1
|
Bonner ER, Tschollar W, Anderson R, Mourabit S. Review Article: Novel Enzyme Therapy Design for Gluten Peptide Digestion Through Exopeptidase Supplementation. Aliment Pharmacol Ther 2025; 61:1123-1139. [PMID: 39955716 PMCID: PMC11908114 DOI: 10.1111/apt.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Dietary peptides are increasingly linked to inflammatory gastrointestinal diseases, exemplified by coeliac disease. Coeliac disease is caused by an acquired immune response to proline- and glutamine-rich gluten peptides, which bottleneck proteolysis and provide substrates for immune recognition. Enzyme therapies aim to eliminate gluten immunogenic peptides as an adjunct to gluten-free diet. AIMS To investigate overlooked aspects of enzyme development given difficulties in translating preclinical efficacy into clinical benefit. METHODS We assessed mode-of-action, target organ and drug delivery in the context of digestive physiology and motility for gluten-digesting enzymes on the market or in development until 1 December 2024. RESULTS Most enzymes were gastric endopeptidases specific for proline or glutamine residues. Gastric enzymes may achieve poor enzyme-substrate exposure due to limited mixing and rapid emptying of water-soluble particles. Moreover, endopeptidases cleave proteins/peptides into shorter peptides but do not systematically cleave protein into absorbable fractions. Natural digestive physiology provides thorough mixing at the intestinal brush border, which produces exopeptidases necessary to fully digest proline-rich peptides. Despite reduced activity in patients with coeliac disease, exopeptidases remain underexplored as therapeutic agents. Given limited substrate scope and end-to-end digestion, exopeptidases are ineffective as single agents, requiring functional combinations. Furthermore, vulnerability to gastric acid requires stabilisation or formulation for rapid enteric release. CONCLUSIONS Enzymes should be stabilised throughout the gastrointestinal tract including the small intestine. Exopeptidases perform a critical function by systematically generating absorbable fractions, warranting future investigation as therapeutic agents. Sensitive and translational biomarkers are needed to better assess enzyme efficacy in real-meal conditions.
Collapse
|
2
|
Pepin XJH, Johansson Soares Medeiros J, Deris Prado L, Suarez Sharp S. The Development of an Age-Appropriate Fixed Dose Combination for Tuberculosis Using Physiologically-Based Pharmacokinetic Modeling (PBBM) and Risk Assessment. Pharmaceutics 2024; 16:1587. [PMID: 39771565 PMCID: PMC11680012 DOI: 10.3390/pharmaceutics16121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The combination of isoniazid (INH) and rifampicin (RIF) is indicated for the treatment maintenance phase of tuberculosis (TB) in adults and children. In Brazil, there is no current reference listed drug for this indication in children. Farmanguinhos has undertaken the development of an age-appropriate dispersible tablet to be taken with water for all age groups from birth to adolescence. The primary objective of this work was to develop and validate a physiologically-based biopharmaceutics model (PBBM) in GastroPlusTM, to link the product's in vitro performance to the observed pharmacokinetic (PK) data in adults and children. Methods: The PBBM was developed based on measured or predicted physico-chemical and biopharmaceutical properties of INH and RIF. The metabolic clearance was specified mechanistically in the gut and liver for both parent drugs and acetyl-isoniazid. The model incorporated formulation related measurements such as dosage form disintegration and dissolution as inputs and was validated using extensive literature as well as in house clinical data. Results: The model was used to predict the exposure in children across the targeted dosing regimen for each age group using the new age-appropriate formulation. Probabilistic models of efficacy and safety versus exposure, combined with real world data on children, were utilized to assess drug efficacy and safety in the target populations. Conclusions: The model predictions (systemic exposure) along with clinical data from the literature linking systemic exposure to clinical outcomes confirmed that the proposed dispersible pediatric tablet and dosing regimen are anticipated to be as safe and as effective as adult formulations at similar doses.
Collapse
Affiliation(s)
- Xavier J. H. Pepin
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534-7059, USA;
| | - Juliana Johansson Soares Medeiros
- Technological Development Coordination, Instituto de Tecnologia em Fármacos (Farmanguinhos)/Fiocruz, Av. Cmte. Guaranys, 447-Jacarepaguá, Rio de Janeiro 22775-903, Brazil; (J.J.S.M.); (L.D.P.)
| | - Livia Deris Prado
- Technological Development Coordination, Instituto de Tecnologia em Fármacos (Farmanguinhos)/Fiocruz, Av. Cmte. Guaranys, 447-Jacarepaguá, Rio de Janeiro 22775-903, Brazil; (J.J.S.M.); (L.D.P.)
| | - Sandra Suarez Sharp
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534-7059, USA;
| |
Collapse
|
3
|
Pepin XJH, Hynes SM, Zahir H, Walker D, Semmens LQ, Suarez‐Sharp S. Understanding the mechanisms of food effect on omaveloxolone pharmacokinetics through physiologically based biopharmaceutics modeling. CPT Pharmacometrics Syst Pharmacol 2024; 13:1771-1783. [PMID: 39219492 PMCID: PMC11494823 DOI: 10.1002/psp4.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Omaveloxolone is a nuclear factor (erythroid-derived 2)-like 2 activator approved in the United States and the European Union for the treatment of patients with Friedreich ataxia aged ≥16 years, with a recommended dosage of 150 mg orally once daily on an empty stomach. The effect of the US Food and Drug Administration (FDA) high-fat breakfast on the pharmacokinetic profile of omaveloxolone observed in study 408-C-1703 (NCT03664453) deviated from the usual linear correlation between fed/fasted maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC) ratios reported for various oral drugs across 323 food effect studies. Here, physiologically based biopharmaceutics modeling (PBBM) was implemented to predict and explain the effect of the FDA high-fat breakfast on a 150-mg dose of omaveloxolone. The model was developed and validated based on dissolution and pharmacokinetic data available across dose-ranging, food effect, and drug-drug interaction clinical studies. PBBM predictions support clinical observations of the unique effect of a high-fat meal on omaveloxolone pharmacokinetic profile, in which the Cmax increased by 350% with only a 15% increase in the AUC. Key parameters influencing omaveloxolone pharmacokinetics in the fasted state based on a parameter sensitivity analysis included bile salt solubilization, CYP3A4 activity, drug substance particle size distribution, and permeability. Mechanistically, in vivo omaveloxolone absorption was solubility and dissolution rate limited. However, in the fed state, higher bile salt solubilization led to more rapid dissolution with predominant absorption in the upper gastrointestinal tract, resulting in increased susceptibility to first-pass gut extraction; this accounts for the lack of correlation between Cmax and AUC for omaveloxolone.
Collapse
|
4
|
Foja C, Senekowitsch S, Winter F, Grimm M, Rosenbaum C, Koziolek M, Feldmüller M, Kromrey ML, Scheuch E, Tzvetkov MV, Weitschies W, Schick P. Prolongation of the gastric residence time of caffeine after administration in fed state: Comparison of effervescent granules with an extended release tablet. Eur J Pharm Biopharm 2024; 199:114313. [PMID: 38718842 DOI: 10.1016/j.ejpb.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
The aim of the present study was to investigate the gastroretentive capacity of different formulation principles. This was indirectly determined by the absorption behavior of caffeine from the dosage forms. A slow and continuous appearance of caffeine in the saliva of healthy volunteers was used as a parameter for a prolonged gastric retention time. For this purpose, a four-way study was conducted with twelve healthy volunteers using the following test procedures: (1) Effervescent granules with 240 mL of still water administered in fed state, (2) effervescent granules with 20 mL of still water in fed state, (3) extended release (ER) tablet with 240 mL of still water in fed state, and (4) effervescent granules with 240 mL of still water in fasted state. The initial rise of the caffeine concentrations was more pronounced after the intake of the effervescent granules in the fed state compared to that of the ER tablets. However, tmax tended to be shorter in the fed study arms following administration of the ER tablet compared to the granules. Overall, the application of active pharmaceutical ingredients formulated as effervescent granules seems to be a promising approach to increase their gastric residence time after intake in fed state.
Collapse
Affiliation(s)
- Constantin Foja
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Stefan Senekowitsch
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Fabian Winter
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Christoph Rosenbaum
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Maximilian Feldmüller
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Marie-Luise Kromrey
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Eberhard Scheuch
- Department of Clinical Pharmacology, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of Clinical Pharmacology, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany.
| |
Collapse
|
5
|
Pepin XJH, Suarez-Sharp S. Effect of Food Composition on the PK of Isoniazid Quantitatively Explained Using Physiologically Based Biopharmaceutics Modeling. AAPS J 2024; 26:54. [PMID: 38658473 DOI: 10.1208/s12248-024-00923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
This work shows the utilization of a physiologically based biopharmaceutics model (PBBM) to mechanistically explain the impact of diverse food types on the pharmacokinetics (PK) of isoniazid (INH) and acetyl-isoniazid (Ac-INH). The model was established and validated using published PK profiles for INH along with a combination of measured and predicted values for the physico-chemical and biopharmaceutical propertied of INH and Ac-INH. A dedicated ontogeny model was developed for N-acetyltransferase 2 (NAT2) in human integrating Michaelis Menten parameters for this enzyme in the physiologically based pharmacokinetic (PBPK) model tissues and in the gut, to explain the pre-systemic and systemic metabolism of INH across different acetylator types. Additionally, a novel equation was proposed to calculate the luminal drug degradation related to the presence of reducing sugars, using individual sugar molar concentrations in the meal. By incorporating luminal degradation into the model, adjusting bile salt concentrations and gastric emptying according to food type and quantity, the PBBM was able to accurately predict the negative effect of carbohydrate-rich diets on the PK of INH.
Collapse
Affiliation(s)
- Xavier J H Pepin
- Regulatory Affairs, Simulations Plus, Inc., Lancaster, California, USA.
| | | |
Collapse
|
6
|
Amekyeh H, Sabra R, Billa N. A Window for Enhanced Oral Delivery of Therapeutics via Lipid Nanoparticles. Drug Des Devel Ther 2024; 18:613-630. [PMID: 38476206 PMCID: PMC10927375 DOI: 10.2147/dddt.s439975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024] Open
Abstract
Oral administration of dosage forms is convenient and beneficial in several respects. Lipid nanoparticulate dosage forms have emerged as a useful carrier system in deploying low solubility drugs systemically, particularly class II, III, and IV drugs of the Biopharmaceutics Classification System. Like other nanoparticulate delivery systems, their low size-to-volume ratio facilitates uptake by phagocytosis. Lipid nanoparticles also provide scope for high drug loading and extended-release capability, ensuring diminished systemic side effects and improved pharmacokinetics. However, rapid gastrointestinal (GI) clearance of particulate delivery systems impedes efficient uptake across the mucosa. Mucoadhesion of dosage forms to the GI mucosa results in longer transit times due to interactions between the former and mucus. Delayed transit times facilitate transfer of the dosage form across the mucosa. In this regard, a balance between mucoadhesion and mucopenetration guarantees optimal systemic transfer. Furthermore, the interplay between GI anatomy and physiology is key to ensuring efficient systemic uptake. This review captures salient anatomical and physiological features of the GI tract and how these can be exploited for maximal systemic delivery of lipid nanoparticles. Materials used to impart mucoadhesion and examples of successful mucoadhesive lipid nanoformulations are highlighted in this review.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
7
|
Nandhra GK, Chaichanavichkij P, Birch M, Scott SM. Gastrointestinal Transit Times in Health as Determined Using Ingestible Capsule Systems: A Systematic Review. J Clin Med 2023; 12:5272. [PMID: 37629314 PMCID: PMC10455695 DOI: 10.3390/jcm12165272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Ingestible capsule (IC) systems can assess gastrointestinal (GI) transit times as a surrogate for gut motility for extended periods of time within a minimally invasive, radiation-free and ambulatory setting. METHODS A literature review of IC systems and a systematic review of studies utilizing IC systems to measure GI transit times in healthy volunteers was performed. Screening for eligible studies, data extraction and bias assessments was performed by two reviewers. A narrative synthesis of the results was performed. RESULTS The literature review identified 23 different IC systems. The systematic review found 6892 records, of which 22 studies were eligible. GI transit time data were available from a total of 1885 healthy volunteers. Overall, seventeen included studies reported gastric emptying time (GET) and small intestinal transit time (SITT). Colonic transit time (CTT) was reported in nine studies and whole gut transit time (WGTT) was reported in eleven studies. GI transit times in the included studies ranged between 0.4 and 15.3 h for GET, 3.3-7 h for SITT, 15.9-28.9 h for CTT and 23.0-37.4 h for WGTT. GI transit times, notably GET, were influenced by the study protocol. CONCLUSIONS This review provides an up-to-date overview of IC systems and reference ranges for GI transit times. It also highlights the need to standardise protocols to differentiate between normal and pathological function.
Collapse
Affiliation(s)
- Gursharan Kaur Nandhra
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
- Clinical Physics, Barts Health NHS Trust, The Royal London Hospital, London E1 2BL, UK
| | - Phakanant Chaichanavichkij
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
| | - Malcolm Birch
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
- Clinical Physics, Barts Health NHS Trust, The Royal London Hospital, London E1 2BL, UK
| | - S. Mark Scott
- National Bowel Research Centre and GI Physiology Unit, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, Queen Mary University of London, London E1 4NS, UK; (P.C.); (M.B.); (S.M.S.)
| |
Collapse
|
8
|
Naranjani B, Sinko PD, Bergström CAS, Gogoll A, Hossain S, Larsson P. Numerical simulation of peristalsis to study co-localization and intestinal distribution of a macromolecular drug and permeation enhancer. Int J Biol Macromol 2023; 240:124388. [PMID: 37059282 DOI: 10.1016/j.ijbiomac.2023.124388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
In this work, simulations of intestinal peristalsis are performed to investigate the intraluminal transport of macromolecules (MMs) and permeation enhancers (PEs). Properties of insulin and sodium caprate (C10) are used to represent the general class of MM and PE molecules. Nuclear magnetic resonance spectroscopy was used to obtain the diffusivity of C10, and coarse-grain molecular dynamics simulations were carried out to estimate the concentration-dependent diffusivity of C10. A segment of the small intestine with the length of 29.75 cm was modeled. Peristaltic speed, pocket size, release location, and occlusion ratio of the peristaltic wave were varied to study the effect on drug transport. It was observed that the maximum concentration at the epithelial surface for the PE and the MM increased by 397 % and 380 %, respectively, when the peristaltic wave speed was decreased from 1.5 to 0.5 cm s-1. At this wave speed, physiologically relevant concentrations of PE were found at the epithelial surface. However, when the occlusion ratio is increased from 0.3 to 0.7, the concentration approaches zero. These results suggest that a slower-moving and more contracted peristaltic wave leads to higher efficiency in transporting mass to the epithelial wall during the peristalsis phases of the migrating motor complex.
Collapse
Affiliation(s)
- Benyamin Naranjani
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Patrick D Sinko
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Adolf Gogoll
- Department of Chemistry, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Shakhawath Hossain
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
9
|
Lee JH, Kuhar S, Seo JH, Pasricha PJ, Mittal R. Computational modeling of drug dissolution in the human stomach: Effects of posture and gastroparesis on drug bioavailability. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:081904. [PMID: 35971381 PMCID: PMC9372820 DOI: 10.1063/5.0096877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/25/2023]
Abstract
The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current in vitro procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. In silico models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic in silico simulator based on the realistic anatomy and morphology of the stomach (referred to as "StomachSim") to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis.
Collapse
Affiliation(s)
| | - S. Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | - P. J. Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - R. Mittal
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
A Physiologically Based Pharmacokinetic and Pharmacodynamic Model of the CYP3A4 Substrate Felodipine for Drug-Drug Interaction Modeling. Pharmaceutics 2022; 14:pharmaceutics14071474. [PMID: 35890369 PMCID: PMC9322514 DOI: 10.3390/pharmaceutics14071474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
The antihypertensive felodipine is a calcium channel blocker of the dihydropyridine type, and its pharmacodynamic effect directly correlates with its plasma concentration. As a sensitive substrate of cytochrome P450 (CYP) 3A4 with high first-pass metabolism, felodipine shows low oral bioavailability and is susceptible to drug–drug interactions (DDIs) with CYP3A4 perpetrators. This study aimed to develop a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) parent–metabolite model of felodipine and its metabolite dehydrofelodipine for DDI predictions. The model was developed in PK-Sim® and MoBi® using 49 clinical studies (94 plasma concentration–time profiles in total) that investigated different doses (1–40 mg) of the intravenous and oral administration of felodipine. The final model describes the metabolism of felodipine to dehydrofelodipine by CYP3A4, sufficiently capturing the first-pass metabolism and the subsequent metabolism of dehydrofelodipine by CYP3A4. Diastolic blood pressure and heart rate PD models were included, using an Emax function to describe the felodipine concentration–effect relationship. The model was tested in DDI predictions with itraconazole, erythromycin, carbamazepine, and phenytoin as CYP3A4 perpetrators, with all predicted DDI AUClast and Cmax ratios within two-fold of the observed values. The model will be freely available in the Open Systems Pharmacology model repository and can be applied in DDI predictions as a CYP3A4 victim drug.
Collapse
|
11
|
Anand O, Pepin XJH, Kolhatkar V, Seo P. The Use of Physiologically Based Pharmacokinetic Analyses-in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharm Res 2022; 39:1681-1700. [PMID: 35585448 DOI: 10.1007/s11095-022-03280-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022]
Abstract
The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.
Collapse
Affiliation(s)
- Om Anand
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
| | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Paul Seo
- Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
12
|
Aishwarya R, Murthy A, Ahmed T, Chachad S. A Novel Approach to Justify Dissolution Differences in an Extended Release Drug Product Using Physiologically Based Biopharmaceutics Modeling and Simulation. J Pharm Sci 2022; 111:1820-1832. [PMID: 35217007 DOI: 10.1016/j.xphs.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
Dr Reddy's Laboratories Ltd. developed generic version of XYZ extended release tablets (ER) and achieved bioequivalence as per criteria mentioned by USFDA in both fasting and fed conditions for higher strength formulation (1200 mg). However, on comparison of multimedia dissolution profiles in pH 4.5 acetate media, the f2 similarity value was <50. The lower strength formulation (600 mg) demonstrated faster dissolution profile. This was identified as strength-dependent sink condition difference and in vitro multiunit dissolution studies were used to justify sink differences between the higher and lower strengths. Additionally, a Physiologically Based Biopharmaceutics Model (PBBM) was developed using GastroPlusTM. The validity of this model was established using in-house human pharmacokinetic data. Further, this model was used to justify the insignificant in vivo impact of the faster dissolution profile for the lower strength formulation. This work provides a novel and less explored approach that can be used to obtain biowaiver for lower strength formulations when the standard biowaiver criteria cannot be met. This work also demonstrates the usefulness of PBBM to justify dissolution dissimilarity between dose proportional formulations and to evaluate its biopharmaceutics risk without the need for actual in vivo studies.
Collapse
Affiliation(s)
- R Aishwarya
- Scientist, Biopharmaceutics - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad.
| | - Aditya Murthy
- Team Lead, Biopharmaceutics - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad.
| | - Tausif Ahmed
- Head, Biopharmaceutics and Bio analytical - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad.
| | - Siddharth Chachad
- Head, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Leiden.
| |
Collapse
|
13
|
Seo JH, Mittal R. Computational Modeling of Drug Dissolution in the Human Stomach. Front Physiol 2022; 12:755997. [PMID: 35082685 PMCID: PMC8785969 DOI: 10.3389/fphys.2021.755997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
A computational model of drug dissolution in the human stomach is developed to investigate the interaction between gastric flow and orally administrated drug in the form of a solid tablet. The stomach model is derived from the anatomical imaging data and the motion and dissolution of the drug in the stomach are modeled via fluid-structure interaction combined with mass transport simulations. The effects of gastric motility and the associated fluid dynamics on the dissolution characteristics are investigated. Two different pill densities are considered to study the effects of the gastric flow as well as the gravitational force on the motion of the pill. The average mass transfer coefficient and the spatial distributions of the dissolved drug concentration are analyzed in detail. The results show that the retropulsive jet and recirculating flow in the antrum generated by the antral contraction wave play an important role in the motion of the pill as well as the transport and mixing of the dissolved drug concentration. It is also found that the gastric flow can increase the dissolution mass flux, especially when there is substantial relative motion between the gastric flow and the pill.
Collapse
Affiliation(s)
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Kambayashi A, Murano M, Imai S, Miyata K, Sugita K, Fujii Y, Kinoshita M, Nomura A, Kimoto T, Miyazaki Y, Sakakibara H, Kakuda S, Tsujimoto T, Fujita Y, Kano M, Nakamura H, Akaogi S, Honda M, Anraku M, Kamada N, Ohta K, Uchida M, Kataoka M, Kikuchi H, Yamashita S, Kondo H. Interspecies differences in gastrointestinal physiology affecting the in vivo performance of oral pharmaceutical solid dosage forms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Neumann M, Heimhardt C, Seidlitz K, Koziolek M, Schneider F, Schiller C, Hanke U, Anschütz M, Knopke C, Donath F, Thoma R, Brätter C, Schug B, Franke H, Weitschies W. Development of a furosemide-containing expandable system for gastric retention. J Control Release 2021; 338:105-118. [PMID: 34416321 DOI: 10.1016/j.jconrel.2021.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
More than 50 years ago, the first gastroretentive dosage forms came up. Since then, no practical and at the same time reliable gastroretentive system is available on market. A major obstacle in the development of novel gastroretentive systems is the lack of proper predictive test methods. In the present work, we aimed at developing and fully characterizing an expandable gastroretentive system containing furosemide as model drug. On the one hand, we used well-established in vitro tests for drug dissolution and gastroretentive properties (paddle apparatus, swelling characteristics). On the other hand, we used two novel models (dissolution stress test device, mechanical antrum model) to assess these properties under biorelevant conditions. Moreover, we performed an in vivo study under fed and fasted conditions that combined blood sampling and a high-resolution imaging technique (magnetic marker monitoring) to determine gastrointestinal location with the assessment of a pharmacodynamic endpoint (urinary sodium excretion). In vitro dissolution tests confirmed prolonged drug release over more than 8 h independent from pH and with slight pressure sensitivity. Swelling studies indicated good swelling behavior within 4 h along with medium gastroretentive properties as determined with the mechanical antrum model. In vivo imaging showed prolonged gastric residence time after fed compared to fasted administration (481 min vs 38 min). Comparison of geometric means of AUCo-tlast of the model drug confirmed this observation with 10 times higher value after fed administration. Urinary excretion of sodium well reflected the increased sodium-reuptake inhibition due to higher furosemide exposure under fed conditions. However, the poor performance after fasted intake of the system is in line with data from several other gastroretentive formulations. The present study highlighted the value of novel test methods during the development of gastroretentive formulations. Yet, a system with reproducible gastroretentive properties especially under fasted conditions has to be designed.
Collapse
Affiliation(s)
- Marco Neumann
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Claudia Heimhardt
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Knut Seidlitz
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | - Mirko Koziolek
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Felix Schneider
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Christiane Schiller
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | - Ulrike Hanke
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | | | | | - Frank Donath
- SocraTec R&D, Im Setzling 35, 61440 Oberursel, Germany
| | - Rudy Thoma
- Formula GmbH, Grenzallee 305b, 14167 Berlin, Germany
| | | | - Barbara Schug
- SocraTec R&D, Im Setzling 35, 61440 Oberursel, Germany
| | - Hanshermann Franke
- LTS Lohmann Therapie Systeme AG, LTS Lohmann Therapie-Systeme AG, Lohmannstr. 2, D-56626 Andernach, Germany
| | - Werner Weitschies
- Institute of Pharmacy, Department of Biopharmaceutics & Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany.
| |
Collapse
|
16
|
Stamatopoulos K, O'Farrell C, Simmons M, Batchelor H. In vivo models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 177:113915. [PMID: 34371085 DOI: 10.1016/j.addr.2021.113915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Evaluation of orally ingestible devices is critical to optimize their performance early in development. Using animals as a pre-clinical tool can provide useful information on functionality, yet it is important to recognize that animal gastrointestinal physiology, pathophysiology and anatomy can differ to that in humans and that the most suitable species needs to be selected to inform the evaluation. There has been a move towards in vitro and in silico models rather than animal models in line with the 3Rs (Replacement, Reduction and Refinement) as well as the better control and reproducibility associated with these systems. However, there are still instances where animal models provide the greatest understanding. This paper provides an overview of key aspects of human gastrointestinal anatomy and physiology and compares parameters to those reported in animal species. The value of each species can be determined based upon the parameter of interest from the ingested device when considering the use of pre-clinical animal testing.
Collapse
Affiliation(s)
- Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
17
|
Wagner C, Kesisoglou F, Pepin XJH, Parrott N, Emami Riedmaier A. Use of Physiologically Based Pharmacokinetic Modeling for Predicting Drug-Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models. AAPS JOURNAL 2021; 23:85. [PMID: 34142242 DOI: 10.1208/s12248-021-00601-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
Food can alter drug absorption and impact safety and efficacy. Besides conducting clinical studies, in vitro approaches such as biorelevant solubility and dissolution testing and in vivo dog studies are typical approaches to estimate a drug's food effect. The use of physiologically based pharmacokinetic models has gained importance and is nowadays a standard tool for food effect predictions at preclinical and clinical stages in the pharmaceutical industry. This manuscript is part of a broader publication from the IQ Consortium's food effect physiologically based pharmacokinetic model (PBPK) modeling working group and complements previous publications by focusing on cases where the food effect was predicted with low confidence. Pazopanib-HCl, trospium-Cl, and ziprasidone-HCl served as model compounds to provide insights into why several food effect predictions failed in the first instance. Furthermore, the manuscript depicts approaches whereby PBPK-based food effect predictions may be improved. These improvements should focus on the PBPK model functionality, especially better reflecting fasted- and fed-state gastric solubility, gastric re-acidification, and complex mechanisms related to gastric emptying of drugs. For improvement of in vitro methodologies, the focus should be on the development of more predictive solubility, supersaturation, and precipitation assays. With regards to the general PBPK modeling methodology, modelers should account for the full solubility profile when modeling ionizable compounds, including common ion effects, and apply a straightforward strategy to account for drug precipitation.
Collapse
Affiliation(s)
- Christian Wagner
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| | | | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
18
|
Pinto LA, Corá LA, Rodrigues GS, Prospero AG, Soares GA, de Andreis U, de Arruda Miranda JR. Pharmacomagnetography to evaluate the performance of magnetic enteric-coated tablets in the human gastrointestinal tract. Eur J Pharm Biopharm 2021; 161:50-55. [PMID: 33592280 DOI: 10.1016/j.ejpb.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
A magnetic enteric-coated tablet containing diclofenac sodium was produced, and its performance under physiological and disturbed gastrointestinal motility was assessed through pharmacomagnetography analysis. In vitro studies were performed using conventional methods and in vivo studies were conducted on healthy volunteers before (control) and after domperidone administration. The magnetic tablet's gastrointestinal (GI) transit and disintegration process were monitored using the Alternating Current Biosusceptometry sensors combined with drug plasmatic concentration. The Gastric Residence Time, Colon Arrival Time, Small Bowel Transit Time, Disintegration Time and the pharmacokinetics parameters were calculated. The pH-dependent polymers used to coat the magnetic tablets were able to avoid the premature drug release on gastric or small intestine simulated medium. Gastric Residence Time was accelerated compared with the control group (p < 0.01). No significant differences were found regarding small bowel transit, colon arrival, disintegration process, or pharmacokinetics parameters. A strong correlation between magnetic monitoring and pharmacokinetics parameters analysis was determinant to evaluate the efficiency in the drug delivery at a specific site in the human gastrointestinal tract. In addition, a tablet with a damaged coating was used as a proof of concept to show the suitability of our methodology to evaluate the tablet. Our study showed that pharmacomagnetography is a multi-instrumental approach towards assessing drug delivery and bioavailability.
Collapse
Affiliation(s)
- Leonardo Antonio Pinto
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Luciana Aparecida Corá
- Alagoas State University of Health Sciences- UNCISAL, Center of Integrative Sciences, Maceio, Alagoas 57010-382, Brazil.
| | - Gustavo Serafim Rodrigues
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Andre Gonçalves Prospero
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Guilherme Augusto Soares
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Uilian de Andreis
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil
| | - José Ricardo de Arruda Miranda
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| |
Collapse
|
19
|
Vrbanac H, Trontelj J, Kalčič Š, Legen I. Mechanistic study of model drug release from HPMC matrices in fed gastric media. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Pepin XJH, Dressman J, Parrott N, Delvadia P, Mitra A, Zhang X, Babiskin A, Kolhatkar V, Seo P, Taylor LS, Sjögren E, Butler JM, Kostewicz E, Tannergren C, Koziolek M, Kesisoglou F, Dallmann A, Zhao Y, Suarez-Sharp S. In Vitro Biopredictive Methods: A Workshop Summary Report. J Pharm Sci 2020; 110:567-583. [PMID: 32956678 DOI: 10.1016/j.xphs.2020.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
Abstract
This workshop report summarizes the proceedings of Day 1 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls". Physiologically based biopharmaceutics models (PBBM) are tools which enable the drug product quality attributes to be linked to the in vivo performance. These tools rely on key quality inputs in order to provide reliable predictions. After introducing the objectives of the workshop and the expectations from the breakout sessions, Day 1 of the workshop focused on the best practices and challenges in measuring in vitro inputs needed for modeling, such as the drug solubility, the dissolution rate of the drug product, potential precipitation of the drug and drug permeability. This paper reports the podium presentations and summarizes breakout session discussions related to A) the best strategies for determining solubility, supersaturation and critical supersaturation; B) the best strategies for the development of biopredictive (clinically relevant) dissolution methods; C) the challenges associated with describing gastro-intestinal systems parameters such as mucus, liquid volume and motility; and D) the challenges with translating biopharmaceutical measures of drug permeability along the gastrointestinal tract to a meaningful model parameter.
Collapse
Affiliation(s)
- Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Jennifer Dressman
- Fraunhofer Institute for Molecular Biology and Applied Ecology and Goethe University, Frankfurt, Germany
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Poonam Delvadia
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amitava Mitra
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Xinyuan Zhang
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Paul Seo
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lynne S Taylor
- Purdue University, College of Pharmacy, West Lafayette, IN, USA
| | | | - James M Butler
- Biopharmaceutics, Drug Product Design & Dev, GlaxoSmithKline R&D, Ware, UK
| | - Edmund Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Christer Tannergren
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Mirko Koziolek
- University of Greifswald, Institute of Pharmacy, Greifswald, Germany; Current: NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - André Dallmann
- Clinical Pharmacometrics, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Yang Zhao
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sandra Suarez-Sharp
- Regulatory Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| |
Collapse
|
21
|
Ajeigbe OF, Ademosun AO, Oboh G. Relieving the tension in hypertension: Food-drug interactions and anti-hypertensive mechanisms of food bioactive compounds. J Food Biochem 2020; 45:e13317. [PMID: 32537763 DOI: 10.1111/jfbc.13317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022]
Abstract
Hypertension is a global health problem. Statistics report from the World Health Organization reveals its prevalence in about a quarter of the world global population. Due to the complications associated with hypertension, it is required to be well managed or prevented pharmacologically or non-pharmacologically. Pharmacologically, the major antihypertensive drugs used are centrally acting sympatholytic drugs, diuretics, vasodilators, angiotensin converting enzyme inhibitors, and angiotensin II receptor blockers while non-pharmacological means of management include lifestyle changes, intake of diet or supplements with antihypertensive effects. Interestingly, the use of diet as a complement with drug intake has become very popular due to occurring side effects over time. Recent research efforts have revealed that foods such as fruits and vegetables contain bioactive substances that modulate the activities of macromolecules involved in the development, complications, and management of hypertension. PRACTICAL APPLICATIONS: Recent research efforts have suggested the efficacy of diets rich in fruits and vegetables in the management of hypertension. This review examines some of the mechanisms involved in the dietary management or prevention of hypertension by bioactive compounds found in foods. This review promotes the use of diet in the management of the condition and also suggests that precautions to be taken in the combined use of food and drugs.
Collapse
Affiliation(s)
- Olufunke Florence Ajeigbe
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle Olubode Ademosun
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
22
|
Danielak D, Milanowski B, Wentowski K, Nogowska M, Kątny M, Rogowski P, Konwicki Ł, Puk E, Pieczuro J, Bawiec M, Garbacz G, Lulek J. Physiologically Based Dissolution Testing in a Drug Development Process-a Case Study of a Successful Application in a Bioequivalence Study of Trazodone ER Formulations Under Fed Conditions. AAPS PharmSciTech 2020; 21:161. [PMID: 32488427 PMCID: PMC7266804 DOI: 10.1208/s12249-020-01662-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Development of generic extended-release (ER) formulations is challenging. Especially under fed conditions, the risk of failure in bioequivalence trials is high because of long gastric residence times and susceptibility to food effects. We describe the development of a generic trazodone ER formulation that was aided with a biorelevant dissolution evaluation. Trazodone hydrochloride 300-mg monolithic matrix tablets were dissolved both in USP and EMA compliant conditions and in the StressTest device that simulated both physicochemical and mechanical conditions of the gastrointestinal passage. The final formulation was tested against the originator, Trittico XR 300 mg, in a randomized cross-over bioequivalence trial with 44 healthy volunteers, in agreement with EMA guidelines. Initially developed formulations dissolved trazodone similarly to the originator under standard conditions (f2 factor above 50), but their dissolution kinetics differed significantly in the biorelevant tests. The formulation was optimized by the addition of low-viscosity hypromellose and mannitol. The final formulation was approved for the bioequivalence trial. Calculated Cmax were 1.92 ± 0.77 and 1.92 ± 0.63 [μg/mL], AUC0-t were 27.46 ± 8.39 and 29.96 ± 9.09 [μg∙h/mL], and AUC0-∞ were 28.22 ± 8.91 and 30.82 ± 9.41 [μg∙h/mL] for the originator and test formulations, respectively. The 90% confidence intervals of all primary pharmacokinetic parameters fell within the 80-125% range. In summary, biorelevant dissolution tests supported successful development of a generic trazodone ER formulation pharmaceutically equivalent with the originator under fed conditions. Employment of biorelevant dissolution tests may decrease the risk of failure in bioequivalence trials of ER formulations.
Collapse
Affiliation(s)
- Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, 6 Święcickiego st, 60-781, Poznań, Poland.
| | - Bartłomiej Milanowski
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, 6 Grunwaldzka st, 60-780, Poznań, Poland
| | | | - Maria Nogowska
- Biofarm Sp. z o.o, 13 Wałbrzyska st, 60-198, Poznań, Poland
| | - Michał Kątny
- Biofarm Sp. z o.o, 13 Wałbrzyska st, 60-198, Poznań, Poland
| | - Piotr Rogowski
- Biofarm Sp. z o.o, 13 Wałbrzyska st, 60-198, Poznań, Poland
| | | | - Ewa Puk
- Biofarm Sp. z o.o, 13 Wałbrzyska st, 60-198, Poznań, Poland
| | | | - Marek Bawiec
- Institute of Computer Engineering, Control and Robotics, Wroclaw University of Technology, 27 Wybrzeże Wyspańskiego st, 50-370, Wrocław, Poland
| | - Grzegorz Garbacz
- Physiolution GmbH, Walther-Rathenau Strasse 49a, 17489, Greifswald, Germany
| | - Janina Lulek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, 6 Grunwaldzka st, 60-780, Poznań, Poland
| |
Collapse
|
23
|
Investigation of drug partition kinetics to fat in simulated fed state gastric conditions based on drug properties. Eur J Pharm Sci 2020; 146:105263. [DOI: 10.1016/j.ejps.2020.105263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
|
24
|
Hu M, Zhu Z, Wu Y, Meng Q, Luo J, Wang H. Exploring the Potential of Hydrophilic Matrix Combined with Insoluble Film Coating: Preparation and Evaluation of Ambroxol Hydrochloride Extended Release Tablets. AAPS PharmSciTech 2020; 21:93. [PMID: 32076885 DOI: 10.1208/s12249-020-1628-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
To explore the potential utility of combination of hydrophilic matrix with membrane-controlled technology, the present study prepared tablets of a water-soluble model drug (ambroxol hydrochloride), through process of direct compression and spray coating. Single-factor experiments were accomplished to optimize the formulation. In vivo pharmacokinetics was then performed to evaluate the necessity and feasibility of further development of this simple process and low-cost approach. Various release rates could be easily obtained by adjusting the viscosity and amount of hypromellose, pore-former ratios in coating dispersions and coating weight gains. Dissolution profiles of coated tablets displayed initial delay, followed by near zero-order kinetics. The pharmacokinetic study of different formulations showed that lag time became longer as the permeability of coating membrane decreased, which was consistent with the in vitro drug release trend. Besides, in vitro/in vivo correlation study indicated that coated tablets exhibited a good correlation between in vitro release and in vivo absorption. The results, therefore, demonstrated that barrier-membrane-coated matrix formulations were extremely promising for further application in industrialization and commercialization.
Collapse
|
25
|
Braeckmans M, Brouwers J, Masuy I, Servais C, Tack J, Augustijns P. The influence of gastric motility on the intraluminal behavior of fosamprenavir. Eur J Pharm Sci 2020; 142:105117. [DOI: 10.1016/j.ejps.2019.105117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
|
26
|
Keppler S, O'Meara S, Bakalis S, Fryer P, Bornhorst G. Characterization of individual particle movement during in vitro gastric digestion in the Human Gastric Simulator (HGS). J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Comparison of In Vitro and In Vivo Results Using the GastroDuo and the Salivary Tracer Technique: Immediate Release Dosage Forms under Fasting Conditions. Pharmaceutics 2019; 11:pharmaceutics11120659. [PMID: 31817867 PMCID: PMC6956200 DOI: 10.3390/pharmaceutics11120659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
The fasted state administration of immediate release (IR) dosage forms is often regarded as uncritical since physiological aspects seem to play a minor role for disintegration and drug release. However, recent in vivo studies in humans have highlighted that fasted state conditions are in fact highly dynamic. It was therefore the aim of this study to investigate the disintegration and drug release behavior of four different IR formulations of the probe drug caffeine under physiologically relevant conditions with the aid of the GastroDuo. One film-coated tablet and three different capsule formulations based on capsule shells either made from hard gelatin or hydroxypropylmethyl cellulose (HPMC) were tested in six different test programs. To evaluate the relevance of the data generated, the four IR formulations were also studied in a four-way cross-over study in 14 healthy volunteers by using the salivary tracer technique (STT). It could be shown that the IR formulations behaved differently in the in vitro test programs. Thereby, the simulated parameters affected the disintegration and dissolution behavior of the four IR formulations in different ways. Whereas drug release from the tablet started early and was barely affected by temperature, pH or motility, the different capsule formulations showed a longer lag time and were sensitive to specific parameters. However, once drug release was initiated, it typically progressed with a higher rate for the capsules compared to the tablet. Interestingly, the results obtained with the STT were not always in line with the in vitro data. This observation was due to the fact that the probability of the different test programs was not equal and that certain scenarios were rather unlikely to occur under the controlled and standardized conditions of clinical studies. Nonetheless, the in vitro data are still valuable as they allowed to discriminate between different formulations.
Collapse
|
28
|
Schick P, Sager M, Wegner F, Wiedmann M, Schapperer E, Weitschies W, Koziolek M. Application of the GastroDuo as an in Vitro Dissolution Tool To Simulate the Gastric Emptying of the Postprandial Stomach. Mol Pharm 2019; 16:4651-4660. [DOI: 10.1021/acs.molpharmaceut.9b00799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Maximilian Sager
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Franziska Wegner
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | | | | | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
29
|
Schneider F, Koziolek M, Weitschies W. In Vitro and In Vivo Test Methods for the Evaluation of Gastroretentive Dosage Forms. Pharmaceutics 2019; 11:E416. [PMID: 31426417 PMCID: PMC6723944 DOI: 10.3390/pharmaceutics11080416] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
More than 50 years ago, the first concepts for gastroretentive drug delivery systems were developed. Despite extensive research in this field, there is no single formulation concept for which reliable gastroretention has been demonstrated under different prandial conditions. Thus, gastroretention remains the holy grail of oral drug delivery. One of the major reasons for the various setbacks in this field is the lack of predictive in vitro and in vivo test methods used during preclinical development. In most cases, human gastrointestinal physiology is not properly considered, which leads to the application of inappropriate in vitro and animal models. Moreover, conditions in the stomach are often not fully understood. Important aspects such as the kinetics of fluid volumes, gastric pH or mechanical stresses have to be considered in a realistic manner, otherwise, the gastroretentive potential as well as drug release of novel formulations cannot be assessed correctly in preclinical studies. This review, therefore, highlights the most important aspects of human gastrointestinal physiology and discusses their potential implications for the evaluation of gastroretentive drug delivery systems.
Collapse
Affiliation(s)
- Felix Schneider
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany.
| |
Collapse
|
30
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
31
|
Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, Andreas CJ, Schaefer KJ, Mann J, McAllister M, Jamei M, Kostewicz E, Kesisoglou F, Langguth P, Minekus M, Müllertz A, Schilderink R, Koziolek M, Jedamzik P, Weitschies W, Reppas C, Augustijns P. In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm 2019; 136:70-83. [DOI: 10.1016/j.ejpb.2018.12.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
|
32
|
Physiologically based absorption modeling to predict bioequivalence of controlled release and immediate release oral products. Eur J Pharm Biopharm 2019; 134:117-125. [DOI: 10.1016/j.ejpb.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022]
|
33
|
Rubbens J, Brouwers J, Tack J, Augustijns P. Gastric and Duodenal Diclofenac Concentrations in Healthy Volunteers after Intake of the FDA Standard Meal: In Vivo Observations and in Vitro Explorations. Mol Pharm 2018; 16:573-582. [DOI: 10.1021/acs.molpharmaceut.8b00865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jari Rubbens
- KU Leuven Drug Delivery & Disposition, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- KU Leuven Drug Delivery & Disposition, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Jan Tack
- KU Leuven Translational Research Center for Gastrointestinal Disorders (TARGID), Gasthuisberg O&N1, Herestraat 49 Box 701, 3000 Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven Drug Delivery & Disposition, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Koziolek M, Kostewicz E, Vertzoni M. Physiological Considerations and In Vitro Strategies for Evaluating the Influence of Food on Drug Release from Extended-Release Formulations. AAPS PharmSciTech 2018; 19:2885-2897. [PMID: 30155808 DOI: 10.1208/s12249-018-1159-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023] Open
Abstract
Food effects on oral drug bioavailability are a consequence of the complex interplay between drug, formulation and human gastrointestinal (GI) physiology. Accordingly, the prediction of the direction and the extent of food effects is often difficult. With respect to novel formulations, biorelevant in vitro methods can be extremely powerful tools to simulate the effect of food-induced changes on the physiological GI conditions on drug release and absorption. However, the selection of suitable in vitro methods should be based on a thorough understanding not only of human GI physiology but also of the drug and formulation properties. This review focuses on in vitro methods that can be applied to evaluate the effect of food intake on drug release from extended release (ER) products during preclinical formulation development. With the aid of different examples, it will be demonstrated that the combined and targeted use of various biorelevant in vitro methods can be extremely useful for understanding drug release from ER products in the fed state and to be able to forecast formulation-associated risks such as dose dumping in early stages of formulation development.
Collapse
|
35
|
Pentafragka C, Symillides M, McAllister M, Dressman J, Vertzoni M, Reppas C. The impact of food intake on the luminal environment and performance of oral drug products with a view to in vitro and in silico simulations: a PEARRL review. J Pharm Pharmacol 2018; 71:557-580. [DOI: 10.1111/jphp.12999] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/04/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
Using the type of meal and dosing conditions suggested by regulatory agencies as a basis, this review has two specific objectives: first, to summarize our understanding on the impact of food intake on luminal environment and drug product performance and second, to summarize the usefulness and limitations of available in vitro and in silico methodologies for the evaluation of drug product performance after food intake.
Key findings
Characterization of the luminal environment and studies evaluating product performance in the lumen, under conditions suggested by regulatory agencies for simulating the fed state, are limited. Various in vitro methodologies have been proposed for evaluating drug product performance in the fed state, but systematic validation is lacking. Physiologically based pharmacokinetic (PBPK) modelling approaches require the use of in vitro biorelevant data and, to date, have been used primarily for investigating the mechanisms via which an already observed food effect is mediated.
Summary
Better understanding of the impact of changes induced by the meal administration conditions suggested by regulatory agencies on the luminal fate of the drug product is needed. Relevant information will be useful for optimizing the in vitro test methods and increasing the usefulness of PBPK modelling methodologies.
Collapse
Affiliation(s)
- Christina Pentafragka
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Mira Symillides
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Klein S, Seeger N, Mehta R, Missaghi S, Grybos R, Rajabi-Siahboomi A. Robustness of barrier membrane coated metoprolol tartrate matrix tablets: Drug release evaluation under physiologically relevant in vitro conditions. Int J Pharm 2018; 543:368-375. [PMID: 29630933 DOI: 10.1016/j.ijpharm.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 11/15/2022]
Abstract
Robust in vitro drug release behavior is an important feature of extended release (ER) hydrophilic matrix formulations for accurate prediction of in vivo drug release. In this study, ER hydrophilic matrix tablets of metoprolol tartrate were formulated using a high viscosity grade of hypromellose as a rate-limiting polymer. Expectedly, this formulation showed an undesirable initial burst release followed by controlled drug release. Application of a barrier membrane (BM) coating of ethylcellulose with a pore former (hypromellose) resulted in the elimination of the burst effect. The aim of this study was to investigate the robustness of in vitro metoprolol release from BM-coated hydrophilic matrix tablets by simulating the physicochemical properties of gastrointestinal fluids and mechanical stress in the fasted- and fed state human gastrointestinal (GI) tract. Uncoated and BM-coated matrices were subjected to various dissolution studies simulating the varying pH conditions and additional physicochemical parameters, and the mechanical stress that can be caused by GI motility during both fasted and fed state GI passage. The BM-coated formulation showed robust drug release without an initial burst in all test scenarios. BM-coated matrix formulations thus represent a very promising approach for obtaining a highly controlled and robust drug release from oral ER formulations.
Collapse
Affiliation(s)
- Sandra Klein
- Ernst Moritz Arndt University, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany.
| | - Nicole Seeger
- Ernst Moritz Arndt University, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | - Raxit Mehta
- Colorcon Inc., Global Headquarters, 275 Ruth Road, Harleysville, PA 19438, USA
| | - Shahrzad Missaghi
- Colorcon Inc., Global Headquarters, 275 Ruth Road, Harleysville, PA 19438, USA
| | - Relindis Grybos
- Ernst Moritz Arndt University, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | | |
Collapse
|
37
|
Petrides PE, Schoergenhofer C, Widmann R, Jilma B, Klade CS. Pharmacokinetics of a Novel Anagrelide Extended-Release Formulation in Healthy Subjects: Food Intake and Comparison With a Reference Product. Clin Pharmacol Drug Dev 2018; 7:123-131. [PMID: 28301098 PMCID: PMC5811889 DOI: 10.1002/cpdd.340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022]
Abstract
Anagrelide is an established therapy for essential thrombocythemia. Common adverse effects have been linked to peak plasma concentrations of anagrelide and its 3OH metabolite. Our study was performed to investigate the pharmacokinetics (PK) of a novel anagrelide extended-release (AER) formulation and its active metabolites. Thirty healthy volunteers were randomized to receive either 2 mg AER (under fasting and fed conditions) or 2 mg commercially available reference product (CARP) in an open-label, 3-way crossover trial with washout periods of 6 days. Plasma concentrations of anagrelide and its active metabolites were assessed by tandem mass spectrometry. The PK differed significantly between all treatment periods. Bioavailability of AER was 55% of the CARP under fasting conditions and 60% under fed conditions. Cmax , AUCt, and AUC∞ were significantly higher and Tmax and T1/2 were significantly shorter after the CARP compared with AER. Food had a significant impact on the PK of AER, increasing the Cmax and AUCt while reducing the T1/2 , plateau, and mean residence time. Both formulations were well tolerated, with a trend toward more frequently occurring adverse events after the CARP. The PK of AER and the CARP differed significantly in all parameters. Food enhanced the bioavailability of AER.
Collapse
Affiliation(s)
- Petro E. Petrides
- Hematology Oncology Center and Ludwig Maximilians University of Munich Medical SchoolMunichGermany
| | | | | | - Bernd Jilma
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | | |
Collapse
|
38
|
Haznar-Garbacz D, Kaminska E, Zakowiecki D, Lachmann M, Kaminski K, Garbacz G, Dorożyński P, Kulinowski P. Melts of Octaacetyl Sucrose as Oral-Modified Release Dosage Forms for Delivery of Poorly Soluble Compound in Stable Amorphous Form. AAPS PharmSciTech 2018; 19:951-960. [PMID: 29098644 DOI: 10.1208/s12249-017-0912-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
The presented work describes the formulation and characterization of modified release glassy solid dosage forms (GSDFs) containing an amorphous nifedipine, as a model BCS (Biopharmaceutical Classification System) class II drug. The GSDFs were prepared by melting nifedipine together with octaacetyl sucrose. Dissolution profiles, measured under standard and biorelevant conditions, were compared to those obtained from commercially available formulations containing nifedipine such as modified release (MR) tablets and osmotic release oral system (OROS). The results indicate that the dissolution profiles of the GSDFs with nifedipine are neither affected by the pH of the dissolution media, type and concentration of surfactants, nor by simulated mechanical stress of biorelevant intensity. Furthermore, it was found that the dissolution profiles of the novel dosage forms were similar to the profiles obtained from the nifedipine OROS. The formulation of GSDFs is relatively simple, and the dosage forms were found to have favorable dissolution characteristics.
Collapse
|
39
|
Van Den Abeele J, Brouwers J, Tack J, Augustijns P. Exploring the link between gastric motility and intragastric drug distribution in man. Eur J Pharm Biopharm 2017; 112:75-84. [DOI: 10.1016/j.ejpb.2016.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
|
40
|
Guiastrennec B, Söderlind E, Richardson S, Peric A, Bergstrand M. In Vitro and In Vivo Modeling of Hydroxypropyl Methylcellulose (HPMC) Matrix Tablet Erosion Under Fasting and Postprandial Status. Pharm Res 2017; 34:847-859. [PMID: 28155077 PMCID: PMC5336534 DOI: 10.1007/s11095-017-2113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022]
Abstract
Purpose To develop a model linking in vitro and in vivo erosion of extended release tablets under fasting and postprandial status. Methods A nonlinear mixed-effects model was developed from the in vitro erosion profiles of four hydroxypropyl methylcellulose (HPMC) matrix tablets studied under a range of experimental conditions. The model was used to predict in vivo erosion of the HPMC matrix tablets in different locations of the gastrointestinal tract, determined by magnetic marker monitoring. In each gastrointestinal segment the pH was set to physiological values and mechanical stress was estimated in USP2 apparatus rotation speed equivalent. Results Erosion was best described by a Michaelis–Menten type model. The maximal HPMC release rate (VMAX) was affected by pH, mechanical stress, HPMC and calcium hydrogen phosphate content. The amount of HPMC left at which the release rate is half of VMAX depended on pH and calcium hydrogen phosphate. Mechanical stress was estimated for stomach (39.5 rpm), proximal (93.3 rpm) and distal (31.1 rpm) small intestine and colon (9.99 rpm). Conclusions The in silico model accurately predicted the erosion profiles of HPMC matrix tablets under fasting and postprandial status and can be used to facilitate future development of extended release tablets. Electronic supplementary material The online version of this article (doi:10.1007/s11095-017-2113-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin Guiastrennec
- Pharmacometrics Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Erik Söderlind
- Pharmaceutical Technology and Development, AstraZeneca, Gothenburg, Sweden.,Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Sara Richardson
- Advanced Drug Delivery, Pharmaceutical Sciences, Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Alexandra Peric
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Martin Bergstrand
- Pharmacometrics Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124, Uppsala, Sweden.
| |
Collapse
|
41
|
Farris E, Brown DM, Ramer-Tait AE, Pannier AK. Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. J Control Release 2017; 249:150-161. [PMID: 28153762 DOI: 10.1016/j.jconrel.2017.01.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
Abstract
The oral route is an attractive delivery route for the administration of DNA-based therapeutics, specifically for applications in gene therapy and DNA vaccination. However, oral DNA delivery is complicated by the harsh and variable conditions encountered throughout gastrointestinal (GI) transit, leading to degradation of the delivery vector and DNA cargo, and subsequent inefficient delivery to target cells. In this work, we demonstrate the development and optimization of a hybrid-dual particulate delivery system consisting of two natural biomaterials, zein (ZN) and chitosan (CS), to mediate oral DNA delivery. Chitosan-Zein Nano-in-Microparticles (CS-ZN-NIMs), consisting of core Chitosan/DNA nanoparticles (CS/DNA NPs) prepared by ionic gelation with sodium tripolyphosphate (TPP), further encapsulated in ZN microparticles, were formulated using a water-in-oil emulsion (W/O). The resulting particles exhibited high CS/DNA NP loading and encapsulation within ZN microparticles. DNA release profiles in simulated gastric fluid (SGF) were improved compared to un-encapsulated CS/DNA NPs. Further, site-specific degradation of the outer ZN matrix and release of transfection competent CS/DNA NPs occurred in simulated intestinal conditions with CS/DNA NP cores successfully mediating transfection in vitro. Finally, CS-ZN-NIMs encoding GFP delivered by oral gavage in vivo induced the production of anti-GFP IgA antibodies, demonstrating in vivo transfection and expression. Together, these results demonstrate the successful formulation of CS-ZN-NIMs and their potential to improve oral gene delivery through improved protection and controlled release of DNA cargo.
Collapse
Affiliation(s)
- Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
42
|
Abstract
Gastric mixing is a complex process that is governed by meal properties, such as food buffering capacity, physical properties, and the rate of breakdown as well as physiological factors, such as the rate of gastric secretions, gastric emptying, and gastric motility. Gastric mixing processes have been studied through the use of experimental and computational methods. Gastric mixing impacts the intragastric pH distribution and residence time in the stomach for ingested materials. Development of a fundamental understanding of the advective and diffusion processes and their roles in gastric mixing will be important in furthering our understanding of food breakdown, microbial survival, and drug dissolution during gastric digestion.
Collapse
Affiliation(s)
- Gail M Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616;
| |
Collapse
|
43
|
Van Den Abeele J, Rubbens J, Brouwers J, Augustijns P. The dynamic gastric environment and its impact on drug and formulation behaviour. Eur J Pharm Sci 2017; 96:207-231. [PMID: 27597144 DOI: 10.1016/j.ejps.2016.08.060] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
|
44
|
Mason LM, Chessa S, Huatan H, Storey DE, Gupta P, Burley J, Melia CD. Use of the Dynamic Gastric Model as a tool for investigating fed and fasted sensitivities of low polymer content hydrophilic matrix formulations. Int J Pharm 2016; 510:210-20. [DOI: 10.1016/j.ijpharm.2016.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
45
|
Abuhelwa AY, Foster DJR, Upton RN. A Quantitative Review and Meta-models of the Variability and Factors Affecting Oral Drug Absorption—Part II: Gastrointestinal Transit Time. AAPS JOURNAL 2016; 18:1322-1333. [DOI: 10.1208/s12248-016-9953-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022]
|
46
|
Andreas CJ, Tomaszewska I, Muenster U, van der Mey D, Mueck W, Dressman JB. Can dosage form-dependent food effects be predicted using biorelevant dissolution tests? Case example extended release nifedipine. Eur J Pharm Biopharm 2016; 105:193-202. [PMID: 27322002 DOI: 10.1016/j.ejpb.2016.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
AIMS Food intake is known to have various effects on gastrointestinal luminal conditions in terms of transit times, hydrodynamic forces and/or luminal fluid composition and can therefore affect the dissolution behavior of solid oral dosage forms. The aim of this study was to investigate and detect the dosage form-dependent food effect that has been observed for two extended-release formulations of nifedipine using in vitro dissolution tests. METHODS Two monolithic extended release formulations, the osmotic pump Adalat® XL 60mg and matrix-type Adalat® Eins 30mg formulation, were investigated with biorelevant dissolution methods using the USP apparatus III and IV under both simulated prandial states, and their corresponding quality control dissolution method. In vitro data were compared to published and unpublished in vivo data using deconvolution-based in vitro - in vivo correlation (IVIVC) approaches. RESULTS Quality control dissolution methods tended to overestimate the dissolution rate due to the excessive solubilizing capabilities of the sodium dodecyl sulfate (SDS)-containing dissolution media. Using Level II biorelevant media the dosage form dependent food effect for nifedipine was described well when studied with the USP apparatus III, whereas the USP apparatus IV failed to detect the positive food effect for the matrix-type dosage form. CONCLUSIONS It was demonstrated that biorelevant methods can serve as a useful tool during formulation development as they were able to qualitatively reflect the in vivo data.
Collapse
Affiliation(s)
- Cord J Andreas
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Irena Tomaszewska
- Pfizer Ltd., Discovery Park House, Sandwich, Kent CT13 9NJ, England, United Kingdom
| | - Uwe Muenster
- Bayer Pharma AG, Research Center Wuppertal-Aprath, Wuppertal, Germany
| | | | - Wolfgang Mueck
- Bayer Pharma AG, Research Center Wuppertal-Aprath, Wuppertal, Germany
| | - Jennifer B Dressman
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Koziolek M, Grimm M, Schneider F, Jedamzik P, Sager M, Kühn JP, Siegmund W, Weitschies W. Navigating the human gastrointestinal tract for oral drug delivery: Uncharted waters and new frontiers. Adv Drug Deliv Rev 2016; 101:75-88. [PMID: 27037063 DOI: 10.1016/j.addr.2016.03.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 02/07/2023]
Abstract
Many concepts of oral drug delivery are based on our comprehension of human gastrointestinal physiology. Unfortunately, we tend to oversimplify the complex interplay between the various physiological factors in the human gut and, in particular, the dynamics of these transit conditions to which oral dosage forms are exposed. Recent advances in spatial and temporal resolution of medical instrumentation as well as improved access to these technologies have facilitated clinical trials to characterize the dynamic processes within the human gastrointestinal tract. These studies have shown that highly relevant parameters such as fluid volumes, dosage form movement, and pH values in the lumen of the upper GI tract are very dynamic. As a result of these new insights into the human gastrointestinal environment, some common concepts and ideas of oral drug delivery are no longer valid and have to be reviewed in order to ensure efficacy and safety of oral drug therapy.
Collapse
|
48
|
Kappelle WFW, Siersema PD, Bogte A, Vleggaar FP. Challenges in oral drug delivery in patients with esophageal dysphagia. Expert Opin Drug Deliv 2016; 13:645-58. [DOI: 10.1517/17425247.2016.1142971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wouter F. W. Kappelle
- University Medical Center Utrecht, Department of Gastroenterology and Hepatology, Utrecht, The Netherlands
| | - Peter D. Siersema
- University Medical Center Utrecht, Department of Gastroenterology and Hepatology, Utrecht, The Netherlands
| | - Auke Bogte
- University Medical Center Utrecht, Department of Gastroenterology and Hepatology, Utrecht, The Netherlands
| | - Frank P. Vleggaar
- University Medical Center Utrecht, Department of Gastroenterology and Hepatology, Utrecht, The Netherlands
| |
Collapse
|
49
|
Koziolek M, Schneider F, Grimm M, Modeβ C, Seekamp A, Roustom T, Siegmund W, Weitschies W. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Control Release 2015; 220:71-78. [DOI: 10.1016/j.jconrel.2015.10.022] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
|
50
|
Knöös P, Svensson AV, Ulvenlund S, Wahlgren M. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids. PLoS One 2015; 10:e0140709. [PMID: 26473964 PMCID: PMC4608824 DOI: 10.1371/journal.pone.0140709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/28/2015] [Indexed: 12/02/2022] Open
Abstract
A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.
Collapse
Affiliation(s)
- Patrik Knöös
- Department of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden
| | | | | | - Marie Wahlgren
- Department of food technology engineering and nutrition, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|