1
|
Le QV, Matsubayashi M, Hatabu T. γδ T cells induced by zoledronate under macrophage-depleted conditions reduce disease severity and parasite number in Eimeria tenella-infected chicks. Res Vet Sci 2025; 192:105730. [PMID: 40450955 DOI: 10.1016/j.rvsc.2025.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/19/2025] [Accepted: 05/27/2025] [Indexed: 06/11/2025]
Abstract
Disease severity and local immune responses mediated by Zoledronate (ZOL)-induced γδ T cells were evaluated in chicks infected with E. tenella under macrophage-depleted conditions. Three groups of White Leghorns, including a negative control group (CT), carrageenan-treated group (CAR), and both ZOL and CAR-treated group (ZOL/CAR), were infected orally with E. tenella sporulated oocysts (1 × 104 oocysts/chick) at 14 days of age. Fecal oocyst shedding was assessed at 4-15 days post-infection. The cecum was collected for histopathological and gene expression analyses. Oocyst shedding was significantly reduced in the CAR and ZOL/CAR groups compared with the CT group (p < 0.01). The total oocyst number in the ZOL/CAR group was lower compared with those in the CAR and CT groups (p < 0.05). The lesion score and parasite burden in the CAR and ZOL/CAR groups were lower compared with those in the CT group (p < 0.01). The expression of IFN-λ, IL-17 A, and perforin mRNA in the ZOL/CAR group increased compared with that in the CAR group, whereas the expression of IFN-γ in the ZOL/CAR group decreased. The results suggest that Th1-independent immunity occurs as a local immune response induced by IL-17 A/IL-22-producing γδ T cells, which control E. tenella-induced pathology in the cecum.
Collapse
Affiliation(s)
- Quan Viet Le
- Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Izumisano 598-8531, Japan
| | - Toshimitsu Hatabu
- Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Chen L, Tong X, Wu Y, Liu C, Tang C, Qi X, Kong F, Li M, Jin L, Zeng B. A dataset of single-cell transcriptomic atlas of Bama pig and potential marker genes across seven tissues. BMC Genom Data 2025; 26:16. [PMID: 40075302 PMCID: PMC11899051 DOI: 10.1186/s12863-025-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
The use of single-cell sequencing technology for single-cell transcriptomics studies in pigs is expanding progressively. However, the comprehensive classification of cell types across different anatomical tissues and organs of pig in multiple datasets remains relatively limited. This study employs single-cell and single-nucleus sequencing technologies in Bama pig to identify unique marker genes and their corresponding transcriptomic profiles across diverse cell types in various anatomical tissues and organs, including subcutaneous fat, visceral fat, psoas major muscle, liver, spleen, lung, and kidney. Through detailed data analyses, we observed widespread cellular diversity across various anatomical tissues and organs of Bama pig. This work contributes a comprehensive dataset that supports physiological studies and aids in the identification and prediction of potential marker genes through single-cell transcriptomics of these tissues. The methodologies and data employed in this study are designed to improve the accuracy of cell type identification and ensure consistent cell type allocation.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyan Tong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuang Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625099, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Novotny LA, Meissner EG. Expression and function of interferon lambda receptor 1 variants. FEBS Lett 2025; 599:466-475. [PMID: 39435588 PMCID: PMC11850208 DOI: 10.1002/1873-3468.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Lambda interferons (IFNLs) provide critical host defense against pathogens encountered at mucosal surfaces. In humans, IFNL signaling is regulated in part by low and cell-type restricted expression of the lambda interferon receptor 1 protein with expression restricted primarily to epithelial cells located at mucosal surfaces. This review will examine the evidence suggesting a role for IFNLR1 transcriptional variants in mediating cell responsiveness to IFNL ligand exposure and regulation of pathway activity.
Collapse
Affiliation(s)
- Laura A. Novotny
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric G. Meissner
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Ali M, Xu C, Wang M, Hina Q, Ji Y, Anwar S, Lu S, He Q, Qiu Y, Li K. Gut Barrier Dysfunction and Microbiota Variations in Cryptosporidiosis: A Comprehensive Review. Vet Sci 2025; 12:85. [PMID: 40005845 PMCID: PMC11861801 DOI: 10.3390/vetsci12020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Cryptosporidiosis is a zoonotic protozoan parasite-born disease, equally significant in both animals and humans, especially affecting immunocompromised individuals (e.g., AIDS patients) and neonates. The prime concerns of this review article are to demonstrate the disruption of the intestinal barrier and variations in the gut microbiome during cryptosporidiosis, and to explore host gut-parasite interactions that can lead to the development of novel therapeutics. The review concluded that the enteric barrier is particularly maintained by tight junction proteins (e.g., occludin, claudin, and ZO-1, etc.) and mucosal immunity, both of which are severely compromised during Cryptosporidium spp. infections, resulting in increased intestinal barrier permeability, inflammatory responses, diarrhea, and ultimately death in severe cases. Cryptosporidium-induced dysbiosis is characterized by reduced microbial diversity and richness, a shift from commensal to pathogenic bacteria, as evidenced by increased pro-inflammatory taxa like Proteobacteria, and reduced proportions of beneficial SCFAs producing bacteria, e.g., Firmicutes. Recent investigations have highlighted the interrelations between gut microbiota and epithelial barrier integrity, especially during cryptosporidiosis, demonstrating the modulations regarding tight junctions (TJs), immune reactions, and SCFA production, all of which are main players in alleviating this protozoal parasitic infection. This review comprehensively describes the fine details underlying these impairments, including autophagy-mediated TJs' degradation, inflammasome activation, and gut microbiome-driven alterations in metabolic pathways, providing the latest relevant, and well-organized piece of knowledge regarding intestinal barrier alterations and microbial shifts during cryptosporidiosis. This work emphasizes the future need for longitudinal studies and advanced sequencing techniques to understand host gut microbiota-parasite interactions, aiming to formulate innovative strategies to mitigate cryptosporidiosis.
Collapse
Affiliation(s)
- Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yaru Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Subiha Anwar
- Department of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yawei Qiu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Pardy RD, Walzer KA, Wallbank BA, Byerly JH, O’Dea KM, Cohn IS, Haskins BE, Roncaioli JL, Smith EJ, Buenconsejo GY, Striepen B, Hunter CA. Analysis of intestinal epithelial cell responses to Cryptosporidium highlights the temporal effects of IFN-γ on parasite restriction. PLoS Pathog 2024; 20:e1011820. [PMID: 38718306 PMCID: PMC11078546 DOI: 10.1371/journal.ppat.1011820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.
Collapse
Affiliation(s)
- Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katelyn A. Walzer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica H. Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Justin L. Roncaioli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eleanor J. Smith
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gracyn Y. Buenconsejo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
De M, Sukla S, Bharatiya S, Keshri S, Roy DG, Roy S, Dutta D, Saha S, Ejazi SA, Ravichandiran V, Ali N, Chatterjee M, Chinnaswamy S. IFN-λ3 is induced by Leishmania donovani and can inhibit parasite growth in cell line models but not in the mouse model, while it shows a significant association with leishmaniasis in humans. Infect Immun 2024; 92:e0050423. [PMID: 38193711 PMCID: PMC10863405 DOI: 10.1128/iai.00504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The intracellular protozoan parasite Leishmania donovani causes debilitating human diseases that involve visceral and dermal manifestations. Type 3 interferons (IFNs), also referred to as lambda IFNs (IFNL, IFN-L, or IFN-λ), are known to play protective roles against intracellular pathogens at the epithelial surfaces. Herein, we show that L. donovani induces IFN-λ3 in human as well as mouse cell line-derived macrophages. Interestingly, IFN-λ3 treatment significantly decreased parasite load in infected cells, mainly by increasing reactive oxygen species production. Microscopic examination showed that IFN-λ3 inhibited uptake but not replication, while the phagocytic ability of the cells was not affected. This was confirmed by experiments that showed that IFN-λ3 could decrease parasite load only when added to the medium at earlier time points, either during or soon after parasite uptake, but had no effect on parasite load when added at 24 h post-infection, suggesting that an early event during parasite uptake was targeted. Furthermore, the parasites could overcome the inhibitory effect of IFN-λ3, which was added at earlier time points, within 2-3 days post-infection. BALB/c mice treated with IFN-λ3 before infection led to a significant increase in expression of IL-4 and ARG1 post-infection in the spleen and liver, respectively, and to different pathological changes, especially in the liver, but not to changes in parasite load. Treatment with IFN-λ3 during infection did not decrease the parasite load in the spleen either. However, IFN-λ3 was significantly increased in the sera of visceral leishmaniasis patients, and the IFNL genetic variant rs12979860 was significantly associated with susceptibility to leishmaniasis.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Soumi Sukla
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
- Centre for High Impact Neuroscience and Translational Applications (CHINTA), TCG-Centres for Research and Education in Science and Technology, Kolkata, West Bengal, India
| | - Seema Bharatiya
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sagar Keshri
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Debarati Guha Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sutopa Roy
- Department of Pharmacology, Institute of Post-Graduate Medical Education and Research, Kolkata, India
| | - Debrupa Dutta
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Shriya Saha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| | - V. Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post-Graduate Medical Education and Research, Kolkata, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
7
|
Wright AP, Nice TJ. Role of type-I and type-III interferons in gastrointestinal homeostasis and pathogenesis. Curr Opin Immunol 2024; 86:102412. [PMID: 38518661 PMCID: PMC11032256 DOI: 10.1016/j.coi.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Interferon (IFN) was discovered based on interference with virus production, and three types of IFN are now defined. Since its discovery, IFN's roles have expanded beyond viruses to diverse pathogen types, tissue homeostasis, and inflammatory disease. The gastrointestinal (GI) tract is arguably the tissue where the roles of IFN types are most distinct, with a particularly prominent role for type-III IFN in antiviral protection of the intestinal epithelium. Current studies continue to deepen our understanding of the type- and tissue-specific roles of IFN. This review highlights these advances within the GI tract, including discovery of protective roles for type-III IFNs against nonviral GI pathogens, and discovery of an antiviral homeostatic type-III IFN response within the intestinal epithelium.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Pardy RD, Wallbank BA, Striepen B, Hunter CA. Immunity to Cryptosporidium: insights into principles of enteric responses to infection. Nat Rev Immunol 2024; 24:142-155. [PMID: 37697084 PMCID: PMC11881751 DOI: 10.1038/s41577-023-00932-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Cryptosporidium parasites replicate within intestinal epithelial cells and are an important cause of diarrhoeal disease in young children and in patients with primary and acquired defects in T cell function. This Review of immune-mediated control of Cryptosporidium highlights advances in understanding how intestinal epithelial cells detect this infection, the induction of innate resistance and the processes required for activation of T cell responses that promote parasite control. The development of a genetic tool set to modify Cryptosporidium combined with tractable mouse models provide new opportunities to understand the principles that govern the interface between intestinal epithelial cells and the immune system that mediate resistance to enteric pathogens.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Greigert V, Saraav I, Son J, Zhu Y, Dayao D, Antia A, Tzipori S, Witola WH, Stappenbeck TS, Ding S, Sibley LD. Cryptosporidium infection of human small intestinal epithelial cells induces type III interferon and impairs infectivity of Rotavirus. Gut Microbes 2024; 16:2297897. [PMID: 38189373 PMCID: PMC10793699 DOI: 10.1080/19490976.2023.2297897] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
Collapse
Affiliation(s)
- Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Iti Saraav
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Denise Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thaddeus S. Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Reyes J, Yap GS. "AHR-ming" host defense against cryptosporidiosis. Cell Host Microbe 2023; 31:1952-1953. [PMID: 38096787 DOI: 10.1016/j.chom.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Globally, cryptosporidiosis is a leading cause of childhood diarrheal disease and is a major risk factor for malnutrition and impairment of growth and cognitive development. In this issue of Cell Host & Microbe, Maradana et al. identify a target for dietary enhancement of innate immune defenses against cryptosporidiosis.
Collapse
Affiliation(s)
- Jojo Reyes
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - George S Yap
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
11
|
Pardy RD, Walzer KA, Wallbank BA, Byerly JH, O’Dea KM, Cohn IS, Haskins BE, Roncaioli JL, Smith EJ, Buenconsejo GY, Striepen B, Hunter CA. Analysis of intestinal epithelial cell responses to Cryptosporidium highlights the temporal effects of IFN-γ on parasite restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567008. [PMID: 38014210 PMCID: PMC10680692 DOI: 10.1101/2023.11.14.567008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. The use of single cell RNA sequencing to profile IEC during infection revealed induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells, and IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ demonstrated the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ-mediated bystander activation of uninfected enterocytes is important for control of Cryptosporidium.
Collapse
Affiliation(s)
- Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn A. Walzer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica H. Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin L. Roncaioli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eleanor J. Smith
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gracyn Y. Buenconsejo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Greigert V, Saraav I, Son J, Dayao D, Antia A, Tzipori S, Witola WH, Stappenbeck TS, Ding S, Sibley LD. Cryptosporidium infection of human small intestinal epithelial cells induces type III interferon and impairs infectivity of Rotavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555581. [PMID: 37693422 PMCID: PMC10491271 DOI: 10.1101/2023.08.30.555581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. C. hominis infection induced a strong interferon response from enterocytes, likely driven by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
Collapse
Affiliation(s)
- Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Iti Saraav
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Denise Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Thaddeus S. Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
13
|
Deng S, He W, Gong AY, Li M, Wang Y, Xia Z, Zhang XT, Huang Pacheco AS, Naqib A, Jenkins M, Swanson PC, Drescher KM, Strauss-Soukup JK, Belshan M, Chen XM. Cryptosporidium uses CSpV1 to activate host type I interferon and attenuate antiparasitic defenses. Nat Commun 2023; 14:1456. [PMID: 36928642 PMCID: PMC10020566 DOI: 10.1038/s41467-023-37129-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cryptosporidium infects gastrointestinal epithelium and is a leading cause of infectious diarrhea and diarrheal-related death in children worldwide. There are no vaccines and no fully effective therapy available for the infection. Type II and III interferon (IFN) responses are important determinants of susceptibility to infection but the role for type I IFN response remains obscure. Cryptosporidium parvum virus 1 (CSpV1) is a double-stranded RNA (dsRNA) virus harbored by Cryptosporidium spp. Here we show that intestinal epithelial conditional Ifnar1-/- mice (deficient in type I IFN receptor) are resistant to C. parvum infection. CSpV1-dsRNAs are delivered into host cells and trigger type I IFN response in infected cells. Whereas C. parvum infection attenuates epithelial response to IFN-γ, loss of type I IFN signaling or inhibition of CSpV1-dsRNA delivery can restore IFN-γ-mediated protective response. Our findings demonstrate that type I IFN signaling in intestinal epithelial cells is detrimental to intestinal anti-C. parvum defense and Cryptosporidium uses CSpV1 to activate type I IFN signaling to evade epithelial antiparasitic response.
Collapse
Affiliation(s)
- Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Wei He
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ai-Yu Gong
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Zijie Xia
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Xin-Tiang Zhang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Andrew S Huang Pacheco
- Pediatric Gastroenterology, Children's Hospital & Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ankur Naqib
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Mark Jenkins
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, the United States Department of Agriculture, Beltsville, MD, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Juliane K Strauss-Soukup
- Department of Chemistry and Biochemistry, Creighton University College of Arts and Sciences, Omaha, NE, USA
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
14
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
15
|
Murillo-León M, Bastidas-Quintero AM, Endres NS, Schnepf D, Delgado-Betancourt E, Ohnemus A, Taylor GA, Schwemmle M, Staeheli P, Steinfeldt T. IFN-λ is protective against lethal oral Toxoplasma gondii infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529861. [PMID: 36865100 PMCID: PMC9980175 DOI: 10.1101/2023.02.24.529861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Interferons are essential for innate and adaptive immune responses against a wide variety of pathogens. Interferon lambda (IFN-λ) protects mucosal barriers during pathogen exposure. The intestinal epithelium is the first contact site for Toxoplasma gondii (T. gondii) with its hosts and the first defense line that limits parasite infection. Knowledge of very early T. gondii infection events in the gut tissue is limited and a possible contribution of IFN-λ has not been investigated so far. Here, we demonstrate with systemic interferon lambda receptor (IFNLR1) and conditional (Villin-Cre) knockout mouse models and bone marrow chimeras of oral T. gondii infection and mouse intestinal organoids a significant impact of IFN-λ signaling in intestinal epithelial cells and neutrophils to T. gondii control in the gastrointestinal tract. Our results expand the repertoire of interferons that contribute to the control of T. gondii and may lead to novel therapeutic approaches against this world-wide zoonotic pathogen.
Collapse
Affiliation(s)
- Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Niklas S. Endres
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Current address:Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Current address: Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, NC 27710 Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, NC 27705 Durham, North Carolina, United States of America
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Deng S, Graham ML, Chen XM. The Complexity of Interferon Signaling in Host Defense against Protozoan Parasite Infection. Pathogens 2023; 12:319. [PMID: 36839591 PMCID: PMC9962834 DOI: 10.3390/pathogens12020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Protozoan parasites, such as Plasmodium, Leishmania, Toxoplasma, Cryptosporidium, and Trypanosoma, are causative agents of health-threatening diseases in both humans and animals, leading to significant health risks and socioeconomic losses globally. The development of effective therapeutic and prevention strategies for protozoan-caused diseases requires a full understanding of the pathogenesis and protective events occurring in infected hosts. Interferons (IFNs) are a family of cytokines with diverse biological effects in host antimicrobial defense and disease pathogenesis, including protozoan parasite infection. Type II IFN (IFN-γ) has been widely recognized as the essential defense cytokine in intracellular protozoan parasite infection, whereas recent studies also revealed the production and distinct function of type I and III IFNs in host defense against these parasites. Decoding the complex network of the IFN family in host-parasite interaction is critical for exploring potential new therapeutic strategies against intracellular protozoan parasite infection. Here, we review the complex effects of IFNs on the host defense against intracellular protozoan parasites and the crosstalk between distinct types of IFN signaling during infections.
Collapse
Affiliation(s)
- Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Mead JR. Early immune and host cell responses to Cryptosporidium infection. FRONTIERS IN PARASITOLOGY 2023; 2:1113950. [PMID: 37325809 PMCID: PMC10269812 DOI: 10.3389/fpara.2023.1113950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells of the small intestine and cause diarrheal illness in both immunocompetent and immunodeficient individuals. These infections may be more severe in immunocompromised individuals and young children, especially in children under 2 in developing countries. The parasite has a global distribution and is an important cause of childhood diarrhea where it may result in cognitive impairment and growth deficits. Current therapies are limited with nitazoxanide being the only FDA-approved drug. However, it is not efficacious in immunocompromised patients. Additionally, there are no vaccines for cryptosporidiosis available. While acquired immunity is needed to clear Cryptosporidium parasites completely, innate immunity and early responses to infection are important in keeping the infection in check so that adaptive responses have time to develop. Infection is localized to the epithelial cells of the gut. Therefore, host cell defenses are important in the early response to infection and may be triggered through toll receptors or inflammasomes which induce a number of signal pathways, interferons, cytokines, and other immune mediators. Chemokines and chemokine receptors are upregulated which recruit immune cells such neutrophils, NK cells, and macrophages to the infection site to help in host cell defense as well as dendritic cells that are an important bridge between innate and adaptive responses. This review will focus on the host cell responses and the immune responses that are important in the early stages of infection.
Collapse
Affiliation(s)
- Jan R. Mead
- Department of Pediatrics, Children’s Healthcare Organization of Atlanta, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
18
|
Differential Response to the Course of Cryptosporidium parvum Infection and Its Impact on Epithelial Integrity in Differentiated versus Undifferentiated Human Intestinal Enteroids. Infect Immun 2022; 90:e0039722. [PMID: 36286526 PMCID: PMC9671013 DOI: 10.1128/iai.00397-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium is a leading cause of diarrhea and death in young children and untreated AIDS patients and causes waterborne outbreaks. Pathogenic mechanisms underlying diarrhea and intestinal dysfunction are poorly understood. We previously developed stem-cell derived human intestinal enteroid (HIE) models for Cryptosporidium parvum which we used in this study to investigate the course of infection and its effect on intestinal epithelial integrity. By immunofluorescence and confocal microscopy, there was robust infection of undifferentiated and differentiated HIEs in two and three-dimensional (2D, 3D) models. Infection of differentiated HIEs in the 2D model was greater than that of undifferentiated HIEs but lasted only for 3 days, whereas infection persisted for 21 days and resulted in completion of the life cycle in undifferentiated HIEs. Infection of undifferentiated HIE monolayers suggest that C. parvum infects LGR5+ stem cells. Transepithelial electrical resistance measurement of HIEs in the 2D model revealed that infection resulted in decreased epithelial integrity which persisted in differentiated HIEs but recovered in undifferentiated HIEs. Compromised epithelial integrity was reflected in disorganization of the tight and adherens junctions as visualized using the markers ZO-1 and E-cadherin, respectively. Quantitation using the image analysis tools Tight Junction Organizational Rate and Intercellular Junction Organization Quantification, measurement of monolayer height, and RNA transcripts of both proteins by quantitative reverse transcription PCR confirmed that disruption persisted in differentiated HIEs but recovered in undifferentiated HIEs. These models, which more accurately recapitulate human infection, will be useful tools to dissect pathogenic mechanisms underlying diarrhea and intestinal dysfunction in cryptosporidiosis.
Collapse
|
19
|
Xie F, Zhang Y, Li J, Sun L, Zhang L, Qi M, Zhang S, Jian F, Li X, Li J, Ning C, Wang R. MiR-942-5p targeting the IFI27 gene regulates HCT-8 cell apoptosis via a TRAIL-dependent pathway during the early phase of Cryptosporidium parvum infection. Parasit Vectors 2022; 15:291. [PMID: 35974384 PMCID: PMC9382849 DOI: 10.1186/s13071-022-05415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are involved in the regulation of both the innate and adaptive immune response to Cryptosporidium parvum infection. We previously reported that C. parvum upregulated miR‑942‑5p expression in HCT‑8 cells via TLR2/TLR4‑NF‑κB signaling. In the present study, the role of miRNA-942-5p in the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated HCT-8 cell apoptosis induced by C. parvum was investigated. METHODS Quantitative real-time polymerase chain reaction, western blotting, flow cytometry, and immunofluorescence were used for analysis. RESULTS Forced expression of miRNA-942-5p resulted in decreased apoptosis and an increased C. parvum burden in HCT-8 cells. The opposite results were observed using the suppressed expression of miRNA-942-5p. The miRNA-942-5p led to the translational suppression of IFI27 gene through targeting the 3'-untranslated region of the IFI27 gene. Moreover, overexpression of the IFI27 gene produced a high apoptotic ratio and low C. parvum burden. In contrast, a low apoptotic ratio and a high C. parvum burden were observed following downregulation of the IFI27 gene. Both miR-942-5p and the IFI27 gene influenced TRAIL and caspase-8 expression induced by C. parvum in HCT-8 cells. Moreover, TRAIL promoted HCT-8 cell apoptosis in a concentration-dependent manner. CONCLUSIONS These data suggested that C. parvum induced the downregulation of IFI27 via relief of miR-942-5p-mediated translational suppression. IFI27 downregulation was affected the burden of C. parvum by regulating HCT-8 cell apoptosis through TRAIL-dependent pathways. Future studies should determine the mechanisms by which C. parvum infection increases miR-942-5p expression and the role of miR-942-5p in hosts' anti-C. parvum immunity in vivo.
Collapse
Affiliation(s)
- Fujie Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yajun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lulu Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Changsheng Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
20
|
Gibson AR, Sateriale A, Dumaine JE, Engiles JB, Pardy RD, Gullicksrud JA, O’Dea KM, Doench JG, Beiting DP, Hunter CA, Striepen B. A genetic screen identifies a protective type III interferon response to Cryptosporidium that requires TLR3 dependent recognition. PLoS Pathog 2022; 18:e1010003. [PMID: 35584177 PMCID: PMC9154123 DOI: 10.1371/journal.ppat.1010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/31/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cryptosporidium is a leading cause of severe diarrhea and diarrheal-related death in children worldwide. As an obligate intracellular parasite, Cryptosporidium relies on intestinal epithelial cells to provide a niche for its growth and survival, but little is known about the contributions that the infected cell makes to this relationship. Here we conducted a genome wide CRISPR/Cas9 knockout screen to discover host genes that influence Cryptosporidium parvum infection and/or host cell survival. Gene enrichment analysis indicated that the host interferon response, glycosaminoglycan (GAG) and glycosylphosphatidylinositol (GPI) anchor biosynthesis are important determinants of susceptibility to C. parvum infection and impact on the viability of host cells in the context of parasite infection. Several of these pathways are linked to parasite attachment and invasion and C-type lectins on the surface of the parasite. Evaluation of transcript and protein induction of innate interferons revealed a pronounced type III interferon response to Cryptosporidium in human cells as well as in mice. Treatment of mice with IFNλ reduced infection burden and protected immunocompromised mice from severe outcomes including death, with effects that required STAT1 signaling in the enterocyte. Initiation of this type III interferon response was dependent on sustained intracellular growth and mediated by the pattern recognition receptor TLR3. We conclude that host cell intrinsic recognition of Cryptosporidium results in IFNλ production critical to early protection against this infection.
Collapse
Affiliation(s)
- Alexis R. Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer E. Dumaine
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie B. Engiles
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jodi A. Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Gullicksrud JA, Sateriale A, Engiles JB, Gibson AR, Shaw S, Hutchins ZA, Martin L, Christian DA, Taylor GA, Yamamoto M, Beiting DP, Striepen B, Hunter CA. Enterocyte-innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Mucosal Immunol 2022; 15:362-372. [PMID: 34750455 PMCID: PMC8881313 DOI: 10.1038/s41385-021-00468-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal parasite, Cryptosporidium, is a major contributor to global child mortality and causes opportunistic infection in immune deficient individuals. Innate resistance to Cryptosporidium, which specifically invades enterocytes, is dependent on the production of IFN-γ, yet whether enterocytes contribute to parasite control is poorly understood. In this study, utilizing a mouse-adapted strain of C. parvum, we show that epithelial-derived IL-18 synergized with IL-12 to stimulate innate lymphoid cell (ILC) production of IFN-γ required for early parasite control. The loss of IFN-γ-mediated STAT1 signaling in enterocytes, but not dendritic cells or macrophages, antagonized early parasite control. Transcriptional profiling of enterocytes from infected mice identified an IFN-γ signature and enrichment of the anti-microbial effectors IDO, GBP, and IRG. Deletion experiments identified a role for Irgm1/m3 in parasite control. Thus, enterocytes promote ILC production of IFN-γ that acts on enterocytes to restrict the growth of Cryptosporidium.
Collapse
Affiliation(s)
- Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Francis Crick Institute, London, UK
| | - Julie B Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Alexis R Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary A Hutchins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Jill Robests Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Lindsay Martin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory A Taylor
- Departments of Medicine, Molecular Genetics and Microbiology and Immunology and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, NC, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Mathy NW, Deng S, Gong AY, Li M, Wang Y, Burleigh O, Kochvar A, Whiteford ER, Shibata A, Chen XM. The Long Non-Coding RNA Nostrill Regulates Transcription of Irf7 Through Interaction With NF-κB p65 to Enhance Intestinal Epithelial Defense Against Cryptosporidium parvum. Front Immunol 2022; 13:863957. [PMID: 35464447 PMCID: PMC9021721 DOI: 10.3389/fimmu.2022.863957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
The cells of the intestinal epithelium establish the frontline for host defense against pathogens in the gastrointestinal tract and play a vital role in the initiation of the immune response. Increasing evidence supports the role of long non-coding RNAs (lncRNAs) as critical regulators of diverse cellular processes, however, their role in antimicrobial host defense is incompletely understood. In this study, we provide evidence that the lncRNA Nostrill is upregulated in the intestinal epithelium following infection by Cryptosporidium parvum, a globally prevalent apicomplexan parasite that causes significant diarrheal disease and an important opportunistic pathogen in the immunocompromised and AIDS patients. Induction of Nostrill in infected intestinal epithelial cells was triggered by NF-κB signaling and was observed to enhance epithelial defense by decreasing parasitic infection burden. Nostrill participates in the transcriptional regulation of C. parvum-induced Irf7 expression through interactions with NF-κB p65, and induction of Nostrill promotes epigenetic histone modifications and occupancy of RNA polymerase II at the Irf7 promoter. Our data suggest that the induction of Nostrill promotes antiparasitic defense against C. parvum and enhances intestinal epithelial antimicrobial defense through contributions to transcriptional regulation of immune-related genes, such as Irf7.
Collapse
Affiliation(s)
- Nicholas W Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Silu Deng
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Olivia Burleigh
- Department of Biology, Creighton University, Omaha, NE, United States
| | - Andrew Kochvar
- Department of Biology, Creighton University, Omaha, NE, United States
| | - Erin R Whiteford
- Creighton University, School of Medicine, Omaha, NE, United States
| | - Annemarie Shibata
- Department of Biology, Creighton University, Omaha, NE, United States
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
23
|
Persistent Cryptosporidium parvum Infection Leads to the Development of the Tumor Microenvironment in an Experimental Mouse Model: Results of a Microarray Approach. Microorganisms 2021; 9:microorganisms9122569. [PMID: 34946170 PMCID: PMC8704780 DOI: 10.3390/microorganisms9122569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Cryptosporidium spp. are enteric protozoa parasites that infect a variety of vertebrate hosts. These parasites are capable of inducing life-threatening gastrointestinal disease in immunocompromised individuals. With the rising epidemiological evidence of the occurrence of Cryptosporidium infections in humans with digestive cancer, the tumorigenic potential of the parasite has been speculated. In this regard, Cryptosporidium parvum has been reported to induce digestive adenocarcinoma in a rodent model of chronic cryptosporidiosis. However, the processes by which the parasite could induce this carcinogenesis are still unknown. Therefore, the transcriptomes of C. parvum infected ileo-cecal regions of mice developing tumors were analyzed in the current study. For the first time, downregulation of the expression of α-defensin, an anti-microbial target of the parasite in response to C. parvum infection was observed in the transformed tissues. This phenomenon has been speculated to be the result of resistance of C. parvum to the host defense through the upregulated expression of interferon γ-stimulated genes. The inflammatory response generated as result of attenuated expression of anti-microbial peptides highlights the role of immune evasion in the C. parvum-induced tumorigenesis. The study has also succeeded in the characterization of the tumor microenvironment (TME) which is characterized by the presence of cancer associated fibroblasts, myeloid-derived suppressor cells, tumor-associated macrophages and extracellular matrix components. Identification of immune suppressor cells and accumulation of pro-inflammatory mediators speculates that chronic inflammation induced by persistent C. parvum infection assists in development of an immunosuppressive tumor microenvironment.
Collapse
|
24
|
Dumaine JE, Sateriale A, Gibson AR, Reddy AG, Gullicksrud JA, Hunter EN, Clark JT, Striepen B. The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell. eLife 2021; 10:e70451. [PMID: 34866573 PMCID: PMC8687662 DOI: 10.7554/elife.70451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
The parasite Cryptosporidium is responsible for diarrheal disease in young children causing death, malnutrition, and growth delay. Cryptosporidium invades enterocytes where it develops in a unique intracellular niche. Infected cells exhibit profound changes in morphology, physiology, and transcriptional activity. How the parasite effects these changes is poorly understood. We explored the localization of highly polymorphic proteins and found members of the Cryptosporidium parvum MEDLE protein family to be translocated into the cytosol of infected cells. All intracellular life stages engage in this export, which occurs after completion of invasion. Mutational studies defined an N-terminal host-targeting motif and demonstrated proteolytic processing at a specific leucine residue. Direct expression of MEDLE2 in mammalian cells triggered an ER stress response, which was also observed during infection. Taken together, our studies reveal the presence of a Cryptosporidium secretion system capable of delivering parasite proteins into the infected enterocyte.
Collapse
Affiliation(s)
- Jennifer E Dumaine
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexis R Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita G Reddy
- Franklin College of Arts and Science, University of GeorgiaAthensUnited States
| | - Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emma N Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Joseph T Clark
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
25
|
Wallace JW, Constant DA, Nice TJ. Interferon Lambda in the Pathogenesis of Inflammatory Bowel Diseases. Front Immunol 2021; 12:767505. [PMID: 34712246 PMCID: PMC8547615 DOI: 10.3389/fimmu.2021.767505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon λ (IFN-λ) is critical for host viral defense at mucosal surfaces and stimulates immunomodulatory signals, acting on epithelial cells and few other cell types due to restricted IFN-λ receptor expression. Epithelial cells of the intestine play a critical role in the pathogenesis of Inflammatory Bowel Disease (IBD), and the related type II interferons (IFN-γ) have been extensively studied in the context of IBD. However, a role for IFN-λ in IBD onset and progression remains unclear. Recent investigations of IFN-λ in IBD are beginning to uncover complex and sometimes opposing actions, including pro-healing roles in colonic epithelial tissues and potentiation of epithelial cell death in the small intestine. Additionally, IFN-λ has been shown to act through non-epithelial cell types, such as neutrophils, to protect against excessive inflammation. In most cases IFN-λ demonstrates an ability to coordinate the host antiviral response without inducing collateral hyperinflammation, suggesting that IFN-λ signaling pathways could be a therapeutic target in IBD. This mini review discusses existing data on the role of IFN-λ in the pathogenesis of inflammatory bowel disease, current gaps in the research, and therapeutic potential of modulating the IFN-λ-stimulated response.
Collapse
Affiliation(s)
- Jonathan W Wallace
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
26
|
Henden AS, Koyama M, Robb RJ, Forero A, Kuns RD, Chang K, Ensbey KS, Varelias A, Kazakoff SH, Waddell N, Clouston AD, Giri R, Begun J, Blazar BR, Degli-Esposti MA, Kotenko SV, Lane SW, Bowerman KL, Savan R, Hugenholtz P, Gartlan KH, Hill GR. IFN-λ therapy prevents severe gastrointestinal graft-versus-host disease. Blood 2021; 138:722-737. [PMID: 34436524 PMCID: PMC8667051 DOI: 10.1182/blood.2020006375] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunopathology and intestinal stem cell (ISC) loss in the gastrointestinal (GI) tract is the prima facie manifestation of graft-versus-host disease (GVHD) and is responsible for significant mortality after allogeneic bone marrow transplantation (BMT). Approaches to prevent GVHD to date focus on immune suppression. Here, we identify interferon-λ (IFN-λ; interleukin-28 [IL-28]/IL-29) as a key protector of GI GVHD immunopathology, notably within the ISC compartment. Ifnlr1-/- mice displayed exaggerated GI GVHD and mortality independent of Paneth cells and alterations to the microbiome. Ifnlr1-/- intestinal organoid growth was significantly impaired, and targeted Ifnlr1 deficiency exhibited effects intrinsic to recipient Lgr5+ ISCs and natural killer cells. PEGylated recombinant IL-29 (PEG-rIL-29) treatment of naive mice enhanced Lgr5+ ISC numbers and organoid growth independent of both IL-22 and type I IFN and modulated proliferative and apoptosis gene sets in Lgr5+ ISCs. PEG-rIL-29 treatment improved survival, reduced GVHD severity, and enhanced epithelial proliferation and ISC-derived organoid growth after BMT. The preservation of ISC numbers in response to PEG-rIL-29 after BMT occurred both in the presence and absence of IFN-λ-signaling in recipient natural killer cells. IFN-λ is therefore an attractive and rapidly testable approach to prevent ISC loss and immunopathology during GVHD.
Collapse
Affiliation(s)
- Andrea S Henden
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Renee J Robb
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Adriana Forero
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Rachel D Kuns
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karshing Chang
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kathleen S Ensbey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Antiopi Varelias
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stephen H Kazakoff
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicole Waddell
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Rabina Giri
- Mater Research Institute, The University of Queensland-Translational Research Institute, Brisbane, QLD, Australia
| | - Jakob Begun
- Mater Research Institute, The University of Queensland-Translational Research Institute, Brisbane, QLD, Australia
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, Perth, WA, Australia
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sergei V Kotenko
- Center for Immunity and Inflammation, New Jersey Medical School, and
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; and
| | - Ram Savan
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; and
| | - Kate H Gartlan
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, The University of Washington, Seattle, WA
| |
Collapse
|
27
|
Crawford CK, Kol A. The Mucosal Innate Immune Response to Cryptosporidium parvum, a Global One Health Issue. Front Cell Infect Microbiol 2021; 11:689401. [PMID: 34113580 PMCID: PMC8185216 DOI: 10.3389/fcimb.2021.689401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
Cryptosporidium parvum is an apicomplexan parasite that infects the intestinal epithelium of humans and livestock animals worldwide. Cryptosporidiosis is a leading cause of diarrheal-related deaths in young children and a major cause of economic loss in cattle operations. The disease is especially dangerous to infants and immunocompromised individuals, for which there is no effective treatment or vaccination. As human-to-human, animal-to-animal and animal-to-human transmission play a role in cryptosporidiosis disease ecology, a holistic 'One Health' approach is required for disease control. Upon infection, the host's innate immune response restricts parasite growth and initiates the adaptive immune response, which is necessary for parasite clearance and recovery. The innate immune response involves a complex communicative interplay between epithelial and specialized innate immune cells. Traditional models have been used to study innate immune responses to C. parvum but cannot fully recapitulate natural host-pathogen interactions. Recent shifts to human and bovine organoid cultures are enabling deeper understanding of host-specific innate immunity response to infection. This review examines recent advances and highlights research gaps in our understanding of the host-specific innate immune response to C. parvum. Furthermore, we discuss evolving research models used in the field and potential developments on the horizon.
Collapse
Affiliation(s)
- Charles K Crawford
- Department of Pathology, Microbiology, & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology, & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
28
|
Li L, Zhou C, Li T, Xiao W, Yu M, Yang H. Interleukin-28A maintains the intestinal epithelial barrier function through regulation of claudin-1. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:365. [PMID: 33842586 PMCID: PMC8033364 DOI: 10.21037/atm-20-5494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Interleukin-28A (IL-28A or interferon-λ2) is reported to maintain intestinal mucosal homeostasis. However, the effects and mechanisms of IL-28A on intestinal ischemia reperfusion (I/R) have not yet been studied. Methods Adult C57BL/6 mice were randomly divided into three groups: sham, I/R, and I/R+IL-28A (n=5 in each group). The I/R+IL-28A group mice were injected with recombinant mouse IL-28A 12 hours before the operation. Mice were sacrificed 6 hours after reperfusion. The mucosal permeability was investigated, and histology analyses were performed. Additionally, a hypoxic Caco-2 cell culture model was established. Fludarabine was used to inhibit phosphorylated signal transducer and activator of transcription 1 (pSTAT1). The expression of IL-28A, tight junctions (TJs), and pSTAT1 was assessed by western blot, immunohistochemical (IHC) staining, or immunofluorescence staining. Epithelial permeability was measured by transepithelial electrical resistance (TER). Results The expression of IL-28A was decreased in intestinal lamina propria in the I/R group compared with the control group. Administration of IL-28A significantly alleviated the I/R-induced increase in intestinal permeability and tissue damage. Treatment with IL-28A significantly attenuated intestinal I/R-induced disruption of TJ proteins, including zonula occludens-1 (ZO-1), occludin, and claudin-1. In vitro, IL-28A treatment reversed the decrease in TER of Caco-2 monolayers exposed to hypoxic environments. IL-28A led to the activation of STAT1 and the upregulation of claudin-1 expression both in vivo and in vitro. Also, inhibiting phosphorylation of STAT1 reversed the effects of IL-28A on the expression and distribution of claudin-1 in Caco-2 cells. Conclusions Intestinal epithelial barrier dysfunction caused by intestinal I/R is ameliorated by IL-28A via the regulation of claudin-1.
Collapse
Affiliation(s)
- Liangzi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Zhou
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Teming Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Greigert V, Bittich-Fahmi F, Pfaff AW. Pathophysiology of ocular toxoplasmosis: Facts and open questions. PLoS Negl Trop Dis 2020; 14:e0008905. [PMID: 33382688 PMCID: PMC7774838 DOI: 10.1371/journal.pntd.0008905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infections with the protozoan parasite Toxoplasma gondii are frequent, but one of its main consequences, ocular toxoplasmosis (OT), remains poorly understood. While its clinical description has recently attracted more attention and publications, the underlying pathophysiological mechanisms are only sparsely elucidated, which is partly due to the inherent difficulties to establish relevant animal models. Furthermore, the particularities of the ocular environment explain why the abundant knowledge on systemic toxoplasmosis cannot be just transferred to the ocular situation. However, studies undertaken in mouse models have revealed a central role of interferon gamma (IFNγ) and, more surprisingly, interleukin 17 (IL17), in ocular pathology and parasite control. These studies also show the importance of the genetic background of the infective Toxoplasma strain. Indeed, infections due to exotic strains show a completely different pathophysiology, which translates in a different clinical outcome. These elements should lead to more individualized therapy. Furthermore, the recent advance in understanding the immune response during OT paved the way to new research leads, involving immune pathways poorly studied in this particular setting, such as type I and type III interferons. In any case, deeper knowledge of the mechanisms of this pathology is needed to establish new, more targeted treatment schemes.
Collapse
Affiliation(s)
- Valentin Greigert
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Faiza Bittich-Fahmi
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Alexander W. Pfaff
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
30
|
Bhalchandra S, Lamisere H, Ward H. Intestinal organoid/enteroid-based models for Cryptosporidium. Curr Opin Microbiol 2020; 58:124-129. [PMID: 33113480 PMCID: PMC7758878 DOI: 10.1016/j.mib.2020.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Cryptosporidium is a leading cause of diarrhea and death in young children and untreated AIDS patients in resource-poor settings, and of waterborne outbreaks of disease in developed countries. However, there is no consistently effective treatment for vulnerable populations. Progress towards development of therapeutics for cryptosporidiosis has been hampered by lack of optimal culture systems to study it. New advances in organoid/enteroid technology have contributed to improved platforms to culture and propagate Cryptosporidium. Here we discuss recent breakthroughs in the field and highlight different models for functional ex vivo organoid or enteroidderived culture systems. These systems will lead to a better understanding of the mechanisms of host-parasite interactions in vivo.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| | - Hymlaire Lamisere
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Honorine Ward
- Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
31
|
Hares MF, Tiffney EA, Johnston LJ, Luu L, Stewart CJ, Flynn RJ, Coombes JL. Stem cell-derived enteroid cultures as a tool for dissecting host-parasite interactions in the small intestinal epithelium. Parasite Immunol 2020; 43:e12765. [PMID: 32564379 DOI: 10.1111/pim.12765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii and Cryptosporidium spp. can cause devastating pathological effects in humans and livestock, and in particular to young or immunocompromised individuals. The current treatment plans for these enteric parasites are limited due to long drug courses, severe side effects or simply a lack of efficacy. The study of the early interactions between the parasites and the site of infection in the small intestinal epithelium has been thwarted by the lack of accessible, physiologically relevant and species-specific models. Increasingly, 3D stem cell-derived enteroid models are being refined and developed into sophisticated models of infectious disease. In this review, we shall illustrate the use of enteroids to spearhead research into enteric parasitic infections, bridging the gap between cell line cultures and in vivo experiments.
Collapse
Affiliation(s)
- Miriam F Hares
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ellen-Alana Tiffney
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Luke J Johnston
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Lisa Luu
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Janine L Coombes
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
32
|
Ahn D, Prince A. Participation of the IL-10RB Related Cytokines, IL-22 and IFN-λ in Defense of the Airway Mucosal Barrier. Front Cell Infect Microbiol 2020; 10:300. [PMID: 32637365 PMCID: PMC7318800 DOI: 10.3389/fcimb.2020.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The airway epithelial barrier is a major barrier protecting against clinically significant infections of the lung. Its integrity is often compromised due to mechanical, chemical, or infectious causes. Opportunistic bacterial pathogens are poised to cause parenchymal infection and become difficult to eradicate due to adaptive metabolic changes, biofilm formation, and the acquisition of antimicrobial resistance and fitness genes. Enhancing mucosal defenses by modulating the cytokines that regulate barrier functions, such as interleukin-22 (IL-22) and interferon-λ (IFN-λ), members of the IL-10 family of cytokines, is an attractive approach to prevent these infections that are associated with high morbidity and mortality. These cytokines both signal through the cognate receptor IL-10RB, have related protein structures and common downstream signaling suggesting shared roles in host respiratory defense. They are typically co-expressed in multiple models of infections, but with differing kinetics. IL-22 has an important role in the producing antimicrobial peptides, upregulating expression of junctional proteins in the airway epithelium and working in concert with other inflammatory cytokines such as IL-17. Conversely, IFN-λ, a potent antiviral in influenza infection with pro-inflammatory properties, appears to decrease junctional integrity allowing for bacterial and immune cell translocation. The effects of these cytokines are pleotropic, with pathogen and tissue specific consequences. Understanding how these cytokines work in the mucosal defenses of the respiratory system may suggest potential targets to prevent invasive infections of the damaged lung.
Collapse
Affiliation(s)
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
33
|
Delling C, Daugschies A, Bangoura B, Dengler F. Cryptosporidium parvum alters glucose transport mechanisms in infected enterocytes. Parasitol Res 2019; 118:3429-3441. [PMID: 31667591 DOI: 10.1007/s00436-019-06471-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022]
Abstract
The parasite Cryptosporidium parvum Tyzzer 1912 destroys parts of the intestinal brush border membrane which is important for the uptake of nutrients like glucose. In this study, glucose transport mechanisms of the host cells (IPEC-J2 cells) infected by C. parvum were investigated. The mRNA expression levels of glucose transporters (GLUT) 1 and 2 and Na+-coupled glucose transporter (SGLT) 1 were compared in infected and uninfected cells over an infection time of 24-96 h by RT-qPCR. Furthermore, the protein expression of SGLT 1 and GLUT 2 was quantified in western blot studies. While the protein expression of SGLT 1 was not altered in infected cells, mRNA expression of SGLT 1 and GLUT 1 was significantly increased 24 h p. i. and decreased 96 h p. i. The mRNA expression of GLUT 2 was significantly decreased 24 h, 72 h, and 96 h p. i. and also correlated significantly with the infection dose at 72 h p. i. In contrast to that, the protein expression of GLUT 2 was significantly increased 48 h p. i., associated with a significantly higher intracellular glucose level in infected cells compared with control cells at that time point of infection. This points to an adaptation of the host cells' glucose uptake taking place in the acute phase of the infection. A better understanding of these molecular mechanisms following a C. parvum infection may probably lead to an improvement of therapy strategies in the future.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany.
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
- Albrecht Daniel Thaer Institute, An den Tierkliniken 29, 04103, Leipzig, Germany
| | - Berit Bangoura
- Wyoming State Veterinary Laboratory, Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY, 82070, USA
| | - Franziska Dengler
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany
| |
Collapse
|
34
|
Shi Z, Zou J, Zhang Z, Zhao X, Noriega J, Zhang B, Zhao C, Ingle H, Bittinger K, Mattei LM, Pruijssers AJ, Plemper RK, Nice TJ, Baldridge MT, Dermody TS, Chassaing B, Gewirtz AT. Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell 2019; 179:644-658.e13. [PMID: 31607511 PMCID: PMC7525827 DOI: 10.1016/j.cell.2019.09.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/23/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.
Collapse
Affiliation(s)
- Zhenda Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Noriega
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benyue Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Chunyu Zhao
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle Bittinger
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Mattei
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Timothy J Nice
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Neuroscience Institute, GSU, Atlanta, GA, USA
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
35
|
Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol 2019; 19:614-625. [DOI: 10.1038/s41577-019-0182-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
36
|
Kotenko SV, Rivera A, Parker D, Durbin JE. Type III IFNs: Beyond antiviral protection. Semin Immunol 2019; 43:101303. [PMID: 31771761 PMCID: PMC7141597 DOI: 10.1016/j.smim.2019.101303] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 12/29/2022]
Abstract
The unexpected discovery of a novel family of antiviral mediators, type III IFNs or IFN-λs, challenged the widely accepted primacy of type I IFNs in antiviral immunity, and it is now well recognized that the IFN-λ-based antiviral system plays a major role in antiviral protection of epithelial barriers. The recent characterization of previously unknown IFN-λ-mediated activities has prompted further reassessment of the role of type I IFNs in innate and adaptive immune and inflammatory responses. Since type I and type III IFNs are co-produced in response to a variety of stimuli, it is likely that many physiological processes are simultaneously and coordinately regulated by these cytokines in pathological conditions, and likely at steady state, as baseline expression of both IFN types is maintained by microbiota. In this review, we discuss emerging differences in the production and signaling of type I and type III IFNs, and summarize results of recent studies describing the involvement of type III IFNs in anti-bacterial and anti-fungal, as well as antiviral, defenses.
Collapse
Affiliation(s)
- Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ, 07103, USA; Center for Cell Signaling, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA.
| | - Amariliz Rivera
- Department of Pediatrics, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA
| | - Joan E Durbin
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA.
| |
Collapse
|
37
|
Edelblum KL. Intestinal Epithelial Interference in Cryptospordium Infection: Type III Interferon Confers Protection Against Protozoan Parasites. Cell Mol Gastroenterol Hepatol 2019; 8:149-150. [PMID: 31029561 PMCID: PMC6599094 DOI: 10.1016/j.jcmgh.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/10/2022]
Affiliation(s)
- Karen L. Edelblum
- Correspondence Address correspondence to: Karen L. Edelblum, PhD, Rutgers New Jersey Medical School 205 South Orange Avenue, Cancer Center G1228, Newark, New Jersey 07103.
| |
Collapse
|