1
|
Park J, Wu Y, Le QV, Kim JS, Xu E, Lee J, Oh YK. Self-disassembling nanoparticles as oral nanotherapeutics targeting intestinal microenvironment. Nat Commun 2025; 16:3365. [PMID: 40204740 PMCID: PMC11982569 DOI: 10.1038/s41467-025-58513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Inspired by the survival strategies of pyomelanin-producing microbes, we synthesize pyomelanin nanoparticles (PMNPs) from homogentisic acid- γ-lactone via auto-oxidation and investigate their biomedical potential. PMNPs possess distinct physicochemical properties, including reactive oxygen species scavenging and microenvironment-responsive self-disassembly. Under intestinal conditions, PMNPs self-disassemble and penetrate the nanoscale pores of the mucin layer. In an inflammatory bowel disease model, orally administered PMNPs withstand gastric acidity and, in their solubilized form, interact with macrophages and epithelial cells. They significantly reduce reactive oxygen species levels, exert anti-inflammatory effects, and restore gut microbiota composition. Compared to conventional nanoparticles and 5-aminosalicylic acid, PMNPs exhibit greater therapeutic efficacy. Clinical symptoms and intestinal inflammation are alleviated, and the gut microbiota is restored to near-normal levels. These findings underscore the therapeutic potential of PMNPs for inflammatory bowel disease treatment and suggest broader biomedical applications.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Enzhen Xu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Ozen MB, Gazioglu I, Ozgun Acar O, Guner H, Semiz G, Sen A. Possible Drug-Drug Interactions Between Mesalamine and Tricyclic Antidepressants Through CYP2D6 Metabolism - In silico and In vitro Analyses. Drug Res (Stuttg) 2025. [PMID: 40169140 DOI: 10.1055/a-2551-2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mesalamine (mesalazine, 5-aminosalicylic acid, 5-ASA) is an essential anti-inflammatory agent both used for therapy and as a remission control in patients with inflammatory bowel diseases (IBD) such as ulcerative colitis (UC). Tricyclic antidepressants (TCAs) are used to alleviate remaining symptoms in patients already receiving IBD therapy or with quiescent inflammation. The cytochrome P4502D6 enzyme is involved in the metabolism of TCAs. Hence, it is crucial to investigate the role of CYP2D6 in 5-ASA metabolism. Initially, in silico analysis involving the docking of 5-ASA to CYP2D6 and molecular dynamics simulations was conducted. Next, the rate of O-demethylation of a nonfluorescent probe 3-[2-(N,N-diethyl-N-methylammonium)-ethyl]-7-methoxy-4-methylcoumarin (AMMC) into a fluorescent metabolite AMHC (3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-hydroxy-4-methylcoumarin) was optimized with baculosomes co-expressing human CYP2D6 and human P450 oxidoreductase (hCPR) to monitor CYP2D6 activity in a microtiter plate assay. The apparent Km and Vmax were found to be 1.30 μM and 32.68 pmol/min/mg of protein for the O-demethylation of AMMC to AMHC, and the reaction was linear for 40 min. Then, nonselective inhibition of CYP2D6 activity with various concentrations of 5-ASA was detected. Finally, the conversion of AMMC to metabolites was analyzed by HPLC-ESI-MS/MS spectrometry, and none were identified. Thus, this study suggests that concurrent use of mesalamine with TCA may lead to adverse effects, and CYP2D6 genotyping should be routinely performed on these patients to eliminate possible threats.
Collapse
Affiliation(s)
- Melek B Ozen
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| | - Isil Gazioglu
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, Food and Environmental Toxicology Laboratory, University of Florida, Gainesville, FL, USA
| | - Ozden Ozgun Acar
- Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Huseyin Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul, Kayseri, Turkey
| | - Gurkan Semiz
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| | - Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
3
|
Fonseca-Camarillo G, Furuzawa-Carballeda J, Miguel-Cruz E, Barreto-Zuñiga R, Martínez-Benítez B, Yamamoto-Furusho JK. Protective role of ABCC drug subfamily resistance transporters (ABCC1-7) in intestinal inflammation. Immunol Res 2025; 73:33. [PMID: 39808251 DOI: 10.1007/s12026-024-09583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC). This study aimed to evaluate the ABCC expression in UC patients and its role in a dextran sulfate sodium (DSS)-induced colitis mice model under 5-aminosalicylates or methylprednisolone treatment and compared with control without inflammation. DSS-induced colitis mice were treated with 5-aminosalicylates (50 mg/kg 24 h) or methylprednisolone (2 mg/kg 24 h). Human rectal biopsies were obtained from UC patients. The abcc-relative mRNA levels and protein expression were determined by RT-PCR and immunohistochemistry. abcc4, abcc5, and abcc6 mRNA levels were significantly increased in DSS-induced colitis compared to the other groups. The 5-aminosalicylate treatment dramatically increased the abcc2 and abcc3 mRNA levels vs. control. Methylprednisolone treatment increased abcc1 vs. DSS-induced colitis and colitis treated with 5-aminosalicylate. Immunohistochemical analysis revealed down-regulation of ABCC1/ABCC2/ABCC5/ABCC7 in mice colitis vs. control. Treatment with 5-aminosalicylate restored ABCC5 levels, while methylprednisolone restored ABCC2/ABCC5/ABCC7 in colitis mice at similar control levels. Relative mRNA levels of mrp1-5 were increased in active UC patients vs. control. ABCC2/ABCC4/ABCC7 were conspicuously expressed in the mucosa of 5-aminosalicylate and/or methylprednisolone-treated UC patients, while ABCC2/ABCC4/ABCC5/ABCC7 in submucosa, ABCC1/ABCC5/ABCC7 in muscular, and ABCC1/ABCC4/ABCC5/ABCC7 in serosa were expressed vs. controls. This is the first report about the differential up-regulation of the ABCC subfamily gene and protein expression in DSS-induced colitis under aminosalicylates or methylprednisolone treatment.
Collapse
Affiliation(s)
- Gabriela Fonseca-Camarillo
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Janette Furuzawa-Carballeda
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico City, Mexico, and Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico
| | - Erika Miguel-Cruz
- Department of Experimental Research and Bioterium, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Rafel Barreto-Zuñiga
- Department of Endoscopy, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Braulio Martínez-Benítez
- Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Jesus K Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.
| |
Collapse
|
4
|
Deraison C, Vergnolle N. Pharmacology of Intestinal Inflammation and Repair. Annu Rev Pharmacol Toxicol 2025; 65:301-314. [PMID: 39847467 DOI: 10.1146/annurev-pharmtox-051921-084536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Chronic inflammation is a common trait in the pathogenesis of several diseases of the gut, including inflammatory bowel disease and celiac disease. Control of the inflammatory response is crucial in these pathologies to avoid tissue destruction and loss of intestinal function. Over the last 50 years, the identification of the mechanisms and mediators involved in the acute phase of the inflammatory response, which is characterized by massive leukocyte recruitment, has led to a number of therapeutic options. New drugs targeting inflammatory flares are still under development. However, interest on the other end of the spectrum-the resolution and repair phases-has emerged, as promoting tissue functional repair may maintain remission and counteract the chronicity of the disease. This review aims to discuss the current and future pharmacological approaches to the treatment of chronic intestinal inflammation and the restoration of functional tissues.
Collapse
Affiliation(s)
- Céline Deraison
- Institute of Digestive Health Research (IRSD), Toulouse University, INSERM 1022, INRAe, ENVT, University of Toulouse III Paul Sabatier, Toulouse, France;
| | - Nathalie Vergnolle
- Institute of Digestive Health Research (IRSD), Toulouse University, INSERM 1022, INRAe, ENVT, University of Toulouse III Paul Sabatier, Toulouse, France;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
6
|
Sanapalli BKR, Deshpande A, Sanapalli V, Sigalapalli DK. Unveiling the Unexplored Multifactorial Potential of 5-Aminosalicylic Acid in Diabetic Wound Therapy. Diseases 2024; 12:172. [PMID: 39195171 DOI: 10.3390/diseases12080172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic wounds (DWs) are considered chronic complications observed in patients suffering from type 2 diabetes mellitus (DM). Usually, DWs originate from the interplay of inflammation, oxidation, impaired tissue re-epithelialization, vasculopathy, nephropathy, and neuropathy, all of which are related to insulin resistance and sensitivity. The conventional approaches available for the treatment of DWs are mainly confined to the relief of wound pressure, debridement of the wound, and management of infection. In this paper, we speculate that treatment of DWs with 5-aminosalicylic acid (5-ASA) and subsequent activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and transforming growth factor beta (TGF-β) via the AhR pathway might be highly beneficial for DW patients. This estimation is based on several lines of evidence showing that 5-ASA and PPAR-γ activation are involved in the restoration of insulin sensitivity, re-epithelialization, and microcirculation. Additionally, 5-ASA and TGF-β activate inflammation and the production of pro-inflammatory mediators. Suitable stabilized formulations of 5-ASA with high absorption rates are indispensable for scrutinizing its probable pharmacological benefits since 5-ASA is known to possess lower solubility profiles because of its reduced permeability through skin tissue. In vitro and in vivo studies with stabilized formulations and a control (placebo) are mandatory to determine whether 5-ASA indeed holds promise for the curative treatment of DWs.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Jadcherla 509301, Hyderabad, India
| | - Ashwini Deshpande
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Jadcherla 509301, Hyderabad, India
| | - Vidyasrilekha Sanapalli
- Department of Pharmaceutical Chemistry, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Jadcherla 509301, Hyderabad, India
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Guntur 522213, Andhra Pradesh, India
| |
Collapse
|
7
|
Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-Based Therapeutic Antioxidants for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210819. [PMID: 36793245 DOI: 10.1002/adma.202210819] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The growing interest in nanomedicine over the last 20 years has carved out a research field called "nanocatalytic therapy," where catalytic reactions mediated by nanomaterials are employed to intervene in disease-critical biomolecular processes. Among many kinds of catalytic/enzyme-mimetic nanomaterials investigated thus far, ceria nanoparticles stand out from others owing to their unique scavenging properties against biologically noxious free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), by exerting enzyme mimicry and nonenzymatic activities. Much effort has been made to utilize ceria nanoparticles as self-regenerating antioxidative and anti-inflammatory agents for various kinds of diseases, given the detrimental effects of ROS and RNS therein that need alleviation. In this context, this review is intended to provide an overview as to what makes ceria nanoparticles merit attention in disease therapy. The introductory part describes the characteristics of ceria nanoparticles as an oxygen-deficient metal oxide. The pathophysiological roles of ROS and RNS are then presented, as well as their scavenging mechanisms by ceria nanoparticles. Representative examples of recent ceria-nanoparticle-based therapeutics are summarized by categorization into organ and disease types, followed by the discussion on the remaining challenges and future research directions.
Collapse
Affiliation(s)
- Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio, Inc., Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Zhang R, Yu C, Zeh HJ, Wang H, Kroemer G, Klionsky DJ, Billiar TR, Kang R, Tang D. Nuclear localization of STING1 competes with canonical signaling to activate AHR for commensal and intestinal homeostasis. Immunity 2023; 56:2736-2754.e8. [PMID: 38016467 PMCID: PMC10842782 DOI: 10.1016/j.immuni.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
Extensive studies demonstrate the importance of the STING1 (also known as STING) protein as a signaling hub that coordinates immune and autophagic responses to ectopic DNA in the cytoplasm. Here, we report a nuclear function of STING1 in driving the activation of the transcription factor aryl hydrocarbon receptor (AHR) to control gut microbiota composition and homeostasis. This function was independent of DNA sensing and autophagy and showed competitive inhibition with cytoplasmic cyclic guanosine monophosphate (GMP)-AMP synthase (CGAS)-STING1 signaling. Structurally, the cyclic dinucleotide binding domain of STING1 interacted with the AHR N-terminal domain. Proteomic analyses revealed that STING1-mediated transcriptional activation of AHR required additional nuclear partners, including positive and negative regulatory proteins. Although AHR ligands could rescue colitis pathology and dysbiosis in wild-type mice, this protection was abrogated by mutational inactivation of STING1. These findings establish a key framework for understanding the nuclear molecular crosstalk between the microbiota and the immune system.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinsteins Institute for Medical Research, Manhasset, NY 11030, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Luo Z, Zhang Y, Saleh QW, Zhang J, Zhu Z, Tepel M. Metabolic regulation of forkhead box P3 alternative splicing isoforms and their impact on health and disease. Front Immunol 2023; 14:1278560. [PMID: 37868998 PMCID: PMC10588449 DOI: 10.3389/fimmu.2023.1278560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Forkhead Box P3 (FOXP3) is crucial for the development and suppressive function of human regulatory T cells (Tregs). There are two predominant FOXP3 splicing isoforms in healthy humans, the full-length isoform and the isoform lacking exon 2, with different functions and regulation mechanisms. FOXP3 splicing isoforms show distinct abilities in the cofactor interaction and the nuclear translocation, resulting in different effects on the differentiation, cytokine secretion, suppressive function, linage stability, and environmental adaptation of Tregs. The balance of FOXP3 splicing isoforms is related to autoimmune diseases, inflammatory diseases, and cancers. In response to environmental challenges, FOXP3 transcription and splicing can be finely regulated by T cell antigen receptor stimulation, glycolysis, fatty acid oxidation, and reactive oxygen species, with various signaling pathways involved. Strategies targeting energy metabolism and FOXP3 splicing isoforms in Tregs may provide potential new approaches for the treatment of autoimmune diseases, inflammatory diseases, and cancers. In this review, we summarize recent discoveries about the FOXP3 splicing isoforms and address the metabolic regulation and specific functions of FOXP3 splicing isoforms in Tregs.
Collapse
Affiliation(s)
- Zhidan Luo
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yihua Zhang
- Department of Cardiology, Chongqing Fifth People’s Hospital, Chongqing, China
| | - Qais Waleed Saleh
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Jie Zhang
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Chongqing, China
| | - Martin Tepel
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
10
|
Wang D, Wang W, Wang P, Wang C, Niu J, Liu Y, Chen Y. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm 2023; 643:123222. [PMID: 37454829 DOI: 10.1016/j.ijpharm.2023.123222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The quality of life is significantly impacted by colon-related diseases. There have been a lot of interest in the oral colon-specific drug delivery system (OCDDS) as a potential carrier to decrease systemic side effects and protect drugs from degradation in the upper gastrointestinal tract (GIT). Hydrogels are effective oral colon-targeted drug delivery carriers due to their high biodegradability, substantial drug loading, and great biocompatibility. Natural polysaccharides give the hydrogel system unique structure and function to effectively respond to the complex environment of the GIT and deliver drugs to the colon. In this paper, the physiological factors of colonic drug delivery and the pathological characteristics of common colonic diseases are summarized, and the latest advances in the design, preparation and characterization of natural polysaccharide hydrogels are reviewed, which are expected to provide new references for colon-targeted oral hydrogel systems using natural polysaccharides as raw materials.
Collapse
Affiliation(s)
- Dingding Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuang Wang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
11
|
Nakase H, Hayashi Y, Yokoyama Y, Matsumoto T, Matsuura M, Iijima H, Matsuoka K, Ohmiya N, Ishihara S, Hirai F, Abukawa D, Hisamatsu T. Final Analysis of COVID-19 Patients With Inflammatory Bowel Disease in Japan (J-COSMOS): A Multicenter Registry Cohort Study. GASTRO HEP ADVANCES 2023; 2:1056-1065. [PMID: 39131552 PMCID: PMC11307685 DOI: 10.1016/j.gastha.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIMS Japan has experienced 8 waves of the coronavirus disease 2019 (COVID-19) outbreak over the past 3 years, resulting in an increasing number of deaths and incidence of severe infections. This study aimed to analyze the data from the Japanese inflammatory bowel disease (IBD) patients with COVID-19 registry (J-COSMOS) up to the eighth wave to investigate the clinical course of IBD patients with COVID-19 and factors contributing to disease severity. METHODS In this multicenter, observational, cohort study, we analyzed a cohort of 1308 IBD patients diagnosed with COVID-19, enrolled across 77 participating facilities in the J-COSMOS registry from June 2020 to December 2022. Data on age, sex, IBD (classification, treatment, and activity), and COVID-19 (symptoms, severity, and treatment) were analyzed. RESULTS The majority of patients (76%) were in clinical remission. According to the World Health Organization classification of COVID-19 severity, 98.4% of IBD patients had nonsevere disease, while 1.6% of patients had severe or critical disease. COVID-19 did not affect disease activity in most IBD patients. Stepwise logistic regression analysis revealed that high body mass index, and cerebrovascular disease were risk factors for severe COVID-19. Corticosteroids could affect COVID-19 severity, whereas anti-tumor necrosis factor α antibodies and thiopurines were associated with a reduced risk of severe COVID-19. No deaths were observed among IBD patients with COVID-19 registered in this cohort. CONCLUSION The impact of COVID-19 on IBD disease activity and factors associated with COVID-19 severity were consistent with findings of previous reports. No deaths in Japanese patients with IBD were observed.
Collapse
Affiliation(s)
- Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Medicine, Iwate Medical University, Morioka, Japan
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsuyoshi Matsuoka
- Department of Gastroenterology and Hepatology, Toho University Sakura Medical Center, Chiba, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shunji Ishihara
- Department of Gastroenterology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Fumihito Hirai
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Daiki Abukawa
- Department of Gastroenterology and Hepatology, Miyagi Children’s Hospital, Sendai, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Wada H, Miyoshi J, Kuronuma S, Nishinarita Y, Oguri N, Hibi N, Takeuchi O, Akimoto Y, Lee STM, Matsuura M, Kobayashi T, Hibi T, Hisamatsu T. 5-Aminosalicylic acid alters the gut microbiota and altered microbiota transmitted vertically to offspring have protective effects against colitis. Sci Rep 2023; 13:12241. [PMID: 37507482 PMCID: PMC10382598 DOI: 10.1038/s41598-023-39491-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although many therapeutic options are available for inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA) is still the key medication, particularly for ulcerative colitis (UC). However, the mechanism of action of 5-ASA remains unclear. The intestinal microbiota plays an important role in the pathophysiology of IBD, and we hypothesized that 5-ASA alters the intestinal microbiota, which promotes the anti-inflammatory effect of 5-ASA. Because intestinal inflammation affects the gut microbiota and 5-ASA can change the severity of inflammation, assessing the impact of inflammation and 5-ASA on the gut microbiota is not feasible in a clinical study of patients with UC. Therefore, we undertook a translational study to demonstrate a causal link between 5-ASA administration and alterations of the intestinal microbiota. Furthermore, by rigorously controlling environmental confounders and excluding the effect of 5-ASA itself with a vertical transmission model, we observed that the gut microbiota altered by 5-ASA affected host mucosal immunity and decreased susceptibility to dextran sulfate sodium-induce colitis. Although the potential intergenerational transmission of epigenetic changes needs to be considered in this study, these findings suggested that alterations in the intestinal microbiota induced by 5-ASA directed the host immune system towards an anti-inflammatory state, which underlies the mechanism of 5-ASA efficacy.
Collapse
Affiliation(s)
- Haruka Wada
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Satoshi Kuronuma
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yuu Nishinarita
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noriaki Oguri
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noritaka Hibi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Osamu Takeuchi
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sonny T M Lee
- Division of Biology, Kansas State University, 136 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
13
|
Lee A, Chung YC, Song KH, Ryuk JA, Ha H, Hwang YH. Network pharmacology-based identification of bioavailable anti-inflammatory agents from Psoralea corylifolia L. in an experimental colitis model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116534. [PMID: 37127140 DOI: 10.1016/j.jep.2023.116534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional oriental medicine, the dried seeds of Psoralea corylifolia L. (PC) have been used to treat various diseases, including gastrointestinal, urinary, orthopedic, diarrheal, ulcer, and inflammatory disorders. AIM OF THE STUDY Although its various biological properties are well-known, there is no information on the therapeutic effects and bioavailable components of PC against inflammatory bowel disease. Therefore, we focused on the relationship between hydroethanolic extract of PC (EPC) that ameliorates colitis in mice and bioactive constituents of EPC that suppress pro-inflammatory cytokines in macrophages. MATERIALS AND METHODS We investigated the therapeutic effects of EPC in a dextran sulfate sodium-induced colitis mouse model and identified the orally absorbed components of EPC using UPLC-MS/MS analysis. In addition, we evaluated and validated the mechanism of action of the bioavailable constituents of EPC using network pharmacology analysis. The effects on nitric oxide (NO) and inflammatory cytokines were measured by Griess reagent and enzyme linked immunosorbent assay in lipopolysaccharide (LPS)-induced macrophages. RESULTS In experimental colitis, EPC improved body weight loss, colon length shortening, and disease activity index. Moreover, EPC reduced the serum levels of pro-inflammatory cytokines and histopathological damage to the colon. Network pharmacological analysis identified 13 phytochemicals that were bioavailable following oral administration of EPC, as well as their potential anti-inflammatory effects. 11 identified EPC constituents markedly reduced the overproduction of NO, tumor necrosis factor-α, and/or interleukin-6 in macrophages induced by LPS. The LPS-induced expression of the nuclear factor kappa-light-chain-enhancer of activated B cells reporter gene was reduced by the 4 EPC constituents. CONCLUSIONS The results indicate that the protective activity of EPC against colitis is a result of the additive effects of each constituent on the expression of inflammatory cytokines. Therefore, it suggests that 11 bioavailable phytochemicals of EPC could aid in the management of intestinal inflammation, and also provides useful insights into the clinical application of PC for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Kwang Hoon Song
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Jin Ah Ryuk
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
| |
Collapse
|
14
|
Zhong Y, Xiao Q, Kang Z, Huang J, Ge W, Wan Q, Wang H, Zhou W, Zhao H, Liu D. Astragalus polysaccharide alleviates ulcerative colitis by regulating the balance of Tfh/Treg cells. Int Immunopharmacol 2022; 111:109108. [PMID: 35926271 DOI: 10.1016/j.intimp.2022.109108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
The immunomodulatory function of natural active ingredients has long been a focus of scientific research, with recent hotspots reporting targeted modulation of the follicular helper T cells (Tfh)/regulatory T cells (Treg) balance as an emerging strategy for the treatment of ulcerative colitis (UC). Here, dextran sodium sulfate induced mice UC and Astragalus polysaccharide (APS, 200 mg/kg/day) was administered simultaneously. In this study, APS effectively alleviated colitis in mice by improving survival rate, disease activity index (DAI), the change rate of body weight, colonic length and weight, and histopathological injury of the colon. Moreover, APS regulated the expression of inflammatory cytokines interleukin (IL)-2, IL-6, IL-12p70, IL-23, Tumour necrosis factor (TNF)-ɑ, and transforming growth factor (TGF)-β1 in colonic tissues of colitis mice. Importantly, APS significantly downregulated Tfh cell and the expression of its related nuclear transcription factors Blimp-1 and Bcl-6, and cytokine IL-21. Meanwhile, APS regulated the differentiation of Tfh subpopulations in colitis mice, with Tfh10 and Tfr significantly upregulated while Tfh1, Tfh17, and Tfh21 significantly downregulated. In addition, APS significantly upregulated Treg cells and the levels of its associated nuclear transcription factor Foxp3, and cytokine IL-10 in colitis mice. In conclusion, APS effectively alleviated UC by reshaping the balance of Tfh/Treg cells.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, Jiangxi Province, China
| | - Zengping Kang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Nanchang Medical College, Nanchang 330004, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
15
|
Yu Y, Yang W, Yu T, Zhao X, Zhou Z, Yu Y, Xiong L, Yang H, Bilotta AJ, Yao S, Golovko G, Plasencia A, Quintana FJ, Zhou L, Li Y, Cong Y. Glucose promotes regulatory T cell differentiation to maintain intestinal homeostasis. iScience 2022; 25:105004. [PMID: 36093065 PMCID: PMC9460814 DOI: 10.1016/j.isci.2022.105004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Glucose, the critical energy source in the human body, is considered a potential risk factor in various autoimmune diseases when consumed in high amounts. However, the roles of glucose at moderate doses in the regulation of autoimmune inflammatory diseases and CD4+ T cell responses are controversial. Here, we show that while glucose at a high concentration (20% w/v) promotes intestinal inflammation, it suppresses colitis at a moderate dose (6% w/v), which increases the proportion of intestinal regulatory T (Treg) cells but does not affect effector CD4+ T cells. Glucose treatment promotes Treg cell differentiation but it does not affect Treg stability. Feeding glucose alters gut microbiota compositions, which are not involved in the glucose induction of Treg cells. Glucose promotes aryl hydrocarbon receptor (AhR) activation to induce Treg polarization. These findings reveal the different effects of glucose at different doses on the intestinal immune response.
Collapse
Affiliation(s)
- Yu Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaojing Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zheng Zhou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Hui Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anthony J. Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
16
|
Yuichiro O, Kan U, Hirotaka K, Eri M, Moe Y, Yuma A, Toshimune W, Sachie K, Sizuka S, Yoshihiro M, Zensho I, Toshifumi O, Shigeo K, Masayuki S. The insoluble excretion of multi-matrix system mesalazine preparations in patients with ulcerative colitis. BMC Gastroenterol 2022; 22:390. [PMID: 35982420 PMCID: PMC9389853 DOI: 10.1186/s12876-022-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Multi-matrix mesalazine (MMX) is an important treatment for ulcerative colitis (UC); however, it is often excreted intact, which increases the risk of relapse. This study aimed to clarify the risk factors for insoluble MMX excretion. METHODS The subjects were 102 UC patients who were newly prescribed MMX alone to induce remission. Their stools were evaluated on the Bristol Stool Form Scale (BSFS), the presence/absence of insoluble MMX excretion was investigated in interviews, and defecation frequency at the start of treatment and disease type were retrospectively investigated by examining their medical records. RESULTS The insoluble excretion rate (IER) was 14.7%. It tended to be higher in the patients with left-sided colitis or extensive colitis, although the differences among the disease types were not significant (p = 0.053). The mean defecation frequency of the patients that reported insoluble MMX excretion was significantly higher than that of the patients that did not report it (6.27 ± 5.28 vs. 3.69 ± 3.17, p < 0.05). The IER tended to be higher among the patients with soft stools (4.5%, 21.9%, and 23.1% in those with BSFS scores of ≤ 4, 5, and ≥ 6, respectively). In ROC analysis of defecation frequency, ≥ 3.5 defecations was found to exhibit sensitivity and specificity of 66.7% and 65.5%, respectively, for predicting insoluble MMX excretion. CONCLUSIONS The likelihood of insoluble MMX excretion is influenced by defecation frequency and the extent of inflammation. It is important to keep the possibility of insoluble excretion in mind when prescribing MMX.
Collapse
Affiliation(s)
- Ohtaki Yuichiro
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Uchiyama Kan
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Kamiya Hirotaka
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Moriizumi Eri
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Yamada Moe
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Aoki Yuma
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Watanabe Toshimune
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Kiryu Sachie
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Suzuki Sizuka
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Matsumoto Yoshihiro
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Ito Zensho
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Ohkusa Toshifumi
- grid.258269.20000 0004 1762 2738Department of Microbiota Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongou, Bunkyo-ku, Tokyo 113-8421 Japan
| | - Koido Shigeo
- grid.470101.3Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa, Kashiwa-shi, Chiba 277-8567 Japan
| | - Saruta Masayuki
- grid.411898.d0000 0001 0661 2073Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo 105-0003 Japan
| |
Collapse
|
17
|
Siddiqui S, Deshmukh AJ, Mudaliar P, Nalawade AJ, Iyer D, Aich J. Drug repurposing: re-inventing therapies for cancer without re-entering the development pipeline—a review. J Egypt Natl Canc Inst 2022; 34:33. [PMID: 35934727 PMCID: PMC9358112 DOI: 10.1186/s43046-022-00137-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
While majority of the current treatment approaches for cancer remain expensive and are associated with several side effects, development of new treatment modalities takes a significant period of research, time, and expenditure. An alternative novel approach is drug repurposing that focuses on finding new applications for the previously clinically approved drugs. The process of drug repurposing has also been facilitated by current advances in the field of proteomics, genomics, and information computational biology. This approach not only provides cheaper, effective, and potentially safer drugs with less side effects but also increases the processing pace of drug development. In this review, we wish to highlight some recent developments in the area of drug repurposing in cancer with a specific focus on the repurposing potential of anti-psychotic, anti-inflammatory and anti-viral drugs, anti-diabetic, antibacterial, and anti-fungal drugs.
Collapse
|
18
|
Saha S, Naik J, Amaresan N, Pithawala M. In silico analysis of Typha domingensis Pers. phytocompounds against wound healing biomarkers and ascertaining through in vitro cell migration assay. 3 Biotech 2022; 12:166. [PMID: 35845110 PMCID: PMC9276916 DOI: 10.1007/s13205-022-03229-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/17/2022] [Indexed: 12/19/2022] Open
Abstract
Typha domingensis Pers. is known for its medicinal properties. Although traditionally T. domingensis Pers. has been used for wound healing, yet scientific investigations reporting its ability to heal wounds are lacking. Phytochemical profiling of T. domingensis Pers. inflorescence crude extract was carried out by LC-MS analysis. Ten phytochemicals were selected for in silico analysis based on retention time, mass-to-charge ratio and resolution of mass spectrum. Molecular docking of all ten compounds was done against selected wound healing biomarkers viz., interleukin 6(IL-6), interleukin β (IL-β), insulin-like growth factor tyrosine kinase receptor (IGF-1R) and transformation growth factor β (TGF-β). Based on this, catechin, mesalazine and piperazine were subjected for in vitro cell migration assay (3T3 L1 mouse fibroblast cell line) to assess their wound healing potentials. Molecular docking revealed that mesalazine, catechin, and piperazine have potential ligands based on lowest docking energy (ranging from - 4.1587 to - 0.972), Glide E score (ranging from - 26.929 to - 57.882), Glide G score (ranging from - 4.16 to - 7.972) and numbers of hydrogen bonds compared to other compounds studied. The migration assay revealed that, compared to control (52.5%), T. domingensis Pers. inflorescence crude extract showed maximum wound healing potential (80%) followed by Catechin (66.8%) Mesalazine (58.3%) and Piperazine (51.2%). The combined in silico and in vitro approach opens new dimension for designing innovative therapeutics to manage different types of wounds.
Collapse
|
19
|
Huang Y, Wu M, Xiao H, Liu H, Yang G. Mesalamine-Mediated Amelioration of Experimental Colitis in Piglets Involves Gut Microbiota Modulation and Intestinal Immune Cell Infiltration. Front Immunol 2022; 13:883682. [PMID: 35898495 PMCID: PMC9309220 DOI: 10.3389/fimmu.2022.883682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Mesalamine (MES), also known as 5-aminosalicylic acid, is effective in treating mild to moderate ulcerative colitis (UC). The mechanisms of its actions are not fully elucidated. The aim of this study was to investigate the effects of MES treatment on intestinal microbiota and immune system in an dextran sulfate sodium (DSS)-induced UC model in postweaning piglets. Eighteen weaned piglets were assigned randomly to the following treatments: control group (CON, distilled water), DSS group (DSS, 3% DSS), and MES group (MES, 3% DSS + 2 g/day MES). Our results showed that MES treatment alleviates DSS-induced colitis in piglets, as evidenced by a reduced diarrhea index score and increased average daily gain (P < 0.05). This is accompanied by decreased diamine oxidase activity, D-lactate level (P < 0.05), and attenuated mucosal damage. MES treatment also decreased the abundance of Methanogens and reduced colon CD11b+ macrophage and CD3+ T-cell infiltrations in piglets with DSS-induced colitis (P < 0.05). Collectively, these data indicate that MES treatment-mediated colitis protection may involve microbiota and immune cell alterations.
Collapse
Affiliation(s)
- Yonggang Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongnan Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Kubota A, Terasaki M, Sakuragi Y, Muromoto R, Ikeda-Araki A, Takada H, Kojima H. Effects of benzotriazole UV stabilizers, UV-PS and UV-P, on the differentiation of splenic regulatory T cells via aryl hydrocarbon receptor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113549. [PMID: 35500401 DOI: 10.1016/j.ecoenv.2022.113549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Benzotriazole UV stabilizers (BUVSs) are widely used as additives in various materials, including plastics, to prevent damage from UV-irradiation. However, despite the extensive usage of BUVSs, information on their toxicological properties is limited. In this study, we investigated the effect of BUVSs on the immune regulatory system via the aryl hydrocarbon receptor (AhR). A cell-based transactivation assay using DR-EcoScreen cells revealed that, among 13 BUVSs tested, UV-P, UV-PS, UV-9, and UV-090 activated AhR in a dose-dependent manner. In particular, the AhR agonistic activity of UV-PS was about 10-fold more potent than those of UV-P, UV-090, and UV-9, and UV-PS acted as a full agonist against AhR. In order to investigate the immune regulatory effects of these BUVSs, we orally treated C57BL/6 mice with UV-PS or UV-P (10, 30, and 100 mg/kg) and studied the differentiation of regulatory T cells (Tregs) in spleen cells. Flow-cytometry analysis revealed that the administration of UV-PS (30 and 100 mg/kg) or UV-P (100 mg/kg) significantly increased the population of CD4+-/CD25+-/Foxp3+ Tregs in the spleen. In addition, we found that the in vitro exposure of mouse splenocytes to UV-PS (10 and 30 μM) or UV-P (30 μM) as well as to TCDD (0.1 nM) significantly induced Tregs. Notably, the induction of Tregs was eliminated by co-treatment with an AhR antagonist, CH-223191, in each case. Taken together, these findings suggest that some BUVSs might induce Tregs through direct AhR activation and act as immunosuppressive modulators.
Collapse
Affiliation(s)
- Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Yuuta Sakuragi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryuta Muromoto
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Ikeda-Araki
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
21
|
Cui Q, Tian X, Liang X, Zhang Z, Wang R, Zhou Y, Yi H, Gong P, Lin K, Liu T, Zhang L. Bifidobacterium bifidum relieved DSS-induced colitis in mice potentially by activating aryl hydrocarbon receptor. Food Funct 2022; 13:5115-5123. [DOI: 10.1039/d1fo04219j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease (IBD) characterized with relapsed intestinal inflammation and barrier function disruption is still a great therapeutic challenge. This study aimed to screen probiotics that have the potential to...
Collapse
|
22
|
Cai Z, Wang S, Li J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front Med (Lausanne) 2021; 8:765474. [PMID: 34988090 PMCID: PMC8720971 DOI: 10.3389/fmed.2021.765474] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD), as a global disease, has attracted much research interest. Constant research has led to a better understanding of the disease condition and further promoted its management. We here reviewed the conventional and the novel drugs and therapies, as well as the potential ones, which have shown promise in preclinical studies and are likely to be effective future therapies. The conventional treatments aim at controlling symptoms through pharmacotherapy, including aminosalicylates, corticosteroids, immunomodulators, and biologics, with other general measures and/or surgical resection if necessary. However, a considerable fraction of patients do not respond to available treatments or lose response, which calls for new therapeutic strategies. Diverse therapeutic options are emerging, involving small molecules, apheresis therapy, improved intestinal microecology, cell therapy, and exosome therapy. In addition, patient education partly upgrades the efficacy of IBD treatment. Recent advances in the management of IBD have led to a paradigm shift in the treatment goals, from targeting symptom-free daily life to shooting for mucosal healing. In this review, the latest progress in IBD treatment is summarized to understand the advantages, pitfalls, and research prospects of different drugs and therapies and to provide a basis for the clinical decision and further research of IBD.
Collapse
Affiliation(s)
- Zhaobei Cai
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
- Department of Gastroenterology and Hepatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Kubota A, Terasaki M, Takai R, Kobayashi M, Muromoto R, Kojima H. 5-Aminosalicylic Acid, A Weak Agonist for Aryl Hydrocarbon Receptor That Induces Splenic Regulatory T Cells. Pharmacology 2021; 107:28-34. [PMID: 34915497 DOI: 10.1159/000520404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION 5-Aminosalicylic acid (5-ASA) is widely used as a key drug in inflammatory bowel disease. It has been recently reported that 5-ASA induces CD4 + Foxp3 + regulatory T cells (Tregs) in the colon via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that regulates inflammation. However, the role of 5-ASA as an AhR agonist that induces Tregs in the spleen remains unknown. METHODS In the present study, we investigated these themes using an AhR-mediated transactivation assay and flow cytometry analysis. The experiments were conducted by using DR-EcoScreen cells and C57BL/6 mice. RESULTS The DR-EcoScreen cell-based transactivation assay revealed that 5-ASA acted as a weak AhR agonist at concentrations of ≥300 μM (1.31-1.45-fold), and that a typical AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), activated AhR at a concentration of 0.1 nM (22.8-fold). In addition, the treatment of mouse splenic cells with 300 μM 5-ASA in a primary culture assay significantly induced CD4+CD25 + Foxp3 + Tregs (control vs. 5-ASA: 9.0% vs. 12.65%, p < 0.05), while 0.1 nM TCDD also showed significant induction of Tregs (control vs. TCDD: 9.0% vs. 14.1%, p < 0.05). Interestingly, this induction was eliminated by co-treatment with an AhR antagonist, CH-223191. DISCUSSION These results suggest that 5-ASA is a weak agonist of AhR and thereby induces Tregs in spleen cells. Our findings may provide useful insights into the mechanism by which 5-ASA regulates inflammation.
Collapse
Affiliation(s)
- Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan,
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Rie Takai
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences "Sapporo,", Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
24
|
Tang-Fichaux M, Branchu P, Nougayrède JP, Oswald E. Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet? Toxins (Basel) 2021; 13:toxins13120897. [PMID: 34941734 PMCID: PMC8703417 DOI: 10.3390/toxins13120897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Jean-Philippe Nougayrède
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
- Service de Bactériology-Hygiène, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse, France
- Correspondence:
| |
Collapse
|
25
|
Nayar S, Cho JH. From single-target to cellular niche targeting in Crohn's disease: intercepting bad communications. EBioMedicine 2021; 74:103690. [PMID: 34773892 PMCID: PMC8601974 DOI: 10.1016/j.ebiom.2021.103690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The mainstay of moderate to severe Crohn's disease (CD), anti-TNF treatment, shows no clinical benefit in ∼40% of patients, likely due to incomplete cellular targeting and delayed treatment institution. While single-target therapeutics have been highly effective for some CD patients, substantial limitations with respect to safety, efficacy, and long-term, complete remission remain. Deconvolution of the cellular and molecular circuitry of tissue lesions underscores the importance of combinatorial strategies targeting cellular niches. This review aims to evaluate current therapeutic approaches used to manage CD, and highlight recent advances to our cellular, genetic, and molecular understanding of mechanisms driving pathogenic niche activation in CD. We propose new frameworks outlining that combinatorial therapies, along with serial tissue sampling and studies guided by genetics and genomics, can advance on current treatment approaches and will inform newer strategies upon which we can move towards precision therapeutics in IBD.
Collapse
Affiliation(s)
- Shikha Nayar
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Hess CSM Building Room 8-201, New York, NY 10029, USA.
| | - Judy H Cho
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Hess CSM Building Room 8-201, New York, NY 10029, USA
| |
Collapse
|
26
|
Zaiatz Bittencourt V, Jones F, Doherty G, Ryan EJ. Targeting Immune Cell Metabolism in the Treatment of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1684-1693. [PMID: 33693743 PMCID: PMC8522790 DOI: 10.1093/ibd/izab024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The cells of the immune system are highly dynamic, constantly sensing and adapting to changes in their surroundings. Complex metabolic pathways govern leukocytes' ability to fine-tune their responses to external threats. Mammalian target of rapamycin complex 1 and hypoxia inducible factor are important hubs of these pathways and play a critical role coordinating cell activation and proliferation and cytokine production. For this reason, these molecules are attractive therapeutic targets in inflammatory disease. Insight into perturbations in immune cell metabolic pathways and their impact on inflammatory bowel disease (IBD) progression are starting to emerge. However, it remains to be determined whether the aberrations in immune metabolism that occur in gut resident immune cells contribute to disease pathogenesis or are reflected in the peripheral blood of patients with IBD. In this review, we explore what is known about the metabolic profile of T cells, monocytes, macrophages, dendritic cells, and natural killer cells in IBD and discuss the potential of manipulating immune cell metabolism as a novel approach to treating IBD.
Collapse
Affiliation(s)
- Vanessa Zaiatz Bittencourt
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
27
|
Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clin Rev Allergy Immunol 2021; 59:382-390. [PMID: 32279195 DOI: 10.1007/s12016-020-08789-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is widely expressed in immune and non-immune cells of the gut and its activation has been correlated to the outcome of inflammatory bowel diseases (IBD). In ulcerative colitis and Crohn's disease, there is an excessive chronic inflammation with massive accumulation of leukocytes in the gut, in an attempt to constrain the invasion of pathogenic microorganisms on the damaged organ. Accordingly, it is known that dietary components, xenobiotics, and some chemicals or metabolites can activate AHR and induce the modulation of inflammatory responses. In fact, the AHR triggering by specific ligands during inflammatory conditions results in decreased IFNγ, IL-6, IL-12, TNF, IL-7, and IL-17, along with reduced microbial translocation and fibrosis in the gut. Moreover, upon AHR activation, there are increased regulatory mechanisms such as IL-10, IL-22, prostaglandin E2, and Foxp3, besides the production of anti-microbial peptides and epithelial repair. Most interestingly, commensal bacteria or their metabolites may also activate this receptor, thus contributing to the restoration of gut normobiosis and homeostasis. In line with that, Lactobacillus reuteri, Lactobacillus bulgaricus, or microbial products such as tryptophan metabolites, indole-3-pyruvic acid, urolithin A, short-chain fatty acids, dihydroxyquinoline, and others may regulate the inflammation by mechanisms dependent on AHR activation. Hence, here we discussed the potential modulatory role of AHR on intestinal inflammation, focused on the reestablishment of homeostasis through the receptor triggering by microbial metabolites. Finally, the development of AHR-based therapies derived from bacteria products could represent an important future alternative for controlling IBD.
Collapse
Affiliation(s)
- Larissa Pernomian
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Murillo Duarte-Silva
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
28
|
Differential modulation of Ahr and Arid5a: A promising therapeutic strategy for autoimmune encephalomyelitis. Saudi Pharm J 2021; 28:1605-1615. [PMID: 33424253 PMCID: PMC7783111 DOI: 10.1016/j.jsps.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/18/2020] [Indexed: 01/23/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that involves demyelination of axons in the central nervous system (CNS) and affects patients worldwide. It has been demonstrated that ligand-activated aryl hydrocarbon receptor (Ahr) ameliorates experimental autoimmune encephalomyelitis (EAE), a murine model of MS, by increasing CD4+FoxP3+ T cells. Recent evidence indicates that AT-rich interactive domain-containing protein 5a (Arid5a) is required for EAE pathogenesis by stabilizing Il6 and OX40 mRNAs. However, the differential modulation of Ahr and Arid5a in autoimmunity as a therapeutic strategy is unexplored. Herein, an in silico, in vitro and in vivo approach identified Flavipin (3,4,5-trihydroxy-6-methylphthalaldehyde) as an Ahr agonist that induces the expression of Ahr downstream genes in mouse CD4+ T cells and CD11b+ macrophages. Interestingly, Flavipin inhibited the stabilizing function of Arid5a and its counteracting effects on Regnase-1 on the 3′ untranslated region (3′UTR) of target mRNAs. Furthermore, it inhibited the stabilizing function of Arid5a on Il23a 3′UTR, a newly identified target mRNA. In EAE, Flavipin ameliorated disease severity, with reduced CD4+IL-17+ T cells, IL-6 and TNF-α and increased CD4+FoxP3+ T cells. Moreover, EAE amelioration was concomitant with reduced CD4+OX40+ and CD4+CD45+ T cells in the CNS. RNA interference showed that the modulatory effects of Flavipin on pro- and anti-inflammatory mediators in CD4+ T cells and macrophages were Ahr- and/or Arid5a-dependent. In conclusion, our findings reveal differential modulation of Ahr and Arid5a as a new therapeutic strategy for MS.
Collapse
Key Words
- 3′UTR, 3′ untranslated region
- ActinD, actinomycin D
- Ahr
- Ahr, aryl hydrocarbon receptor
- Arid5a
- Arid5a, AT-rich interactive domain-containing protein 5a
- Arnt, Ahr nuclear translocator
- Autoimmunity
- CFA, complete Freund's adjuvant
- CNS, central nervous system
- EAE, experimental autoimmune encephalomyelitis
- Inflammation
- LPS, lipopolysaccharide
- MOG35-55, myelin oligodendrocyte glycoprotein
- MS, multiple sclerosis
- Multiple sclerosis
- PAS-A and PAS-B, Per-Arnt-Sim domain
- RBP, RNA-binding protein
- RIP, RNA immunoprecipitation
- SPF, specific pathogen-free
- Therapeutic
- miR, microRNA
Collapse
|
29
|
Tang-Fichaux M, Chagneau CV, Bossuet-Greif N, Nougayrède JP, Oswald É, Branchu P. The Polyphosphate Kinase of Escherichia coli Is Required for Full Production of the Genotoxin Colibactin. mSphere 2020; 5:e01195-20. [PMID: 33328353 PMCID: PMC7771237 DOI: 10.1128/msphere.01195-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Colibactin induces DNA damage in mammalian cells and has been linked to the virulence of Escherichia coli and the promotion of colorectal cancer (CRC). By looking for mutants attenuated in the promoter activity of clbB encoding one of the key enzymes for the production of colibactin, we found that a mutant of the gene coding for the polyphosphate kinase (PPK) produced less colibactin than the parental strain. We observed this phenotype in different strains ranging from pathogens responsible for meningitis, urinary tract infection, or mouse colon carcinogenesis to the probiotic Nissle 1917. We confirmed the role of PPK by using an inhibitor of PPK enzymatic activity, mesalamine (also known as 5-aminosalicylic acid). Interestingly, mesalamine has a local anti-inflammatory effect on the epithelial cells of the colon and is used to treat inflammatory bowel disease (IBD). Upon treatment with mesalamine, a decreased genotoxicity of colibactin-producing E. coli was observed both on epithelial cells and directly on purified DNA. This demonstrates the direct effect of mesalamine on bacteria independently from its anti-inflammatory effect on eukaryotic cells. Our results suggest that the mechanisms of action of mesalamine in treating IBD and preventing CRC could also lie in the inhibition of colibactin production. All in all, we demonstrate that PPK is required for the promoter activity of clbB and the production of colibactin, which suggests that PPK is a promising target for the development of anticolibactin and antivirulence strategies.IMPORTANCE Colibactin-producing E. coli induces DNA damage in eukaryotic cells and promotes tumor formation in mouse models of intestinal inflammation. Recent studies have provided strong evidence supporting the causative role of colibactin in human colorectal cancer (CRC) progression. Therefore, it is important to understand the regulation of the production of this genotoxin. Here, we demonstrate that polyphosphate kinase (PPK) is required for the promoter activity of clbB and the production of colibactin. Interestingly, PPK is a multifunctional player in bacterial virulence and stress responses and has been proposed as a new target for developing antimicrobial medicine. We observed inhibition of colibactin production by using a previously identified PPK inhibitor (i.e., mesalamine, an anti-inflammatory drug commonly prescribed for inflammatory bowel diseases). These data brought us a new perspective on the regulatory network of colibactin production and provided us a clue for the development of anticolibactin strategies for CRC treatment/prophylaxis.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Camille V Chagneau
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | | | - Éric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
30
|
Nakase H. Optimizing the Use of Current Treatments and Emerging Therapeutic Approaches to Achieve Therapeutic Success in Patients with Inflammatory Bowel Disease. Gut Liver 2020; 14:7-19. [PMID: 30919602 PMCID: PMC6974326 DOI: 10.5009/gnl18203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
The current goal of inflammatory bowel disease (IBD) treatment is a symptom-free everyday life accompanied by mucosal healing with minimal use of corticosteroids. Recent therapeutic advances, particularly, the emergence of anti-tumor necrosis factor (anti-TNF) antibodies, have changed the natural history of IBD. Additionally, these advances also led to the emergence of the therapeutic concept of the “treat to target” strategy. With the development of new drugs and clinical trials, not only biologics but also small molecules have been applied to clinical practice to better individualize and optimize therapy. However, if newer drugs, including anti-TNF therapies, are recommended for all patients diagnosed with IBD, a significant number of patients will be overtreated. The basic goal of IBD treatment is still to make the best use of conventional treatments based on IBD pathophysiology. Thus, physicians should be familiar with the modes of action of the available drugs. In this review, the author discusses the existing data for many approved drugs and provide insights for optimizing current treatments for the management of patients with IBD in the era of biologics.
Collapse
Affiliation(s)
- Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
31
|
The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J Immunol Res 2019; 2019:7546047. [PMID: 31772949 PMCID: PMC6854958 DOI: 10.1155/2019/7546047] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
32
|
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
33
|
Chitrala KN, Yang X, Busbee B, Singh NP, Bonati L, Xing Y, Nagarkatti P, Nagarkatti M. Computational prediction and in vitro validation of VEGFR1 as a novel protein target for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Rep 2019; 9:6810. [PMID: 31048752 PMCID: PMC6497656 DOI: 10.1038/s41598-019-43232-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
The toxic manifestations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, primarily depend on its ability to activate aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor belonging to the superfamily of basic-helix-loop-helix DNA-binding proteins. In the present study, we aimed to identify novel protein receptor targets for TCDD using computational and in vitro validation experiments. Interestingly, results from computational methods predicted that Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) could be one of the potential targets for TCDD in both mouse and humans. Results from molecular docking studies showed that human VEGFR1 (hVEGFR1) has less affinity towards TCDD compared to the mouse VEGFR1 (mVEGFR1). In vitro validation results showed that TCDD can bind and phosphorylate hVEGFR1. Further, results from molecular dynamic simulation studies showed that hVEGFR1 interaction with TCDD is stable throughout the simulation time. Overall, the present study has identified VEGFR1 as a novel target for TCDD, which provides the basis for further elucidating the role of TCDD in angiogenesis.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Brandon Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA.
| |
Collapse
|
34
|
Wei YL, Chen YQ, Gong H, Li N, Wu KQ, Hu W, Wang B, Liu KJ, Wen LZ, Xiao X, Chen DF. Fecal Microbiota Transplantation Ameliorates Experimentally Induced Colitis in Mice by Upregulating AhR. Front Microbiol 2018; 9:1921. [PMID: 30197631 PMCID: PMC6118168 DOI: 10.3389/fmicb.2018.01921] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory disease that occurs in the colon and rectum. While fecal microbiota transplantation (FMT) is gaining attention as a clinical treatment of UC, the molecular mechanisms behind this effect have yet to be fully understood. A C57BL/6 mouse model was established to test whether FMT promotes the recovery of colon inflammation. Administration of 2% dextran sulfate sodium (DSS) for 7 days successfully induced acute colitis, as evidenced by diarrhea, hematochezia and colon shortening as well as a decrease in body weight. FMT alleviated the severity of colon mucosa injury and improved histological alterations compared with that of the DSS group. In addition, FMT promoted homeostasis of the intestinal microbiota. Furthermore, FMT upregulated the expression of aryl hydrocarbon receptor (AHR), interleukin-10 (IL-10), and transforming growth factor beta (TGF-β) in colon tissues. These results suggest that the significant anti-inflammatory effect of FMT may be attributed to its promotion of IL-10 and TGF-β production and AHR activation. Based on these results, FMT had a favorable therapeutic effect on DSS-induced colitis.
Collapse
Affiliation(s)
- Yan-Ling Wei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Yu-Qin Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Hao Gong
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Ning Li
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Kang-Qi Wu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Wang Hu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Kai-Jun Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Xiao Xiao
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| | - Dong-Feng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital affiliated to the Army Medical University, Chongqing, China
| |
Collapse
|
35
|
Effects of lactobacilli with different regulatory behaviours on tight junctions in mice with dextran sodium sulphate-induced colitis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
36
|
Sanapalli BKR, Kannan E, Balasubramanian S, Natarajan J, Baruah UK, Karri VVSR. Pluronic lecithin organogel of 5-aminosalicylic acid for wound healing. Drug Dev Ind Pharm 2018; 44:1650-1658. [PMID: 29848103 DOI: 10.1080/03639045.2018.1483393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
5-Aminosalicylic acid (5-ASA) is an aminosalicylate anti-inflammatory drug, which is also known as mesalazine or mesalamine. Currently employed in treating inflammatory bowel disease, ulcerative colitis, inflamed anus or rectum, and maintain remission in Crohn's disease. Evidence from the researchers highlighted its significant re-epithelization in allergic asthma, aphthous, and gastric ulcerative conditions. The objective of the study was to formulate the pluronic lecithin organogel (PLO) containing 5-ASA and evaluate its wound-healing ability in a full thickness excision wound rat model. The data obtained from in silico docking studies revealed 5-ASA is having an affinity towards the transforming growth factor-beta (TGF-β) specifically towards beta1. Among various formulations prepared (F1 to F8), F1, and F6 have shown a maximum in vitro drug release with optimum pH and viscosity. From MTT assay it was found that selected PLO formulations showed no toxicity and enhanced cell proliferation in HaCaT cell lines. In vivo wound-healing studies in albino Wistar rats has revealed that PLO accelerates wound closure and reepithelization to the statistically significant level on day 3 (p < .05) in comparison with untreated wounds. In conclusion, the overall results suggest that 5-ASA PLO gel is a potential therapeutic option for the treatments of wounds, however, further studies are highly warrened to determine the various mechanisms of 5-ASA in regulating the cell migration and reepithelization in wound healing to outspread its use in clinics.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- a Department of Pharmacology , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | - Elango Kannan
- a Department of Pharmacology , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | | | - Jawahar Natarajan
- b Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | - Uday Krishna Baruah
- b Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research , Mysuru , India
| | | |
Collapse
|
37
|
Boule LA, Burke CG, Jin GB, Lawrence BP. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome. Sci Rep 2018; 8:1826. [PMID: 29379138 PMCID: PMC5789012 DOI: 10.1038/s41598-018-20197-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) offers a compelling target to modulate the immune system. AHR agonists alter adaptive immune responses, but the consequences differ across studies. We report here the comparison of four agents representing different sources of AHR ligands in mice infected with influenza A virus (IAV): TCDD, prototype exogenous AHR agonist; PCB126, pollutant with documented human exposure; ITE, novel pharmaceutical; and FICZ, degradation product of tryptophan. All four compounds diminished virus-specific IgM levels and increased the proportion of regulatory T cells. TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific IgG levels and CD8+ T cell responses. Similarly, ITE, PCB126, and TCDD reduced Th1 and Tfh cells, whereas FICZ increased their frequency. In Cyp1a1-deficient mice, all compounds, including FICZ, reduced the response to IAV. Conditional Ahr knockout mice revealed that all four compounds require AHR within hematopoietic cells. Thus, differences in the immune response to IAV likely reflect variances in quality, magnitude, and duration of AHR signaling. This indicates that binding affinity and metabolism may be stronger predictors of immune effects than a compound’s source of origin, and that harnessing AHR will require finding a balance between dampening immune-mediated pathologies and maintaining sufficient host defenses against infection.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,CBR International, Boulder, CO, USA
| | - Catherine G Burke
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Preventative Medicine, School of Medicine, Yaniban University, Yanji City, Jilin Provence, China
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|