1
|
Balasubramanian D, Agraharam G, Girigoswami A, Girigoswami K. Multiple radiations and its effect on biological system - a review on in vitro and in vivo mechanisms. Ann Med 2025; 57:2486595. [PMID: 40219761 PMCID: PMC11995768 DOI: 10.1080/07853890.2025.2486595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/07/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
PURPOSE We are exposed to different types of radiation from natural sources or for biomedical diagnostic and therapeutic purposes at different doses or times. The dose, duration, and number of exposures can cause multiple effects both in vivo and in vitro. Several researchers have explored the effects of ionizing and non-ionizing radiation in cell lines and animal models. Macromolecules, such as DNA, RNA, and proteins, are the primary targets of damage and can lead to several diseases, including cancer and even cell death. Chronic low-dose exposure of cells to radiation can cause alterations in gene expression and can be deleterious to the fate of the cells. We aim to discuss the implications of multiple radiations on different biological systems, including how nanotechnology can facilitate the effects of radiation in therapeutics. CONCLUSION In this review, we discuss the in vitro and in vivo changes that occur due to exposure to different types of radiation used in diagnosis, therapeutics, and other means, such as radiation equipment operators and patients being exposed. The effects of ionizing and non-ionizing radiation have been discussed separately. We have also mentioned in detail about the human-caused accidents of Hiroshima and Chernobyl in this article. The application of nanotechnology in facilitating the effects of radiation in the therapy and management of radioresistance of cells has also been discussed. The radio resistance and method to improve the radiosensitivity have also been mentioned. This review article can reflect the recent developments in the various uses of ionizing and non-ionizing radiation in biomedical field and will open up new avenues to utilize radiation in a more prudent way. The role of nanotechnology in reducing the harmful effects of radiation is also discussed.
Collapse
Affiliation(s)
- Deepika Balasubramanian
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Gopikrishna Agraharam
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| |
Collapse
|
2
|
Zhi W, Tang J, Zhang M, Zou Y, Qiao S, Ma L, Dong J, Yao B, Zhao X, Yang Z, Lin Z, Hu X, Wang L. Mechanistic insights into microwave radiation induced cognitive impairments: The role of m 6A epigenetic modifications and HNRNPA2B1 in TrkB regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117907. [PMID: 39999628 DOI: 10.1016/j.ecoenv.2025.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Microwave radiation, a prevalent environmental stressor, significantly impacts human health. Based on previous studies, we hypothesize that microwave-induced cognitive impairments and vulnerability in the hippocampal dentate gyrus (DG) region are due to abnormal synaptic plasticity regulated by both newborn and mature neurons derived from neural stem cells (NSCs). Epigenetics links external factors to organisms, offers insights into the health effects of environmental influences. To explore the molecular mechanisms underlying the effects of microwave radiation on neuronal synaptic plasticity from the perspective of mRNA N6-methyladenosine (m6A) modification. We first assessed the impact of microwave radiation on cognitive memory abilities in rats through behavioral tests. Immunofluorescence staining were applied to clarify the influence of microwave radiation on both neurons and NSCs. Molecular mechanisms were investigated by ELISA, q-PCR, Western blot, MeRIP-seq, and RNA pull-down experiments. The microwave radiated rat model exhibiting learning and memory deficits. Impaired synaptic plasticity in mature hippocampal neurons alongside hindered NSCs proliferation and development were observed. Using our established non-contact co-culture model, we replicated the in vivo adverse effects of microwave radiation. Down-regulated HNRNPA2B1 leads to reduced binding of TrkB m6A and promoted TrkB degradation. This feedback loop results in low BDNF expression, ultimately causing cognitive impairments. Our study emphasizes the neurotoxicity of microwave radiation and identifies TrkB m6A modification as a potential target for protecting against cognitive damage induced by electromagnetic radiation.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Jiale Tang
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China.
| | - Mingzhao Zhang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Simo Qiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Zhenqi Yang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Zhongwu Lin
- Beijing Institute of Radiation Medicine, Beijing, China; National Innovation Institute of Defense Technology, Beijing, China.
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
3
|
Zheng Z, Huang L, Shang T, Ma Y, Xu Y. Effects of long-term low-dose 2.45 GHz microwave electromagnetic radiation on vulnerable organs in humans: a retrospective study based on patients receiving microwave diathermies in the Department of Rehabilitation Medicine. Int J Radiat Biol 2025:1-7. [PMID: 40009800 DOI: 10.1080/09553002.2025.2467671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE To retrospectively observe the effects of long-term low-dose 2.45 GHz microwave electromagnetic radiation on human vulnerable organs. METHODS This single-center, retrospective cohort study investigated patients who received long-term (20-100 times of microwave therapy within three months) low-dose (≤20 W) microwave therapy in our department five years ago. Patients were identified and followed up using a rehabilitation treatment management system. Adverse events or diseases that developed after microwave treatment were collected. Based on the number of microwave exposures, patients were divided into two groups: the multiple irradiation group (20-50 sessions) and the ultra-multiple irradiation group (50-100 sessions). The incidence of irreversible damage (ocular lesions, nervous system diseases, reproductive system diseases, cardiovascular system diseases, tumors, or early precancerous lesions) within five years after treatment completion was compared between the two groups. RESULTS A total of 113 valid cases were analyzed. Sixteen adverse events occurred, including two cases related to tumors, nine cases related to cardiovascular and cerebrovascular diseases, five cases related to metabolic diseases, and one case related to nervous system diseases. One patient had multiple conditions. There was no significant difference in the incidence of adverse events between the multiple irradiation group and the ultra-multiple irradiation group (p = .161, OR = 0.307, 95% CI 0.088-1.025). Logistics regression analysis revealed that the number of microwave treatments, treatment frequency per week, and patient gender was not a significant risk factor for adverse events (p = .100, OR = 0.972, 95% CI 0.938-1.006; p = .896, OR = 1.028, 95% CI 0.679-1.575; p = .960, OR = 1.039, 95% CI 0.212-4.609). Advanced age and obesity might be contributing factors for adverse events (p = .001, OR = 0.923, 95% CI 0.877-0.965; p = .002, OR = 0.064, 95% CI 0.009-0.348). CONCLUSIONS Based on this study, receiving less than 100 sessions of low-dose microwave therapy within three months appears to be safe. Advanced age and obesity might increase the risk of adverse events. Due to the deviation that may be caused by the small sample size of this study, it is necessary to carry out prospective randomized controlled studies with larger samples in the future for further verification.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Lihua Huang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Shang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Yanhong Ma
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Yiming Xu
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Zou DF, Li ZH, Liu YB, Wang CZ. Progress in the study of the effects of electromagnetic radiation on the mood and rhythm. Electromagn Biol Med 2025; 44:212-227. [PMID: 39964745 DOI: 10.1080/15368378.2025.2460971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/27/2025] [Indexed: 04/24/2025]
Abstract
The ever-expanding use of a large number of electrical appliances and mobile communication systems, which outnumber the global population, emit electromagnetic radiation through mobile telephones, power stations, transmission lines, radar, microwave ovens, televisions, refrigerators, therapeutic and other electronic devices. Electromagnetic radiation has been classified by the International Agency for Research on Cancer (IARC) as possibly carcinogenic to humans (Group 2B). A large number of research results show that short-term and long-term exposure to electromagnetic radiation can lead to anxiety, depression, decreased learning ability, memory loss, sleep rhythm disorders and other adverse effects. Sleep rhythm disorders affect many people worldwide and may be associated with psychiatric disorders such as anxiety and depression. In this review, we summarise key experiments related to the effects of electric field exposure on mood and rhythms in animal and cellular studies over the past decade, describe the effects of electromagnetic radiation on emotional behaviors and circadian rhythms in humans and mammals, and explore the relationship between electromagnetic radiation,mood and rhythms as well as its underlying mechanisms of action. Most animal studies suggest that electromagnetic radiation may affect the physiological organization and functioning of the brain, influence neurotransmitters and receptors, interfere with neuronal formation and structure, or alter associated endocrine hormones and free radicals, which may lead to the unfavorable development of psychiatric disorders and sleep rhythm disorders. This summary may provide researchers with better clues and ideas to develop therapeutic solutions with sleep disorders and depressive psychiatric disorders.
Collapse
Affiliation(s)
- Dong-Fang Zou
- College of Life Science, Yangtze University, Jingzhou, China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhi-Hui Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying-Bao Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Chang-Zhen Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
5
|
Good AP, Horn E. Unlocking autism's complexity: the Move Initiative's path to comprehensive motor function analysis. Front Integr Neurosci 2025; 18:1496165. [PMID: 39906124 PMCID: PMC11790654 DOI: 10.3389/fnint.2024.1496165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
The long-standing practice of using manualized inventories and observational assessments to diagnose and track motor function in autism overlooks critical data invisible to the naked eye. This subjective approach can introduce biases and hinder the translation of research into clinical applications that rely on objective markers of brain-body connections. Meanwhile, we are experiencing a digital healthcare revolution, marked by innovations in the collection and analysis of electronic health records, personal genomes, and diverse physiological measurements. Advanced technologies, including current wearable devices, integrate both active and passive (sensor-based) data collection, providing a more comprehensive view of human health. Despite advances in sensors, wearables, algorithms, machine learning, and agentic AI, autism research remains siloed, with many tools inaccessible to affected families and care teams. There is a pressing need to merge these technological advances and expedite their translation into accessible, scalable tools and solutions to diversify scientific understanding. In response, this Perspective introduces the Move Initiative, a coalition spearheaded by the nonprofit 2 m Foundation, composed of self-advocates, families, clinicians, researchers, entrepreneurs, and investors who aim to advance and refine the measurement of movement in autism. Move will make motor screenings more dynamic and longitudinal while supporting continuous assessment of targeted interventions. By fostering cross-disciplinary collaboration, Move seeks to accelerate the integration of the expanding knowledge base into widespread practice. Deep, longitudinal, multi-modal profiling of individuals with Autism Spectrum Disorder offers an opportunity to address gaps in current data and methods, enabling new avenues of inquiry and a more comprehensive understanding of this complex, heterogeneous condition.
Collapse
|
6
|
Sun L, Wang X, Ren K, Yao C, Wang H, Xu X, Wang H, Dong J, Zhang J, Yao B, Wei X, Peng R, Zhao L. Compound exposure of 2.8 GHz and 9.3 GHz microwave causes learning and memory impairment in rats. Heliyon 2025; 11:e41626. [PMID: 39866417 PMCID: PMC11760294 DOI: 10.1016/j.heliyon.2025.e41626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
The anxieties and concerns about health hazards caused by microwave has been growing recently. Previous studies have reported microwave induced structural and functional injuries to brain. However, the biological effects caused by compound microwave were largely unexplored. In this study, we investigated the biological effects on rat's hippocampus after sequentially exposure to 2.8 GHz and 9.3 GHz at average power density of 10 mW/cm2. Morris water maze (MWM) navigation tests showed that microwave exposure significantly extended the average escape latency (AEL) at 1d and 3d after exposure, suggesting reduced learning and memory ability. Importantly, compound microwave produced strongest responses at 3 d after exposure. Moreover, microwave also could induce abnormal electroencephalogram (EEG), such as increasing the power of θ wave and δ wave, suggesting brain damage or dysfunction. Histopathological analysis suggested that microwave resulted in obvious structural injuries in hippocampus at 7 d after exposure, and most serious injuries were observed in compound microwave exposed rats. Moreover, disorder of mitochondria and reduced Nissl bodies in hippocampus might contribute to the decrease of cognitive function. However, both the cognitive function and hippocampal structure restored to normal at 28 d after exposure, which might be attributed to self-recovery mechanisms. Gene ontology (GO) and Protein-protein interaction (PPI) analyses of differential expressed genes (DEGs) in peripheral blood suggested that Htt and Bdnf might be potential indicators to predict microwave. In conclusion, compound microwave of 2.8 GHz and 9.3 GHz could elicit reversible structural injuries to hippocampus, which could decrease the cognitive function of rats.
Collapse
Affiliation(s)
- Liu Sun
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaoya Wang
- Anhui Medical University School of Basic Medicine, Hefei, 230032, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ke Ren
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chuanfu Yao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaohui Wei
- Anhui Medical University School of Basic Medicine, Hefei, 230032, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhao
- Anhui Medical University School of Basic Medicine, Hefei, 230032, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
7
|
Henshaw DL, Philips A. A mechanistic understanding of human magnetoreception validates the phenomenon of electromagnetic hypersensitivity (EHS). Int J Radiat Biol 2024; 101:186-204. [PMID: 39652433 DOI: 10.1080/09553002.2024.2435329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Human electromagnetic hypersensitivity (EHS) or electrosensitivity (ES) symptoms in response to anthropogenic electromagnetic fields (EMFs) at levels below current international safety standards are generally considered to be nocebo effects by conventional medical science. In the wider field of magnetoreception in biology, our understanding of mechanisms and processes of magnetic field (MF) interactions is more advanced. METHODS We consulted a range of publication databases to identify the key advances in understanding of magnetoreception across the wide animal kingdom of life. RESULTS We examined primary MF/EMF sensing and subsequent coupling to the nervous system and the brain. Magnetite particles in our brains and other tissues can transduce MFs/EMFs, including at microwave frequencies. The radical pair mechanism (RPM) is accepted as the main basis of the magnetic compass in birds and other species, acting via cryptochrome protein molecules in the eye. In some cases, extraordinary sensitivity is observed, several thousand times below that of the geomagnetic field. Bird compass disorientation by radio frequency (RF) EMFs is known. CONCLUSIONS Interdisciplinary research has established that all forms of life can respond to MFs. Research shows that human cryptochromes exhibit magnetosensitivity. Most existing provocation studies have failed to confirm EHS as an environmental illness. We attribute this to a fundamental lack of understanding of the mechanisms and processes involved, which have resulted in the design of inappropriate and inadequate tests. We conclude that future research into EHS needs a quantum mechanistic approach on the basis of existing biological knowledge of the magnetosensitivity of living organisms.
Collapse
Affiliation(s)
- Denis L Henshaw
- Atmospheric Chemistry Group, School of Chemistry, University of Bristol, Bristol, UK
| | - Alasdair Philips
- Independent Scientist, Brambling, Beeswing, Dumfries, Scotland, UK
| |
Collapse
|
8
|
Deruelle F. Microwave radiofrequencies, 5G, 6G, graphene nanomaterials: Technologies used in neurological warfare. Surg Neurol Int 2024; 15:439. [PMID: 39640342 PMCID: PMC11618680 DOI: 10.25259/sni_731_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Scientific literature, with no conflicts of interest, shows that even below the limits defined by the International Commission on Non-Ionizing Radiation Protection, microwaves from telecommunication technologies cause numerous health effects: neurological, oxidative stress, carcinogenicity, deoxyribonucleic acid and immune system damage, electro-hypersensitivity. The majority of these biological effects of non-thermal microwave radiation have been known since the 1970s. Methods Detailed scientific, political, and military documents were analyzed. Most of the scientific literature comes from PubMed. The other articles (except for a few) come from impacted journals . The rare scientific documents that were not peer reviewed were produced by recognized scientists in their fields. The rest of the documentation comes from official sources: political (e.g., European Union and World Health Organization), military (e.g., US Air Force and NATO), patents, and national newspapers. Results (1) Since their emergence, the authorities have deployed and encouraged the use of wireless technologies (2G, 3G, 4G, WiFi, WiMAX, DECT, Bluetooth, cell phone towers/masts/base stations, small cells, etc.) in full awareness of their harmful effects on health. (2) Consequences of microwave radiation from communication networks are comparable to the effects of low-power directed-energy microwave weapons, whose objectives include behavioral modification through neurological (brain) targeting. Above 20 gigahertz, 5G behaves like an unconventional chemical weapon. (3) Biomedical engineering (via graphene-based nanomaterials) will enable brain-computer connections, linked wirelessly to the Internet of Everything through 5G and 6G networks (2030) and artificial intelligence, gradually leading to human-machine fusion (cyborg) before the 2050s. Conclusion Despite reports and statements from the authorities presenting the constant deployment of new wireless communication technologies, as well as medical research into nanomaterials, as society's ideal future, in-depth research into these scientific fields shows, above all, an objective linked to the current cognitive war. It could be hypothesized that, in the future, this aim will correspond to the control of humanity by machines.
Collapse
|
9
|
Bijlsma N, Conduit R, Kennedy G, Cohen M. Does radiofrequency radiation impact sleep? A double-blind, randomised, placebo-controlled, crossover pilot study. Front Public Health 2024; 12:1481537. [PMID: 39534742 PMCID: PMC11554657 DOI: 10.3389/fpubh.2024.1481537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The most common source of Radiofrequency Electromagnetic Field (RF-EMF) exposures during sleep includes digital devices, yet there are no studies investigating the impact of multi-night exposure to electromagnetic fields emitted from a baby monitor on sleep under real-world conditions in healthy adults. Given the rise in the number of people reporting to be sensitive to manmade electromagnetic fields, the ubiquitous use of Wi-Fi enabled digital devices and the lack of real-world data, we investigated the effect of 2.45 GHz radiofrequency exposure during sleep on subjective sleep quality, and objective sleep measures, heart rate variability and actigraphy in healthy adults. This pilot study was a 4-week randomised, double-blind, crossover trial of 12 healthy adults. After a one-week run-in period, participants were randomised to exposure from either an active or inactive (sham) baby monitor for 7 nights and then crossed over to the alternate intervention after a one-week washout period. Subjective and objective assessments of sleep included the Pittsburgh Insomnia Rating Scale (PIRS-20), electroencephalography (EEG), actigraphy and heart rate variability (HRV) derived from electrocardiogram. Sleep quality was reduced significantly (p < 0.05) and clinically meaningful during RF-EMF exposure compared to sham-exposure as indicated by the PIRS-20 scores. Furthermore, at higher frequencies (gamma, beta and theta bands), EEG power density significantly increased during the Non-Rapid Eye Movement sleep (p < 0.05). No statistically significant differences in HRV or actigraphy were detected. Our findings suggest that exposure to a 2.45 GHz radiofrequency device (baby monitor) may impact sleep in some people under real-world conditions however further large-scale real-world investigations with specified dosimetry are required to confirm these findings.
Collapse
Affiliation(s)
- Nicole Bijlsma
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Australian College of Environmental Studies, Warrandyte, VIC, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Gerard Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mount Helen, VIC, Australia
- Austin Health, Institute for Breathing and Sleep, Heidelberg, VIC, Australia
| | - Marc Cohen
- The Extreme Wellness Institute, Melbourne, VIC, Australia
| |
Collapse
|
10
|
D’Adamo CR, Nelson JL, Miller SN, Rickert Hong M, Lambert E, Tallman Ruhm H. Reversal of Autism Symptoms among Dizygotic Twins through a Personalized Lifestyle and Environmental Modification Approach: A Case Report and Review of the Literature. J Pers Med 2024; 14:641. [PMID: 38929862 PMCID: PMC11205016 DOI: 10.3390/jpm14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism has been increasing at an alarming rate. Even accounting for the expansion of autism spectrum disorder diagnostic (ASD) criteria throughout the 1990's, there has been an over 300% increase in ASD prevalence since the year 2000. The often debilitating personal, familial, and societal sequelae of autism are generally believed to be lifelong. However, there have been several encouraging case reports demonstrating the reversal of autism diagnoses, with a therapeutic focus on addressing the environmental and modifiable lifestyle factors believed to be largely underlying the condition. This case report describes the reversal of autism symptoms among dizygotic, female twin toddlers and provides a review of related literature describing associations between modifiable lifestyle factors, environmental exposures, and various clinical approaches to treating autism. The twins were diagnosed with Level 3 severity ASD "requiring very substantial support" at approximately 20 months of age following concerns of limited verbal and non-verbal communication, repetitive behaviors, rigidity around transitions, and extensive gastrointestinal symptoms, among other common symptoms. A parent-driven, multidisciplinary, therapeutic intervention involving a variety of licensed clinicians focusing primarily on addressing environmental and modifiable lifestyle factors was personalized to each of the twin's symptoms, labs, and other outcome measures. Dramatic improvements were noted within several months in most domains of the twins' symptoms, which manifested in reductions of Autism Treatment Evaluation Checklist (ATEC) scores from 76 to 32 in one of the twins and from 43 to 4 in the other twin. The improvement in symptoms and ATEC scores has remained relatively stable for six months at last assessment. While prospective studies are required, this case offers further encouraging evidence of ASD reversal through a personalized, multidisciplinary approach focusing predominantly on addressing modifiable environmental and lifestyle risk factors.
Collapse
Affiliation(s)
- Christopher R. D’Adamo
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Josephine L. Nelson
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Sara N. Miller
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Maria Rickert Hong
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Elizabeth Lambert
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | | |
Collapse
|
11
|
Zhou GQ, Wang X, Gao P, Qin TZ, Guo L, Zhang ZW, Huang ZF, Lin JJ, Jing YT, Wang HN, Wang CP, Ding GR. Intestinal microbiota via NLRP3 inflammasome dependent neuronal pyroptosis mediates anxiety-like behaviour in mice exposed to 3.5 GHz radiofrequency radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172391. [PMID: 38608899 DOI: 10.1016/j.scitotenv.2024.172391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.
Collapse
Affiliation(s)
- Gui-Qiang Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xing Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Peng Gao
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhi-Fei Huang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jia-Jin Lin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Hao-Nan Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Chun-Ping Wang
- School of Public Health, Shandong Second Medical University, Weifang, China.
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
12
|
Xue T, Ma RH, Xu C, Sun B, Yan DF, Liu XM, Gao D, Li ZH, Gao Y, Wang CZ. The endocannabinoid system is involved in the anxiety-like behavior induced by dual-frequency 2.65/0.8 GHz electromagnetic radiation in mice. Front Mol Neurosci 2024; 17:1366855. [PMID: 38685914 PMCID: PMC11057378 DOI: 10.3389/fnmol.2024.1366855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
As wireless communication devices gain popularity, concerns about the potential risks of environmental exposure to complex frequency electromagnetic radiation (EMR) on mental health have become a public health issue. Historically, EMR research has predominantly focused on single- frequency electromagnetic waves, neglecting the study of multi-frequency electromagnetic waves, which more accurately represent everyday life. To address these concerns, our study compared the emotional effects of single-frequency and dual-frequency EMR while exploring potential molecular mechanisms and intervention targets. Our results revealed that single-frequency EMR at 2.65 or 0.8 GHz did not induce anxiety-like behavior in mice. However, exposure to dual-frequency EMR at 2.65/0.8 GHz significantly led to anxiety-like behavior in mice. Further analysis of mouse sera revealed substantial increases in corticosterone and corticotrophin releasing hormone levels following exposure to 2.65/0.8 GHz EMR. Transcriptome sequencing indicated a significant decrease in the expression of Cnr1, encoding cannabinoid receptor 1 Type (CB1R), in the cerebral. This finding was consistently verified through western blot analysis, revealing a substantial reduction in CB1R content. Additionally, a significant decrease in the endocannabinoid 2-arachidonoylglycerol was observed in the cerebral cortex. Remarkably, administering the cannabinoid receptor agonist Win55-212-2 significantly alleviated the anxiety-like behavior, and the cannabinoid receptor antagonist AM251 effectively counteracted the anti-anxiety effects of Win55-212-2. In summary, our research confirmed that dual-frequency EMR is more likely to induce anxiety-like behavior in mice than single-frequency EMR, with implications for the hypothalamic-pituitary-adrenal axis and the endocannabinoid system. Furthermore, our findings suggest that Win55-212-2 may represent a novel avenue for researching and developing anti-EMR drugs.
Collapse
Affiliation(s)
- Teng Xue
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Rui-Han Ma
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Chou Xu
- Department of Critical Care Medicine, The 983rd Hospital of the Joint Logistics Support Force of PLA, Tianjin, China
- Chinese PLA General Hospital, Beijing, China
| | - Bin Sun
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Dong-Fei Yan
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Xiao-Man Liu
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Dawen Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhi-Hui Li
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Yan Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chang-Zhen Wang
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| |
Collapse
|
13
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
14
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
15
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
16
|
Greco F, Garnier O, Macioce V, Picot MC. Prevalence of Migraine Disease in Electrohypersensitive Patients. J Clin Med 2023; 12:4092. [PMID: 37373785 DOI: 10.3390/jcm12124092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The vast majority of electrohypersensitive (EHS) patients present headaches on contact with an electromagnetic source. Clinical features suggest that the headaches of these patients could be a variant of the migraine disease and could be treated as such. We aimed to assess the prevalence of migraine disease in EHS patients using a validated questionnaire. METHODS Patients with EHS defined according to WHO criteria were contacted through EHS patient support associations. They were required to answer a self-questionnaire including clinical data and the extended French version of the ID Migraine questionnaire (ef-ID Migraine) to screen for the migraine disease. Migraine prevalence and its 95% confidence interval (CI) were reported. Patients' characteristics, symptoms (rheumatology, digestive, cognitive, respiratory, cardiac, mood, cutaneous, headache, perception, genital, tinnitus and tiredness) and impact on daily life were compared between migraineur and non-migraineur patients. RESULTS A total of 293 patients were included (97% women, mean age 57 ± 12 years). Migraine was diagnosed in 65% (N = 191; 95% CI: 60-71%) with the ef-ID Migraine. The migraine diagnosis was accompanied by nausea/vomiting in 50% of cases, photophobia in 69% or visual disturbances in 38%. All of the 12 symptoms assessed were of higher intensity in migraineurs than in non-migraineurs. The symptoms prevented social life in 88% of migraineurs and 75% of non-migraineurs (p < 0.01). CONCLUSIONS Our work encourages us to consider the headaches of these patients as a possible variant of the migraine disease and, possibly, to manage them according to the current recommendations.
Collapse
Affiliation(s)
- Frédéric Greco
- Department of Anaesthesia and Critical Care Medicine Gui de Chauliac, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Océane Garnier
- Department of Anaesthesia and Critical Care Medicine Gui de Chauliac, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Valérie Macioce
- Clinical Research and Epidemiology Unit, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Marie Christine Picot
- Clinical Research and Epidemiology Unit, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
17
|
Hao Y, Liu W, Liu Y, Liu Y, Xu Z, Ye Y, Zhou H, Deng H, Zuo H, Yang H, Li Y. Effects of Nonthermal Radiofrequency Stimulation on Neuronal Activity and Neural Circuit in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205988. [PMID: 36755196 PMCID: PMC10104648 DOI: 10.1002/advs.202205988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Whether the nonthermal effects of radiofrequency radiation (RFR) exist and how nonthermal RFR acts on the nervous system are unknown. An animal model of spatial memory impairment is established by exposing mice to 2856-MHz RFR in the range of thermal noise (≤1 °C). Glutamate release in the dorsal hippocampus (dHPC) CA1 region is not significantly changed after radiofrequency exposure, whereas dopamine release is reduced. Importantly, RFR enhances glutamatergic CA1 pyramidal neuron calcium activity by nonthermal mechanisms, which recover to the basal level with RFR termination. Furthermore, suppressed dHPC dopamine release induced by radiofrequency exposure is due to decreased density of dopaminergic projections from the locus coeruleus to dHPC, and artificial activation of dopamine axon terminals or D1 receptors in dHPC CA1 improve memory damage in mice exposed to RFR. These findings indicate that nonthermal radiofrequency stimulation modulates ongoing neuronal activity and affects nervous system function at the neural circuit level.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Weiqi Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yujie Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Ying Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Zhengtao Xu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yumeng Ye
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hongmei Zhou
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hua Deng
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Hongyan Zuo
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hong Yang
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yang Li
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Academy of Life ScienceAnhui Medical UniversityHefei230032China
- Department of PathologyChengde Medical CollegeChengde067000China
| |
Collapse
|
18
|
Abed T, Ganser K, Eckert F, Stransky N, Huber SM. Ion channels as molecular targets of glioblastoma electrotherapy. Front Cell Neurosci 2023; 17:1133984. [PMID: 37006466 PMCID: PMC10064067 DOI: 10.3389/fncel.2023.1133984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Therapies with weak, non-ionizing electromagnetic fields comprise FDA-approved treatments such as Tumor Treating Fields (TTFields) that are used for adjuvant therapy of glioblastoma. In vitro data and animal models suggest a variety of biological TTFields effects. In particular, effects ranging from direct tumoricidal, radio- or chemotherapy-sensitizing, metastatic spread-inhibiting, up to immunostimulation have been described. Diverse underlying molecular mechanisms, such as dielectrophoresis of cellular compounds during cytokinesis, disturbing the formation of the spindle apparatus during mitosis, and perforating the plasma membrane have been proposed. Little attention, however, has been paid to molecular structures that are predestinated to percept electromagnetic fields-the voltage sensors of voltage-gated ion channels. The present review article briefly summarizes the mode of action of voltage sensing by ion channels. Moreover, it introduces into the perception of ultra-weak electric fields by specific organs of fishes with voltage-gated ion channels as key functional units therein. Finally, this article provides an overview of the published data on modulation of ion channel function by diverse external electromagnetic field protocols. Combined, these data strongly point to a function of voltage-gated ion channels as transducers between electricity and biology and, hence, to voltage-gated ion channels as primary targets of electrotherapy.
Collapse
Affiliation(s)
- Tayeb Abed
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Yazdanpanahi M, Namazi A, Shojaeifard MB, Nematolahi S, Pourahmad S. Evaluating the Effect of Jammer Radiation on Learning and Memory in Male Rats. J Biomed Phys Eng 2023; 13:29-38. [PMID: 36818009 PMCID: PMC9923240 DOI: 10.31661/jbpe.v0i0.2001-1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/28/2020] [Indexed: 02/03/2023]
Abstract
Background Previous studies shown that mobile phone can impairment of working memory in humans. Objective In this study, the effect of radiofrequency radiation emitted from common mobile jammers have been studied on the learning and memory of rats. Material and Methods In this prospective study, 90 Sprague-Dawley rats, were divided into 9 groups (N=10): Control, Sham1st (exposed to a switched-off mobile jammer device at a distance of 50 or 100 cm/1 day, 2 hours), Sham2nd (similar to Sham1st, but for 14 days, 2 h/day), Experimental1st -50 cm/1 day &100 cm/1 day (exposed to a switched-on device at a distance of 50 or 100 cm for 2 hours), Experimental2nd (similar to experimental1st, but for 14 days, 2 h/day). The animals were tested for learning and memory the next day, by the shuttle box. The time that a rat took to enter the dark part was considered as memory. Results Mean short-term memory was shorter in the experimental- 50 cm/1 day than control and sham- 50 cm/1 day (P=0.034), long-term memory was similar. Mean short- and long-term memory were similar in the experimental- 100 cm/1 day, control and sham- 100 cm/1 day (P>0.05). Mean short-term memory was similar in experimental- 50 cm/14 days, control, and sham- 50 cm/14 days (P=0.087), but long-term learning memory was shorter in the radiated group (P=0.038). Mean short- and long-term were similar among experimental-100 cm/14 days, control or sham 100 cm/14 days (P>0.05). Conclusion Rats exposed to jammer device showed dysfunction in short- and long-term memory, which shown the unfavorable effect of jammer on memory and learning. Our results indicated that the distance from radiation source was more important than the duration.
Collapse
Affiliation(s)
- Mehrnaz Yazdanpanahi
- Ionizing and Non-ionizing Radiation Protection Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abasaleh Namazi
- Ionizing and Non-ionizing Radiation Protection Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manzar Banoo Shojaeifard
- Ionizing and Non-ionizing Radiation Protection Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Nematolahi
- Biostatics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeedeh Pourahmad
- Biostatics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Ma L, Tian S, Zhang HL, Wang JY, Wang JW, Yan HL, Hu XG, Shao Q, Guo JM. Transcriptomic and metabolomic studies on the protective effect of molecular hydrogen against nuclear electromagnetic pulse-induced brain damage. Front Public Health 2023; 11:1103022. [PMID: 36817910 PMCID: PMC9929151 DOI: 10.3389/fpubh.2023.1103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Background Excessive doses of electromagnetic radiation pose a negative impact on the central nervous system and lead to mental disorders. Molecular hydrogen can scavenge intracellular hydroxyl radicals, acting as an antioxidant, anti-apoptotic and anti-inflammatory agent. We seek to assess the capability of molecular hydrogen to ameliorate brain damage induced by electromagnetic radiation. Methods NEMP (nuclear electromagnetic pulse), a subset of electromagnetic pulse with high voltage value that could cause severe brain injury, was applied to this study. Male wild-type rats were divided into four groups: the control group, the H2 (Molecular hydrogen) group, the NEMP group and the NEMP+H2 group. Rats in the H2 group and the NEMP+H2 group were fed with saturated hydrogen-rich water from 3 days before NEMP exposure (electromagnetic field intensity 400 kV/m, rising edge 20 ns and pulse width 200 ns) to the day of sacrifice. One day after exposure, animal behavior experiments were performed, and samples for transcriptomics and metabolomics analysis were collected. Seven days after exposure, histopathological experiments were conducted. Results The data from the elevated plus maze and the open field test showed that NEMP exposure elicited anxiety-like behavior in rats, which could be alleviated by H2 treatment. Histopathological results manifested that NEMP exposure-induced injuries of the neurons in the hippocampus and amygdala could be attenuated by H2 treatment. Transcriptomic results revealed that NEMP exposure had a profound effect on microtubule structure in the brain. And the combined analysis of transcriptomics and metabolomics showed that H2 has a significant impact on the neuroactive ligand-receptor interaction, synaptic vesicle cycle and synapse etc. Moreover, it was indicated that the glutathione metabolic pathway played a vital role in the NEMP exposure-induced damage and the protective activity of H2. Conclusions H2 is identified as a potent agent against NEMP exposure-induced brain damage and has the potential to be a promising electromagnetic radiation protectant.
Collapse
Affiliation(s)
- Long Ma
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China,Department of Clinical Laboratory, Beidaihe Rehabilitation and Recuperation Center of PLA, Qinhuangdao, China
| | - Shuo Tian
- Department of Biochemistry, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Hai-Ling Zhang
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jing-Yi Wang
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China,School of Basic Medicine, Naval Medical University, Shanghai, China,Incubation Base for Undergraduates' Innovation Practice, Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jia-Wen Wang
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China,School of Basic Medicine, Naval Medical University, Shanghai, China,Incubation Base for Undergraduates' Innovation Practice, Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hong-Li Yan
- Center of Reproductive Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xu-Guang Hu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Xu-Guang Hu ✉
| | - Qi Shao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and The Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, China,Qi Shao ✉
| | - Jia-Ming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China,Incubation Base for Undergraduates' Innovation Practice, Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China,*Correspondence: Jia-Ming Guo ✉
| |
Collapse
|
21
|
Acute radiofrequency electromagnetic radiation exposure impairs neurogenesis and causes neuronal DNA damage in the young rat brain. Neurotoxicology 2023; 94:46-58. [PMID: 36336097 DOI: 10.1016/j.neuro.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
A mobile phone is now a commonly used device for digital media and communication among all age groups. Young adolescents use it for longer durations, which exposes them to radiofrequency electromagnetic radiation (RF-EMR). This exposure can lead to neuropsychiatric changes. The underlying cellular mechanism behind these changes requires detailed investigation. In the present study, we investigated the effect of RF-EMR emitted from mobile phones on young adolescent rat brains. Wistar rats (5 weeks, male) were exposed to RF-EMR signal (2115 MHz) at a head average specific absorption rate (SAR) of 1.51 W/kg continuously for 8 h. Higher level of lipid peroxidation, carbon-centered lipid radicals, and single-strand DNA damage was observed in the brain of rat exposed to RF-EMR. The number of BrdU-positive cells in the dentate gyrus (DG) decreased in RF-EMR-exposed rats, indicating reduced neurogenesis. RF-EMR exposure also induced degenerative changes and neuronal loss in DG neurons but had no effect on the CA3 and CA1 neurons of the hippocampus and cerebral cortex. The activity of Pro-caspase3 did not increase upon exposure in any of the brain regions, pointing out that degeneration observed in the DG region is not dependent on caspase activation. Results indicate that short-term acute exposure to RF-EMR induced the generation of carbon-centered lipid radicals and nuclear DNA damage, both of which likely played a role in the impaired neurogenesis and neuronal degeneration seen in the young brain's hippocampus region. The understanding of RF-EMR-induced alteration in the brain at the cellular level will help develop appropriate interventions for reducing its adverse impact.
Collapse
|
22
|
Pall ML. Millimeter (MM) wave and microwave frequency radiation produce deeply penetrating effects: the biology and the physics. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:247-258. [PMID: 34043892 DOI: 10.1515/reveh-2020-0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell's equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell-Faraday version of Faraday's law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.
Collapse
Affiliation(s)
- Martin L Pall
- Biochemistry and Basic Medical Sciences, Washington State University, Portland, OR 97232-3312, USA
| |
Collapse
|
23
|
Singh KV, Arya R, Nirala JP, Sahu D, Nanda RK, Rajamani P. Effects of mobile phone electromagnetic radiation on rat hippocampus proteome. ENVIRONMENTAL TOXICOLOGY 2022; 37:836-847. [PMID: 34984797 DOI: 10.1002/tox.23447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Worldwide, the number of mobile phone users has increased from 5.57 billion in 2011 to 6.8 billion in 2019. However, short- and long-term impact of the electromagnetic radiation emitting from mobile phones on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 h/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed/sham) ≥ ±1.0, p-value <.05). Majority of these deregulated proteins grouped into three clusters sharing similar molecular pathways. A set of four proteins (Succinate-semialdehyde dehydrogenase: Aldh5a1, Na+ K+ transporting ATPase: Atp1b2, plasma membrane calcium transporting ATPase: PMCA and protein S100B) presenting each functional pathway were selected for validation. Western blot analysis of these proteins, in an independent sample set, corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100B have a neuroprotective role. In conclusion, we present a deregulated hippocampus proteome upon mobile phone radiation exposure, which might influence the healthy functioning of the brain.
Collapse
Affiliation(s)
| | - Rakesh Arya
- Translational Health Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Debasis Sahu
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Ranjan Kumar Nanda
- Translational Health Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Marcoli M, Agnati LF, Franco R, Cortelli P, Anderlini D, Guidolin D, Cervetto C, Maura G. Modulating brain integrative actions as a new perspective on pharmacological approaches to neuropsychiatric diseases. Front Endocrinol (Lausanne) 2022; 13:1038874. [PMID: 36699033 PMCID: PMC9868467 DOI: 10.3389/fendo.2022.1038874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
A critical aspect of drug development in the therapy of neuropsychiatric diseases is the "Target Problem", that is, the selection of a proper target after not simply the etiopathological classification but rather the detection of the supposed structural and/or functional alterations in the brain networks. There are novel ways of approaching the development of drugs capable of overcoming or at least reducing the deficits without triggering deleterious side effects. For this purpose, a model of brain network organization is needed, and the main aspects of its integrative actions must also be established. Thus, to this aim we here propose an updated model of the brain as a hyper-network in which i) the penta-partite synapses are suggested as key nodes of the brain hyper-network and ii) interacting cell surface receptors appear as both decoders of signals arriving to the network and targets of central nervous system diseases. The integrative actions of the brain networks follow the "Russian Doll organization" including the micro (i.e., synaptic) and nano (i.e., molecular) levels. In this scenario, integrative actions result primarily from protein-protein interactions. Importantly, the macromolecular complexes arising from these interactions often have novel structural binding sites of allosteric nature. Taking G protein-coupled receptors (GPCRs) as potential targets, GPCRs heteromers offer a way to increase the selectivity of pharmacological treatments if proper allosteric drugs are designed. This assumption is founded on the possible selectivity of allosteric interventions on G protein-coupled receptors especially when organized as "Receptor Mosaics" at penta-partite synapse level.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- *Correspondence: Manuela Marcoli, ; Luigi F. Agnati,
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Manuela Marcoli, ; Luigi F. Agnati,
| | - Rafael Franco
- CiberNed Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine. Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane, QLD, Australia
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
| |
Collapse
|
25
|
The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Omer H. Radiobiological effects and medical applications of non-ionizing radiation. Saudi J Biol Sci 2021; 28:5585-5592. [PMID: 34588869 PMCID: PMC8459055 DOI: 10.1016/j.sjbs.2021.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Radiation is used in medicine to diagnose and treat diseases but it can also cause harm to the body by burning or mutation. This depends on whether the radiation is ionizing or nonionizing. Despite its vast applications in surgery, dermatology and cosmetics, little is taught and thus known about non-ionizing radiation. This review article discusses the fundamentals of non-ionizing electromagnetic radiations. The main aim is to extensively explain the different types of non-ionizing radiation. This will equip students and medical personnel with knowledge on different medical applications and expose them to a variety of specializations in medicine that utilize non-ionizing radiation. The article discusses the physics, hazard, means of protection and medical application of each type of radiation: ultraviolet radiation, light (both visible light and LASER), infrared radiation, microwaves and extremely low frequency radiation separately. It presents these terms in a simple manner that avoids rigors mathematics and physics, which makes them comprehensible for medical students. The development of new diagnostic and therapeutic approaches could also lead to increased hazards to the body unless they are treated with precaution. If not adequately monitored, a significant health risk may be posed to potentially exposed employees. Hence proper dosage should be used for non-ionizing radiation. This is only possible through understanding of the risks/benefits of these radiations by studying the physics and radiobiological effects of each individual radiation.
Collapse
Affiliation(s)
- Hiba Omer
- Department of Basic Sciences Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 34212, Saudi Arabia
| |
Collapse
|
27
|
Biological Effects of a Low-Frequency Electromagnetic Field on Yeast Cells of the Genus Saccharomyces Cerevisiae. ACTA MEDICA MARTINIANA 2021. [DOI: 10.2478/acm-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background: Although the scientific community is extensively concerned with the effects of the EMF, the unambiguous explanation of its effects on living structures is still lacking.
Goals: The goal of the study was to evaluate the effect of a low-frequency (LF) electromagnetic field (EMF) on the growth and multiplication of the yeast Saccharomyces cerevisiae.
Methods: Yeast cells were exposed to a frequency of 900 Hz and a magnetic flux density of 2.3 mT. The duration of each experiment was 8 hours, in the beginning of the measurement the value of frequency, rms (root mean square) value of electric current (2 A), and magnetic flux density were fixed set on the exposure device. A paired experiment was performed, a sample exposed to EMF, and a sample shielded from the field. Subsequently, samples were taken every two hours, the number of cells was recorded, and then the concentration of the yeast cells was evaluated at time points. The time points reflected the exposure time of the samples exposed to EMF.
Results: The results indicate that LF EMF at given parameters has an inhibitory effect on the growth and multiplication of yeast cells.
Conclusion: Exposure to EMF can cause the differences in growth dynamics between cells exposed to the field and the unexposed ones.
Collapse
|
28
|
Xia Z, Li M, Tian Y, Li Y, Li B, Zhang G, Lv J, Fu Q, Zhou H, Dong J. Lipidomics of Serum and Hippocampus Reveal the Protective Effects of Fermented Soybean Lipid on Rats of Microwave-Induced Cognitive Damage. ACS Chem Neurosci 2021; 12:2122-2132. [PMID: 34085811 DOI: 10.1021/acschemneuro.1c00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fermented soybean lipids (FSE-C) is an extract enriched in active lipid classes. To explore whether FSE-C can alleviate cognitive damage triggered by the exposure to microwave radiation through regulating lipid metabolism, we employed lipidomic profiling based on a UPLC-MS to investigate differential lipid metabolites in the serum and hippocampus of rats. The results showed that orally administered FSE-C could protect from cognitive damage in microwave-induced rats. Serum lipidomics indicated that FSE-C effectively facilitated the recovery of 43 differential lipid metabolites including 6 phosphatidylcholines (PCs), 5 phosphatidylethanolamines (PEs), 1 phosphatidylinositol, 3 lysophosphatidylcholines (LPCs), 6 lysophosphatidylethanolamines (LPEs), and 22 triglycerides (TGs), which was consistent with the analysis of serum TG levels. Moreover, FSE-C positively coordinated hexacosanoic acid, 2 PCs, 4 sphingomyelins (SMs), and 11 TGs, through the hippocampal lipidomics. Collectively, these findings suggested that phospholipid and TG metabolisms were significantly modified in microwave-exposed rats. TGs may be regarded as potential biomarkers to further investigate and evaluate the roles and functions of FSE-C on the attenuation of cognitive damage induced by microwave radiation.
Collapse
Affiliation(s)
- Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Min Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Guangjie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jinpeng Lv
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qianyu Fu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hongmei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
29
|
Tan S, Wang H, Xu X, Zhao L, Zhang J, Dong J, Yao B, Wang H, Hao Y, Zhou H, Gao Y, Peng R. Acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory abilities and CREB-related pathways. Sci Rep 2021; 11:12348. [PMID: 34117282 PMCID: PMC8196025 DOI: 10.1038/s41598-021-91622-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory and cAMP response element binding (CREB)-related pathways. A total of 120 male Wistar rats were divided into four groups: a control group (C); 2.856 GHz microwave exposure group (S group); 1.5 GHz microwave exposure group (L group); and 2.856 and 1.5 GHz cumulative exposure group (SL group). Decreases in spatial memory abilities, changes in EEG, structural injuries, and the downregulation of phosphorylated-Ak strain transforming (p-AKT), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), phosphorylated extracellular signal regulated kinase (p-ERK) and p-CREB was observed 6 h after microwave exposure. Significant differences in the expression of p-CaMKII were found between the S and L groups. The power amplitudes of the EEG waves (θ, δ), levels of structural injuries and the expression of p-AKT, p-CaMK II, p-CREB, and p-ERK1/2 were significantly different in the S and L groups compared to the SL group. Interaction effects between the 2.856 and 1.5 GHz microwaves were found in the EEG and p-CREB changes. Our findings indicated that 2.856 GHz and 1.5 GHz microwave exposure induced a decline in spatial memory, which might be related to p-AKT, p-CaMK II, p-CREB and p-ERK1/2.
Collapse
Affiliation(s)
- Shengzhi Tan
- PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Haoyu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yanhui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Hongmei Zhou
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| |
Collapse
|
30
|
Zhu R, Wang H, Xu X, Zhao L, Zhang J, Dong J, Yao B, Wang H, Zhou H, Gao Y, Peng R. Effects of 1.5 and 4.3 GHz microwave radiation on cognitive function and hippocampal tissue structure in Wistar rats. Sci Rep 2021; 11:10061. [PMID: 33980913 PMCID: PMC8115682 DOI: 10.1038/s41598-021-89348-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that single-frequency microwave radiation can lead to cognitive decline in rats. However, few studies have focused on the combined effects of irradiation with different frequencies of microwaves. Our research aimed to investigate the effects of 1.5 GHz and 4.3 GHz microwave radiation, singly and in combination, on cognitive function and hippocampal tissue structure in rats. A total of 140 male Wistar rats were randomly divided into 4 groups: the S group (sham radiation group), L10 group (10 mW/cm2 1.5 GHz group), C10 group (10 mW/cm2 4.3 GHz band group) and LC10 group (10 mW/cm2 1.5 and 4.3 GHz multi-frequency radiation group). For 1–28 days after microwave radiation, we analyzed the average escape latency for the Morris water maze task, electroencephalograms, change in hippocampal tissue structure and ultrastructure, content of the Nissl body in the hippocampus, and activities of lactate dehydrogenase and succinate dehydrogenase. Compared to the S group, all exposure groups showed varying degrees of learning and memory decline and hippocampal structural damage. The results showed that 1.5 GHz and 4.3 GHz microwave radiation was able to induce cognitive impairment and hippocampal tissue damage in rats and combined radiation with both frequencies caused more serious injuries, but none of these damaging effects varied with microwave frequency.
Collapse
Affiliation(s)
- Ruiqing Zhu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haoyu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hongmei Zhou
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
31
|
Efficacy and safety of non-surgical short-wave radiofrequency treatment of mild-to-moderate erythematotelangiectatic rosacea: a prospective, open-label pilot study. Arch Dermatol Res 2021; 314:341-347. [PMID: 33934172 DOI: 10.1007/s00403-021-02225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Although various treatments have been proposed for the management of rosacea, achieving complete remission of persistent erythema remains challenging. Short-wave radiofrequency (SWRF) treatment has been shown to repair skin barriers and reduce chronic inflammation. However, limited studies have evaluated the effectiveness of SWRF treatment for erythematotelangiectatic rosacea (ETR). A prospective, open-label pilot study using SWRF therapy was conducted on 30 patients with mild-to-moderate ETR. During the first stage, the patients underwent a single, full-face treatment and were evaluated before and after the session, as well as on the 7th and 15th day post-treatment. During the second stage, ten treatment sessions were administered, and the patients were evaluated before and after the tenth session, as well as 1 month after the treatment. Adverse events were recorded during each treatment session, and the patients were followed up for 3 months after the last session. Twenty-eight patients completed the entire trial. On the 7th day after the single treatment, the global score (total score of flushing, persistent erythema, and telangiectasia) of ETR improved from 5.23 ± 1.09 to 4.00 ± 0.76 relative to the baseline value (p < 0.05); moreover, the overall treatment satisfaction improved from 7.27 ± 0.89 to 4.90 ± 0.91 (p < 0.05). 1 month after the tenth treatment session, the global score improved from 5.30 ± 1.01 to 3.85 ± 0.93 (p < 0.05), and the overall treatment satisfaction improved from 7.13 ± 0.85 to 5.17 ± 1.19 (p < 0.05). During the 3 month follow-up period, there were two cases of recurrence. Therefore, this report indicates that SWRF might be an effective auxiliary treatment for mild-to-moderate ETR.
Collapse
|
32
|
Bhartiya P, Mumtaz S, Lim JS, Kaushik N, Lamichhane P, Nguyen LN, Jang JH, Yoon SH, Choi JJ, Kaushik NK, Choi EH. Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Sci Rep 2021; 11:8475. [PMID: 33875781 PMCID: PMC8055702 DOI: 10.1038/s41598-021-88078-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Microwave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco's modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jun Sup Lim
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Neha Kaushik
- College of Engineering, Department of Biotechnology, University of Suwon, Hwaseong, 18323, Korea
| | - Pradeep Lamichhane
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jung Hyun Jang
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sang Ho Yoon
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jin Joo Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
33
|
Brain-to-brain communication: the possible role of brain electromagnetic fields (As a Potential Hypothesis). Heliyon 2021; 7:e06363. [PMID: 33732922 PMCID: PMC7937662 DOI: 10.1016/j.heliyon.2021.e06363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Up now, the communication between brains of different humans or animals has been confirmed and confined by the sensory medium and motor facilities of body. Recently, direct brain-to-brain communication (DBBC) outside the conventional five senses has been verified between animals and humans. Nevertheless, no empirical studies or serious discussion have been performed to elucidate the mechanism behind this process. The validation of DBBC has been documented via recording similar pattern of action potentials occurring in the brain cortex of two animals. With regard to action potentials in brain neurons, the magnetic field resulting from the action potentials created in neurons is one of the tools where the brain of one animal can affect the brain of another. It has been shown that different animals, even humans, have the power to understand the magnetic field. Cryptochrome, which exists in the retina and in different regions of the brain, has been confirmed to be able to perceive magnetic fields and convert magnetic fields to action potentials. Recently, iron particles (Fe3O4) believed to be functioning as magnets have been found in various parts of the brain, and are postulated as magnetic field receptors. Newly developed supersensitive magnetic sensors made of iron magnets that can sense the brain's magnetic field have suggested the idea that these Fe3O4 particles or magnets may be capable of perceiving the brain's extremely weak magnetic field. The present study suggests that it is possible the extremely week magnetic field in one animal's brain to transmit vital and accurate information to another animal's brain.
Collapse
|
34
|
Abstract
In critically examining literature on electrohypersensitivity and the reported somatic responses to anthropogenic modulated radiofrequency radiation (RFR) exposure, it becomes apparent that electrohypersensitivity is one part of a range of consequences. Current evidence on the necessity of considering patients' overall health status leads us to propose a new model in which electrohypersensitivity is but part of the electrosensitive status inherent in being human. We propose the likelihood and type of response to environmental RFR include i) a linear somatic awareness continuum, ii) a non-linear somatic response continuum, and iii) the extent of each individual's capacity to repair damage (linked to homeostatic response). We anticipate this last, dynamic, aspect is inextricably linked to the others through the autonomic nervous system. The whole is dependent upon the status of the interconnected immune and inflammatory systems. This holistic approach leads us to propose various outcomes. For most, their body maintains homeostasis by routine repair. However, some develop electrohypersensitivity either due to RFR exposure or as an ANS-mediated, unconscious response (aka nocebo effect), or both. We suggest RFR exposure may be one factor in the others developing an auto-immune disease or allergy. A few develop delayed catastrophic disease such as glioma. This model gives the blanket term ElectroMagnetic Illness (EMI) to all RFR-related conditions. Thus, EHS appears to be one part of a range of responses to a novel and rapidly changing evolutionary situation.
Collapse
Affiliation(s)
- Mary Redmayne
- SGEES, Victoria University of Wellington, New Zealand.,Monash University, Melbourne, Australia
| | | |
Collapse
|
35
|
Çöl N, Kömürcü-Karuserci Ö, Demirel C. The possible effects of maternal electronic media device usage during pregnancy on children's sleep patterns. Turk Arch Pediatr 2021; 56:254-260. [PMID: 34104918 DOI: 10.5152/turkarchpediatr.2020.20138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022]
Abstract
Objective In recent years, there has been increasing scientific evidence about potential health risks caused by electromagnetic fields because of electronic media devices. Therefore, this study aimed to examine the possible association between electronic media device usage during pregnancy and sleep patterns in children and the possible role of electronic media device presence in the sleeping environment on children's sleep disturbances. Material and Methods The study was carried out with 400 healthy children aged between 1 month and 5 years whose parents agreed to complete the questionnaire form. The questionnaire form consisted of questions about the history of prenatal and postnatal electromagnetic field exposure caused by electronic media devices and the presence of sleep disturbances in children. Data were analyzed with SPSS for Windows program. P-values <0.05 were considered statistically significant. Results Sleep problems were more prevalent in children whose mothers lived near a base station during pregnancy (p<0.05). Sleep disorders were more frequent and sleep duration was shorter in children whose mothers used electronic devices (television, computer, mobile phone, wi-fi, microwave oven) during pregnancy (p<0.05). Sleep problems were also more common in children with electronic media devices in the sleeping environment during the night (p<0.05). Sleep disturbances were not associated with maternal consumption of tobacco or alcohol or history of disease during pregnancy (p>0.05). Conclusion Our results highlight that exposure to electromagnetic fields caused by electronic media devices during the prenatal or postnatal period could be associated with sleep patterns in childhood. Considering the widespread use of electronic media devices, it may be an important public health problem given the long-term consequences of sleep disorders in childhood.
Collapse
Affiliation(s)
- Nilgün Çöl
- Department of Social Pediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Özge Kömürcü-Karuserci
- Department of Obstetric and Gynecology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Can Demirel
- Department of Biophysics, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
36
|
Azimzadeh M, Jelodar G. Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS-antenna model and the protective role of vitamin E. J Anim Physiol Anim Nutr (Berl) 2020; 104:1568-1574. [PMID: 32279387 DOI: 10.1111/jpn.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
Advances in telecommunication and their broad usage in the community have become a great concern from the health aspect. The object of the present study was to examine the effects of exposure to 900 MHz RFW on brain Iron (Fe), Copper (Cu), Zinc (Zn) and Manganese (Mn) concentration, and the protective role of pre-treatment of vitamin E on mentioned elements homoeostasis. Twenty adult male Sprague-Dawley rats (200 ± 20 g) randomly were divided into four groups. Control group (without any exposure, received distilled water), treatment control group (orally received 250 mg/kg BW/d vitamin E), treatment group (received 250 mg/kg BW/d vitamin E and exposed to 900 MHz RFW) and sham-exposed group (exposed to 900 MHz RFW). Animals (with freely moving in the cage) were exposed to RFW for 30 consecutive days (4 hr/day). The levels of the above mentioned elements in the brain tissue were determined on the last day using atomic absorption spectrophotometry. Exposure to 900 MHz RFW induced a significant increase in the Fe, Cu, Mn levels and Cu/Zn ratio accompanied by a significant decrease in Zn level in the sham-exposed group compare to control group. Vitamin E pre-treatment improved the level of Fe, Cu, Mn and Cu/Zn ratio, except in the Zn concentration. Exposure to 900 MHz RFW caused disrupted trace elements homoeostasis in the brain tissue and administration of vitamin E as an antioxidant and neuroprotective agent improved the situation.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
37
|
Dickerson AS, Wu AC, Liew Z, Weisskopf M. A Scoping Review of Non-Occupational Exposures to Environmental Pollutants and Adult Depression, Anxiety, and Suicide. Curr Environ Health Rep 2020; 7:256-271. [PMID: 32533365 PMCID: PMC7483936 DOI: 10.1007/s40572-020-00280-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Despite a call for better understanding of the role of environmental pollutant influences on mental health and the tremendous public health burden of mental health, this issue receives far less attention than many other effects of pollutants. Here we summarize the body of literature on non-occupational environmental pollutant exposures and adult depression, anxiety, and suicide-in PubMed, Embase, Web of Science, and PsychINFO through the end of year 2018. RECENT FINDINGS One hundred twelve articles met our criteria for further review. Of these, we found 88 articles on depression, 33 on anxiety, and 22 on suicide (31 articles covered multiple outcomes). The earliest article was published in 1976, and the most frequent exposure of interest was air pollution (n = 33), followed by secondhand smoke (n = 20), metals (n = 18), noise (n = 17), and pesticides (n = 10). Other exposures studied less frequently included radiation, magnetic fields, persistent organic pollutants (POPs), volatile organic compounds, solvents, and reactive sulfur compounds. The current literature, although limited, clearly suggests many kinds of environmental exposures may be risk factors for depression, anxiety, and suicide. For several pollutants, important limitations exist with many of the studies. Gaps in the body of research include a need for more longitudinal, life-course studies, studies that can measure cumulative exposures as well as shorter-term exposures, studies that reduce the possibility of reverse causation, and mechanistic studies focused on neurotoxic exposures.
Collapse
Affiliation(s)
- Aisha S Dickerson
- Departments of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Alexander C Wu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Center for Perinatal Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Marc Weisskopf
- Departments of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Suite 1402, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Pall ML. Science Has Not Proven That Screen Use Impacts Children's Brain Development. JAMA Pediatr 2020; 174:804. [PMID: 32744633 DOI: 10.1001/jamapediatrics.2020.0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Park J, Jeong E, Seomun G. Extremely Low-Frequency Magnetic Fields Exposure Measurement during Lessons in Elementary Schools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5284. [PMID: 32707979 PMCID: PMC7432945 DOI: 10.3390/ijerph17155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/30/2022]
Abstract
Schools are an important place for children's exposure to electromagnetic fields, which may cause adverse health effects. To better understand environmental extremely low-frequency magnetic fields (ELF-MFs) exposure among elementary school students, we measured numeric values of ELF-MFs in five classrooms at four schools during digital learning class hours. The measurement of ELF-MFs was taken with an EMDEX II field analyzer. Specifically, we examined the level of exposure to ELF-MFs for each student's seating position in the classroom. The results showed that ELF-MFs exposure levels were lower than those in the International Commission on Non-Ionizing Radiation Protection guidelines; however, there were significant differences in the level of magnetic field exposure at each school and at each student's seat. The exposure to ELF-MFs at students' seat positions was mostly caused by electrical appliances, electronic wiring, and distribution boxes, but the exposure level decreased as the distance increased. Therefore, it is important to design safe and appropriate environments for digital learning in schools, such as proper seating arrangements, to avoid ELF-MFs exposure to students as much as possible. Future studies should measure ELF-MFs levels in other areas and investigate the effects of exposure to ELF-MFs during school hours on children's health.
Collapse
Affiliation(s)
| | | | - GyeongAe Seomun
- College of Nursing, Korea University, Seoul 02841, Korea; (J.P.); (E.J.)
| |
Collapse
|
40
|
Impacts of high dose 3.5 GHz cellphone radiofrequency on zebrafish embryonic development. PLoS One 2020; 15:e0235869. [PMID: 32645106 PMCID: PMC7347199 DOI: 10.1371/journal.pone.0235869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid deployment of 5G spectrum by the telecommunication industry is intended to promote better connectivity and data integration among various industries. However, since exposures to radio frequency radiations (RFR) >2.4 GHz are still uncommon, concerns about their potential health impacts are ongoing. In this study, we used the embryonic zebrafish model to assess the impacts of a 3.5 GHz RFR on biology- a frequency typically used by 5G-enabled cell phones and lies within the 4G and 5G bandwidth. We established a plate-based exposure setup for RFRs, exposed developing zebrafish to 3.5 GHz RFR, specific absorption rate (SAR) ≈ 8.27 W/Kg from 6 h post fertilization (hpf) to 48 hpf, and measured a battery of morphological and behavioral endpoints at 120 hpf. Our results revealed no significant impacts on mortality, morphology or photomotor response and a modest inhibition of startle response suggesting some levels of sensorimotor disruptions. This suggests that the cell phone radiations at low GHz-level frequencies are likely benign, with subtle sensorimotor effects. Through this assessment, we have established a robust setup for zebrafish RFR exposures readily amenable to testing various powers and frequencies. Future developmental exposure studies in zebrafish will evaluate a wider portion of the radio frequency spectrum to discover the bioactive regions, the potential molecular targets of RFR and the potential long-term effects on adult behavior.
Collapse
|
41
|
Stein Y, Udasin IG. Electromagnetic hypersensitivity (EHS, microwave syndrome) - Review of mechanisms. ENVIRONMENTAL RESEARCH 2020; 186:109445. [PMID: 32289567 DOI: 10.1016/j.envres.2020.109445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Electromagnetic hypersensitivity (EHS), known in the past as "Microwave syndrome", is a clinical syndrome characterized by the presence of a wide spectrum of non-specific multiple organ symptoms, typically including central nervous system symptoms, that occur following the patient's acute or chronic exposure to electromagnetic fields in the environment or in occupational settings. Numerous studies have shown biological effects at the cellular level of electromagnetic fields (EMF) at magnetic (ELF) and radio-frequency (RF) frequencies in extremely low intensities. Many of the mechanisms described for Multiple Chemical Sensitivity (MCS) apply with modification to EHS. Repeated exposures result in sensitization and consequent enhancement of response. Many hypersensitive patients appear to have impaired detoxification systems that become overloaded by excessive oxidative stress. EMF can induce changes in calcium signaling cascades, significant activation of free radical processes and overproduction of reactive oxygen species (ROS) in living cells as well as altered neurological and cognitive functions and disruption of the blood-brain barrier. Magnetite crystals absorbed from combustion air pollution could have an important role in brain effects of EMF. Autonomic nervous system effects of EMF could also be expressed as symptoms in the cardiovascular system. Other common effects of EMF include effects on skin, microvasculature, immune and hematologic systems. It is concluded that the mechanisms underlying the symptoms of EHS are biologically plausible and that many organic physiologic responses occur following EMF exposure. Patients can have neurologic, neuro-hormonal and neuro-psychiatric symptoms following exposure to EMF as a consequence of neural damage and over-sensitized neural responses. More relevant diagnostic tests for EHS should be developed. Exposure limits should be lowered to safeguard against biologic effects of EMF. Spread of local and global wireless networks should be decreased, and safer wired networks should be used instead of wireless, to protect susceptible members of the public. Public places should be made accessible for electrohypersensitive individuals.
Collapse
Affiliation(s)
- Yael Stein
- Pain Clinic, Department of Anesthesiology and Critical Care Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel; Electromagnetic Radiation Clinic, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Iris G Udasin
- EOHSI Clinical Center, Rutgers University- School of Public Health, NJ, USA
| |
Collapse
|
42
|
Sharma S, Shukla S. Effect of electromagnetic radiation on redox status, acetylcholine esterase activity and cellular damage contributing to the diminution of the brain working memory in rats. J Chem Neuroanat 2020; 106:101784. [PMID: 32205214 DOI: 10.1016/j.jchemneu.2020.101784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023]
Abstract
Behavioral impairments are the most pragmatic outcome of long-term mobile uses but the underlying causes are still poorly understood. Therefore, the Aim of the present study to determine the possible mechanism of mobile induced behavioral alterations by observing redox status, cholinesterase activity, cellular, genotoxic damage and cognitive alterations in rat hippocampus. This study was carried out on 24 male Wistar rats, randomly divided into four groups (n = 6 in each group): group I consisted of sham-exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation (900 MHz) at different time duration 1 h, 2 h, and 4 h respectively for 90 days. After 90 days of exposure, rats were assessing learning ability by using T-Maze. A significantly increased level of malondialdehyde (MDA) with concomitantly depleted levels of superoxide dismutase (SOD), catalase (CAT) and redox enzymes (GSH, GPX, GR, GST, G-6PDH) indicated an exposure of mobile emitted EMR induced oxidative stress by the depleted redox status of brain cells. The depletion in the acetylcholinesterase (AChE) level reveals altered neurotransmission in brain cells. Resultant cellular degeneration was also observed in the radiation-exposed hippocampus. Conclusively, the present study revealed that microwave radiation induces oxidative stress, depleted redox status, and causes DNA damage with the subsequent reduction in working memory in a time-dependent manner. This study provides insight over the associative reciprocity between redox status, cellular degeneration and reduced cholinergic activity, which presumably leads to the behavioral alterations following mobile emitted electromagnetic radiation.
Collapse
Affiliation(s)
- Samta Sharma
- Reproductive Biology and Toxicology Laboratory, UNESCO Satellite center of Trace Element Research & School of Studies in Zoology, Jiwaji University, Gwalior, M.P., India.
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Laboratory, UNESCO Satellite center of Trace Element Research & School of Studies in Zoology, Jiwaji University, Gwalior, M.P., India
| |
Collapse
|
43
|
Deruelle F. The different sources of electromagnetic fields: Dangers are not limited to physical health. Electromagn Biol Med 2020; 39:166-175. [PMID: 32151189 DOI: 10.1080/15368378.2020.1737811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The impact of electromagnetic waves on health has been clearly established by many studies in recent decades. No State, with the exception of Russia, takes any real precautions in terms of standards for the population. Conflicts of interest and political lies are used to hide the truth about the dangers of electromagnetic pollution.In addition, it would seem that other sources of radiation than the most well-known ones (mobile phones, digital enhanced cordless telecommunication (DECT) phones, bluetooth, base stations, Wi-Fi, 4G, 5G) come into play. A system such as HAARP (High-frequency Active Auroral Research Program), as well as directed wave beams (related to past and recent scandals) must be analyzed and considered in a comprehensive way to understand why the wave level is only increasing despite the considerable amount of scientific work demonstrating that the standards are not adequate to maintain public health.Thus, official documents show that the impact of electromagnetic waves is not only physical and biological. Indeed, the climate and the behavior of the population are also targeted.
Collapse
|
44
|
Yang H, Zhang Y, Wang Z, Zhong S, Hu G, Zuo W. The Effects of Mobile Phone Radiofrequency Radiation on Cochlear Stria Marginal Cells in Sprague-Dawley Rats. Bioelectromagnetics 2020; 41:219-229. [PMID: 32072661 PMCID: PMC7154754 DOI: 10.1002/bem.22255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023]
Abstract
To investigate the possible mechanisms for biological effects of 1,800 MHz mobile radiofrequency radiation (RFR), the radiation-specific absorption rate was applied at 2 and 4 W/kg, and the exposure mode was 5 min on and 10 min off (conversation mode). Exposure time was 24 h short-term exposure. Following exposure, to detect cell DNA damage, cell apoptosis, and reactive oxygen species (ROS) generation, the Comet assay test, flow cytometry, DAPI (4',6-diamidino-2-phenylindole dihydrochloride) staining, and a fluorescent probe were used, respectively. Our experiments revealed that mobile phone RFR did not cause DNA damage in marginal cells, and the rate of cell apoptosis did not increase (P > 0.05). However, the production of ROS in the 4 W/kg exposure group was greater than that in the control group (P < 0.05). In conclusion, these results suggest that mobile phone energy was insufficient to cause cell DNA damage and cell apoptosis following short-term exposure, but the cumulative effect of mobile phone radiation still requires further confirmation. Activation of the ROS system plays a significant role in the biological effects of RFR. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Honghong Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shixun Zhong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqi Zuo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett 2020; 323:35-40. [PMID: 31991167 DOI: 10.1016/j.toxlet.2020.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
This article identifies adverse effects of non-ionizing non-visible radiation (hereafter called wireless radiation) reported in the premier biomedical literature. It emphasizes that most of the laboratory experiments conducted to date are not designed to identify the more severe adverse effects reflective of the real-life operating environment in which wireless radiation systems operate. Many experiments do not include pulsing and modulation of the carrier signal. The vast majority do not account for synergistic adverse effects of other toxic stimuli (such as chemical and biological) acting in concert with the wireless radiation. This article also presents evidence that the nascent 5G mobile networking technology will affect not only the skin and eyes, as commonly believed, but will have adverse systemic effects as well.
Collapse
Affiliation(s)
- Ronald N Kostoff
- Research Affiliate, School of Public Policy, Georgia Institute of Technology, Georgia, United States.
| | - Paul Heroux
- Toxicology and Health Effects of Electromagnetism, McGill University, Canada
| | - Michael Aschner
- Molecular Pharmacology, Einstein Center of Toxicology, Albert Einstein College of Medicine, United States
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
46
|
Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation. Mol Clin Oncol 2020; 12:247-257. [PMID: 32064102 PMCID: PMC7016513 DOI: 10.3892/mco.2020.1984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Radiofrequency (RF) radiation in the frequency range of 30 kHz-300 GHz is classified as a 'possible' human carcinogen, Group 2B, by the International Agency for Research on Cancer (IARC) since 2011. The evidence has since then been strengthened by further research; thus, RF radiation may now be classified as a human carcinogen, Group 1. In spite of this, microwave radiations are expanding with increasing personal and ambient exposure. One contributing factor is that the majority of countries rely on guidelines formulated by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), a private German non-governmental organization. ICNIRP relies on the evaluation only of thermal (heating) effects from RF radiation, thereby excluding a large body of published science demonstrating the detrimental effects caused by non-thermal radiation. The fifth generation, 5G, for microwave radiation is about to be implemented worldwide in spite of no comprehensive investigations of the potential risks to human health and the environment. In an appeal sent to the EU in September, 2017 currently >260 scientists and medical doctors requested for a moratorium on the deployment of 5G until the health risks associated with this new technology have been fully investigated by industry-independent scientists. The appeal and four rebuttals to the EU over a period of >2 years, have not achieved any positive response from the EU to date. Unfortunately, decision makers seem to be uninformed or even misinformed about the risks. EU officials rely on the opinions of individuals within the ICNIRP and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), most of whom have ties to the industry. They seem to dominate evaluating bodies and refute risks. It is important that these circumstances are described. In this article, the warnings on the health risks associated with RF presented in the 5G appeal and the letters to the EU Health Commissioner since September, 2017 and the authors' rebuttals are summarized. The responses from the EU seem to have thus far prioritized industry profits to the detriment of human health and the environment.
Collapse
|
47
|
Tian Y, Xia Z, Li M, Zhang G, Cui H, Li B, Zhou H, Dong J. The relationship between microwave radiation injury and abnormal lipid metabolism. Chem Phys Lipids 2019; 225:104802. [DOI: 10.1016/j.chemphyslip.2019.104802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/03/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
|
48
|
Mumtaz S, Bhartiya P, Kaushik N, Adhikari M, Lamichhane P, Lee SJ, Kaushik NK, Choi EH. Pulsed high-power microwaves do not impair the functions of skin normal and cancer cells in vitro: A short-term biological evaluation. J Adv Res 2019; 22:47-55. [PMID: 31956441 PMCID: PMC6961216 DOI: 10.1016/j.jare.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022] Open
Abstract
Pulsed high power microwave (MW) at a frequency 3.5 GHz was generated. MW did not induce cell death in skin fibroblast normal cells and melanoma cells. MW did not alter the morphology of melanoma cells. Gene expression related to ATP synthesis and proliferation can get altered by MW. MW selectively stimulated viability and proliferation of only melanoma cells.
Over the past few decades, microwave (MW) radiation has been widely used, and its biological effects have been extensively investigated. However, the effect of MW radiation on human skin biology is not well understood. We study the effects of pulsed high-power microwaves (HPMs) on melanoma (G361 and SK-Mel-31) and normal human dermal fibroblast (NHDF) cells. A pulsed power generator (Chundoong) was used to generate pulsed HPMs (dominant frequency: 3.5 GHz). For treatment 1, 5, 15, and 45 shots are given to cells in which the electromagnetic energy of 0.6 J was delivered to the cells at each trigger shot. Cell viability, proliferation rate, apoptosis, cell death, metabolic activity, and oxygen-free radical regulation were evaluated after the MW exposure at low and high doses. MW exposure increased the viabilities and proliferation rates of both melanoma cell lines in a dose-dependent manner, while no significant effects on the fibroblast cells were observed. We found an elevated level of ATP and mitochondrial activity in melanoma cells. Also, it was observed that MW exposure did not affect cell death in melanoma and fibroblast cells. A polymerase chain reaction analysis indicated that the MWs induced dose-dependent proliferation markers without affecting the cell cycle and apoptotic genes in the melanoma cells. Our findings show the differential effects of the MW radiation on the melanoma cells, compared to those on the fibroblast cells.
Collapse
Affiliation(s)
- Sohail Mumtaz
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Pradeep Bhartiya
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Manish Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Pradeep Lamichhane
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.,Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.,Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
49
|
Cloninger CR, Cloninger KM, Zwir I, Keltikangas-Järvinen L. The complex genetics and biology of human temperament: a review of traditional concepts in relation to new molecular findings. Transl Psychiatry 2019; 9:290. [PMID: 31712636 PMCID: PMC6848211 DOI: 10.1038/s41398-019-0621-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have shown that temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term learning and memory. The results were replicated in three independent samples despite variable cultures and environments. The identified genes were enriched in pathways activated by behavioral conditioning in animals, including the two major molecular pathways for response to extracellular stimuli, the Ras-MEK-ERK and the PI3K-AKT-mTOR cascades. These pathways are activated by a wide variety of physiological and psychosocial stimuli that vary in positive and negative valence and in consequences for health and survival. Changes in these pathways are orchestrated to maintain cellular homeostasis despite changing conditions by modulating temperament and its circadian and seasonal rhythms. In this review we first consider traditional concepts of temperament in relation to the new genetic findings by examining the partial overlap of alternative measures of temperament. Then we propose a definition of temperament as the disposition of a person to learn how to behave, react emotionally, and form attachments automatically by associative conditioning. This definition provides necessary and sufficient criteria to distinguish temperament from other aspects of personality that become integrated with it across the life span. We describe the effects of specific stimuli on the molecular processes underlying temperament from functional, developmental, and evolutionary perspectives. Our new knowledge can improve communication among investigators, increase the power and efficacy of clinical trials, and improve the effectiveness of treatment of personality and its disorders.
Collapse
Affiliation(s)
- C Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- School of Arts and Sciences, Department of Psychological and Brain Sciences, and School of Medicine, Department of Genetics, Washington University, St. Louis, MO, USA.
- Anthropedia Foundation, St. Louis, MO, USA.
| | | | - Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science, University of Granada, Granada, Spain
| | | |
Collapse
|
50
|
Sharaf NE, Galal AF, El-Sawy MS, Shalby AB, Sayed AH, Ahmed HH. Role of designed Bio-Geometrical forms in antagonizing neurobehavioral burden of Wi-Fi radiation: Evidence-based experimental study. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study investigated the impact of Wi-Fi signals exposure on cognitive function and its relevant brain biomarkers and the possible role of designed Bio-Geometrical forms in restoring the neurobehavioral alterations resulting from the exposure to the emerging radiation.Rats were assigned into 3 groups; Gp I control group (away from exposure to radiation); Gp II, III were exposed to wireless router signals for 24 h for 6 months and Gp III was protected by a set of designed BioGeometrical shapes. Animals were tested for spatial memory, anxiety and emotionality in addition to the related neurotransmitters (dopamine, serotonin and acetylcholine) in different brain areas. Melatonin, Heat Shock Protein (HSP-70) and acetylcholine esterase (AchE) were also measured in various brain regions and histopathological examination was carried out as well. Wi-Fi radiation exposed group showed elevated anxiety level and impaired spatial memory. Moreover, significant decline in dopamine, serotonin and acetylcholine levels in the investigated brain areas has been recorded. Melatonin levels were decreased in the cortex, striatum and hippocampus while HSP-70 was depleted in the cortex only. Using Bio-Geometrical forms along with Wi-Fi exposure could combat the burden of Wi-Fi radiation. This was evidenced by the recovery of the anxiety level and the improvement of memory task. In addition, the presence of Bio-Geometrical shapes could retrieve dopamine, serotonin and acetylcholine as well as melatonin and HSP-70 levels This study provides solid foundation for the potential use of Bio-Geometrical shapes to modify the insult of Wi-Fi radiation on brain function and structure.
Collapse
Affiliation(s)
- Nevin E. Sharaf
- Department of Environmental and Occupational Medicine, National Research Centre, Giza, Egypt
| | - Asmaa F. Galal
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Giza, Egypt
| | - Mohamed S. El-Sawy
- Department of Architecture, Faculty of engineering, Misr University, Giza, Egypt
| | - Aziza B. Shalby
- Department of Hormones, Medical Research Division, National Research Centre, Giza, Egypt
| | - Alaa H. Sayed
- Department of Hormones, Medical Research Division, National Research Centre, Giza, Egypt. 5Applied Medical Sciences Department, Community College in AlQurayyat Al-Jouf, Saudi Arabia
| | - Hanaa H. Ahmed
- Department of Hormones, Medical Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|