting various excitatory/inhibitory receptors on hypoglossal motoneurons have proved unviable in reactivating these neurons, particularly during rapid-eye-movement (REM) sleep. To identify a viable drug target, we show that the repurposed α2-adrenergic antagonist yohimbine potently reversed the depressant effect of REM sleep on baseline hypoglossal motoneuron activity (a first-line motor defense against OSA) in rats. Remarkably, yohimbine also restored the obstructive apnea-induced long-term facilitation of hypoglossal motoneuron activity (hLTF), a much-neglected form of noradrenergic-dependent neuroplasticity that could provide a second-line motor defense against OSA but was also depressed during REM sleep. Corroborating immunohistologic, optogenetic, and pharmacologic evidence confirmed that yohimbine's beneficial effects on baseline hypoglossal motoneuron activity and hLTF were mediated mainly through activation of pontine A7 and A5 noradrenergic neurons. Our results suggest a 2-tier (impaired first- and second-line motor defense) mechanism of noradrenergic-dependent pathogenesis of OSA and a promising pharmacotherapy for rescuing both these intrinsic defenses against OSA through disinhibition of A7 and A5 neurons by α2-adrenergic blockade.
Collapse
|
13
|
Chan A, Li S, Lee AR, Leung J, Yip A, Bird J, Godden KE, Martinez-Gonzalez D, Rattenborg NC, Balaban E, Pompeiano M. Activation of state-regulating neurochemical systems in newborn and embryonic chicks. Neuroscience 2016; 339:219-234. [DOI: 10.1016/j.neuroscience.2016.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
|
14
|
Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S. Intermittent Short Sleep Results in Lasting Sleep Wake Disturbances and Degeneration of Locus Coeruleus and Orexinergic Neurons. Sleep 2016; 39:1601-11. [PMID: 27306266 DOI: 10.5665/sleep.6030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/11/2016] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. METHODS To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. RESULTS ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. CONCLUSIONS Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence.
Collapse
Affiliation(s)
- Yan Zhu
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Guanxia Zhan
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Rebecca Somach
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Ryan Xin
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Sigrid Veasey
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| |
Collapse
|
15
|
Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. eNeuro 2016; 3:eN-NWR-0018-16. [PMID: 27022631 PMCID: PMC4801942 DOI: 10.1523/eneuro.0018-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep–wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep–wake regulatory network.
Collapse
|
16
|
Mor D, Kang JWM, Wyllie P, Thirunavukarasu V, Houlton H, Austin PJ, Keay KA. Recruitment of dorsal midbrain catecholaminergic pathways in the recovery from nerve injury evoked disabilities. Mol Pain 2015; 11:50. [PMID: 26283658 PMCID: PMC4538917 DOI: 10.1186/s12990-015-0049-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The periaqueductal gray region (PAG) is one of several brain areas identified to be vulnerable to structural and functional change following peripheral nerve injury. Sciatic nerve constriction injury (CCI) triggers neuropathic pain and three distinct profiles of changes in complex behaviours, which include altered social and sleep-wake behaviours as well as changes in endocrine function. The PAG encompasses subgroups of the A10 dopaminergic and A6 noradrenergic cell groups; the origins of significant ascending projections to hypothalamic and forebrain regions, which regulate sleep, complex behaviours and endocrine function. We used RT-PCR, western blots and immunohistochemistry for tyrosine hydroxylase to determine whether (1) tyrosine hydroxylase increased in the A10/A6 cells and/or; (2) de novo synthesis of tyrosine hydroxylase, in a 'TH-naïve' population of ventral PAG neurons characterized rats with distinct patterns of behavioural and endocrine change co-morbid with CCI evoked-pain. RESULTS Evidence for increased tyrosine hydroxylase transcription and translation in the constitutive A10/A6 cells was found in the midbrain of rats that showed an initial 2-3 day post-CCI, behavioural and endocrine change, which recovered by days 5-6 post-CCI. Furthermore these rats showed significant increases in the density of TH-IR fibres in the vPAG. CONCLUSIONS Our data provide evidence for: (1) potential increases in dopamine and noradrenaline synthesis in vPAG cells; and (2) increased catecholaminergic drive on vPAG neurons in rats in which transient changes in social behavior are seen following CCI. The data suggests a role for dopaminergic and noradrenergic outputs, and catecholaminergic inputs of the vPAG in the expression of one of the profiles of behavioural and endocrine change triggered by nerve injury.
Collapse
Affiliation(s)
- David Mor
- School of Medical Sciences, Discipline of Biomedical Sciences, The University of Sydney, C42, Cumberland Campus, Lidcombe, NSW, 2141, Australia.
| | - James W M Kang
- School of Medical Sciences, Discipline of Biomedical Sciences, The University of Sydney, C42, Cumberland Campus, Lidcombe, NSW, 2141, Australia.
| | - Peter Wyllie
- School of Medical Sciences, Discipline of Anatomy and Histology, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Vignaraja Thirunavukarasu
- School of Medical Sciences, Discipline of Anatomy and Histology, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Hayden Houlton
- School of Medical Sciences, Discipline of Anatomy and Histology, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Paul J Austin
- School of Medical Sciences, Discipline of Anatomy and Histology, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Kevin A Keay
- School of Medical Sciences, Discipline of Anatomy and Histology, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
17
|
Renouard L, Billwiller F, Ogawa K, Clément O, Camargo N, Abdelkarim M, Gay N, Scoté-Blachon C, Touré R, Libourel PA, Ravassard P, Salvert D, Peyron C, Claustrat B, Léger L, Salin P, Malleret G, Fort P, Luppi PH. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. SCIENCE ADVANCES 2015; 1:e1400177. [PMID: 26601158 PMCID: PMC4640625 DOI: 10.1126/sciadv.1400177] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/11/2015] [Indexed: 05/10/2023]
Abstract
Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing.
Collapse
Affiliation(s)
- Leslie Renouard
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
- College of Medical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, PBS230, Spokane, WA 99202, USA
| | - Francesca Billwiller
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Keiko Ogawa
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Olivier Clément
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Nutabi Camargo
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Mouaadh Abdelkarim
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Nadine Gay
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Céline Scoté-Blachon
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Rouguy Touré
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Paul-Antoine Libourel
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Pascal Ravassard
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Denise Salvert
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Christelle Peyron
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Bruno Claustrat
- Service de Radioanalyse, Centre de Médecine nucléaire, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Lucienne Léger
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Paul Salin
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Gael Malleret
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Patrice Fort
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Pierre-Hervé Luppi
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| |
Collapse
|
18
|
Clément O, Valencia Garcia S, Libourel PA, Arthaud S, Fort P, Luppi PH. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study. PLoS One 2014; 9:e96851. [PMID: 24811249 PMCID: PMC4014589 DOI: 10.1371/journal.pone.0096851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 04/12/2014] [Indexed: 11/18/2022] Open
Abstract
GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.
Collapse
Affiliation(s)
- Olivier Clément
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sara Valencia Garcia
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Arthaud
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
19
|
Abstract
Modern society enables a shortening of sleep times, yet long-term consequences of extended wakefulness on the brain are largely unknown. Essential for optimal alertness, locus ceruleus neurons (LCns) are metabolically active neurons that fire at increased rates across sustained wakefulness. We hypothesized that wakefulness is a metabolic stressor to LCns and that, with extended wakefulness, adaptive mitochondrial metabolic responses fail and injury ensues. The nicotinamide adenine dinucleotide-dependent deacetylase sirtuin type 3 (SirT3) coordinates mitochondrial energy production and redox homeostasis. We find that brief wakefulness upregulates SirT3 and antioxidants in LCns, protecting metabolic homeostasis. Strikingly, mice lacking SirT3 lose the adaptive antioxidant response and incur oxidative injury in LCns across brief wakefulness. When wakefulness is extended for longer durations in wild-type mice, SirT3 protein declines in LCns, while oxidative stress and acetylation of mitochondrial proteins, including electron transport chain complex I proteins, increase. In parallel with metabolic dyshomeostasis, apoptosis is activated and LCns are lost. This work identifies mitochondrial stress in LCns upon wakefulness, highlights an essential role for SirT3 activation in maintaining metabolic homeostasis in LCns across wakefulness, and demonstrates that extended wakefulness results in reduced SirT3 activity and, ultimately, degeneration of LCns.
Collapse
|
20
|
Keshavarzy F, Bonnet C, Bezhadi G, Cespuglio R. Expression patterns of c-Fos early gene and phosphorylated ERK in the rat brain following 1-h immobilization stress: concomitant changes induced in association with stress-related sleep rebound. Brain Struct Funct 2014; 220:1793-804. [DOI: 10.1007/s00429-014-0728-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
|
21
|
Hasegawa E, Yanagisawa M, Sakurai T, Mieda M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 2014; 124:604-16. [PMID: 24382351 DOI: 10.1172/jci71017] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/15/2013] [Indexed: 11/17/2022] Open
Abstract
The loss of orexin neurons in humans is associated with the sleep disorder narcolepsy, which is characterized by excessive daytime sleepiness and cataplexy. Mice lacking orexin peptides, orexin neurons, or orexin receptors recapitulate human narcolepsy phenotypes, further highlighting a critical role for orexin signaling in the maintenance of wakefulness. Despite the known role of orexin neurons in narcolepsy, the precise neural mechanisms downstream of these neurons remain unknown. We found that targeted restoration of orexin receptor expression in the dorsal raphe (DR) and in the locus coeruleus (LC) of mice lacking orexin receptors inhibited cataplexy-like episodes and pathological fragmentation of wakefulness (i.e., sleepiness), respectively. The suppression of cataplexy-like episodes correlated with the number of serotonergic neurons restored with orexin receptor expression in the DR, while the consolidation of fragmented wakefulness correlated with the number of noradrenergic neurons restored in the LC. Furthermore, pharmacogenetic activation of these neurons using designer receptor exclusively activated by designer drug (DREADD) technology ameliorated narcolepsy in mice lacking orexin neurons. These results suggest that DR serotonergic and LC noradrenergic neurons play differential roles in orexin neuron-dependent regulation of sleep/wakefulness and highlight a pharmacogenetic approach for the amelioration of narcolepsy.
Collapse
|
22
|
Deurveilher S, Ryan N, Burns J, Semba K. Social and environmental contexts modulate sleep deprivation-induced c-Fos activation in rats. Behav Brain Res 2013; 256:238-49. [PMID: 23973763 DOI: 10.1016/j.bbr.2013.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 12/28/2022]
Abstract
People often sleep deprive themselves voluntarily for social and lifestyle reasons. Animals also appear to stay awake longer as a result of their natural curiosity to explore novel environments and interact socially with conspecifics. Although multiple arousal systems in the brain are known to act jointly to promote and maintain wakefulness, it remains unclear whether these systems are similarly engaged during voluntary vs. forced wakefulness. Using c-Fos immunohistochemistry, we compared neuronal responses in rats deprived of sleep for 2 h by gentle sensory stimulation, exploration under social isolation, or exploration with social interaction, and rats under undisturbed control conditions. In many arousal, limbic, and autonomic nuclei examined (e.g., anterior cingulate cortex and locus coeruleus), the two sleep deprivation procedures involving exploration were similarly effective, and both were more effective than sleep deprivation with sensory stimulation, in increasing the number of c-Fos immunoreactive neurons. However, some nuclei (e.g., paraventricular hypothalamic nucleus and select amygdala nuclei) were more responsive to exploration with social interaction, while others (e.g., histaminergic tuberomammillary nucleus) responded more strongly to exploration in social isolation. In the rostral basal forebrain, cholinergic and GABAergic neurons responded preferentially to exploration with social interaction, whereas resident neurons in general responded most strongly to exploration without social interaction. These results indicate that voluntary exploration with/without social interaction is more effective than forced sleep deprivation with gentle sensory stimulation for inducing c-Fos in arousal and limbic/autonomic brain regions, and suggest that these nuclei participate in different aspects of arousal during sustained voluntary wakefulness.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
23
|
Abbott SBG, Coates MB, Stornetta RL, Guyenet PG. Optogenetic stimulation of c1 and retrotrapezoid nucleus neurons causes sleep state-dependent cardiorespiratory stimulation and arousal in rats. Hypertension 2013; 61:835-41. [PMID: 23438930 DOI: 10.1161/hypertensionaha.111.00860] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
C1 catecholaminergic neurons and neurons of the retrotrapezoid nucleus are integrative nodes within the brain stem network regulating cardiorespiratory reflexes elicited by hypoxia and hypercapnia, stimuli that also produce arousal from sleep. In the present study, Channelrhodopsin-2 was selectively introduced into these neurons with a lentiviral vector to determine whether their selective activation also produces arousal in sleeping rats. Sleep stages were identified from electroencephalographic and neck muscle electromyographic recordings. Breathing was measured using unrestrained whole body plethysmography and blood pressure by telemetry. During nonrapid eye movement sleep, unilateral photostimulation of the C1 region caused arousal in 83.0±14.7% of trials and immediate and intense cardiorespiratory activation. Arousal during photostimulation was also observed during rapid eye movement sleep (41.9±5.6% of trials), but less reliably than during nonrapid eye movement sleep. The cardiorespiratory responses elicited by photostimulation were dramatically smaller during rapid eye movement sleep than nonrapid eye movement sleep or wakefulness. Systemic α1-adrenoreceptor blockade reduced the cardiorespiratory effects of photostimulation but had no effect on the arousal caused by photostimulation during nonrapid eye movement sleep. Postmortem histology showed that neurons expressing Channelrhodopsin 2-mCherry were predominantly catecholaminergic (81%). These results show that selective activation of C1 and retrotrapezoid nucleus neurons produces state-dependent arousal and cardiorespiratory stimulation. These neurons, which are powerfully activated by chemoreceptor stimulation, may contribute to the sleep disruption associated with obstructive sleep apnea.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
24
|
The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci 2013; 32:16763-74. [PMID: 23175830 DOI: 10.1523/jneurosci.1885-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has recently been shown that the ventrolateral part of the periaqueductal gray (VLPAG) and the adjacent dorsal deep mesencephalic nucleus (dDpMe) contain GABAergic neurons gating paradoxical sleep (PS) onset by means of their projection to the glutamatergic PS-on neurons of the sublaterodorsal tegmental nucleus (SLD). To determine the mechanisms responsible for the cessation of activity of these GABAergic PS-off neurons at the onset and during PS, we combined the immunostaining of c-FOS, a marker of neuronal activation, with cholera toxin b subunit (CTb) retrograde tracing from the VLPAG/dDpMe in three groups of rats (control, PS deprived, and PS hypersomniac). We found that the lateral hypothalamic area (LH) is the only brain structure containing a very large number of neurons activated during PS hypersomnia and projecting to the VLPAG/dDpMe. We further demonstrated that 44% of these neurons express the neuropeptide melanin concentrating hormone (MCH). We then showed that bilateral injections in the LH of two inhibitory compounds, clonidine (an α-2 adrenergic agonist) and muscimol (a GABAa agonist) induce an inhibition of PS. Furthermore, after muscimol injections in the LH, the VLPAG/dDpMe contained a large number of activated neurons, mostly GABAergic, and projecting to the SLD. Altogether, our results indicate for the first time that the activation of a population of LH neurons, in part MCH containing, is necessary for PS to occur. Furthermore, our results strongly suggest that these neurons trigger PS by means of their inhibitory projection to the PS-off GABAergic neurons located in the VLPAG/dDpMe.
Collapse
|
25
|
Herr KB, Stettner GM, Kubin L. Reduced c-Fos expression in medullary catecholaminergic neurons in rats 20 h after exposure to chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2013; 304:R514-22. [PMID: 23364524 DOI: 10.1152/ajpregu.00542.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Persons affected by obstructive sleep apnea (OSA) have increased arterial blood pressure and elevated activity in upper airway muscles. Many cardiorespiratory features of OSA have been reproduced in rodents subjected to chronic-intermittent hypoxia (CIH). We previously reported that, following exposure to CIH, rats have increased noradrenergic terminal density in brain stem sensory and motor nuclei and upregulated expression of the excitatory α(1)-adrenergic receptors in the hypoglossal motor nucleus. This suggested that CIH may enhance central catecholaminergic transmission. We now quantified c-Fos expression in different groups of pontomedullary catecholaminergic neurons as an indirect way of assessing their baseline activity in rats subjected to CIH or sham treatment (7 AM-5 PM daily for 35 days). One day after the last CIH exposure, the rats were gently kept awake for 2.5 h and then were anesthetized and perfused, and their pontomedullary brain sections were subjected to dopamine β-hydroxylase (DBH) and c-Fos immunohistochemistry. DBH-positive cells were counted in the A1/C1, A2/C2, A5, subcoeruleus (sub-C) and A7 groups of catecholaminergic neurons, and the percentages of those expressing c-Fos were determined. We found that fewer DBH cells expressed c-Fos in CIH- than in sham-treated rats in the medulla (significant in the A1 group). In the pons (rostral A5, sub-C, and A7), c-Fos expression did not differ between the CIH- and sham-treated animals. We suggest that, when measured 20 h after the last CIH exposure, catecholaminergic transmission is enhanced through terminal sprouting and receptor upregulation rather than through increased baseline activity in pontomedullary catecholaminergic neurons.
Collapse
Affiliation(s)
- Kate Benincasa Herr
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
26
|
Jego S, Salvert D, Renouard L, Mori M, Goutagny R, Luppi PH, Fort P. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PLoS One 2012; 7:e52525. [PMID: 23300698 PMCID: PMC3531409 DOI: 10.1371/journal.pone.0052525] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/15/2012] [Indexed: 01/17/2023] Open
Abstract
The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH) in neurons from the tuberal hypothalamic area (THA) which are recruited during sleep states, especially paradoxical sleep (PS). To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2) prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS). Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.
Collapse
Affiliation(s)
- Sonia Jego
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Denise Salvert
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Leslie Renouard
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Romain Goutagny
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Pierre-Hervé Luppi
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Patrice Fort
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| |
Collapse
|
27
|
Fenik VB, Marchenko V, Davies RO, Kubin L. Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons? Front Neurol 2012; 3:119. [PMID: 22855683 PMCID: PMC3405460 DOI: 10.3389/fneur.2012.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023] Open
Abstract
When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episodes can be repeatedly elicited by injections of the cholinergic agonist, carbachol, into a discrete region of the dorsomedial pons. We used this preparation to test whether inhibition of ventrolateral pontine noradrenergic A5 neurons only, or together with LC neurons, also can elicit REM sleep-like effects. To silence noradrenergic cells, we sequentially injected the α2-adrenergic agonist clonidine (20–40 nl, 0.75 mM) into both A5 regions and then the LC. In two rats, successful bilateral clonidine injections into the A5 region elicited the characteristic REM sleep-like episodes (hippocampal theta rhythm, suppression of hypoglossal nerve activity, reduced respiratory rate). In five rats, bilateral clonidine injections into the A5 region and then into one LC triggered REM sleep-like episodes, and in two rats injections into both A5 and then both LC were needed to elicit the effect. In contrast, in three rats, uni- or bilateral clonidine injections only into the LC had no effect, and clonidine injections placed in another six rats outside of the A5 and/or LC regions were without effect. The REM sleep-like episodes elicited by clonidine had similar magnitude of suppression of hypoglossal nerve activity (by 75%), similar pattern of hippocampal changes, and similar durations (2.5–5.3 min) to the episodes triggered in the same preparation by carbachol injections into the dorsomedial pontine reticular formation. Thus, silencing of A5 cells may importantly enable the occurrence of REM sleep-like episodes, at least under anesthesia. This is a new role for noradrenergic A5 neurons.
Collapse
Affiliation(s)
- Victor B Fenik
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | | | |
Collapse
|
28
|
Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 2012; 7:e28724. [PMID: 22235249 PMCID: PMC3250413 DOI: 10.1371/journal.pone.0028724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022] Open
Abstract
The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis.
Collapse
|
29
|
Luppi PH, Clement O, Sapin E, Peyron C, Gervasoni D, Léger L, Fort P. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch 2011; 463:43-52. [PMID: 22083642 DOI: 10.1007/s00424-011-1054-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 12/14/2022]
Abstract
Paradoxical sleep (PS) is characterized by EEG activation with a disappearance of muscle tone and the occurrence of rapid eye movements (REM) in contrast to slow-wave sleep (SWS, also known as non-REM sleep) identified by the presence of delta waves. Soon after the discovery of PS, it was demonstrated that the structures necessary and sufficient for its genesis are restricted to the brainstem. We review here recent results indicating that brainstem glutamatergic and GABAergic, rather than cholinergic and monoaminergic, neurons play a key role in the genesis of PS. We hypothesize that the entrance to PS from SWS is due to the activation of PS-on glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. The activation of these neurons would be due to a permanent glutamatergic input arising from the lateral and ventrolateral periaqueductal gray (vlPAG) and the removal at the onset of PS of a GABAergic inhibition present during W and SWS. Such inhibition would be coming from PS-off GABAergic neurons localized in the vlPAG and the adjacent deep mesencephalic reticular nucleus. The cessation of activity of these PS-off GABAergic neurons at the onset and during PS would be due to direct projections from intermingled GABAergic PS-on neurons. Activation of PS would depend on the reciprocal interactions between the GABAergic PS-on and PS-off neurons, intrinsic cellular and molecular events, and integration of multiple physiological parameters.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR 5292, Lyon Neuroscience Research Center, Team Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Naidoo N, Zhu J, Zhu Y, Fenik P, Lian J, Galante R, Veasey S. Endoplasmic reticulum stress in wake-active neurons progresses with aging. Aging Cell 2011; 10:640-9. [PMID: 21388495 PMCID: PMC3125474 DOI: 10.1111/j.1474-9726.2011.00699.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging.
Collapse
Affiliation(s)
- Nirinjini Naidoo
- Division of Sleep Medicine, Center for Sleep & Circadian Neurobiology, School of Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Viemari JC, Garcia AJ, Doi A, Ramirez JM. Activation of alpha-2 noradrenergic receptors is critical for the generation of fictive eupnea and fictive gasping inspiratory activities in mammals in vitro. Eur J Neurosci 2011; 33:2228-37. [PMID: 21615559 DOI: 10.1111/j.1460-9568.2011.07706.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biogenic amines are not just 'modulators', they are often essential for the execution of behaviors. Here, we explored the role of biogenic amines acting on the pre-Bötzinger complex (pre-BötC), an area located in the ventrolateral medulla which is critical for the generation of different forms of breathing. Isolated in transverse slices from mice, this region continues to spontaneously generate rhythmic activities that resemble normal (eupneic) inspiratory activity in normoxia and gasping in hypoxia. We refer to these as 'fictive eupneic' and 'fictive gasping' activity. When exposed to hypoxia, the pre-BötC transitions from a network state relying on calcium-activated nonspecific cation currents (I(CAN)) and persistent sodium currents (I(Nap)) to one that primarily depends on the I(Nap) current. Here we show that in inspiratory neurons I(Nap)-dependent bursting, blocked by riluzole, but not I(CAN) -dependent bursting, required endogenously released norepinephrine acting on alpha2-noradrenergic receptors (α2-NR). At the network level, fictive eupneic activity persisted while fictive gasping ceased following the blockade of α2-NR. Blockade of α2-NR eliminated fictive gasping even in slice preparations as well as in inspiratory island preparations. Blockade of fictive gasping by α2-NR antagonists was prevented by activation of 5-hydroxytryptamine type 2A receptors (5-HT2A). Our data suggest that gasping depends on the converging aminergic activation of 5-HT2AR and α2-NR acting on riluzole-sensitive mechanisms that have been shown to be crucial for gasping.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Laboratoire Plasticité et Physio-Pathologie de la motricité, CNRS UMR 6196, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
32
|
Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, Lu J. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci 2010; 30:14543-51. [PMID: 20980612 PMCID: PMC2989851 DOI: 10.1523/jneurosci.3037-10.2010] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/03/2010] [Accepted: 09/10/2010] [Indexed: 11/21/2022] Open
Abstract
Locus ceruleus (LC) neuronal activity is correlated with the waking state, yet LC lesions produce only minor alterations in daily wakefulness. Here, we report that sustained elevations in neurobehavioral and EEG arousal in response to exposure to an environment with novel stimuli, including social interaction, are prevented by selective chemical lesions of the LC in rats. Similar results are seen when the anterior cingulate cortex (ACC), which receives especially dense LC innervation, is selectively denervated of LC input or is ablated by the cell-specific neurotoxin ibotenic acid. Anterograde tracing combined with tyrosine hydroxylase immunohistochemistry demonstrates ACC terminals in apposition with the distal dendrites of LC neurons. Our data implicate the ACC as both a source of input to the LC as well as one of its targets and suggests that the two structures engage in a dialog that may provide a critical neurobiological substrate for sustained attention.
Collapse
Affiliation(s)
- Heinrich S Gompf
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kilduff TS, Cauli B, Gerashchenko D. Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci 2010; 34:10-9. [PMID: 21030095 DOI: 10.1016/j.tins.2010.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 08/19/2010] [Accepted: 09/23/2010] [Indexed: 10/18/2022]
Abstract
Although slow wave activity in the EEG has been linked to homeostatic sleep regulation, the neurobiological substrate of sleep homeostasis is not well understood. Whereas cortical neurons typically exhibit reduced discharge rates during slow wave sleep (SWS), a subpopulation of GABAergic interneurons, which express the enzyme neuronal nitric oxide synthase (nNOS), has recently been found to be activated during SWS. The extent of activation of these nNOS neurons is proportional to homeostatic sleep 'drive'. These cells are an exception among cortical interneurons in that they are projection neurons. We propose that cortical nNOS neurons are positioned to influence neuronal activity across widespread brain areas. They could thus provide a long-sought anatomical link for understanding homeostatic sleep regulation.
Collapse
Affiliation(s)
- Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| | | | | |
Collapse
|
34
|
Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 2010; 5:e11766. [PMID: 20668680 PMCID: PMC2909908 DOI: 10.1371/journal.pone.0011766] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/29/2010] [Indexed: 01/24/2023] Open
Abstract
We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis.
Collapse
Affiliation(s)
- Emilie Sapin
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Anne Bérod
- CNRS, EAC5006, Pharmacologie et Imagerie de la neurotransmission sérotoninergique, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Lucienne Léger
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Paul A. Herman
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Pierre-Hervé Luppi
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Christelle Peyron
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
35
|
Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. J Chem Neuroanat 2010; 39:262-71. [PMID: 20211244 DOI: 10.1016/j.jchemneu.2010.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/27/2010] [Accepted: 03/01/2010] [Indexed: 11/27/2022]
Abstract
Formerly believed to contribute to behavioural waking (W) alone, dopaminergic (DA) neurons are now also known to participate in the regulation of paradoxical sleep (PS or REM) in mammals. Indeed, stimulation of postsynaptic DA1 receptors with agonists induces a reduction in the daily amount of PS. DA neurons in the ventral tegmental area were recently shown to fire in bursts during PS, but nothing is known about the activity of the other DA cell groups in relation to waking or PS. To fulfil this gap, we used a protocol in which rats were maintained in continuous W for 3h in a novel environment, or specifically deprived of PS for 3 days with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. DA neurons in the substantia nigra (A9) and ventral tegmental area (A10), and its dorsocaudal extension in the periaqueductal gray (A10dc), almost never showed a Fos-immunoreactive nucleus, regardless of the experimental condition. The caudal hypothalamic (A11) group showed a moderate activation after PS deprivation and novel environment. During PS-recovery, the zona incerta (A13) group contained a significant number and percentage of double-labeled neurons. These results suggest that some DA neurons (A11) could participate in waking and/or the inhibition of PS during PS deprivation whereas others (A13) would be involved in the control of PS.
Collapse
|
36
|
Fort P, Bassetti CL, Luppi PH. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci 2009; 29:1741-53. [DOI: 10.1111/j.1460-9568.2009.06722.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|