1
|
Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal Delivery to the Brain: Harnessing Nanoparticles for Effective Drug Transport. Pharmaceutics 2024; 16:481. [PMID: 38675142 PMCID: PMC11055100 DOI: 10.3390/pharmaceutics16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The nose-to-brain drug-delivery system has emerged as a promising strategy to overcome the challenges associated with conventional drug administration for central nervous system disorders. This emerging field is driven by the anatomical advantages of the nasal route, enabling the direct transport of drugs from the nasal cavity to the brain, thereby circumventing the blood-brain barrier. This review highlights the significance of the anatomical features of the nasal cavity, emphasizing its high permeability and rich blood supply that facilitate rapid drug absorption and onset of action, rendering it a promising domain for neurological therapeutics. Exploring recent developments and innovations in different nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, micelles, nanoemulsions, nanosuspensions, carbon nanotubes, mesoporous silica nanoparticles, and nanogels unveils their diverse functions in improving drug-delivery efficiency and targeting specificity within this system. To minimize the potential risk of nanoparticle-induced toxicity in the nasal mucosa, this article also delves into the latest advancements in the formulation strategies commonly involving surface modifications, incorporating cutting-edge materials, the adjustment of particle properties, and the development of novel formulations to improve drug stability, release kinetics, and targeting specificity. These approaches aim to enhance drug absorption while minimizing adverse effects. These strategies hold the potential to catalyze the advancement of safer and more efficient nose-to-brain drug-delivery systems, consequently revolutionizing treatments for neurological disorders. This review provides a valuable resource for researchers, clinicians, and pharmaceutical-industry professionals seeking to advance the development of effective and safe therapies for central nervous system disorders.
Collapse
Affiliation(s)
- Shivani Gandhi
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Divyesh H. Shastri
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
2
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Jiang Y, Li W, Wang Z, Lu J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023; 16:34. [PMID: 38258045 PMCID: PMC10820119 DOI: 10.3390/pharmaceutics16010034] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Over the past several decades, liposomes have been extensively developed and used for various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versatility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index of free drugs. However, some challenges remain unsolved, including liposome premature leakage, manufacturing irreproducibility, and limited translation success. This article reviews various aspects of liposomes, including its advantages, major compositions, and common preparation techniques, and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for treating and preventing a variety of human diseases. In addition, we summarize the significance of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fundamental knowledge and concepts about liposomes and their applications and contributions in contemporary pharmaceutical advancement.
Collapse
Affiliation(s)
- Yanhao Jiang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Wenpan Li
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Zhiren Wang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Jianqin Lu
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
- Clinical and Translational Oncology Program, NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Patel M, Mazumder R, Mishra R, Kant Kaushik K. Potential of Nanotechnology-based Formulations in Combating Pulmonary Infectious Diseases: A Current Scenario. Curr Pharm Des 2022; 28:3413-3427. [PMID: 36397631 DOI: 10.2174/1381612829666221116143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pulmonary microbial infection is mainly caused by microbes like atypical bacteria, viruses, and fungi, on both the upper and lower respiratory tracts. One of the demands of the present is the use of nanotechnology-based treatments to fight various lung infections. AIM The main aim of the study is to explore all pulmonary infectious diseases and to compare the advanced and novel treatment approaches with the conventional methods which are available to treat infections. METHODS This work sheds light on pulmonary infectious diseases with their conventional and present treatment approaches along with a focus on the advantageous roles of nano-based formulations. In the literature, it has been reported that the respiratory system is the key target of various infectious diseases which gives rise to various challenges in the treatment of pulmonary infections. RESULTS The present review article describes the global situation of pulmonary infections and the different strategies which are available for their management, along with their limitations. The article also highlights the advantages and different examples of nanoformulations currently combating the limitations of conventional therapies. CONCLUSION The content of the present article further reflects on the summary of recently published research and review works on pulmonary infections, conventional methods of treatment with their limitations, and the role of nano-based approaches to combat the existing infectious diseases which will jointly help the researchers to produce effective drug formulations with desired pharmacological activities.
Collapse
Affiliation(s)
- Manisha Patel
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Rupa Mazumder
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Rakhi Mishra
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Kamal Kant Kaushik
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| |
Collapse
|
5
|
Cheng H, Li Z. Advances and Perspectives of Pharmaceutical Nanotechnology in mRNA therapy. Pharm Nanotechnol 2022; 10:PNT-EPUB-125850. [PMID: 36028972 DOI: 10.2174/2211738510666220825145124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Hui Cheng
- Nankai University School of Medicine, Tianjin 300071, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin 300071, China
| |
Collapse
|
6
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
7
|
Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021; 14:1173. [PMID: 34832955 PMCID: PMC8619292 DOI: 10.3390/ph14111173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is the most effective means of preventing infectious diseases and saving lives. Modern biotechnology largely enabled vaccine development. In the meantime, recent advances in pharmaceutical technology have resulted in the emergence of nanoparticles that are extensively investigated as promising miniaturized drug delivery systems. Scientists are particularly interested in liposomes as an important carrier for vaccine development. Wide acceptability of liposomes lies in their flexibility and versatility. Due to their unique vesicular structure with alternating aqueous and lipid compartments, liposomes can enclose both hydrophilic and lipophilic compounds, including antigens. Liposome composition can be tailored to obtain the desired immune response and adjuvant characteristics. During the current pandemic of COVID-19, many liposome-based vaccines have been developed with great success. This review covers a liposome-based vaccine designed particularly to combat viral infection of the lower respiratory tract (LRT), i.e., infection of the lung, specifically in the lower airways. Viruses such as influenza, respiratory syncytial virus (RSV), severe acute respiratory syndrome (SARS-CoV-1 and SARS-CoV-2) are common causes of LRT infections, hence this review mainly focuses on this category of viruses.
Collapse
Affiliation(s)
- Mohamed Ahmed Attia
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Ebtessam Ahmed Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Toka Tarek Elebyary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Ahmed Mostafa Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| |
Collapse
|
8
|
Chan Y, Ng SW, Singh SK, Gulati M, Gupta G, Chaudhary SK, Hing GB, Collet T, MacLoughlin R, Löbenberg R, Oliver BG, Chellappan DK, Dua K. Revolutionizing polymer-based nanoparticle-linked vaccines for targeting respiratory viruses: A perspective. Life Sci 2021; 280:119744. [PMID: 34174324 PMCID: PMC8223024 DOI: 10.1016/j.lfs.2021.119744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - Goh Bey Hing
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Raimar Löbenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2N8, Canada
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Kamal Dua
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2N8, Canada; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
9
|
Luo MX, Hua S, Shang QY. Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Mol Med Rep 2021; 23:325. [PMID: 33760125 PMCID: PMC7974419 DOI: 10.3892/mmr.2021.11964] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Respiratory disease is a common disease with a high incidence worldwide, which is a serious threat to human health, and is considered a societal and economic burden. The application of nanotechnology in drug delivery systems has created new treatments for respiratory diseases. Within this context, the present review systematically introduced the physicochemical properties of nanoparticles (NPs); reviewed the current research status of different nanocarriers in the treatment of respiratory diseases, including liposomes, solid lipid nanocarriers, polymeric nanocarriers, dendrimers, inorganic nanocarriers and protein nanocarriers; and discussed the main advantages and limitations of therapeutic nanomedicine in this field. The application of nanotechnology overcomes drug inherent deficiencies to a certain extent, and provides unlimited potential for the development of drugs to treat respiratory diseases. However, most of the related research work is in the preclinical experimental stage and safety assessment is still a challenging task. Future studies are needed to focus on the performance modification, molecular mechanism and potential toxicity of therapeutic nanomedicine.
Collapse
Affiliation(s)
- Ming-Xin Luo
- Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China
| | - Shan Hua
- Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China
| | - Qi-Yun Shang
- Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
10
|
Renu S, Han Y, Dhakal S, Lakshmanappa YS, Ghimire S, Feliciano-Ruiz N, Senapati S, Narasimhan B, Selvaraj R, Renukaradhya GJ. Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydr Polym 2020; 243:116434. [PMID: 32532387 DOI: 10.1016/j.carbpol.2020.116434] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Poor induction of mucosal immunity in the intestines by current Salmonella vaccines is a challenge to the poultry industry. We prepared and tested an oral deliverable Salmonella subunit vaccine containing immunogenic outer membrane proteins (OMPs) and flagellin (F) protein loaded and F-protein surface coated chitosan nanoparticles (CS NPs) (OMPs-F-CS NPs). The OMPs-F-CS NPs had mean particle size distribution of 514 nm, high positive charge and spherical in shape. In vitro and in vivo studies revealed the F-protein surface coated CS NPs were specifically targeted to chicken immune cells. The OMPs-F-CS NPs treatment of chicken immune cells upregulated TLRs, and Th1 and Th2 cytokines mRNA expression. Oral delivery of OMPs-F-CS NPs in birds enhanced the specific systemic IgY and mucosal IgA antibodies responses as well as reduced the challenge Salmonella load in the intestines. Thus, user friendly oral deliverable chitosan-based Salmonella vaccine for poultry is a viable alternative to current vaccines.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Shristi Ghimire
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Dhakal S, Renukaradhya GJ. Nanoparticle-based vaccine development and evaluation against viral infections in pigs. Vet Res 2019; 50:90. [PMID: 31694705 PMCID: PMC6833244 DOI: 10.1186/s13567-019-0712-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/20/2019] [Indexed: 11/10/2022] Open
Abstract
Virus infections possess persistent health challenges in swine industry leading to severe economic losses worldwide. The economic burden caused by virus infections such as Porcine Reproductive and Respiratory Syndrome Virus, Swine influenza virus, Porcine Epidemic Diarrhea Virus, Porcine Circovirus 2, Foot and Mouth Disease Virus and many others are associated with severe morbidity, mortality, loss of production, trade restrictions and investments in control and prevention practices. Pigs can also have a role in zoonotic transmission of some viral infections to humans. Inactivated and modified-live virus vaccines are available against porcine viral infections with variable efficacy under field conditions. Thus, improvements over existing vaccines are necessary to: (1) Increase the breadth of protection against evolving viral strains and subtypes; (2) Control of emerging and re-emerging viruses; (3) Eradicate viruses localized in different geographic areas; and (4) Differentiate infected from vaccinated animals to improve disease control programs. Nanoparticles (NPs) generated from virus-like particles, biodegradable and biocompatible polymers and liposomes offer many advantages as vaccine delivery platform due to their unique physicochemical properties. NPs help in efficient antigen internalization and processing by antigen presenting cells and activate them to elicit innate and adaptive immunity. Some of the NPs-based vaccines could be delivered through both parenteral and mucosal routes to trigger efficient mucosal and systemic immune responses and could be used to target specific immune cells such as mucosal microfold (M) cells and dendritic cells (DCs). In conclusion, NPs-based vaccines can serve as novel candidate vaccines against several porcine viral infections with the potential to enhance the broader protective efficacy under field conditions. This review highlights the recent developments in NPs-based vaccines against porcine viral pathogens and how the NPs-based vaccine delivery system induces innate and adaptive immune responses resulting in varied level of protective efficacy.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691 USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691 USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
12
|
Chen M, Chen X, Song X, Muhammad A, Jia R, Zou Y, Yin L, Li L, He C, Ye G, Lv C, Zhang W, Yin Z. The immune-adjuvant activity and the mechanism of resveratrol on pseudorabies virus vaccine in a mouse model. Int Immunopharmacol 2019; 76:105876. [PMID: 31499271 DOI: 10.1016/j.intimp.2019.105876] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022]
Abstract
Resveratrol had shown various properties before, like immunomodulatory, anti-inflammatory and antiviral activities. Based on these properties, the present study was designed to evaluate the effects and mechanism of resveratrol as an immune-adjuvant for pseudorabies virus (PRV) vaccine. We found that oral administration of resveratrol to mice significantly increased the number of T lymphocytes in the spleen, and elevated the concentrations of antibodies and cytokines in the serum. Resveratrol (30 mg/kg) could enhance phagocytic capacity of peritoneal macrophage (PM) by boosting the percentage of phagocytosis, phagocytic index and the level of lysozyme. Resveratrol also enhanced antigen presentation function of PM by upregulating the expressions of CD86 and MHC-II. Further study revealed that resveratrol could increase the protein levels of TLR4, Ikk, IκBα, NF-κB and JNK when compared with non-adjuvant group. These results provide further insight into the mechanism of action in adjuvant activity of resveratrol, and also offer preclinical evidence for development as a PRV vaccine adjuvant.
Collapse
Affiliation(s)
- Meng Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangxiu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Abaidullah Muhammad
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
14
|
Guo X, Zheng Q, Jiang X, Wu C, Zhang T, Wang D, Wang X, Liu T, Wang N, Jiang Y, Li D, Ren G. The composite biological adjuvants enhance immune response of porcine circovirus type2 vaccine. Vet Microbiol 2019; 228:69-76. [DOI: 10.1016/j.vetmic.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 11/17/2022]
|
15
|
Prims S, Jurgens B, Vanden Hole C, Van Cruchten S, Van Ginneken C, Casteleyn C. The porcine tonsils and Peyer's patches: A stereological morphometric analysis in conventionally and artificially reared piglets. Vet Immunol Immunopathol 2018; 206:9-15. [PMID: 30502915 DOI: 10.1016/j.vetimm.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 11/26/2022]
Abstract
Selection for prolificacy in modern pig farming has resulted in increasing litter sizes. Since rearing large litters is challenging, artificial rearing of piglets with a milk replacer is an alternative strategy. It is hypothesized that the development of the piglets' mucosa-associated lymphoid tissues (MALT) is affected by these artificial conditions. Therefore, the stereologically estimated volumes of the tonsil of the soft palate, and the lingual, nasopharyngeal and paraepiglottic tonsils, as well as the jejunal and ileal Peyer's patches were statistically compared at day 21 postpartum between six conventionally reared piglets and six piglets that were artificially reared from day 7 onwards. In addition, six 7-day-old sow-fed piglets were examined to evaluate the effect of age. All tonsils and Peyer's patches significantly increased in volume with age. The rearing strategy had no significant effect on the volumes of the tonsil of the soft palate and the lingual tonsil. The former tonsil was by far the largest with a mean volume of 967.2 ± 122.4 mm3 and 822.3 ± 125.4 mm3 in the conventionally and artificially reared piglets, respectively. The lingual tonsil only measured 9.4 ± 6.4 mm3 and 6.3 ± 2.6 mm3 in conventionally and artificially reared groups, respectively. In contrast, the rearing strategy did affect the volumes of the nasopharyngeal and paraepiglottic tonsils, which had a mean volume of 137.1 ± 32.4 mm3 and 84.4 ± 26.9 mm3, and 30.7 ± 7.8 mm3 and 20.0 ± 3.9 mm3 in conventionally and artificially reared piglets, respectively. The rearing strategy did not affect the development of the Peyer's patches. At day 21, the jejunal Peyer's patches of the conventionally and artificially reared piglets presented a volume of 1.6 ± 0.4 cm3 and 1.3 ± 0.2 cm3, respectively. The volumes of the ileal Peyer's patch amounted to 15.1 ± 3.0 cm³ in conventionally reared piglets and 12.0 ± 2.6 cm³ in artificially reared piglets at day 21. The results showed that artificial rearing hampers the morphological development of the tonsils that are exposed to inhaled antigens, but the voluminous lymphoid tissues that sample oral antigens are not influenced. Since it is unlikely that the observed differences in both tonsils are due to the milk replacer, artificial rearing could be a valuable alternative for raising large litters. In addition, the presence of developing MALT in piglets allows for investigating the value of nasal and oral vaccination in this species for human or veterinary purposes.
Collapse
Affiliation(s)
- Sara Prims
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Ben Jurgens
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Charlotte Vanden Hole
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Steven Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Chris Van Ginneken
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Christophe Casteleyn
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
16
|
Yang Y, Jing Y, Wang J, Yang Q. Histological studies on the development of porcine tonsils after birth. J Morphol 2018; 279:1185-1193. [PMID: 29893062 DOI: 10.1002/jmor.20839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/11/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
Abstract
Tonsils form the topographically first immune barrier of an organism against the invasion of pathogens. We used histology to study the development of tonsils of pigs after birth. At birth, the tonsils consist of diffuse lymphoid tissue without any lymphoid follicle aggregations. At the age of 7 days, lymphoid follicles appeared in the soft palate tonsil. The lymphoid layer of the nasopharyngeal tonsil, soft palate tonsil, and lingual tonsil became thicker, and lymphoid follicles in the lamina propria were clearly visible at the age of 21 days. Secondary lymphoid follicles were present in the nasopharyngeal tonsil at the age of 50 days, and in the soft palate tonsil at the age of 120 days. Dendritic cells (DCs), CD3+ T cells and IgA+ B cells in the soft palate tonsil, nasopharyngeal tonsil and lingual tonsil increased continuously, especially during the first 21 days. The results suggested that tonsils have an important role in local immune defense against invading antigens after birth and will be beneficial for understanding the mechanisms of immunity in these animals after nasal and oral vaccination.
Collapse
Affiliation(s)
- Yunhan Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuchao Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jialu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| |
Collapse
|
17
|
Turi KN, Romick-Rosendale L, Ryckman KK, Hartert TV. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J Allergy Clin Immunol 2018; 141:1191-1201. [PMID: 28479327 PMCID: PMC5671382 DOI: 10.1016/j.jaci.2017.04.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Because asthma is a disease that results from host-environment interactions, an approach that allows assessment of the effect of the environment on the host is needed to understand the disease. Metabolomics has appealing potential as an application to study pathways to childhood asthma development. The objective of this review is to provide an overview of metabolomics methods and their application to understanding host-environment pathways in asthma development. We reviewed recent literature on advances in metabolomics and their application to study pathways to childhood asthma development. We highlight the (1) potential of metabolomics in understanding the pathogenesis of disease and the discovery of biomarkers; (2) choice of metabolomics techniques, biospecimen handling, and data analysis; (3) application to studying the role of the environment on asthma development; (4) review of metabolomics applied to the outcome of asthma; (5) recommendations for application of metabolomics-based -omics data integration in understanding disease pathogenesis; and (6) limitations. In conclusion, metabolomics allows use of biospecimens to identify useful biomarkers and pathways involved in disease development and subsequently to inform a greater understanding of disease pathogenesis and endotypes and prediction of the clinical course of childhood asthma phenotypes.
Collapse
Affiliation(s)
- Kedir N Turi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Lindsey Romick-Rosendale
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kelli K Ryckman
- Departments of Epidemiology and Pediatrics, College of Public Health and Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Tina V Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn.
| |
Collapse
|
18
|
Wagner-Muñiz DA, Haughney SL, Kelly SM, Wannemuehler MJ, Narasimhan B. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity. Front Immunol 2018; 9:325. [PMID: 29599766 PMCID: PMC5863507 DOI: 10.3389/fimmu.2018.00325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA), a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine) platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles). Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.
Collapse
Affiliation(s)
- Danielle A. Wagner-Muñiz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Sean M. Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
Yang J, Dai L, Yu Q, Yang Q. Histological and anatomical structure of the nasal cavity of Bama minipigs. PLoS One 2017; 12:e0173902. [PMID: 28339502 PMCID: PMC5365122 DOI: 10.1371/journal.pone.0173902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Objective The nasal mucosa is equipped with abundant lymphatic tissues, serving as the first line of defense against invasion by microorganisms. In this study, we characterized the features of the nasal mucosa of Bama minipigs (Sus scrofa domestica) via histological analysis. Methods Five cross sections (I, II, III, IV, and V) were obtained from the distal end of the nasal cavity toward the pharynx (along the cavity axis) and examined. Specifically, CD3+ T cells, immunoglobulin A (IgA)+ cells, and M cells were detected by immunohistochemistry, while dendritic cells (DCs) were detected by immunofluorescence. The distribution of goblet cells was determined by periodic acid-Schiff (PAS) staining. Results The nasal cavity of Bama minipigs can be divided into three parts: the regio vestibularis (I, II), regio respiratoria (III, IV), and regio olfactoria (V). Lymphoid tissue was present at random locations in the nasal cavity. Abundant lymphoid tissue was located in the roof of the nasopharyngeal meatus and was continuous with the lymphoid tissue of the pharynx. The distribution of CD3+ T cells, IgA+ cells, M cells, and DCs increased distally in the nasal cavity. Conclusions The present work comprises a histological study of the nasal cavity of Bama minipigs, and will be beneficial for understanding the mechanisms of immunity in these animals after nasal vaccination.
Collapse
Affiliation(s)
- Jingjing Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Lei Dai
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Qinghua Yu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
- * E-mail:
| |
Collapse
|
20
|
Dhakal S, Goodman J, Bondra K, Lakshmanappa YS, Hiremath J, Shyu DL, Ouyang K, Kang KI, Krakowka S, Wannemuehler MJ, Won Lee C, Narasimhan B, Renukaradhya GJ. Polyanhydride nanovaccine against swine influenza virus in pigs. Vaccine 2017; 35:1124-1131. [PMID: 28117173 DOI: 10.1016/j.vaccine.2017.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
|
21
|
Dhakal S, Hiremath J, Bondra K, Lakshmanappa YS, Shyu DL, Ouyang K, Kang KI, Binjawadagi B, Goodman J, Tabynov K, Krakowka S, Narasimhan B, Lee CW, Renukaradhya GJ. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J Control Release 2017; 247:194-205. [PMID: 28057521 DOI: 10.1016/j.jconrel.2016.12.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jagadish Hiremath
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathryn Bondra
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Duan-Liang Shyu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyung-Il Kang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan Goodman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kairat Tabynov
- The Research Institute for Biological Safety Problems (RIBSP), Zhambylskaya Oblast, Gvardeiskiy 080409, Kazakhstan
| | - Steven Krakowka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Chang Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release 2016; 240:394-413. [PMID: 26860287 PMCID: PMC5381653 DOI: 10.1016/j.jconrel.2016.02.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
Abstract
Most childhood infections occur via the mucosal surfaces, however, parenterally delivered vaccines are unable to induce protective immunity at these surfaces. In contrast, delivery of vaccines via the mucosal routes can allow antigens to interact with the mucosa-associated lymphoid tissue (MALT) to induce both mucosal and systemic immunity. The induced mucosal immunity can neutralize the pathogen on the mucosal surface before it can cause infection. In addition to reinforcing the defense at mucosal surfaces, mucosal vaccination is also expected to be needle-free, which can eliminate pain and the fear of vaccination. Thus, mucosal vaccination is highly appealing, especially for the pediatric population. However, vaccine delivery across mucosal surfaces is challenging because of the different barriers that naturally exist at the various mucosal surfaces to keep the pathogens out. There have been significant developments in delivery systems for mucosal vaccination. In this review we provide an introduction to the MALT, highlight barriers to vaccine delivery at different mucosal surfaces, discuss different approaches that have been investigated for vaccine delivery across mucosal surfaces, and conclude with an assessment of perspectives for mucosal vaccination in the context of the pediatric population.
Collapse
Affiliation(s)
| | | | - Wenqian Tao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|