1
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
2
|
He L, Di D, Chu X, Liu X, Wang Z, Lu J, Wang S, Zhao Q. Photothermal antibacterial materials to promote wound healing. J Control Release 2023; 363:180-200. [PMID: 37739014 DOI: 10.1016/j.jconrel.2023.09.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Wound healing is a crucial process that restores the integrity and function of the skin and other tissues after injury. However, external factors, such as infection and inflammation, can impair wound healing and cause severe tissue damage. Therefore, developing new drugs or methods to promote wound healing is of great significance. Photothermal therapy (PTT) is a promising technique that uses photothermal agents (PTAs) to convert near-infrared radiation into heat, which can eliminate bacteria and stimulate tissue regeneration. PTT has the advantages of high efficiency, controllability, and low drug resistance. Hence, nanomaterial-based PTT and its related strategies have been widely explored for wound healing applications. However, a comprehensive review of PTT-related strategies for wound healing is still lacking. In this review, we introduce the physiological mechanisms and influencing factors of wound healing, and summarize the types of PTAs commonly used for wound healing. Then, we discuss the strategies for designing nanocomposites for multimodal combination treatment of wounds. Moreover, we review methods to improve the therapeutic efficacy of PTT for wound healing, such as selecting the appropriate wound dressing form, controlling drug release, and changing the infrared irradiation window. Finally, we address the challenges of PTT in wound healing and suggest future directions.
Collapse
Affiliation(s)
- Luning He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinhui Chu
- Wuya College of innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinlin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
3
|
Nadeem A, Kindopp A, Wyllie I, Hubert L, Joubert J, Lucente S, Randall E, Jena PV, Roxbury D. Enhancing Intracellular Optical Performance and Stability of Engineered Nanomaterials via Aqueous Two-Phase Purification. NANO LETTERS 2023; 23:6588-6595. [PMID: 37410951 PMCID: PMC11068083 DOI: 10.1021/acs.nanolett.3c01727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Supramolecular hybrids of DNA and single-walled carbon nanotubes (SWCNTs) have been introduced in numerous biosensing applications due to their unique optical properties. Recent aqueous two-phase (ATP) purification methods for SWCNTs have gained popularity by introducing specificity and homogeneity into the sensor design process. Using murine macrophages probed by near-infrared and Raman microscopies, we show that ATP purification increases the retention time of DNA-SWCNTs within cells while simultaneously enhancing the optical performance and stability of the engineered nanomaterial. Over a period of 6 h, we observe 45% brighter fluorescence intensity and no significant change in emission wavelength of ATP-purified DNA-SWCNTs relative to as-dispersed SWCNTs. These findings provide strong evidence of how cells differentially process engineered nanomaterials depending on their state of purification, lending to the future development of more robust and sensitive biosensors with desirable in vivo optical parameters using surfactant-based ATP systems with a subsequent exchange to biocompatible functionalization.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ian Wyllie
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lauren Hubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - James Joubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sophie Lucente
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ewelina Randall
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
4
|
Kumar M, Parkhey P, Mishra SK, Paul PK, Singh A, Singh V. Phage for drug delivery vehicles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:191-201. [PMID: 37770171 DOI: 10.1016/bs.pmbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Viruses being the natural carriers of gene have been widely used as drug delivery systems. However, the commonly used eukaryotic viruses such as adenoviruses, retroviruses, and lentiviruses, besides efficiently targeting the cells, can also stimulate immunological response or disrupt tumour suppressor genes leading to cancer. Consequently, there has been an increase interest in the scientific fraternity towards exploring other alternatives, which are safer and equally efficient for drug delivery. Bacteriophages, in this context have been at the forefront as an efficient, reliable, and safer choice. Novel phage dependent technologies led the foundation of peptide libraries and provides way to recognising abilities and targeting of specific ligands. Hybridisation of phage with inorganic complexes could be an appropriate strategy for the construction of carrying bioinorganic carriers. In this chapter, we have tried to cover major advances in the phage species that can be used as drug delivery vehicles.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Piyush Parkhey
- Techno-Commercial Division, Trinity International, New Delhi, India
| | - Santosh Kumar Mishra
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| | - Prabir Kumar Paul
- Department of Biotechnology Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Avinash Singh
- Department of Biotechnology, Meerut Institute of Engineering & Technology, Meerut, U.P., India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
5
|
Arivarasan VK. Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:133-149. [PMID: 37770168 DOI: 10.1016/bs.pmbts.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
6
|
Lee SS, Paliouras M, Trifiro MA. Functionalized Carbon Nanoparticles as Theranostic Agents and Their Future Clinical Utility in Oncology. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010108. [PMID: 36671680 PMCID: PMC9854994 DOI: 10.3390/bioengineering10010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Over the years, research of nanoparticle applications in pre-clinical and clinical applications has greatly advanced our therapeutic and imaging approaches to many diseases, most notably neoplastic disorders. In particular, the innate properties of inorganic nanomaterials, such as gold and iron oxide, as well as carbon-based nanoparticles, have provided the greatest opportunities in cancer theranostics. Carbon nanoparticles can be used as carriers of biological agents to enhance the therapeutic index at a tumor site. Alternatively, they can also be combined with external stimuli, such as light, to induce irreversible physical damaging effects on cells. In this review, the recent advances in carbon nanoparticles and their use in cancer theranostics will be discussed. In addition, the set of evaluations that will be required during their transition from laboratory investigations toward clinical trials will be addressed.
Collapse
Affiliation(s)
- Seung S. Lee
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
| | - Miltiadis Paliouras
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| | - Mark A. Trifiro
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
7
|
Antonucci A, Reggente M, Roullier C, Gillen AJ, Schuergers N, Zubkovs V, Lambert BP, Mouhib M, Carata E, Dini L, Boghossian AA. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. NATURE NANOTECHNOLOGY 2022; 17:1111-1119. [PMID: 36097045 DOI: 10.1038/s41565-022-01198-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melania Reggente
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Roullier
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Vitalijs Zubkovs
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Center for Electronics and Microtechnology (CSEM), Landquart, Switzerland
| | - Benjamin P Lambert
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mohammed Mouhib
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, CNR Nanotec, Lecce, Italy
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Srivastava A, Selim KA. Inheritable nanotubes boost bioimaging and photovoltaics in cyanobacteria. NATURE NANOTECHNOLOGY 2022; 17:1046-1047. [PMID: 36163508 DOI: 10.1038/s41565-022-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Amit Srivastava
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany
| | - Khaled A Selim
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany.
- Max Planck Institute for Biology, Protein Evolution Department, Tübingen, Germany.
| |
Collapse
|
9
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
10
|
Fabrication and characterization of dual-responsive nanocarriers for effective drug delivery and synergistic chem-photothermal effects. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
naief MF, Khalaf YH, Mohammed AM. Novel photothermal therapy using multi-walled carbon nanotubes and platinum nanocomposite for human prostate cancer PC3 cell line. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Liu Y, Lin Z, Wang P, Huang F, Sun JL. Measurement of the Photothermal Conversion Efficiency of CNT Films Utilizing a Raman Spectrum. NANOMATERIALS 2022; 12:nano12071101. [PMID: 35407219 PMCID: PMC9000262 DOI: 10.3390/nano12071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Because carbon nanotube (CNT) films have high photothermal conversion efficiency (PTCE), they have been widely used in bolometric and photothermoelectric photodetectors, seawater desalination, and cancer therapy. Here, we present a simple, quick, and non-destructive method to measure the PTCE of CNT films. According to the linear relationship between the Raman shift of the G+ peak and the temperature of a CNT, the offset of the G+ peak under varying excitation light power can characterize the changed temperature. Combining the simulation of the temperature distribution, the final value of the PTCE can be obtained. Finally, a CNT film with a high PTCE was chosen to be fabricated as a bolometric photodetector; a quite high responsivity (2 A W−1 at 532 nm) of this device demonstrated the effectiveness of our method.
Collapse
Affiliation(s)
- Yu Liu
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Y.L.); (Z.L.); (P.W.); (F.H.)
| | - Zhicheng Lin
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Y.L.); (Z.L.); (P.W.); (F.H.)
| | - Pengfei Wang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Y.L.); (Z.L.); (P.W.); (F.H.)
| | - Feng Huang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Y.L.); (Z.L.); (P.W.); (F.H.)
| | - Jia-Lin Sun
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
13
|
Han M, Li Y, Lu S, Yuan B, Cheng S, Cao C. Amyloid Protein-Biofunctionalized Polydopamine Nanoparticles Demonstrate Minimal Plasma Protein Fouling and Efficient Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13743-13757. [PMID: 35263991 DOI: 10.1021/acsami.2c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) shows great application potential in photothermal therapy (PTT) of tumors due to its excellent photothermal performance. However, PDA rich in a large number of catechin structures, with strong adhesion, can readily attach to plasma proteins in blood to form protein corona, which greatly hinders the transfer efficiency to tumors and reduces the bioavailability. In this paper, a simple, rapid phase-transitioned albumin biomimetic nanocorona (TBSA) is used for the surface camouflage of PDA nanoparticles for minimal plasma protein fouling and efficient PTT. TBSA coating is formed by the BSA-derived amyloid through the hydrophobic aggregation near the isoelectric point and the rupture of disulfide bonds by tris(2-carboxyethyl) phosphine. The stable PDA@TBSA complexes are formed by camouflaging TBSA onto the surface of PDA through hydrophobic, electrostatic, and covalent binding between TBSA and PDA, which showed excellent anti-plasma protein adsorption properties profited from the surface charge of PDA@TBSA approaching equilibrium and the surface passivation of BSA. The plasma protein thickness of the PDA@TBSA surface is 6 times lower than that of PDA at adsorption saturation. In vitro and in vivo experiments have revealed that PDA@TBSA has an excellent photothermal antitumor effect compared to PDA. Both PDA and PDA@TBSA treatment plus 808 nm laser irradiation result in more than 70% inhibition on tumor cell proliferation. In addition, PDA@TBSA does not cause a significant inflammatory response and tissue damage. Taken together, the TBSA coating endows PDA with low-fouling functions in blood and improves the residence time of PDA in blood and enrichment in the tumor tissue. This work offers a novel and efficient strategy for the design of functional nanosystems exploiting the speciality of the biomolecular corona formation around nanomaterials.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shun Lu
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021; 57:13662-13677. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small molecule drugs, including most chemotherapies, are rapidly degraded and/or eliminated from the body, which is why high doses of these drugs are necessary, potentially producing toxic effects. Several types of nanoparticles loaded with anti-cancer drugs have been designed to overcome the disadvantages of conventional therapies. Modified nanoparticles can circulate for a long time, thus improving the solubility and biodistribution of drugs. Furthermore, they also allow the controlled release of the payload once its target tissue has been reached. These mechanisms can reduce the exposure of healthy tissues to chemotherapeutics, since the drugs are only released in the presence of specific tumour stimuli. Overall, these properties can improve the effectiveness of treatments while reducing undesirable side effects. In this article, we review the recent advances in stimuli-responsive albumin, gold and magnetic nanostructures for controlled anti-cancer drug delivery. These nanostructures were designed to release drugs in response to different internal and external stimuli of the cellular environment, including pH, redox, light and magnetic fields. We also describe various examples of applications of these nanomaterials. Overall, we shed light on the properties, potential clinical translation and limitations of stimuli-responsive nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Nuria Lafuente-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ana Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ciro Rodriguez Diaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain. .,Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
15
|
Saini S, Reshmi S, Gouda GM, Bhattacharjee K. Emergence of carbon nanoscrolls from single walled carbon nanotubes: an oxidative route. Phys Chem Chem Phys 2021; 23:27437-27448. [PMID: 34860230 DOI: 10.1039/d1cp03945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanoscrolls (CNS), a one dimensional (1D) helical form of carbon, have received enormous attention recently due to their unique structure, superior properties and potential applications. In this work, radial merging of HiPCO single walled nanotube (SWNT) bundles and emergence of CNS are reported following a reflux action involving wet oxidation, HCl washing and annealing at 900 °C. We observe macroscopic quantities of graphene sheets (GS) in the post-treated sample and beautiful manifestation of curling and folding of the GS into CNS. Here, a simple solution based oxidative route for successful merging and exfoliation of SWNT bundles and subsequent formation of CNS are demonstrated and discussed in view of Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies. Direct evidence of emergence of CNS from SWNTs via synthesis of GS through a simple oxidative method is reported for the first time.
Collapse
Affiliation(s)
- Sonia Saini
- Indian Institute of Space Science and Technology (IIST), Thiruvanthapuram, 695 547, India. .,Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO), Bengaluru, 560 058, India
| | - S Reshmi
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| | - Girish M Gouda
- Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO), Bengaluru, 560 058, India
| | - Kuntala Bhattacharjee
- Indian Institute of Space Science and Technology (IIST), Thiruvanthapuram, 695 547, India. .,Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| |
Collapse
|
16
|
Hendler-Neumark A, Wulf V, Bisker G. In vivo imaging of fluorescent single-walled carbon nanotubes within C. elegans nematodes in the near-infrared window. Mater Today Bio 2021; 12:100175. [PMID: 34927042 PMCID: PMC8649898 DOI: 10.1016/j.mtbio.2021.100175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) nematodes serve as a model organism for eukaryotes, especially due to their genetic similarity. Although they have many advantages like their small size and transparency, their autofluorescence in the entire visible wavelength range poses a challenge for imaging and tracking fluorescent proteins or dyes using standard fluorescence microscopy. Herein, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) are utilized for in vivo imaging within the gastrointestinal track of C. elegans. The SWCNTs are biocompatible, and do not affect the worms' viability nor their reproduction ability. The worms do not show any autofluorescence in the NIR range, thus enabling the spectral separation between the SWCNT NIR fluorescence and the strong autofluorescence of the worm gut granules. The worms are fed with ssDNA-SWCNT which are visualized mainly in the intestine lumen. The NIR fluorescence is used in vivo to track the contraction and relaxation in the area of the pharyngeal valve at the anterior of the terminal bulb. These biocompatible, non-photobleaching, NIR fluorescent nanoparticles can advance in vivo imaging and tracking within C. elegans and other small model organisms by overcoming the signal-to-noise challenge stemming from the wide-range visible autofluorescence.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
17
|
Ji Y, Song S, Li X, Lv R, Wu L, Wang H, Cao M. Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Awad N, Paul V, AlSawaftah NM, ter Haar G, Allen TM, Pitt WG, Husseini GA. Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacol Transl Sci 2021; 4:589-612. [PMID: 33860189 PMCID: PMC8033618 DOI: 10.1021/acsptsci.0c00212] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.
Collapse
Affiliation(s)
- Nahid
S. Awad
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Nour M. AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Gail ter Haar
- Joint
Department of Physics, The Institute of
Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, U.K.
| | - Theresa M. Allen
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - William G. Pitt
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Wang X, Li D, Huang X, Luo Q, Li X, Zhang X, Zhang L. A bibliometric analysis and visualization of photothermal therapy on cancer. Transl Cancer Res 2021; 10:1204-1215. [PMID: 35116448 PMCID: PMC8797757 DOI: 10.21037/tcr-20-2961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/29/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is one of the most lethal diseases in the world, and photothermal therapy was reported recently as a new and effective therapy for cancer. This study offers the bibliometric and visualization analysis of photothermal therapy on cancer. METHODS A record of 6,233 papers in this field from 1995 to 2019 was obtained based on the Web of Science Core Collection (WoSCC). And CiteSpace was used to analyze the annual trends of publications, countries, institutions, journals, co-cited references, and keywords in the field of photothermal therapy on cancer. RESULTS We identified that the number of publications continually increased over the time. The most productive country and institution in this field was China and Chinese Academy of Sciences, respectively. The ACS Appl Mater Interfaces was the most active journal. Co-cited references analysis revealed the top landmark articles in the field. Co-occurrence keywords and their clustered network were analyzed, revealing that materials, especially nanomaterials, used in photothermal therapy, remained the hotspots in this research field. Timezone view and burst detection of keywords showed that nanomaterials were always the hotspots and the frontier topics in this field. CONCLUSIONS The current study revealed that photothermal therapy has become a subject of growing study and a very important research area. In addition, the research of materials in photothermal therapy, especially nanomaterials, which were applied in photothermal therapy to treat cancer effectively, is the foci and the frontier topic in this field.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pathology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qi Luo
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Xue Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Lin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Pharmacy, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| |
Collapse
|
20
|
Kucharczyk K, Kaczmarek K, Jozefczak A, Slachcinski M, Mackiewicz A, Dams-Kozlowska H. Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111654. [PMID: 33545822 DOI: 10.1016/j.msec.2020.111654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are one of the most extensively studied materials for theranostic applications. IONPs can be used for magnetic resonance imaging (MRI), delivery of therapeutics, and hyperthermia treatment. Silk is a biocompatible material and can be used for biomedical applications. Previously, we produced spheres made of H2.1MS1 bioengineered silk that specifically carried a drug to the Her2-overexpressing cancer cells. To confer biocompatibility and targeting properties to IONPs, we blended these particles with bioengineered spider silks. Three bioengineered silks (MS1Fe1, MS1Fe2, and MS1Fe1Fe2) functionalized with the adhesion peptides F1 and F2, were constructed and investigated to form the composite spheres with IONPs carrying a positive or negative charge. Due to its highest IONP content, MS1Fe1 silk was used to produce spheres from the H2.1MS1:MS1Fe silk blend to obtain a carrier with cell-targeting properties. Composite H2.1MS1:MS1Fe1/IONP spheres made of silks blended at different ratios were obtained. Although the increased content of MS1Fe1 silk in particles resulted in an increased affinity of the spheres to IONPs, it decreased the binding of the composite particles to cancer cells. The H2.1MS1:MS1Fe1 particles prepared at a ratio of 8:2 and loaded with IONPs exhibited the ability to bind to the targeted cancer cells similar to the control spheres without IONPs. Moreover, when exposed to the alternating magnetic field, these particles generated 2.5 times higher heat. They caused an almost three times higher percentage of apoptosis in cancer cells than the control particles. The blending of silks enabled the generation of cancer-targeting spheres with a high affinity for iron oxide nanoparticles, which can be used for anti-cancer hyperthermia therapy.
Collapse
Affiliation(s)
- Kamil Kucharczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kaczmarek
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Arkadiusz Jozefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Slachcinski
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| |
Collapse
|
21
|
Raniszewski G, Pietrzak Ł. Optimization of Mass Flow in the Synthesis of Ferromagnetic Carbon Nanotubes in Chemical Vapor Deposition System. MATERIALS (BASEL, SWITZERLAND) 2021; 14:612. [PMID: 33525748 PMCID: PMC7865554 DOI: 10.3390/ma14030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes have unique properties, which make it possible to be applied in a variety of sensing applications. Moreover, by controlling the synthesis chemistry process, it is possible for carbon nanotubes to either fill or attach to its surface metal particles, e.g., iron. In an industrial scale, the yield and purity of the final product is very important. This work describes the chemical vapor deposition (CVD) method of carbon iron nanocontainers with maximum nanoparticles to impurities ratio. As one of the main parameters, the mass flow of gases was considered. To investigate the quality of the product, the scanning electron microscopy and thermogravimetric methods were used. Results for different process conditions were presented and discussed. The low gas velocity and high temperatures may affect the catalyst decomposition and ionization. The optimum flow and temperature in the reactor were determined.
Collapse
Affiliation(s)
- Grzegorz Raniszewski
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22 str., 90-924 Lodz, Poland;
| | | |
Collapse
|
22
|
Behnam MA, Emami F, Sobhani Z. PEGylated Carbon Nanotubes Decorated with Silver Nanoparticles: Fabrication, Cell Cytotoxicity and Application in Photo Thermal Therapy. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:91-104. [PMID: 34400944 PMCID: PMC8170745 DOI: 10.22037/ijpr.2019.112339.13697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new technique for cancer therapy is Photo Thermal Therapy (PTT). In the PTT technique, photon energy is converted into heat via various operations to destroy malignant tumors. Carbon nanotubes (CNTs) have good optical absorption in the near-infrared (NIR) spectrum and could transform optical energy into heat to induce hyperthermia in the PTT method. In this study, CNTs were firstly oxidized (O-CNT) and then decorated with silver nanoparticles (Ag NPs). Polyethylene glycol (PEG) was utilized for wrapping the surface of CNTs (O-CNT/Ag-PEG). Coating of CNTs with Ag NPs and PEG was confirmed by XRD, FESEM, and TEM techniques. Results demonstrated that noble metal could increase optical absorption of CNTs and concurrently improve the efficacy of the PTT technique. Cell cytotoxicity study showed that O-CNT/Ag NPs were less cytotoxic than O-CNTs, and O-CNT/Ag-PEG had the lowest toxicity against HeLa, HepG2, and PC3 human cell lines. The efficacy of O-CNT/Ag-PEG NPs in destroying malignant melanoma tumors was evaluated through the PTT technique. A continuous wave NIR laser diode (λ = 808 nm, P = 2 W, and I = 2 W/cm2) irradiated the tumor sites for 8 min once in the period of the treatment. The tumors in cases receiving O-CNT/Ag-PEG were shrunk efficiently compared to laser treatment ones. Results of in-vivo studies demonstrated that O-CNT/Ag-PEG was a puissant candidate in extirpating malignant tumors in PTT method.
Collapse
Affiliation(s)
- Mohammad Ali Behnam
- Nano Opto-Electronic Research Center, Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Farzin Emami
- Nano Opto-Electronic Research Center, Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Zahra Sobhani
- Department of Quality Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Yaghoubi A, Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J Control Release 2020; 327:198-224. [DOI: 10.1016/j.jconrel.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
|
24
|
Wang W, Tang Z, Zhang Y, Wang Q, Liang Z, Zeng X. Mussel-Inspired Polydopamine: The Bridge for Targeting Drug Delivery System and Synergistic Cancer Treatment. Macromol Biosci 2020; 20:e2000222. [PMID: 32761887 DOI: 10.1002/mabi.202000222] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Polydopamine (PDA), a mussel-inspired molecule, has been recognized as attractive in cancer therapy due to a number of inherent advantages, such as good biocompatibility, outstanding drug-loading capacity, degradability, superior photothermal conversion efficiency, and low tissue toxicity. Furthermore, due to its strong adhesive property, PDA is able to functionalize various nanomaterials, facilitating the construction of a PDA-based multifunctional platform for targeted or synergistic therapy. Herein, recent PDA research, including targeted drug delivery, single-mode therapy, and diverse synergistic therapies against cancer, are summarized and discussed. For synergistic therapy, advanced developments are highlighted, such as photothermal/radiotherapy, chemo-/photothermal/gene therapy, photothermal/immune therapy, and photothermal/photodynamic/immune therapy. Finally, the challenges and promise of PDA for biomedical applications in the future are discussed.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuo Tang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiuxu Wang
- Stomatology Department of Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Zhigang Liang
- Stomatology Department of Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
25
|
Abdalkader R, Unga J, Maruyama K, Yamashita F, Hashida M. The Application of the in-Situ Hyperthermia Emission from Acoustic Nanodroplets for Theranostic Dual-Imaging and Antitumor Modalities. Biol Pharm Bull 2020; 43:1141-1145. [PMID: 32378553 DOI: 10.1248/bpb.b20-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we have developed a theranostic nanocarrier that can emit heat upon the exposure to ultrasound (US) irradiation as well as the generation of a contrast signal that can be detected with ultrasonography. The prepared acoustic nanodroplets (NDs) made with liquid perfluporopentane (PFPn) had an average size of 197.7 ± 3.6 nm in diameter and were stable in vitro for 60 min. US irradiation at 2 W.cm-2 induced phase change of NDs into bubbles in vitro. On the other hand, the intra-tumor injection of NDs in combination with US irradiation induced thermal emission in situ in B16BL6 melanoma tumor implanted into mice and the emission areas have mostly covered the tumor site. Also, the combination between NDs and US irradiation has inhibited the tumor growth. Under this condition, the heat shock protein (HSP70) in tumor was significantly upregulated after 6 h of the treatment of NDs with US. Thus, we have developed a therapeutic system with multiple theranostic modalities composed of acoustic NDs and US irradiation applicable to the tumor treatment on the external surface of the body.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Institute for Advanced Study (KUIAS), Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
| | - Johan Unga
- Faculty of Pharma-Sciences, Teikyo University
| | | | | | - Mitsuru Hashida
- Institute for Advanced Study (KUIAS), Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
| |
Collapse
|
26
|
Yang P, Zhang S, Zhang N, Wang Y, Zhong J, Sun X, Qi Y, Chen X, Li Z, Li Y. Tailoring Synthetic Melanin Nanoparticles for Enhanced Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42671-42679. [PMID: 31663328 DOI: 10.1021/acsami.9b16861] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanin and its synthetic analogs (i.e., polydopamine nanomaterials) are able to transform a near-infrared (NIR) light energy source to heat for the selective killing of cancer cells. Although many of the effects on these nontoxic photothermal agents have been well documented, a concern has arisen that the extended usage of these natural and synthetic melanins might be hindered by their limited photothermal effects under low-density light irradiation. To address this issue, herein, we propose a rational and green fabrication strategy toward a new class of synthetic melanin nanoparticles (SMNPs) with superior photothermal effects via the one-pot copolymerization of two kinds of naturally occurring monomers (arginine and dopamine). The total photothermal efficiencies of these arginine-doped SMNPs could be significantly improved (i.e., ∼60% increase) by enhancing 808 nm NIR light absorption via the construction of donor-acceptor microstructures within SMNPs and decreasing nonthermal radiative transition processes via the increase of free radical concentrations within SMNPs. The resulting SMNPs demonstrated higher photothermal therapy efficiencies in both killing 4T1 cancer cells in vitro and suppressing tumor growth and recurrence compared with conventional agents. This work offers new opportunities in the structural and functional tailoring of melanin-inspired nanomaterials for cancer treatment via green fabrication strategies.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Shu Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | | | | | - Jian Zhong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School , Sichuan University , Chengdu 610041 , China
| | | | | | - Xiaofeng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | | | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
27
|
Gravely M, Safaee MM, Roxbury D. Biomolecular Functionalization of a Nanomaterial To Control Stability and Retention within Live Cells. NANO LETTERS 2019; 19:6203-6212. [PMID: 31424226 PMCID: PMC7199458 DOI: 10.1021/acs.nanolett.9b02267] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Noncovalent hybrids of single-stranded DNA and single-walled carbon nanotubes (SWCNTs) have demonstrated applications in biomedical imaging and sensing due to their enhanced biocompatibility and photostable, environmentally responsive near-infrared (NIR) fluorescence. The fundamental properties of such DNA-SWCNTs have been studied to determine the correlative relationships between oligonucleotide sequence and length, SWCNT species, and the physical attributes of the resultant hybrids. However, intracellular environments introduce harsh conditions that can change the physical identities of the hybrid nanomaterials, thus altering their intrinsic optical properties. Here, through visible and NIR fluorescence imaging in addition to confocal Raman microscopy, we show that the oligonucleotide length controls the relative uptake, intracellular optical stability, and retention of DNA-SWCNTs in mammalian cells. Although the absolute NIR fluorescence intensity of DNA-SWCNTs in murine macrophages increases with increasing oligonucleotide length (from 12 to 60 nucleotides), we found that shorter oligonucleotide DNA-SWCNTs undergo a greater magnitude of spectral shift and are more rapidly internalized and expelled from the cell after 24 h. Furthermore, by labeling the DNA with a fluorophore that dequenches upon removal from the SWCNT surface, we found that shorter oligonucleotide strands are displaced from the SWCNT within the cell, altering the physical identity and changing the fate of the internalized nanomaterial. Finally, through a pharmacological inhibition study, we identified the mechanism of SWCNT expulsion from the cells as lysosomal exocytosis. These findings provide a fundamental understanding of the interactions between SWCNTs and live cells as well as evidence suggesting the ability to control the biological fate of the nanomaterials merely by varying the type of DNA wrapping.
Collapse
Affiliation(s)
- Mitchell Gravely
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Mohammad Moein Safaee
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Daniel Roxbury
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| |
Collapse
|
28
|
Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, Inglezakis V. Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1195. [PMID: 31450616 PMCID: PMC6780818 DOI: 10.3390/nano9091195] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023]
Abstract
Cancer is one of the major health issues with increasing incidence worldwide. In spite of the existing conventional cancer treatment techniques, the cases of cancer diagnosis and death rates are rising year by year. Thus, new approaches are required to advance the traditional ways of cancer therapy. Currently, nanomedicine, employing nanoparticles and nanocomposites, offers great promise and new opportunities to increase the efficacy of cancer treatment in combination with thermal therapy. Nanomaterials can generate and specifically enhance the heating capacity at the tumor region due to optical and magnetic properties. The mentioned unique properties of nanomaterials allow inducing the heat and destroying the cancerous cells. This paper provides an overview of the utilization of nanoparticles and nanomaterials such as magnetic iron oxide nanoparticles, nanorods, nanoshells, nanocomposites, carbon nanotubes, and other nanoparticles in the thermal ablation of tumors, demonstrating their advantages over the conventional heating methods.
Collapse
Affiliation(s)
- Zhannat Ashikbayeva
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
- PI National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Damir Balmassov
- Department of Pedagogical Sciences, Astana International University, 8 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Emiliano Schena
- Measurements and Biomedical Instrumentation Lab, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milano, Italy
| | - Vassilis Inglezakis
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
| |
Collapse
|
29
|
|
30
|
Kim D, Le QV, Kim YB, Oh YK. Safety and photochemotherapeutic application of poly( γ-glutamic acid)-based biopolymeric nanoparticle. Acta Pharm Sin B 2019; 9:565-574. [PMID: 31193800 PMCID: PMC6543094 DOI: 10.1016/j.apsb.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
The safety of nanomaterials, a crucial consideration for clinical translation, is enhanced by using building blocks that are biologically nontoxic. Here, we used poly(γ-glutamic acid) (γ-PGA) and dopamine as building blocks of polymeric nanomaterials for carrying hydrophobic anticancer drugs. The introduction of phenylalanine onto γ-PGA enabled the resulting amphiphilic derivative of γ-PGA acid to self-assemble in the presence of the anticancer drug paclitaxel (PTX) to form PTX-encapsulated micelles. The surfaces of PTX-loaded micelles were then coated with polymerized dopamine (PDA). The PDA-coated, amphiphilic γ-PGA-based micelles (AM) carrying PTX (PDA/AM/P) exerted near-infrared-responsive photothermal effects. Near-infrared irradiation of cancer cells treated with PDA/AM/P nanoparticles produced a greater anticancer effect than that observed in other treatment groups, indicating a synergistic effect. Intravenous administration of PDA/AM/P completely ablated tumors and prevented their recurrence. Notably, the in vivo safety profile of PDA/AM/P nanoparticles allowed PTX to be delivered at a 3.6-fold higher dose than was possible with PTX solubilized in surfactant, and circumvented the side effects of the surfactant. These results support the multifunctional potential of PDA/AM for the delivery of various hydrophobic drugs and imaging dyes for safe translation of nanomaterials into the clinic.
Collapse
|
31
|
Abdi Goushbolagh N, Keshavarz M, Zare MH, Bahreyni-Toosi MH, Kargar M, Farhood B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1326-1334. [DOI: 10.1080/21691401.2019.1593997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nouraddin Abdi Goushbolagh
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Keshavarz
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Zare
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Masoud Kargar
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
32
|
Safaee MM, Gravely M, Rocchio C, Simmeth M, Roxbury D. DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2225-2233. [PMID: 30575397 DOI: 10.1021/acsami.8b16478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) functionalized with short single-stranded DNA have been extensively studied within the last decade for biomedical applications due to the high dispersion efficiency and intrinsic biocompatibility of DNA as well as the photostable and tunable fluorescence of SWCNTs. Characterization of their physical properties, particularly their length distribution, is of great importance regarding their application as a bioengineered research tool and clinical diagnostic agent. Conventionally, atomic force microscopy (AFM) has been used to quantify the length of DNA-SWCNTs by depositing the hybrids onto an electrostatically charged flat surface. Here, we demonstrate that hybrids of DNA-SWCNTs with different oligomeric DNA sequences ((GT)6 and (GT)30) differentially deposit on the AFM substrate, resulting in significant inaccuracies in the reported length distributions of the parent solutions. Using a solution-based surfactant exchange technique, we placed both samples into a common surfactant wrapping and found identical SWCNT length distributions upon surface deposition. Additionally, by spin-coating the surfactant-wrapped SWCNTs onto a substrate, thus mitigating effects of electrostatic interactions, we found length distributions that did not depend on DNA sequence but were significantly longer than electrostatic deposition methods, illuminating the inherent bias of the surface deposition method. Quantifying the coverage of DNA molecules on each SWCNT through both absorbance spectroscopy and direct observation, we found that the density of DNA per SWCNT was significantly higher in short (GT)6-SWCNTs (length < 100 nm) compared to long (GT)6-SWCNTs (length > 100 nm). In contrast, we found no dependence of the DNA density on SWCNT length in (GT)30-SWCNT hybrids. Thus, we attribute differences in the observed length distributions of DNA-SWCNTs to variations in electrostatic repulsion induced by sequence-dependent DNA density.
Collapse
Affiliation(s)
- Mohammad Moein Safaee
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Mitchell Gravely
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Caroline Rocchio
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Matthew Simmeth
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Daniel Roxbury
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| |
Collapse
|
33
|
Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal JA, Boulaiz H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E935. [PMID: 30428608 PMCID: PMC6266697 DOI: 10.3390/nano8110935] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
Progress in nanotechnology has enabled us to open many new fronts in biomedical research by exploiting the peculiar properties of materials at the nanoscale. The thermal sensitivity of certain materials is a highly valuable property because it can be exploited in many promising applications, such as thermo-sensitive drug or gene delivery systems, thermotherapy, thermal biosensors, imaging, and diagnosis. This review focuses on recent advances in thermo-sensitive nanomaterials of interest in biomedical applications. We provide an overview of the different kinds of thermoresponsive nanomaterials, discussing their potential and the physical mechanisms behind their thermal response. We thoroughly review their applications in biomedicine and finally discuss the current challenges and future perspectives of thermal therapies.
Collapse
Affiliation(s)
- Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Juan de Vicente
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Stefania Nardecchia
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| |
Collapse
|
34
|
Filipova M, Elhelu OK, De Paoli SH, Fremuntova Z, Mosko T, Cmarko D, Simak J, Holada K. An effective "three-in-one" screening assay for testing drug and nanoparticle toxicity in human endothelial cells. PLoS One 2018; 13:e0206557. [PMID: 30379903 PMCID: PMC6209339 DOI: 10.1371/journal.pone.0206557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Evaluating nanoparticle (NP) toxicity in human cell systems is a fundamental requirement for future NP biomedical applications. In this study, we have designed a screening assay for assessing different types of cell death induced by NPs in human umbilical vein endothelial cell (HUVEC) culture. This assay consists of WST-8, LDH and Hoechst 33342 staining, all performed in one well, which enables an evaluation of cell viability, necrosis and apoptosis, respectively, in the same cell sample. The 96-well format and automated processing of fluorescent images enhances the assay rapidity and reproducibility. After testing the assay functionality with agents that induced different types of cell death, we investigated the endothelial toxicity of superparamagnetic iron oxide nanoparticles (SPIONs, 8 nm), silica nanoparticles (SiNPs, 7-14 nm) and carboxylated multiwall carbon nanotubes (CNTCOOHs, 60 nm). Our results indicated that all the tested NP types induced decreases in cell viability after 24 hours at a concentration of 100 μg/ml. SPIONs caused the lowest toxicity in HUVECs. By contrast, SiNPs induced pronounced necrosis and apoptosis. A time course experiment showed the gradual toxic effect of all the tested NPs. CNTCOOHs inhibited tetrazolium derivatives at 100 μg/ml, causing false negative results from the WST-8 and LDH assay. In summary, our data demonstrate that the presented "three-in-one" screening assay is capable of evaluating NP toxicity effectively and reliably. Due to its simultaneous utilization of two different methods to assess cell viability, this assay is also capable of revealing, if NPs interfere with tetrazolium salts.
Collapse
Affiliation(s)
- Marcela Filipova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Biological Models, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Oumsalama K. Elhelu
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Silvia H. De Paoli
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Simak
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
35
|
Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018; 290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Inspired by the bionics of marine mussels, polydopamine (PDA), a new polymer with unique physicochemical properties was discovered. Due to its simple preparation, good biocompatibility, unique drug-loading methods, PDA has attracted tremendous attentions in field of drug delivery and imaging, and the combination of chemotherapy and other therapies or diagnostic methods, such as photothermotherapy (PTT), photoacoustic imaging (PAI), magnetic resonance imaging (MRI), etc. As an excellent drug carrier in tumor targeted drug delivery system, the drug release behavior of drug-loaded PDA-based nanoparticles is also an important factor to be considered in the establishment of drug delivery systems. Therefore, the purpose of this review is to provide a comprehensive overview of the various applications of PDA in tumor targeted drug delivery systems and to gain insight into the release behavior of the drug-loaded PDA-based nanocarriers. A sufficient understanding and discussion of these aspects is expected to provide a better way to design more rational and effective PDA-based tumor nano-targeted delivery systems. Apart from this, the prospects for the future application of PDA in this field and some unique insights are listed at the end of the article.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | - Yaou Duan
- Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China.
| |
Collapse
|
36
|
Maddinedi SB, Sonamuthu J, SuzuK Yildiz S, Han G, Cai Y, Gao J, Ni Q, Yao J. Silk sericin induced fabrication of reduced graphene oxide and its in-vitro cytotoxicity, photothermal evaluation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:189-196. [DOI: 10.1016/j.jphotobiol.2018.07.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 01/20/2023]
|
37
|
Nagai Y, Tsutsumi Y, Nakashima N, Fujigaya T. Synthesis of Single-Walled Carbon Nanotubes Coated with Thiol-Reactive Gel via Emulsion Polymerization. J Am Chem Soc 2018; 140:8544-8550. [DOI: 10.1021/jacs.8b03873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yukiko Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Tsutsumi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency-Precursory Research for Embryonic Science and Technology (JST-PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Center for Molecular Systems(CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
38
|
Hussein EA, Zagho MM, Nasrallah GK, Elzatahry AA. Recent advances in functional nanostructures as cancer photothermal therapy. Int J Nanomedicine 2018; 13:2897-2906. [PMID: 29844672 PMCID: PMC5961635 DOI: 10.2147/ijn.s161031] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Being a non-invasive and relatively safe technique, photothermal therapy has attracted a lot of interest in the cancer treatment field. Recently, nanostructure technology has entered the forefront of cancer therapy owing to its ability to absorb near-infrared radiation as well as efficient light to heat conversion. In this study, key nanostructures for cancer therapy including gold nanoparticles, magnetite iron oxide nanoparticles, organic nanomaterials, and novel two-dimensional nanoagents such as MXenes are discussed. Furthermore, we briefly discuss the characteristics of the nanostructures of these photothermal nanomaterial agents, while focusing on how nanostructures hold potential as cancer therapies. Finally, this review offers promising insight into new cancer therapy approaches, particularly in vivo and in vitro cancer treatments.
Collapse
Affiliation(s)
- Essraa A Hussein
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Moustafa M Zagho
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
39
|
Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare. Drug Deliv Transl Res 2018; 9:578-594. [DOI: 10.1007/s13346-018-0505-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
The role of photonics and natural curing agents of TGF-β1 in treatment of osteoarthritis. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Hatakeyama H. Recent Advances in Endogenous and Exogenous Stimuli-Responsive Nanocarriers for Drug Delivery and Therapeutics. Chem Pharm Bull (Tokyo) 2017; 65:612-617. [PMID: 28674332 DOI: 10.1248/cpb.c17-00068] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant progress has been achieved in the development of stimuli-responsive nanocarriers for drug delivery, diagnosis, and therapy. Various types of triggers are utilized in the development of nanocarrier delivery. Endogenous factors such as changes in pH, redox, gradient, and enzyme concentration which are linked to disease progression have been utilized for controlling biodistribution and releasing drugs from nanocarriers, as well as increasing subsequent pharmacological activity at the disease site. Nanocarriers which respond to artificially-induced exogenous factors (such as temperature, light, magnetic field, and ultrasound) have also been developed. This review aims to discuss recent advances in the design of stimuli-responsive nanocarriers which appear to have a promising future in medicine.
Collapse
Affiliation(s)
- Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
42
|
Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1449. [PMID: 28160445 PMCID: PMC5474189 DOI: 10.1002/wnan.1449] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/04/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Photothermal therapy (PTT), in which nanoparticles embedded within tumors generate heat in response to exogenously applied laser light, has been well documented as an independent strategy for highly selective cancer treatment. Gold-based nanoparticles are the main mediators of PTT because they offer: (1) biocompatibility, (2) small diameters that enable tumor penetration upon systemic delivery, (3) simple gold-thiol bioconjugation chemistry for the attachment of desired molecules, (4) efficient light-to-heat conversion, and (5) the ability to be tuned to absorb near-infrared light, which penetrates tissue more deeply than other wavelengths of light. In addition to acting as a standalone therapy, gold nanoparticle-mediated PTT has recently been evaluated in combination with other therapies, such as chemotherapy, gene regulation, and immunotherapy, for enhanced anti-tumor effects. When delivered independently, the therapeutic success of molecular agents is hindered by premature degradation, insufficient tumor delivery, and off-target toxicity. PTT can overcome these limitations by enhancing tumor- or cell-specific delivery of these agents or by sensitizing cancer cells to these additional therapies. All together, these benefits can enhance the therapeutic success of both PTT and the secondary treatment while lowering the required doses of the individual agents, leading to fewer off-target effects. Given the benefits of combining gold nanoparticle-mediated PTT with other treatment strategies, many exciting opportunities for multimodal cancer treatment are emerging that will ultimately lead to improved patient outcomes. WIREs Nanomed Nanobiotechnol 2017, 9:e1449. doi: 10.1002/wnan.1449 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rachel S. Riley
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, USA
| |
Collapse
|
43
|
Sobhani Z, Behnam MA, Emami F, Dehghanian A, Jamhiri I. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes. Int J Nanomedicine 2017; 12:4509-4517. [PMID: 28684911 PMCID: PMC5484561 DOI: 10.2147/ijn.s134661] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Photothermal therapy (PTT) is a therapeutic method in which photon energy is transformed into heat rapidly via different operations to extirpate cancer. Nanoparticles, such as carbon nanotubes (CNTs) have exceptional optical absorbance in visible and near infrared spectra. Therefore, they could be a good converter to induce hyperthermia in PTT technique. In our study, for improving the dispersibility of multiwalled CNTs in water, the CNTs were oxidized (O-CNTs) and then polyethylene glycol (PEG) was used for wrapping the surface of nanotubes. The formation of a thin layer of PEG around the nanotubes was confirmed through Fourier transform infrared, thermogravimetric analysis, and field emission scanning electron microscopy techniques. Results of thermogravimetric analysis showed that the amount of PEG component in the O-CNT-PEG was approximately 80% (w/w). Cell cytotoxicity study showed that O-CNT was less cytotoxic than pristine multiwalled nanotubes, and O-CNT-PEG had the lowest toxicity against HeLa and HepG2 cell lines. The effect of O-CNT-PEG in reduction of melanoma tumor size after PTT was evaluated. Cancerous mice were exposed to a continuous-wave near infrared laser diode (λ=808 nm, P=2 W and I=8 W/cm2) for 10 minutes once in the period of the treatment. The average size of tumor in mice receiving O-CNT-PEG decreased sharply in comparison with those that received laser therapy alone. Results of animal studies indicate that O-CNT-PEG is a powerful candidate for eradicating solid tumors in PTT technique.
Collapse
Affiliation(s)
- Zahra Sobhani
- Quality Control Department, Faculty of Pharmacy
- Center for Nanotechnology in Drug Delivery, Faculty of Pharmacy, Shiraz University of Medical Sciences
| | - Mohammad Ali Behnam
- Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology
| | - Farzin Emami
- Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology
| | | | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Lee SS, Roche PJ, Giannopoulos PN, Mitmaker EJ, Tamilia M, Paliouras M, Trifiro MA. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells. Tumour Biol 2017; 39:1010428317695943. [PMID: 28351335 DOI: 10.1177/1010428317695943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.
Collapse
Affiliation(s)
- Seung S Lee
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 2 Division of Experimental Medicine, Department of Medicine/Oncology, McGill University, Montreal, QC, Canada
| | - Philip Jr Roche
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Paresa N Giannopoulos
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Elliot J Mitmaker
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 3 Department of Surgery, McGill University, Montreal, QC, Canada
| | - Michael Tamilia
- 4 Division of Endocrinology, Jewish General Hospital, Montreal, QC, Canada
| | - Miltiadis Paliouras
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 2 Division of Experimental Medicine, Department of Medicine/Oncology, McGill University, Montreal, QC, Canada
| | - Mark A Trifiro
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 2 Division of Experimental Medicine, Department of Medicine/Oncology, McGill University, Montreal, QC, Canada
- 4 Division of Endocrinology, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
45
|
Antonucci A, Kupis-Rozmysłowicz J, Boghossian AA. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11321-11331. [PMID: 28299937 DOI: 10.1021/acsami.7b00810] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The exquisite structural and optical characteristics of single-walled carbon nanotubes (SWCNTs), combined with the tunable specificities of proteins and peptides, can be exploited to strongly benefit technologies with applications in fields ranging from biomedicine to industrial biocatalysis. The key to exploiting the synergism of these materials is designing protein/peptide-SWCNT conjugation schemes that preserve biomolecule activity while keeping the near-infrared optical and electronic properties of SWCNTs intact. Since sp2 bond-breaking disrupts the optoelectronic properties of SWCNTs, noncovalent conjugation strategies are needed to interface biomolecules to the nanotube surface for optical biosensing and delivery applications. An underlying understanding of the forces contributing to protein and peptide interaction with the nanotube is thus necessary to identify the appropriate conjugation design rules for specific applications. This article explores the molecular interactions that govern the adsorption of peptides and proteins on SWCNT surfaces, elucidating contributions from individual amino acids as well as secondary and tertiary protein structure and conformation. Various noncovalent conjugation strategies for immobilizing peptides, homopolypeptides, and soluble and membrane proteins on SWCNT surfaces are presented, highlighting studies focused on developing near-infrared optical sensors and molecular scaffolds for self-assembly and biochemical analysis. The analysis presented herein suggests that though direct adsorption of proteins and peptides onto SWCNTs can be principally applied to drug and gene delivery, in vivo imaging and targeting, or cancer therapy, nondirect conjugation strategies using artificial or natural membranes, polymers, or linker molecules are often better suited for biosensing applications that require conservation of biomolecular functionality or precise control of the biomolecule's orientation. These design rules are intended to provide the reader with a rational approach to engineering biomolecule-SWCNT platforms, broadening the breadth and accessibility of both wild-type and engineered biomolecules for SWCNT-based applications.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015-Lausanne, Switzerland
| | - Justyna Kupis-Rozmysłowicz
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015-Lausanne, Switzerland
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015-Lausanne, Switzerland
| |
Collapse
|
46
|
Multifunctional near-infrared dye-magnetic nanoparticles for bioimaging and cancer therapy. Cancer Lett 2017; 390:168-175. [DOI: 10.1016/j.canlet.2016.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
|
47
|
Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. NANOSCALE 2017; 9:3698-3718. [PMID: 28272614 DOI: 10.1039/c6nr09177f] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In general, effective clinical treatment demands precision medicine, which requires specific perturbation to disease cells with no damage to normal tissue. Thus far, guaranteeing that selective therapeutic effects occur only at targeted disease areas remains a technical challenge. Among the various endeavors to achieve such an outcome, strategies based on light-controlled therapies have received special attention, mostly due to their unique advantages, including the low-invasive property and the capability to obtain spatial and temporal precision at the targeted sites via specific wavelength light irradiation. However, most conventional light-mediated therapies, especially those based on short-wavelength UV or visible light irradiation, have potential issues including limited penetration depth and harmful photo damage to healthy tissue. Therefore, the implemention of near-infrared (NIR) light illumination, which can travel into deeper tissues without causing obvious photo-induced cytotoxcity, has been suggested as a preferable option for precise phototherapeutic applications in vitro and in vivo. In this article, an overview is presented of existing therapeutic applications through NIR light-absorbed nanostructures, such as NIR light-controlled drug delivery, NIR light-mediated photothermal and photodynamic therapies. Potential challenges and relevant future prospects are also discussed.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China 215123.
| | - Junxin Aw
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore and Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 117602, Singapore
| |
Collapse
|
48
|
Dong X, Sun Z, Wang X, Zhu D, Liu L, Leng X. Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv 2017; 24:143-151. [PMID: 28156171 PMCID: PMC8241058 DOI: 10.1080/10717544.2016.1233592] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Monitoring drug release and therapeutic efficacy is crucial for developing drug delivery systems. Our preliminary study demonstrated that, as compared with pristine multiwalled carbon nanotubes (MWCNTs), transactivator of transcription (TAT)-chitosan functionalized MWCNTs (MWCNTs-TC) were a more promising candidate for drug delivery in cancer therapy. In the present study, a MWCNTs/TC-based drug delivery system was developed for an anticancer drug, doxorubicin (DOX). The drug loading and in vitro release profiles, cellular uptake and cytotoxicity were assessed. More importantly, the in vivo drug release and antitumor effect of MWCNTs/DOX/TC were evaluated by noninvasive fluorescence and bioluminescence imaging. It was demonstrated that MWCNTs/DOX/TC can be efficiently taken up by BEL-7402 hepatoma cells. The release of DOX from MWCNTs/DOX/TC was faster under lower pH condition, which was beneficial for intrcellular drug release. The in vivo release process of DOX and antitumor effect in animal model were monitored simultaneously by noninvasive fluorescence and luminescence imaging, which demonstrated the application potential of MWCNTs/DOX/TC for cancer therapy.
Collapse
Affiliation(s)
- Xia Dong
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , PR China
| | - Zhiting Sun
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , PR China
| | - Xiaoxiao Wang
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , PR China
| | - Dunwan Zhu
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , PR China
| | - Lanxia Liu
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , PR China
| | - Xigang Leng
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , PR China
| |
Collapse
|
49
|
Sanginario A, Miccoli B, Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. BIOSENSORS 2017; 7:E9. [PMID: 28212271 PMCID: PMC5371782 DOI: 10.3390/bios7010009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide nanowires, zinc oxide or mesoporous silica nanoparticles, for cancer and metastasis treatment with the advantage of operating directly at the bio-molecular scale. Among them, carbon nanotubes emerged as valid candidates not only for drug delivery, but also as a valuable tool in cancer imaging and physical ablation. Nevertheless, deep investigations about carbon nanotubes' potential bio-compatibility and cytotoxicity limits should be also critically addressed. In the present review, after introducing carbon nanotubes and their promising advantages and drawbacks for fighting cancer, we want to focus on the numerous and different ways in which they can assist to reach this goal. Specifically, we report on how they can be used not only for drug delivery purposes, but also as a powerful ally to develop effective contrast agents for tumors' medical or photodynamic imaging, to perform direct physical ablation of metastasis, as well as gene therapy.
Collapse
Affiliation(s)
- Alessandro Sanginario
- Electronics Design Laboratory (EDL), Istituto Italiano di Tecnologia, Via Melen 83b, 16152 Genova (GE), Italy.
| | - Beatrice Miccoli
- Department of Electronics and Telecommunications, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
50
|
Ohta T, Hashida Y, Higuchi Y, Yamashita F, Hashida M. In Vitro Cellular Gene Delivery Employing a Novel Composite Material of Single-Walled Carbon Nanotubes Associated With Designed Peptides With Pegylation. J Pharm Sci 2016; 106:792-802. [PMID: 27989368 DOI: 10.1016/j.xphs.2016.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical fields including application for drug delivery system. In this study, we developed a novel gene delivery system employing SWCNTs associated with polycationic and amphiphilic H-(-Lys-Trp-Lys-Gly-)7-OH [(KWKG)7] peptides having pegylation. SWCNTs wrapped with (KWKG)7 formed a complex with plasmid DNA (pDNA) in aqueous solution based on polyionic interaction but later underwent aggregation. On the other hand, a complex of pDNA and SWCNT-(KWKG)7 modified with polyethylene glycol (PEG) chains of 12 units [SWCNT-(KWKG)7-(PEG)12] afforded good dispersion stability for 24 h even in a cell culture medium. The in vitro cellular uptake of SWCNT-(KWKG)7-(PEG)12/pDNA complex prepared with fluorescence-labeled pDNA was evaluated with fluorescent microscopic observation and flow cytometry. The uptake by A549 human lung adenocarcinoma epithelial cells increased along with the extent of pegylation, suggesting the importance of dispersion stability in addition to the cationic charge which facilitates ionic cellular interaction. The expression of pDNA encoding the monomeric Kusabira-Orange 2 fluorescent protein in the form of the SWCNT-(KWKG)7-(PEG)12/pDNA complex demonstrated remarkable enhancement of transfection depending also on the extent of pegylation and the N/P ratio. The potential of the SWCNT composite wrapped with polycationic and amphiphilic (KWKG)7 with pegylation as a carrier for gene delivery was demonstrated.
Collapse
Affiliation(s)
- Takahisa Ohta
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|