1
|
Jain B, Jain R, Kabir A, Ali N, Rashid Khan M, Sharma S. Greener analysis of eleven basic drugs in blood and urine using carbowax 20M based biofluid sampler (BFS) device. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124327. [PMID: 39353248 DOI: 10.1016/j.jchromb.2024.124327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
For the first time, a novel biofluid sampler (BFS) and sample preparation device is applied for the analysis of 11 basic drugs (i.e., pheniramine, chlorpheniramine, fluoxetine, tramadol, amitriptyline, ketamine, diazepam, chlordiazepoxide, clozapine, chlorpromazine, dothiepin) in biological matrices (i.e., blood and urine). BFS utilizes advanced, highly effective sorbents derived from sol-gel sorbent coating technology onto cellulose fabric substrate, improving sample collection and retention. BFS has the capability to retain a biological sample from 10 to 1000 µL without requiring any dilution or pre-treatment of the sample. The biological samples were pipetted onto the BFS device and dried at room temperature. Subsequently, adsorbed analytes were back-extracted into 1000 µL of methanol without requiring any imposed external diffusion process and then analyzed by gas chromatography-mass spectrometry (GC-MS). A one-factor-at-a-time (OFAT) screening procedure was used to extensively screen and optimize several parameters, including sample volume, elution time, solvent volume, and solvent type. Under the optimal conditions of the study, the method was found to be linear within the range 0.1-10 µg mL-1 for both blood and urine. Quantification limits were established for blood samples within the range of 0.072-0.095 μg mL-1 and for urine samples within the range of 0.050-0.069 μg mL-1. The precisions within and between days were less than 7% and 10%, respectively. The target analytes showed good recoveries utilizing the recommended protocol, with ranges of 45.1%-103.4%. Furthermore, the methodology has been effectively implemented in forensic toxicology case work. Moreover, the green characteristics and applicability of the suggested methodology was evaluated using softwares i.e., AGREE and BAGI.
Collapse
Affiliation(s)
- Bharti Jain
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India; Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India.
| | - Abuzar Kabir
- Global Forensic and Justice Center, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
2
|
Jankech T, Gerhardtova I, Stefanik O, Chalova P, Jampilek J, Majerova P, Kovac A, Piestansky J. Current green capillary electrophoresis and liquid chromatography methods for analysis of pharmaceutical and biomedical samples (2019-2023) - A review. Anal Chim Acta 2024; 1323:342889. [PMID: 39182966 DOI: 10.1016/j.aca.2024.342889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/27/2024]
Abstract
Separation analytical methods, including liquid chromatography (LC) and capillary electrophoresis (CE), in combination with an appropriate detection technique, are dominant and powerful approaches preferred in the analysis of pharmaceutical and biomedical samples. Recent trends in analytical methods are focused on activities that push them to the field of greenness and sustainability. New approaches based on the implementation of greener solvents, non-hazardous chemicals, and reagents have grown exponentially. Similarly, recent trends are pushed in to the strategies based on miniaturization, reduction of wastes, avoiding derivatization procedures, or reduction of energy consumption. However, the real greenness of the analytical method can be evaluated only according to an objective and sufficient metric offering complex results taking into account all twelve rules of green analytical chemistry (SIGNIFICANCE mnemonic system). This review provides an extensive overview of papers published in the area of development of green LC and CE methods in the field of pharmaceutical and biomedical analysis over the last 5 years (2019-2023). The main focus is situated on the metrics used for greenness evaluation of the methods applied for the determination of bioactive agents. It critically evaluates and compares the demands of the real applicability of the methods in quality control and clinical environment with the requirements of the green analytical chemistry (GAC). Greenness and practicality of the summarized methods are re-evaluated or newly evaluated with the use of the dominant metrics tools, i.e., Analytical GREEnness (AGREE), Green Analytical Procedure Index (GAPI), Blue Applicability Grade Index (BAGI), and Sample Preparation Metric of Sustainability (SPMS). Moreover, general conclusions and future perspectives of the greening procedures and greenness evaluation metrics systems are presented. This paper should provide comprehensive information to analytical chemists, biochemists, and it can also represent a valuable source of information for clinicians, biomedical or quality control laboratories interested in development of analytical methods based on greenness, practicality, and sustainability.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Sun Z, Wang F, Li W, Ren R, Zhou P, Jia Q, Zhao L, Chen D, Zuo L. Pipette-tip solid-phase extraction coupled with matrix-assisted laser desorption/ionization mass spectrometry enables rapid and high-throughput analysis of antidepressants in rat serum. Anal Bioanal Chem 2024; 416:5013-5023. [PMID: 38997460 DOI: 10.1007/s00216-024-05439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Therapeutic drug monitoring is essential for ensuring the efficacy and safety of medications. This study introduces a streamlined approach that combines pipette-tip solid-phase extraction (PT-SPE) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), facilitating rapid and high-throughput monitoring of drug concentrations. As a demonstration, this method was applied to the extraction and quantification of antidepressants in serum. Utilizing Zip-Tip C18, the method enabled the extraction of antidepressants from complex biological matrices in less than 2 min, with the subsequent MALDI-MS analysis yielding results in just 1 min. Optimal extraction recoveries were achieved using a sampling solution at pH 9.0 and a 10 μL ethanol desorption solution containing 0.1% phosphoric acid. For MALDI analysis, 2,5-dihydroxybenzoic acid was identified as the most effective matrix for producing the highest signal intensity. The quantification strategy exhibited robust linearities (R2 ≥ 0.997) and satisfactory limits of quantification, ranging from 0.05 to 0.5 μg/mL for a suite of antidepressants. The application for monitoring dynamic concentration changes of antidepressants in rat serum emphasized the method's efficacy. This strategy offers the advantages of high throughput, minimal sample usage, environmental sustainability, and simplicity, providing ideas and a reference basis for the subsequent development of methods for therapeutic drug monitoring.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fangfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxuan Li
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruobing Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peipei Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingguo Zhao
- Shenzhen Bao'an District Center for Disease Control and Prevention, Shenzhen, 518101, China
| | - Di Chen
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Terzi M, Manousi N, Tzanavaras PD, Zacharis CK. Utilization of a pH-switchable hydrophilicity solvent for the microextraction of clomipramine from human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124060. [PMID: 38417274 DOI: 10.1016/j.jchromb.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Clomipramine (CLP) is a tricyclic antidepressant drug, and its determination in biological samples is of high importance in clinical and forensic evaluations to assure appropriate drug concentrations. In the present study, benzoic acid was employed as a pH-switchable hydrophilicity solvent (SHS) for the microextraction of CLP from authentic human urine samples prior to its determination by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The microextraction protocol was based on the phase transition of the SHS through pH alteration that resulted in its rapid dispersion and simultaneous phase separation. The obtained solid was collected in a syringe filter, dissolved in methanol, and analyzed. The main parameters that affected the efficiency of the microextraction procedure were studied and optimized to ensure high extraction efficiency for CLP and the analytical method was validated. Under optimum conditions, good linearity was observed between 0.05 and 5.0 μg mL-1. The limit of detection and limit of quantification were found to be 0.015 and 0.05 μg mL-1, respectively. The RSD values for intra-day repeatability and inter-day precision were 2.4-8.9 % and 1.7-9.1 %, respectively. The relative recovery values were within 90.0 and 110.0 % in all cases, demonstrating good method accuracy. The proposed SHS microextraction showed cost-efficiency, handling simplicity, and rapidity resulting in enhanced sample throughput. Moreover, the proposed method exhibited a green character and good applicability based on its evaluation by Green Analytical Procedure Index and Blue Applicability Grade Index.
Collapse
Affiliation(s)
- Maria Terzi
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Jain B, Jain R, Kabir A, Zughaibi T, Bajaj A, Sharma S. Exploiting the potential of fabric phase sorptive extraction for forensic food safety: Analysis of food samples in cases of drug facilitated crimes. Food Chem 2024; 432:137191. [PMID: 37643513 DOI: 10.1016/j.foodchem.2023.137191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducting analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavoured milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET), Subsequently, the extracted sample are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3-10 µg mL-1 (or µg g-1), exhibiting a coefficient of determination (R2) ranging from 0.996 to 0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples ranging between 0.020 and 0.069 µg mL-1 and 0.066-0.22 µg mL-1, respectively. Correspondingly, the LODs for solid samples ranged from 0.056 to 0.090 µg g-1, while the LOQs ranged from 0.18 to 0.29 µg g-1. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.
Collapse
Affiliation(s)
- Bharti Jain
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India; Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India.
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Torki Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Atul Bajaj
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
6
|
Fattahi N, Heidari R, Ghazanfaripoor B, Masoudipour E, Gharehdaghi J, Nejad KS. Standardization of the analytical procedure based on deep eutectic solvent for the extraction and measurement of tricyclic antidepressants drugs in post-mortem blood samples. J Pharm Biomed Anal 2024; 238:115811. [PMID: 37879218 DOI: 10.1016/j.jpba.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Measuring drugs in post-mortem blood samples is one of the most important challenges in forensic medicine. The development of sensitive analytical techniques for the measurement of drugs in biological samples is of great use in forensic medicine. In this research an easy, safe and environmental friendly vortex-assisted liquid phase microextraction (VA-LPME) based on deep eutectic solvent (DES) followed by high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for the extraction, preconcentration and analysis of tricyclic antidepressants drugs (TCAs) in post-mortem blood samples. DES synthesized from thymol as hydrogen bond acceptor (HBA) and ethylene glycol (EG) as hydrogen bond donor (HBD) with a molar ratio of 2:1 was used as an extractant. After adding DES to the sample solution, the resulting mixture was vortexed in order to increase the contact surface and increase the extraction efficiency. Next, phase separation was done using centrifugation. Some effective parameters on the extraction were studied and optimized. Under the optimum conditions, intra- and inter-day %RSDs of the method based on 7 replicate measurements of 100 μg L-1 of TCAs in blood samples were in the range of 2.4-5.1 and 3.7-6.8 %, respectively. The analytical performance of the method showed linearity over the concentration of 3-500 μg L-1 with the detection limits ranging from 1.0-2.0 μg L-1. The trueness of the method was confirmed by spiking different concentrations of TCAs in real blood samples and obtaining relative recoveries in the range of 91.2-108 %.
Collapse
Affiliation(s)
- Nazir Fattahi
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| | - Rohollah Heidari
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Behzad Ghazanfaripoor
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| | - Elham Masoudipour
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| | - Jaber Gharehdaghi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| | - Kambiz Soltani Nejad
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| |
Collapse
|
7
|
Moosavi NS, Yamini Y. Growth of bimetallic Ni-Co MOFs on a skeleton of electrospun PAN nanofibers and coating on a thin film for SPME of amitriptyline and nortriptyline in urine and plasma samples. J Pharm Biomed Anal 2023; 236:115755. [PMID: 37778203 DOI: 10.1016/j.jpba.2023.115755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
In this research, composited bimetallic organic framework-polyacrylonitrile (Ni-Co MOFs-PAN) was applied for thin-film solid phase microextraction (TF-SPME) of tricyclic antidepressant (TCA) drugs from biological samples. The separation and quantification of the analytes were accomplished by HPLC-UV. First, seeded nanofibers with organic ligands were electrospun on a sheet of foil. Then, with the uniform in-situ solvothermal growth of Ni-Co MOFs on the skeletal surface of nanofibers, the nanoparticles were successfully attached to the surfaces without effective bonds and produced a thin layer with a high flexibility, large active surface and abundant functional groups for adsorption. The characteristics of the produced nanocomposite were investigated by Fourier-transform infrared spectroscopy, field emission-scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and Brunauer-Emmett-Teller analysis. The stirring rate, pH, ionic strength, adsorption and desorption time along with type and volume of desorption solvents as influential factors on extraction efficiencies of the analytes, were optimized by one variable at a time method. Under optimized conditions, wide linear range for analytes in water and plasma matrices were obtained from 0.2 to 1000.0 μg L-1 and 1.0-1000.0 μg L-1, respectively, with R2 ≥ 0.9925. The limits of detection were in the range of 0.06-0.3 μg L-1 in different media. Good repeatability and reproducibility were attained within intra-day, inter-day and film-to-film RSDs% (n = 3) below 3.3 %, 3.9 % and 4.7 %, respectively. Since desirable relative recoveries were calculated between 91.4 % and 100.4 %. The method can be used for the successful extraction and measurement of amitriptyline and nortriptyline as its metabolite in different sampling time from urine and plasma matrices.
Collapse
Affiliation(s)
- Negar Sabahi Moosavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
8
|
Ayazi Z, Farshineh Saei S, Pashayi Sarnaghi S. A novel self-supportive thin film based on graphene oxide reinforced chitosan nano-biocomposite for thin film microextraction of fluoxetine in biological and environmental samples. J Pharm Biomed Anal 2023; 236:115678. [PMID: 37672904 DOI: 10.1016/j.jpba.2023.115678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
In this research, for the first time, graphene oxide doped chitosan (GO/CS) nano-biocomposite (NBC) is designed and prepared as a novel self-supportive thin layer for thin film microextraction (TFME) of fluoxetine (FLX) followed by determination applying HPLC-UV-Vis. The properties of the prepared self-supportive thin film were characterized applying ATR-FTIR, FESEM, and XRD techniques. The extraction capability of GO/CS NBC toward FLX has been evaluated, and the obtained results revealed that incorporation of GO into CS has led to higher extraction efficiency in comparison to the CS thin film. After optimizing the effective factors on the extraction efficiency, the figures of merit for the developed method have been evaluated for determination of FLX in various samples. Accordingly, the method's linearity is in the range of 0.4-800 ng mL-1 (R2 = 0.996), 4-1000 ng mL-1 (R2 = 0.994), 4-1000 ng mL-1 (R2 = 0.990), and 6-1000 ng mL-1 (R2 = 0.993) for deionized water, wastewater, urine and plasma samples, respectively. The limits of detection based on 3 S/N definition was 0.1, 1, 1 and 1.6 ng mL-1 for deionized water, wastewater, urine, and plasma samples, respectively. The repeatability of the developed method has been investigated in the term of intra-day, inter-day and inter-thin film precision and RSD% values for six replicate experiments were obtained 8.6%, 8.4% and 5.7%, respectively. The accuracy of the developed method has been investigated by extraction of FLX from spiked wastewater, plasma and urine samples and the relative recoveries of 104.4%, 87.3% and 82.4% have been resulted, respectively.
Collapse
Affiliation(s)
- Zahra Ayazi
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box 53714- l6l, Tabriz, Iran; Molecular Science and Engineering Research Group (MSERG), Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Sima Farshineh Saei
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box 53714- l6l, Tabriz, Iran
| | - Samira Pashayi Sarnaghi
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box 53714- l6l, Tabriz, Iran
| |
Collapse
|
9
|
Olia AEA, Mohadesi A, Feizy J. A Fabric Phase Sorptive Extraction Protocol Combined with Liquid Chromatography-Fluorescence Detection for the Determination of Ochratoxin in Food Samples. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Samanidou V, Kabir A. Novel Sorptive Sample Preparation Techniques for Separation Science. LCGC EUROPE 2023. [DOI: 10.56530/lcgc.eu.zq5279u1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The primary analytical challenge is to selectively extract the target analytes using a suitable sample preparation technique and introduce them into the downstream analytical instrument. The critical step in the chemical analysis is sample preparation. Sorptive sample preparation techniques are among the new generation of microextraction approaches, and are compliant with green analytical chemistry principles. A recent intercontinental collaboration between two academic research laboratories—the Aristotle University of Thessaloniki, Greece, and the Florida International University, USA—has yielded a significant number of analytical/bioanalytical methods using fabric phase sorptive extraction (FPSE), magnet integrated fabric phase sorptive extraction (MI-FPSE), and capsule phase microextraction (CPME) for the isolation of various analytes from different complex sample matrices. A brief description of these techniques with regards to principle, synthesis, applications, and advantages and disadvantages along with paradigms is presented.
Collapse
|
11
|
Xu XL, Wang B, Liu YW, Li WX, Wu JY, Yuan H, Xu X, Chen D. In-pipette-tip natural-feather-supported liquid microextraction for conveniently extracting hydrophobic compounds in aqueous samples: A proof-of-concept study. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Kumar S, Darshan S, Baggi TR. Recent Advances in Analytical Techniques for Antidepressants Determination in Complex Biological Matrices: A Review. Int J Toxicol 2023:10915818221150779. [PMID: 36630687 DOI: 10.1177/10915818221150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Depression is one of the most prevalent but severe of mental disorders, affecting thousands of individuals across the globe. Depression, in its most extreme form, may result in self-harm and an increased likelihood of suicide. Antidepressant drugs are first-line medications to treat mental disorders. Unfortunately, these medications are also prescribed for other in- and off-label conditions, such as deficit/hyperactivity disorders, attention disorders, migraine, smoking cessation, eating disorders, fibromyalgia, pain, and insomnia. This results in an increase in the use of antidepressant medications, leading to clinical and forensic overdose cases that could be either accidental or deliberate. The findings revealed that people who used antidepressants had a 33% greater chance of dying sooner than expected, compared to those who did not take the medications. Analytical techniques for precisely identifying and detecting antidepressants and their metabolic products in a variety of biological matrices are greatly needed to be developed and made available. Hence, this study attempts to discuss various analytical techniques used to identify and determine antidepressants in various biological matrices, which include urine, blood, oral fluid (saliva), and tissues, which are commonly encountered in clinical and forensic science laboratories.
Collapse
Affiliation(s)
- Sachil Kumar
- Department of Life Sciences, 119667CHRIST (Deemed to be University), Bengaluru, India
| | - Siddaraj Darshan
- Department of Life Sciences, 119667CHRIST (Deemed to be University), Bengaluru, India
| | - Tulsidas R Baggi
- Director (Retd.), Central Forensic Science Laboratory, Ministry of Home Affairs, Govt. of India, Ramanthapur, Hyderabad, India.,Formerly Academic Coordinator (Forensic Science), University College of Science, 28552Osmania University, Hyderabad, India
| |
Collapse
|
13
|
Locatelli M, Covone S, Rosato E, Bonelli M, Savini F, Furton K, Gazioglu I, D'Ovidio C, Kabir A, Tartaglia A. Analysis of seven selected antidepressant drugs in post–mortem samples using fabric phase sorptive extraction followed by high performance liquid chromatography-photodiode array detection. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Jain B, Jain R, Kabir A, Sharma S. Rapid Determination of Non-Steroidal Anti-Inflammatory Drugs in Urine Samples after In-Matrix Derivatization and Fabric Phase Sorptive Extraction-Gas Chromatography-Mass Spectrometry Analysis. Molecules 2022; 27:molecules27217188. [PMID: 36364020 PMCID: PMC9657276 DOI: 10.3390/molecules27217188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of non-steroidal anti-inflammatory (NSAID) drugs in urine samples followed by FPSE and gas chromatography-mass spectrometry (GC-MS) analysis. Use of MCF as derivatizing reagent saves substantial amounts of time, reagent and energy, and can be directly performed in aqueous samples without any sample pre-treatment. The derivatized analytes were extracted using sol−gel Carbowax 20M coated FPSE membrane and eluted in 0.5 mL of MeOH for GC-MS analysis. A chemometric design of experiment-based approach was utilized comprising a Placket−Burman design (PBD) and central composite design (CCD) for screening and optimization of significant variables of derivatization and FPSE protocol, respectively. Under optimized conditions, the proposed FPSE-GC-MS method exhibited good linearity in the range of 0.1−10 µg mL−1 with coefficients of determination (R2) in the range of 0.998−0.999. The intra-day and inter-day precisions for the proposed method were lower than <7% and <10%, respectively. The developed method has been successfully applied to the determination of NSAIDs in urine samples of patients under their medication. Finally, the green character of the proposed method was evaluated using ComplexGAPI tool. The proposed method will pave the way for simper analysis of polar drugs by FPSE-GC-MS.
Collapse
Affiliation(s)
- Bharti Jain
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Forensic Toxicology Division, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India
- Correspondence: (R.J.); (A.K.); (S.S.)
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Correspondence: (R.J.); (A.K.); (S.S.)
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
- Correspondence: (R.J.); (A.K.); (S.S.)
| |
Collapse
|
15
|
Khezeli T, Daneshfar A. Deep Eutectic Solvents and Layered Double Hydroxides in Solid‐Phase Extraction of Antidepressant Drugs. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tahere Khezeli
- Ilam University Department of Chemistry, Faculty of Science 69315-516 Ilam Iran
| | - Ali Daneshfar
- Ilam University Department of Chemistry, Faculty of Science 69315-516 Ilam Iran
| |
Collapse
|
16
|
Câmara JS, Perestrelo R, Berenguer CV, Andrade CFP, Gomes TM, Olayanju B, Kabir A, M. R. Rocha C, Teixeira JA, Pereira JAM. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022; 27:2953. [PMID: 35566315 PMCID: PMC9101692 DOI: 10.3390/molecules27092953] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Carolina F. P. Andrade
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Telma M. Gomes
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
- Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| |
Collapse
|
17
|
Omotola EO, Oluwole AO, Oladoye PO, Olatunji OS. Occurrence, detection and ecotoxicity studies of selected pharmaceuticals in aqueous ecosystems- a systematic appraisal. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103831. [PMID: 35151848 DOI: 10.1016/j.etap.2022.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical compounds (PCs) have globally emerged as a significant group of environmental contaminants due to the constant detection of their residues in the environment. The main scope of this review is to fill the void of information on the knowledge on the African occurrence of selected PCs in environmental matrices in comparison with those outside Africa and their respective toxic actions on both aquatic and non-aquatic biota through ecotoxicity bioassays. To achieve this objective, the study focused on commonly used and detected pharmaceutical drugs (residues). Based on the conducted literature survey, Africa has the highest levels of ciprofloxacin, sulfamethoxazole, lamivudine, acetaminophen, and diclofenac while Europe has the lowest of all these PC residues in her physical environments. For ecotoxicity bioassays, the few data available are mostly on individual groups of pharmaceuticals whereas there is sparsely available data on their combined forms.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa; Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria.
| | | | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| | | |
Collapse
|
18
|
Novel Applications of Microextraction Techniques Focused on Biological and Forensic Analyses. SEPARATIONS 2022. [DOI: 10.3390/separations9010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In recent years, major attention has been focused on microextraction procedures that allow high recovery of target analytes, regardless of the complexity of the sample matrices. The most used techniques included liquid-liquid extraction (LLE), solid-phase extraction (SPE), solid-phase microextraction (SPME), dispersive liquid-liquid microextraction (DLLME), microextraction by packed sorbent (MEPS), and fabric-phase sorptive extraction (FPSE). These techniques manifest a rapid development of sample preparation techniques in different fields, such as biological, environmental, food sciences, natural products, forensic medicine, and toxicology. In the biological and forensic fields, where a wide variety of drugs with different chemical properties are analyzed, the sample preparation is required to make the sample suitable for the instrumental analysis, which often includes gas chromatography (GC) and liquid chromatography (LC) coupled with mass detectors or tandem mass detectors (MS/MS). In this review, we have focused our attention on the biological and forensic application of these innovative procedures, highlighting the major advantages and results that have been accomplished in laboratory and clinical practice.
Collapse
|
19
|
Ghorbani M, Mohammadi P, Keshavarzi M, Ziroohi A, Mohammadi M, Aghamohammadhasan M, Pakseresht M. Developments of Microextraction (Extraction) Procedures for Sample Preparation of Antidepressants in Biological and Water Samples, a Review. Crit Rev Anal Chem 2021; 53:1285-1312. [PMID: 34955046 DOI: 10.1080/10408347.2021.2018648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antidepressants are an important class of drugs to treat various types of depression. The determination of antidepressants is crucial in biological samples to control adverse effects in humans and study pharmacokinetics and bioavailability. Direct measurement of antidepressants in biological and water samples is a considerable challenge for analysts due to their low concentration, the high matrix effects of real samples, and the presence of metabolites of these drugs in biological samples. The challenge leads to using sample preparation processes as a critical step in determining antidepressants. Extraction and microextraction procedures have been widely utilized as sample preparation procedures for these drugs. The purposes of extraction or microextraction methods for antidepressant medications are to preconcentrate the analyte, reduce the matrix effects, increase the selectivity of the procedures, and convert the sample to a suitable format for introducing it into detection systems. In the review, the various extraction and microextraction methods of these drugs in biological, real water, and wastewater samples were investigated. The theory of each technique was briefly addressed to understand the features and factors affecting each method. The extraction and microextraction methods were classified based on their application for antidepressants, and the advantages and disadvantages of each technique were reviewed. The new developments to overcome the limitations of each procedure were discussed. The investigation indicated the number of applications of liquid-phase microextraction for extracting antidepressants has been almost equal to that of solid-phase microextraction.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Mohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Majid Keshavarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Aliakbar Ziroohi
- Department of biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Morteza Mohammadi
- School of Medicine, Sechenov University of Medical Sciences, Moscow, Russia
| | | | - Maryam Pakseresht
- Department of Chemistry, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
20
|
Soares S, Rosado T, Barroso M, Gallardo E. New Method for the Monitoring of Antidepressants in Oral Fluid Using Dried Spot Sampling. Pharmaceuticals (Basel) 2021; 14:ph14121284. [PMID: 34959684 PMCID: PMC8709135 DOI: 10.3390/ph14121284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/02/2023] Open
Abstract
The increase in the consumption of antidepressants is a public health problem worldwide, as these are a class of compounds widely used in the treatment of several illnesses, such as depression and anxiety. This work aimed to develop and optimize a method for the quantification of a number of antidepressants and their metabolites (fluoxetine, venlafaxine, O-desmethylvenlafaxine, citalopram, sertraline, and paroxetine) in 100 µL of oral fluid using the dried saliva spots (DSS) sampling approach and gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The method was validated, presenting linearity within the studied range, with detection and quantification limits ranging between 10 and 100 ng/mL, and coefficients of determination (R2) of at least 0.99 for all analytes. Recoveries were between approximately 13 and 46%. The analysis of precision and accuracy presented acceptable coefficients of variation and relative errors, considering the criteria usually accepted in the validation of bioanalytical procedures. The method herein described is the first to be reported using DSS for the extraction of antidepressants, proving to be a sensitive, simple, and fast alternative to conventional techniques, and capable of being routinely applied in clinical and forensic toxicology scenarios.
Collapse
Affiliation(s)
- Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (S.S.); (T.R.)
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (S.S.); (T.R.)
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal;
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (S.S.); (T.R.)
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
- Correspondence: ; Tel.: +35-127-532-9002
| |
Collapse
|
21
|
Manousi N, Alampanos V, Priovolos I, Kabir A, Furton KG, Rosenberg E, Zachariadis GA, Samanidou VF. Exploring sol-gel zwitterionic fabric phase sorptive extraction sorbent as a new multi-mode platform for the extraction and preconcentration of triazine herbicides from juice samples. Food Chem 2021; 373:131517. [PMID: 34772569 DOI: 10.1016/j.foodchem.2021.131517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
Triazine herbicides are a class of common pesticides which are widely used to control the weeds in many agricultural crops. Although many studies have described methodologies for the determination of triazine herbicides in aqueous samples, the attention given to agricultural crops and their products is far more limited. In this study, a novel sol-gel zwitterionic multi-mode fabric phase sorptive extraction (FPSE) platform was developed for the matrix clean-up, extraction and preconcentration of five triazine herbicides from fruit juice samples prior to their determination by high performance liquid chromatography-diode array detection (HPLC-DAD). The novel zwitterionic multi-mode sorbent was characterized and its performance for fruit juice analysis was evaluated. Compared to other sol-gel sorbents, the novel zwitterionic sorbent helped cleaning all the acidic interferences from fruit juices. The herein reported FPSE protocol was optimized and validated. Under optimum conditions, the FPSE method showed good accuracy, precision and sensitivity. The limits of detection and limits of quantification for all analytes were 0.15 ng mL-1 and 0.50 ng mL-1, respectively. The enhancement factors of this method ranged between 36.7 and 51.8. The relative standard deviation for intra-day precision was below 5.6% and for inter-day precision was below 8.8%. Finally, the proposed FPSE-HPLC-DAD method was successfully employed for the analysis of various fruit juice samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Priovolos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
22
|
Development of a molecular imprinted electrochemiluminescence sensor for amitriptyline detection: From MD simulations to experimental implementation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Gomes NO, Mendonça CD, Machado SAS, Oliveira ON, Raymundo-Pereira PA. Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples. Mikrochim Acta 2021; 188:359. [PMID: 34599426 DOI: 10.1007/s00604-021-05024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 × 10-6 mol L-1 range with a limit of detection of 8.0 × 10-7 mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 × 10-7 mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions. Silver pseudo-reference electrodes for paroxetine (REP) and nonylphenol (REN), working electrodes for paroxetine (WP) and nonylphenol (WN), and auxiliary electrode (AE). USP refers to the University of Sao Paulo. "Red" is reduced form and "Oxi" is oxidized form of analytes.
Collapse
Affiliation(s)
- Nathalia O Gomes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Camila D Mendonça
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil.
| |
Collapse
|
24
|
Manousi N, Plastiras OE, Deliyanni EA, Zachariadis GA. Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules. Molecules 2021; 26:molecules26092790. [PMID: 34065150 PMCID: PMC8126010 DOI: 10.3390/molecules26092790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| | - Orfeas-Evangelos Plastiras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni A. Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| |
Collapse
|
25
|
Green bioanalytical sample preparation: fabric phase sorptive extraction. Bioanalysis 2021; 13:693-710. [PMID: 33890507 DOI: 10.4155/bio-2021-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fabric phase sorptive extraction (FPSE) is a recently introduced sample preparation technique that has attracted substantial interest of the scientific community dealing with bioanalysis. This technique is based on a permeable and flexible substrate made of fabric, coated with a sol-gel organic-inorganic sorbent. Among the benefits of FPSE are its tunable selectivity, adjustable porosity, minimized sample preparation workflow, substantially reduced organic solvent consumption, rapid extraction kinetics and superior extraction efficiency, many of which are well-known criteria for Green Analytical Chemistry. As such, FPSE has established itself as a leading green sample preparation technology of 21st century. In this review, we discuss the principal steps for the development of an FPSE method, the main method optimization strategies, as well as the applications of FPSE in bioanalysis for the extraction of a wide range of analytes (e.g., estrogens, benzodiazepines, androgens and progestogens, penicillins, anti-inflammatory drugs, parabens etc.).
Collapse
|
26
|
Determination of Intact Parabens in the Human Plasma of Cancer and Non-Cancer Patients Using a Validated Fabric Phase Sorptive Extraction Reversed-Phase Liquid Chromatography Method with UV Detection. Molecules 2021; 26:molecules26061526. [PMID: 33799523 PMCID: PMC8002076 DOI: 10.3390/molecules26061526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Parabens have been widely employed as preservatives since the 1920s for extending the shelf life of foodstuffs, medicines, and daily care products. Given the fact that there are some legitimate concerns related to their potential multiple endocrine-disrupting properties, the development of novel bioanalytical methods for their biomonitoring is crucial. In this study, a fabric phase sorptive extraction reversed-phase liquid chromatography method coupled with UV detection (FPSE-HPLC-UV) was developed and validated for the quantitation of seven parabens in human plasma samples. Chromatographic separation of the seven parabens and p-hydroxybenzoic acid was achieved on a semi-micro Spherisorb ODS1 analytical column under isocratic elution using a mobile phase containing 0.1% (v/v) formic acid and 66% 49 mM ammonium formate aqueous solution in acetonitrile at flow rate 0.25 mL min−1 with a 24-min run time for each sample. The method was linear at a concentration range of 20 to 500 ng mL−1 for the seven parabens under study in human plasma samples. The efficiency of the method was proven with the analysis of 20 human plasma samples collected from women subjected to breast cancer surgery and to reconstructive and aesthetic breast surgery. The highest quantitation rates in human plasma samples from cancerous cases were found for methylparaben and isobutylparaben with average plasma concentrations at 77 and 112.5 ng mL−1. The high concentration levels detected agree with previous findings for some of the parabens and emphasize the need for further epidemiological research on the possible health effects of the use of these compounds.
Collapse
|
27
|
Bazargan M, Mirzaei M, Amiri A, Ritchie C. Efficient dispersive micro solid-phase extraction of antidepressant drugs by a robust molybdenum-based coordination polymer. Mikrochim Acta 2021; 188:108. [PMID: 33660036 DOI: 10.1007/s00604-021-04767-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
A molybdenum-based coordination polymer {[Mo(PDA)(NO)(μ-O)MoO3]·1.42H2O·0.58C2H5OH}n (1) (PDA is 1,10-phenanthroline-2,9-dicarboxylate) was synthesized using solvothermal reaction conditions and characterized using a suite of analytical techniques. Single-crystal X-ray diffraction studies reveal a 1D chain structure, with close contacts expanding the structure into 3D including π-interactions and hydrogen bonding. The utility of 1 as a sorbent for dispersive micro solid-phase extraction (D-μSPE) of basic organic compounds such as antidepressants is supported by the presence of many functional groups on the surface of 1 (such as pendant carboxylates, Mo=O, Mo-NO, and CH groups) as well as extensive electrostatic interactions. Therefore, 1 can be a suitable choice as sorbent in the D-μSPE of antidepressant drugs from human plasma samples via appreciable adsorbate-adsorbent interactions. Determination of the extracted antidepressant drugs was conducted using high-performance liquid chromatography-ultraviolet (HPLC-UV), with calibration plots being linear in the concentration range 0.1-500 ng mL-1 for amitriptyline and nortriptyline, 0.2-500 ng mL-1 for imipramine, and 0.5-300 ng mL-1 for sertraline. The relative standard deviation (RSD) values were calculated for both intra-day and inter-day precision, and the RSD% values were in the range 3.9 to 5.2% and 4.6-5.4%, respectively. The limits of detection (LODs) was determined as 0.03-0.2 ng mL-1. Due to the good stability and reusability of the sorbent, the adsorption capacity had no obvious decrease after being used 20 times. Finally, the D-μSPE-HPLC-UV method was applied for the determination of antidepressant drugs in human plasma samples with recoveries of the analytes in the range 94.9 to 102%. The article describes the synthesis of a robust molybdenum-based coordination polymer, and its application as sorbent for dispersive micro solid-phase extraction of antidepressant drugs from human plasma samples.
Collapse
Affiliation(s)
- Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.
| | - Chris Ritchie
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
28
|
Kabir A, Samanidou V. Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation. Molecules 2021; 26:865. [PMID: 33562079 PMCID: PMC7915638 DOI: 10.3390/molecules26040865] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol-gel organic-inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol-gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol-gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique.
Collapse
Affiliation(s)
- Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
29
|
Madej M, Fendrych K, Porada R, Flacha M, Kochana J, Baś B. Application of Fe(III)-exchanged clinoptilolite/graphite nanocomposite for electrochemical sensing of amitriptyline. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Rigkos G, Alampanos V, Kabir A, Furton KG, Roje Ž, Vrček IV, Panderi I, Samanidou V. An improved fabric‐phase sorptive extraction protocol for the determination of seven parabens in human urine by HPLC–DAD. Biomed Chromatogr 2020; 35:e4974. [DOI: 10.1002/bmc.4974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Georgios Rigkos
- Laboratory of Analytical Chemistry, Department of Chemistry Aristotle University of Thessaloniki Thessaloniki Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry Aristotle University of Thessaloniki Thessaloniki Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry Florida International University Miami FL USA
| | - Kenneth G. Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry Florida International University Miami FL USA
| | - Željka Roje
- Department for Plastic, Reconstructive and Aesthetic Surgery University Hospital Dubrava Zagreb Croatia
| | | | - Irene Panderi
- Laboratory of Pharmaceutical Analysis, Division of Pharmaceutical Chemistry, Faculty of Pharmacy National and Kapodistrtian University of Athens Panepistimiopolis‐Zografou Athens GR Greece
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
31
|
Investigating the Utility of Fabric Phase Sorptive Extraction and HPLC-UV-Vis/DAD to Determine Antidepressant Drugs in Environmental Aqueous Samples. SEPARATIONS 2020. [DOI: 10.3390/separations7030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Depression is considered to be one of the most prevalent mental disorders in humans. Antidepressant drugs are released in large concentrations and cause adverse effects on the environment and/or human health. Fabric Phase Sorptive Extraction (FPSE), a contemporary solid sorbent-handling technique, is a quick, sensitive, and simple analytical process. This paper describes a micro-extraction FPSE procedure coupled with High-Performance Liquid-Chromatography–Photodiode Array Detection (FPSE-HPLC–DAD) for the simultaneous extraction and analysis of five antidepressants, namely citalopram, clozapine, mirtazapine, bupropion and sertraline. Three fabric media (Whatman Cellulose filter, Whatman Microfiber Glass filter and Polylactic acid disks) and two different sol–gel sorbents (polyethylene glycol (PEG 300), alongside poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG 5.800)) were tested. The best FPSE device was observed to be the microfiber glass filter coated with PEG 300 sol–gel sorbent. In addition, the parameters that affect the efficiency of the process (FPSE media and sorbents, sample pH, extraction time, elution time, etc.) were optimized. The proposed methodology displays a linear range with absolute recovery values higher than 60%, RSD% of less than 13% and LOQs in the range between 1.9–10.7 μg·L−1. Finally, the method was applied in hospital and urban effluents and lake water samples, but none of the analytes were detected.
Collapse
|
32
|
Luiz Oenning A, Birk L, Eller S, Franco de Oliveira T, Merib J, Carasek E. A green and low-cost method employing switchable hydrophilicity solvent for the simultaneous determination of antidepressants in human urine by gas chromatography - mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:122069. [PMID: 32213465 DOI: 10.1016/j.jchromb.2020.122069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
In this study, the use of switchable hydrophilicity solvent with a simple and low-cost lab-made device for the extraction procedure in homogeneous liquid-liquid microextraction is proposed for the first time in the determination of antidepressants in human urine. The antidepressants studied consisted of fluoxetine, amitriptyline, nortriptyline, imipramine, desipramine and sertraline. The optimization of the main parameters that can influence on the extraction efficiency was performed through multivariate approaches. The analytes were separated and identified by gas chromatography coupled to mass spectrometry (GC-MS). The optimal extraction conditions consisted of using N,N-dimethylcyclohexylamine (DMCHA) as the switchable hydrophilicity solvent (SHS), 500 µL of urine sample previously diluted with ultrapure water at 1:1 ratio (v/v), 200 μL of a mixture of SHS:HCl 6 mol L-1 (1:1 v/v), 600 μL of NaOH 10 mol L-1 and 3 min of extraction time. A volume of 40 µL of diphenylamine at concentration of 500 µg L-1 (20 ng) was used as internal standard. The method developed was in-house validated, providing coefficients of determination higher than 0.995 for all analytes, limits of detection (LOD) from 0.02 to 0.88 µg L-1, limits of quantification (LOQ) from 0.05 to 2.92 µg L-1, relative recoveries of 68 to 102%, intra-day precision from 0.5 to 15.9%, inter-day precision from 4.2 to 19.3%, selectivity and robustness. The method proposed was successfully applied in five human urine samples from a Toxicological Information Center located in Porto Alegre (Brazil). The results demonstrated that the µP-SHS-HLLME approach is highly cost-effective, rapid, simple and environmentally-friendly with satisfactory analytical performance.
Collapse
Affiliation(s)
- Anderson Luiz Oenning
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040900, SC, Brazil
| | - Letícia Birk
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Sarah Eller
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Tiago Franco de Oliveira
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil.
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040900, SC, Brazil.
| |
Collapse
|
33
|
Microextraction approaches for bioanalytical applications: An overview. J Chromatogr A 2019; 1616:460790. [PMID: 31892411 DOI: 10.1016/j.chroma.2019.460790] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022]
Abstract
Biological samples are usually complex matrices due to the presence of proteins, salts and a variety of organic compounds with chemical properties similar to those of the target analytes. Therefore, sample preparation is often mandatory in order to isolate the analytes from troublesome matrices before instrumental analysis. Because the number of samples in drug development, doping analysis, forensic science, toxicological analysis, and preclinical and clinical assays is steadily increasing, novel high throughput sample preparation approaches are calling for. The key factors in this development are the miniaturization and the automation of the sample preparation approaches so as to cope with most of the twelve principles of green chemistry. In this review, recent trends in sample preparation and novel strategies will be discussed in detail with particular focus on sorptive and liquid-phase microextraction in bioanalysis. The actual applicability of selective sorbents is also considered. Additionally, the role of 3D printing in microextraction for bioanalytical methods will be pinpointed.
Collapse
|