1
|
Acharya B, McGlade CA, Yin H, Kawano T, Haar L, Mackman N, Sellers RS, Tan X, Bhatt AP, Lawrence DS, Vickerman BM. Photothrombolytics: A light-driven technology for the targeted lysis of thrombi. J Control Release 2025; 378:281-293. [PMID: 39615753 PMCID: PMC11830540 DOI: 10.1016/j.jconrel.2024.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Occlusive blood clots remain a significant global health challenge and result in emergencies that are main causes of death and disability worldwide. Thrombolytic agents (including tissue plasminogen activator, tPA) are the only pharmacological means to dissolve blood clots. However, these drugs have modest efficacy and severe safety concerns persist. We have developed light-responsive tPA-loaded red blood cells (tPA-RBCsPhoto) to target thrombolytic activity at the site of a blood clot. Herein, we describe the use of light to control the release of tPA from engineered RBCs and the subsequent degradation of a blood clot ex vivo. Furthermore, we have employed this technology to restore blood flow to an occluded mouse artery in vivo using a targeted dose that is 25 times lower than conventional systemic tPA treatment.
Collapse
Affiliation(s)
- Basanta Acharya
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Caylie A McGlade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Haifeng Yin
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Tomohiro Kawano
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Lauren Haar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Rani S Sellers
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Xianming Tan
- Department of Biostatistics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Aadra P Bhatt
- Division of Gastroenterology & Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Brianna M Vickerman
- Eshelman Innovation, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
2
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
3
|
Amulya E, Bahuguna D, Negi M, Phatale V, Sikder A, Vambhurkar G, Katta CB, Dandekar MP, Madan J, Srivastava S. Lipid engineered nanomaterials: A novel paradigm shift for combating stroke. APPLIED MATERIALS TODAY 2024; 38:102194. [DOI: 10.1016/j.apmt.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Zachová K, Bartheldyová E, Hubatka F, Křupka M, Odehnalová N, Turánek Knötigová P, Vaškovicová N, Sloupenská K, Hromádka R, Paulovičová E, Effenberg R, Ledvina M, Raška M, Turánek J. The immunogenicity of p24 protein from HIV-1 virus is strongly supported and modulated by coupling with liposomes and mannan. Carbohydr Polym 2024; 332:121844. [PMID: 38431385 DOI: 10.1016/j.carbpol.2024.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Anti-viral and anti-tumor vaccines aim to induce cytotoxic CD8+ T cells (CTL) and antibodies. Conserved protein antigens, such as p24 from human immunodeficiency virus, represent promising component for elicitation CTLs, nevertheless with suboptimal immunogenicity, if formulated as recombinant protein. To enhance immunogenicity and CTL response, recombinant proteins may be targeted to dendritic cells (DC) for cross presentation on MHCI, where mannose receptor and/or other lectin receptors could play an important role. Here, we constructed liposomal carrier-based vaccine composed of recombinant p24 antigen bound by metallochelating linkage onto surface of nanoliposomes with surface mannans coupled by aminooxy ligation. Generated mannosylated proteonanoliposomes were analyzed by dynamic light scattering, isothermal titration, and electron microscopy. Using murine DC line MutuDC and murine bone marrow derived DC (BMDC) we evaluated their immunogenicity and immunomodulatory activity. We show that p24 mannosylated proteonanoliposomes activate DC for enhanced MHCI, MHCII and CD40, CD80, and CD86 surface expression both on MutuDC and BMDC. p24 mannosylated liposomes were internalized by MutuDC with p24 intracellular localization within 1 to 3 h. The combination of metallochelating and aminooxy ligation could be used simultaneously to generate nanoliposomal adjuvanted recombinant protein-based vaccines versatile for combination of recombinant antigens relevant for antibody and CTL elicitation.
Collapse
Affiliation(s)
- K Zachová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic
| | - E Bartheldyová
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - F Hubatka
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - M Křupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic
| | - N Odehnalová
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - P Turánek Knötigová
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - N Vaškovicová
- Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - K Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic
| | - R Hromádka
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - E Paulovičová
- Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - R Effenberg
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, Czech Republic
| | - M Ledvina
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, Czech Republic
| | - M Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic.
| | - J Turánek
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic; C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic; Institute of Clinical Immunology & Allergology, Charles University Prague and University Hospital, Hradec Kralove, Sokolská 581, Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
6
|
Jin L, Chen F, Chen X, Zhang S, Liang Z, Zhao L, Tan H. pH/Temperature Dual-Responsive Protein-Polymer Conjugates for Potential Therapeutic Hypothermia in Ischemic Stroke. ACS APPLIED BIO MATERIALS 2023; 6:5105-5113. [PMID: 37903779 DOI: 10.1021/acsabm.3c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Thrombolytic therapy for ischemic stroke still has several limitations, such as a narrow therapeutic time window and adverse effects. Therapeutic hypothermia is a neuroprotective strategy for stroke. In this study, we developed pH/temperature dual-responsive protein-polymer conjugates (PEG-uPA-PEG-PPG-PEG) by modifying a urokinase-type plasminogen activator (uPA) with polyethylene glycol (PEG) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG, a thermosensitive polymer) via pH-sensitive imine bonds and disulfide bonds, respectively. At 37 °C and pH 7.4 (normothermia and physiological pH), PEG-uPA-PEG-PPG-PEG exhibits antiprotease hydrolysis and masked bioactivity of uPA due to the protective effect of the polymer segments wrapped around the protein surface. However, at 33 °C and pH 6.0 (hypothermia and pH at the thrombotic site), uPA loses the protective effect and recovers its bioactivity due to PEG dissociation and PEG-PPG-PEG stretching. The masked bioactivity of uPA at normothermia and physiological pH could reduce the risk of acute hemorrhage complication, and the recovery of protein activity at acidic pH and 33 °C is of great significance for thrombolytic therapy at mild hypothermia. Thus, PEG-uPA-PEG-PPG-PEG provides promising potential for therapeutic hypothermia in ischemic stroke.
Collapse
Affiliation(s)
- Lingli Jin
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fengjiao Chen
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Shun Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Zhenjiang Liang
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
| | - Lingling Zhao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
| |
Collapse
|
7
|
Guler E, Polat EB, Cam ME. Drug delivery systems for neural tissue engineering. BIOMATERIALS FOR NEURAL TISSUE ENGINEERING 2023:221-268. [DOI: 10.1016/b978-0-323-90554-1.00012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Li Y, Cui Z, Hu L. Recent technological strategies for enhancing the stability of lycopene in processing and production. Food Chem 2022; 405:134799. [DOI: 10.1016/j.foodchem.2022.134799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
9
|
Li J, Zhang X, Mo Y, Huang T, Rao H, Tan Z, Huang L, Zeng D, Jiang C, Zhong Y, Cai Y, Liang B, Wu J. Urokinase-loaded cyclic RGD-decorated liposome targeted therapy for in-situ thrombus of pulmonary arteriole of pulmonary hypertension. Front Bioeng Biotechnol 2022; 10:1038829. [PMID: 36324896 PMCID: PMC9618629 DOI: 10.3389/fbioe.2022.1038829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Backgroud: In-situ thrombosis is a significant pathophysiological basis for the development of pulmonary hypertension (PH). However, thrombolytic therapy for in-situ thrombus in PH was often hampered by the apparent side effects and the low bioavailability of common thrombolytic medications. Nanoscale cyclic RGD (cRGD)-decorated liposomes have received much attention thanks to their thrombus-targeting and biodegradability properties. As a result, we synthesized urokinase-loaded cRGD-decorated liposome (UK-cRGD-Liposome) for therapy of in-situ thrombosis as an exploration of pulmonary hypertensive novel therapeutic approaches. Purpose: To evaluate the utilize of UK-cRGD-Liposome for targeted thrombolysis of in-situ thrombus in PH and to explore the potential mechanisms of in-situ thrombus involved in the development of PH. Methods: UK-cRGD-Liposome nanoscale drug delivery system was prepared using combined methods of thin-film hydration and sonication. Induced PH via subcutaneous injection of monocrotaline (MCT). Fibrin staining (modified MSB method) was applied to detect the number of vessels within-situ thrombi in PH. Echocardiography, hematoxylin-eosin (H & E) staining, and Masson's trichrome staining were used to analyze right ventricular (RV) function, pulmonary vascular remodeling, as well as RV remodeling. Results: The number of vessels with in-situ thrombi revealed that UK-cRGD-Liposome could actively target urokinase to in-situ thrombi and release its payload in a controlled manner in the in vivo environment, thereby enhancing the thrombolytic effect of urokinase. Pulmonary artery hemodynamics and echocardiography indicated a dramatical decrease in pulmonary artery pressure and a significant improvement in RV function post targeted thrombolytic therapy. Moreover, pulmonary vascular remodeling and RV remodeling were significantly restricted post targeted thrombolytic therapy. Conclusion: UK-cRGD-Liposome can restrict the progression of PH and improve RV function by targeting the dissolution of pulmonary hypertensive in-situ thrombi, which may provide promising therapeutic approaches for PH.
Collapse
Affiliation(s)
- Jingtao Li
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingying Mo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongtong Huang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huaqing Rao
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenyuan Tan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Decai Zeng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunlan Jiang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanfen Zhong
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongzhi Cai
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binbin Liang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ji Wu
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Raghunathan S, Rayes J, Sen Gupta A. Platelet-inspired nanomedicine in hemostasis thrombosis and thromboinflammation. J Thromb Haemost 2022; 20:1535-1549. [PMID: 35435322 PMCID: PMC9323419 DOI: 10.1111/jth.15734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
Platelets are anucleate cell-fragments derived predominantly from megakaryocytes in the bone marrow and released in the blood circulation, with a normal count of 150 000-40 000 per μl and a lifespan of approximately 10 days in humans. A primary role of platelets is to aid in vascular injury site-specific clot formation to stanch bleeding, termed hemostasis. Platelets render hemostasis by a complex concert of mechanisms involving platelet adhesion, activation and aggregation, coagulation amplification, and clot retraction. Additionally, platelet secretome can influence coagulation kinetics and clot morphology. Therefore, platelet defects and dysfunctions result in bleeding complications. Current treatment for such complications involve prophylactic or emergency transfusion of platelets. However, platelet transfusion logistics constantly suffer from limited donor availability, challenges in portability and storage, high bacterial contamination risks, and very short shelf life (~5 days). To address these issues, an exciting area of research is focusing on the development of microparticle- and nanoparticle-based platelet surrogate technologies that can mimic various hemostatic mechanisms of platelets. On the other hand, aberrant occurrence of the platelet mechanisms lead to the pathological manifestation of thrombosis and thromboinflammation. The treatments for this are focused on inhibiting the mechanisms or resolving the formed clots. Here, platelet-inspired technologies can provide unique platforms for disease-targeted drug delivery to achieve high therapeutic efficacy while avoiding systemic side-effects. This review will provide brief mechanistic insight into the role of platelets in hemostasis, thrombosis and thromboinflammation, and present the current state-of-art in the design of platelet-inspired nanomedicine for applications in these areas.
Collapse
Affiliation(s)
- Shruti Raghunathan
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Julie Rayes
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
11
|
Lin X, Li N, Tang H. Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Front Cell Neurosci 2022; 16:885190. [PMID: 35836741 PMCID: PMC9274459 DOI: 10.3389/fncel.2022.885190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a major public health issue, corresponding to the second cause of mortality and the first cause of severe disability. Ischemic stroke is the most common type of stroke, accounting for 87% of all strokes, where early detection and clinical intervention are well known to decrease its morbidity and mortality. However, the diagnosis of ischemic stroke has been limited to the late stages, and its therapeutic window is too narrow to provide rational and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, inactivation, allergic reactions, and non-specific tissue targeting. Another problem is the limited ability of current neuroprotective agents to promote recovery of the ischemic brain tissue after stroke, which contributes to the progressive and irreversible nature of ischemic stroke and also the severity of the outcome. Fortunately, because of biomaterials’ inherent biochemical and biophysical properties, including biocompatibility, biodegradability, renewability, nontoxicity, long blood circulation time, and targeting ability. Utilization of them has been pursued as an innovative and promising strategy to tackle these challenges. In this review, special emphasis will be placed on the recent advances in the study of nanomaterials for the diagnosis and therapy of ischemic stroke. Meanwhile, nanomaterials provide much promise for neural tissue salvage and regeneration in brain ischemia, which is also highlighted.
Collapse
Affiliation(s)
- Xinru Lin
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| |
Collapse
|
12
|
Liang C, Huang T, Zhang X, Rao H, Jin Z, Pan X, Li J, Mo Y, Cai Y, Wu J. cRGD Urokinase Liposomes for Thrombolysis in Rat Model of Acute Pulmonary Microthromboembolism. Drug Des Devel Ther 2022; 16:801-816. [PMID: 35370400 PMCID: PMC8964449 DOI: 10.2147/dddt.s351021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose To study the thrombolytic effect and safety of cRGD urokinase liposomes (cRGD-UK-LIP) in rats with acute pulmonary microthromboembolism (APMTE), and explore the application value of echocardiography (ECHO) in animal models. Patients and Methods Ninety-six SD rats were randomized into 6 groups (16/group): normal control, sham operation, APMTE, normal saline (NS), free urokinase (UK), cRGD-UK-LIP. Four groups (APMTE, NS, UK, cRGD-UK-LIP) of rats were injected with autologous thrombus to induce APMTE. Samples were injected into 3 groups (NS, UK, cRGD-UK-LIP) of rats after modeling. Echocardiography was used to assess right ventricle (RV) function and morphology in rats. Six rats in each group were randomly selected and pulmonary artery pressure (PAP) of them was measured through ECHO-guided transthoracic puncture. Finally, the rats were killed and their tissues were taken for pathological examination. Results Compared with normal control or sham operation group, rats in APMTE group had enlarged RV, decreased RV function, increased PAP, and lung tissue of them showed postthromboembolic appearance. There was no significant difference between NS group and APMTE group. RV morphology and function of rats in the UK group and cRGD-UK-LIP group were better and vessels with residual thrombus in these 2 groups were less than APMTE group, especially in the cRGD-UK-LIP group. In terms of PAP, only cRGD-UK-LIP group was significantly lower than APMTE group. No hyperemia, bleeding and swelling were observed in heart, liver and kidney of rats in each group. Conclusion A rat model of APMTE was successfully established. cRGD-UK-LIP has better thrombolytic effect than free urokinase and it is safe. Echocardiography is not merely an important way to evaluate the morphology and function of RV, transthoracic puncture measurement under the guidance of it can be an effective way to monitor PAP in animal models.
Collapse
Affiliation(s)
- Chunting Liang
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Tongtong Huang
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaofeng Zhang
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Huaqing Rao
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Zhiru Jin
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoxiong Pan
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Jingtao Li
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Yingying Mo
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Yongzhi Cai
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| | - Ji Wu
- Department of Ultrasonic Medicine, The First Hospital Affiliated to Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
13
|
Lin W, Goldberg R, Klein J. Poly-phosphocholination of liposomes leads to highly-extended retention time in mice joints. J Mater Chem B 2022; 10:2820-2827. [PMID: 35099493 PMCID: PMC9007059 DOI: 10.1039/d1tb02346b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-attached layers of phosphatidylcholine (PC) lipid vesicles (liposomes) may reduce the friction coefficient μ (= force-to-slide/load) between the sliding surfaces down to μ ≈ 10−3–10−4 up to tens of atm contact pressures, as high as those in the major joints (hips or knees). Such friction reduction is attributed to hydration lubrication by the highly-hydrated phosphocholine head-groups exposed at the outer vesicle surfaces. It has been suggested therefore that intra-articular (IA) administration of liposomes as potential boundary lubricants may alleviate degenerative, friction-associated joint conditions such as osteoarthritis (OA), which is associated with insufficient lubrication at the articular cartilage surface. To overcome the problem, common to all nanoparticles, of rapid removal by the mononuclear phagocyte system, as well as to ensure long-term colloidal stability during storage, functionalizing liposomes with poly(ethylene glycol) moieties, PEGylation, is often used. Here we describe a different liposome functionalization approach, using poly(2-methacryloyloxyethyl phosphorylcholine), PMPC, moieties (strictly, lipid–PMPC conjugates), and compare the retention time in mice joints of such PMPCylated liposomes with otherwise-identical but PEGylated vesicles following IA administration. We find, using fluorescence labeling and in vivo optical imaging, that when PMPC-stabilized liposomes are injected into mice knee joints, there is a massive increase of the vesicles’ retention half-life in the joints of about (4–5)-fold (ca. 300–400% increase in retention time) compared with the PEGylated liposomes (and some 100-fold longer than the retention time of intra-articularly injected hyaluronan or HA). Such PMPCylated liposomes are therefore promising candidates as potential long-lived boundary lubricants at the articular cartilage surface, with implication for friction-associated pathologies. Moreover, as lipid vesicles are well known to be efficient drug carriers, such long retention in the joints may enable analgesic or anti-inflammatory agents for joint pathologies to be more efficiently delivered via IA administration using PMPCylated liposomal vehicles relative to PEGylated ones. PMPCylated liposomes injected into mice joints show a massive increase in retention half-life compared with PEGylated liposomes (or hyaluronan, HA), making them promising candidates as boundary lubricants at articular cartilage, or as drug carriers.![]()
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ronit Goldberg
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Jacob Klein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Falsafi SR, Rostamabadi H, Babazadeh A, Tarhan Ö, Rashidinejad A, Boostani S, Khoshnoudi-Nia S, Akbari-Alavijeh S, Shaddel R, Jafari SM. Lycopene nanodelivery systems; recent advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Adzerikho IE, Vladimirskaya TE, Lutsik IL, Dubatouka KI, Agabekov VE, Branovitskaya ES, Chernyavsky EA, Lugovska N. Fibrinspecific liposomes as a potential method of delivery of the thrombolytic preparation streptokinase. J Thromb Thrombolysis 2021; 53:313-320. [PMID: 34816379 DOI: 10.1007/s11239-021-02614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 11/26/2022]
Abstract
The use of streptokinase (SK) in the clinic is limited by the lack of fibrin-specificity and the short half-life of the drug. We have developed a new dosage form of streptokinase (immunoliposome), which consists of "free" native streptokinase and "bound" encapsulated in liposomes conjugated through carboxylated dextran with fibrin-specific monoclonal antibodies FnI-3C (IgG2 class), in a ratio of 60 and 40%, respectively, and studied their physicochemical properties, pharmacokinetic parameters, and the ability of fibrin-specific liposomes with SK for targeted delivery to fibrin in an in vivo experiment. The obtained immunoliposomes had a hydrodynamic diameter of ~ 140 nm, a zeta potential of - 19.6 mV, and entrapment efficiency of 14.1%. Fluorescent labels bound to immunoliposomes with streptokinase selectively accumulated in model rat vein thrombi at sites containing fibrin in 30 min after injection. Studies of pharmacokinetic parameters showed that the administration of immunoliposomes with streptokinase to rats was accompanied by an increase in the half-life from 1.8 to 24.1 min, the time to reach the maximum concentration from 15 to 30 min, and a decrease in the elimination constant by about 13 times compared with the native streptokinase preparation. Further studies are needed to evaluate the thrombolytic efficacy a new dosage form of streptokinase in experiment in vivo.
Collapse
Affiliation(s)
- I E Adzerikho
- Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - T E Vladimirskaya
- Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - I L Lutsik
- Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - K I Dubatouka
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - V E Agabekov
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - E S Branovitskaya
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - E A Chernyavsky
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - N Lugovska
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
16
|
Filipczak N, Yalamarty SSK, Li X, Khan MM, Parveen F, Torchilin V. Lipid-Based Drug Delivery Systems in Regenerative Medicine. MATERIALS 2021; 14:ma14185371. [PMID: 34576594 PMCID: PMC8467523 DOI: 10.3390/ma14185371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
The most important goal of regenerative medicine is to repair, restore, and regenerate tissues and organs that have been damaged as a result of an injury, congenital defect or disease, as well as reversing the aging process of the body by utilizing its natural healing potential. Regenerative medicine utilizes products of cell therapy, as well as biomedical or tissue engineering, and is a huge field for development. In regenerative medicine, stem cells and growth factor are mainly used; thus, innovative drug delivery technologies are being studied for improved delivery. Drug delivery systems offer the protection of therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. Similarly, the delivery systems in combination with stem cells offer improvement of cell survival, differentiation, and engraftment. The present review summarizes the significance of biomaterials in tissue engineering and the importance of colloidal drug delivery systems in providing cells with a local environment that enables them to proliferate and differentiate efficiently, resulting in successful tissue regeneration.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
17
|
Zhang R, Luo S, Hao LK, Jiang YY, Gao Y, Zhang NN, Zhang XC, Song YM. Preparation and Properties of Thrombus-Targeted Urokinase/Multi-Walled Carbon Nanotubes (MWCNTs)-Chitosan (CS)-RGD Drug Delivery System. J Biomed Nanotechnol 2021; 17:1711-1725. [PMID: 34688316 DOI: 10.1166/jbn.2021.3113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to improve the therapeutic effect, prolong the action time and reduce the side effects of the first generation thrombolytic drug urokinase (UK), a novel UK/multi-walled carbon nanotubes (MWCNTs)-chitosan (CS)-arginine-glycine-aspartic acid (Arg-Gly-Asp) (RGD) drug delivery system was synthesized by chemical bonding/non covalent bond modification/ultrasonic dispersion. The results showed that the diameter of the UK/MWCNTs-CS-RGD drug delivery system was about 30-40 nm, there was a layer of UK was attached to the surface of the tube wall, and the distribution was relatively uniform. The average encapsulation efficiency was 83.10%, and the average drug loading was 12.81%. Interestingly, it also had a certain sustained-release effect, and its release law was best fitted by first-order kinetic equation. Moreover, the accelerated and long-term stability test results show that it had good stability. Compared with free UK, UK/MWCNTs-CS-RGD had thrombolytic effect in vitro. In addition, MTT experiment showed that the prepared MWCNTs-CS-RGD nanomaterials had good biocompatibility. A rabbit model of carotid artery thrombosis was used to conduct targeted thrombolysis experiments in vivo. Compared with free UK, UK/MWCNTs-CS-RGD could be enriched in the thrombosis site to achieve thrombus targeting. UK/MWCNTs-CS-RGD drug delivery system was expected to become an effective thrombolytic drug for targeted therapy of thrombosis.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao 266000, P. R. China
| | - Shang Luo
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao 266000, P. R. China
| | - Lin-Kun Hao
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao 266000, P. R. China
| | - Yun-Ying Jiang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao 266000, P. R. China
| | - Ying Gao
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao 266000, P. R. China
| | - Ning-Ning Zhang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao 266000, P. R. China
| | - Xue-Cheng Zhang
- College of Marines Life Science, Ocean University of China, Qingdao 266000, P. R. China
| | - Yi-Min Song
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao 266000, P. R. China
| |
Collapse
|
18
|
Near-infrared light-responsive liposomes for protein delivery: Towards bleeding-free photothermally-assisted thrombolysis. J Control Release 2021; 337:212-223. [PMID: 34284049 DOI: 10.1016/j.jconrel.2021.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
Smart drug delivery systems represent state-of-the-art approaches for targeted therapy of life-threatening diseases such as cancer and cardiovascular diseases. Stimuli-responsive on-demand release of therapeutic agents at the diseased site can significantly limit serious adverse effects. In this study, we engineered a near-infrared (NIR) light-responsive liposomal gold nanorod-containing platform for on-demand delivery of proteins using a hybrid formulation of ultrasmall gold nanorods (AuNRs), thermosensitive phospholipid (DPPC) and non-ionic surfactant (Brij58). In light-triggered release optimization studies, 55.6% (± 4.8) of a FITC-labelled model protein, ovalbumin (MW 45 kDa) was released in 15 min upon NIR irradiation (785 nm, 1.35 W/cm2 for 5 min). This platform was then utilized to test on-demand delivery of urokinase-plasminogen activator (uPA) for bleeding-free photothermally-assisted thrombolysis, where the photothermal effect of AuNRs would synergize with the released uPA in clot lysis. Urokinase light-responsive liposomes showed 80.7% (± 4.5) lysis of an in vitro halo-clot model in 30 min following NIR irradiation (785 nm, 1.35 W/cm2 for 5 min) compared to 36.3% (± 4.4) and 15.5% (± 5.5) clot lysis from equivalent free uPA and non-irradiated liposomes respectively. These results show the potential of low-dose, site-specific thrombolysis via the combination of light-triggered delivery/release of uPA from liposomes combined with photothermal thrombolytic effects from gold nanorods. In conclusion, newly engineered, gold nanorod-based, NIR light-responsive liposomes represent a promising drug delivery system for site-directed, photothermally-stimulated therapeutic protein release.
Collapse
|
19
|
Priya V, Viswanadh MK, Mehata AK, Jain D, Singh SK, Muthu MS. Targeted nanotherapeutics in the prophylaxis and treatment of thrombosis. Nanomedicine (Lond) 2021; 16:1153-1176. [PMID: 33973818 DOI: 10.2217/nnm-2021-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Currently available anti-thrombotic therapy for the prophylaxis and treatment of arterial and venous thrombosis includes intravenous administration of anti-thrombotic drugs which lead to severe bleeding risks such as cerebral hemorrhage and stroke. Targeting approaches that utilize nanosystems to reach the thrombus sites are emerging to increase the local effect of anti-thrombotic drugs, as well as to decrease these severe bleeding complications by diminishing the systemic availability of these drugs. This review emphasizes the emerging targeted nanomedicines (liposomes, micelles, polymeric nanoparticles, material bases nanoparticles and other biological vectors) for the prophylaxis and treatment of thrombotic events as well as multifunctional nanomedicines for theranostic applications. Nanomedicine offers a promising platform for a smart, safe, and effective approach for the management of thrombosis.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjeev K Singh
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
20
|
Refaat A, del Rosal B, Palasubramaniam J, Pietersz G, Wang X, Peter K, Moulton SE. Smart Delivery of Plasminogen Activators for Efficient Thrombolysis; Recent Trends and Future Perspectives. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ahmed Refaat
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Faculty of Science, Engineering and Technology Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Pharmaceutics Department Faculty of Pharmacy ‐ Alexandria University 1 El‐Khartoum Square Azarita Alexandria 21521 Egypt
| | - Blanca del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics School of Science RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Jathushan Palasubramaniam
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiology Alfred Hospital 55 Commercial Rd Melbourne VIC 3004 Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Burnet Institute 85 Commercial Road Melbourne VIC 3004 Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiometabolic Health University of Melbourne Melbourne VIC 3010 Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiology Alfred Hospital 55 Commercial Rd Melbourne VIC 3004 Australia
- Department of Cardiometabolic Health University of Melbourne Melbourne VIC 3010 Australia
| | - Simon E. Moulton
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Faculty of Science, Engineering and Technology Swinburne University of Technology John St Melbourne VIC 3122 Australia
- ARC Centre of Excellence for Electromaterials Science Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Aikenhead Centre for Medical Discovery (ACMD) St Vincent's Hospital Melbourne VIC 3065 Australia
- Iverson Health Innovation Research Institute Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Australian Institute for Innovative Materials, Intelligent Polymer Research Institute University of Wollongong Wollongong NSW 2500 Australia
| |
Collapse
|
21
|
Functionalized polymeric hybrid micelles as an efficient nanotheranostic agent for thrombus imaging and thrombolysis. Acta Biomater 2021; 122:278-290. [PMID: 33359293 DOI: 10.1016/j.actbio.2020.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Pathological thrombosis within a vessel hampers blood flow and is the mainspring of numerous fatal cardiovascular complications. In order to specifically image and dissolve a thrombus, we rationally designed a functionalized polymeric hybrid micelle (PHM) system self-assembled from amphiphilic polycaprolactone-polyethylenimine (PCL-PEI) and polycaprolactone-polyethylene glycol (PCL-PEG). Based on a biological component of thrombi, activated coagulation factor XIII (FXIIIa), which is responsible for fibrin crosslinking, we further developed FXIIIa-targeted near infrared imaging and thrombolytic nanoparticles, termed IR780/FPHM/LK NPs, through chemical conjugation of peptides to the system. In a ferric chloride (FeCl3)-induced mouse carotid thrombosis model, IR780/FPHM/LK NPs specifically targeted the thrombus and significantly enhanced the photoacoustic signal for an accurate diagnosis. When loaded with the fibrinolytic drug lumbrokinase (LK), FPHM remarkably dissociated the thrombus accompanied by an increase in the d-dimer level, a fibrin degradation product, and alleviation of fatal nonspecific hemorrhagic risk. Given its thrombus-specific imaging along with potent therapeutic activities, IR780/FPHM/LK NPs hold promise for developing nanotheranostic agents in preclinical thrombotic vascular disease models.
Collapse
|
22
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
23
|
Thrombus Imaging Using 3D Printed Middle Cerebral Artery Model and Preclinical Imaging Techniques: Application to Thrombus Targeting and Thrombolytic Studies. Pharmaceutics 2020; 12:pharmaceutics12121207. [PMID: 33322710 PMCID: PMC7763938 DOI: 10.3390/pharmaceutics12121207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Diseases with the highest burden for society such as stroke, myocardial infarction, pulmonary embolism, and others are due to blood clots. Preclinical and clinical techniques to study blood clots are important tools for translational research of new diagnostic and therapeutic modalities that target blood clots. In this study, we employed a three-dimensional (3D) printed middle cerebral artery model to image clots under flow conditions using preclinical imaging techniques including fluorescent whole-body imaging, magnetic resonance imaging (MRI), and computed X-ray microtomography (microCT). Both liposome-based, fibrin-targeted, and non-targeted contrast agents were proven to provide a sufficient signal for clot imaging within the model under flow conditions. The application of the model for clot targeting studies and thrombolytic studies using preclinical imaging techniques is shown here. For the first time, a novel method of thrombus labeling utilizing barium sulphate (Micropaque®) is presented here as an example of successfully employed contrast agents for in vitro experiments evaluating the time-course of thrombolysis and thus the efficacy of a thrombolytic drug, recombinant tissue plasminogen activator (rtPA). Finally, the proof-of-concept of in vivo clot imaging in a middle cerebral artery occlusion (MCAO) rat model using barium sulphate-labelled clots is presented, confirming the great potential of such an approach to make experiments comparable between in vitro and in vivo models, finally leading to a reduction in animals needed.
Collapse
|
24
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
25
|
Wan M, Wang Q, Wang R, Wu R, Li T, Fang D, Huang Y, Yu Y, Fang L, Wang X, Zhang Y, Miao Z, Zhao B, Wang F, Mao C, Jiang Q, Xu X, Shi D. Platelet-derived porous nanomotor for thrombus therapy. SCIENCE ADVANCES 2020; 6:eaaz9014. [PMID: 32766445 PMCID: PMC7385437 DOI: 10.1126/sciadv.aaz9014] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/18/2020] [Indexed: 05/04/2023]
Abstract
The treatment difficulties of venous thrombosis include short half-life, low utilization, and poor penetration of drugs at thrombus site. Here, we develop one kind of mesoporous/macroporous silica/platinum nanomotors with platelet membrane (PM) modification (MMNM/PM) for sequentially targeting delivery of thrombolytic and anticoagulant drugs for thrombus treatment. Regulated by the special proteins on PM, the nanomotors target the thrombus site and then PM can be ruptured under near-infrared (NIR) irradiation to achieve desirable sequential drug release, including rapid release of thrombolytic urokinase (3 hours) and slow release of anticoagulant heparin (>20 days). Meantime, the motion ability of nanomotors under NIR irradiation can effectively promote them to penetrate deeply in thrombus site to enhance retention ratio. The in vitro and in vivo evaluation results confirm that the synergistic effect of targeting ability from PM and motion ability from nanomotors can notably enhance the thrombolysis effect in both static/dynamic thrombus and rat model.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Rongliang Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Rui Wu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xingwen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yinghua Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhuoyue Miao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fenghe Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
26
|
Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy. NANO-MICRO LETTERS 2020; 12:96. [PMID: 34138079 PMCID: PMC7770919 DOI: 10.1007/s40820-020-00434-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/13/2020] [Indexed: 05/11/2023]
Abstract
Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using "synthetic biomarkers"; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.
Collapse
Affiliation(s)
- Min Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
27
|
Chen K, Wang Y, Liang H, Xia S, Liang W, Kong J, Liang Y, Chen X, Mao M, Chen Z, Bai X, Zhang J, Li J, Chang YN, Li J, Xing G. Intrinsic Biotaxi Solution Based on Blood Cell Membrane Cloaking Enables Fullerenol Thrombolysis In Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14958-14970. [PMID: 32142246 DOI: 10.1021/acsami.0c01768] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the construction of blood cell membrane cloaked mesoporous silica nanoparticles for delivery of nanoparticles [fullerenols (Fols)] with fibrinolysis activity which endows the active Fol with successful thrombolysis effect in vivo. In vitro, Fols present excellent fibrinolysis activity, and the Fol with the best fibrinolysis activity is screened based on the correlation between Fols' structure and their fibrinolysis activity. However, the thrombolytic effect in vivo is not satisfactory. To rectify the unsatisfactory situation and avoid the exogenous stimuli, a natural blood cell membrane cloaking strategy with loading the active Fol is chosen to explore as a novel thrombolysis drug. After cloaking, the therapeutic platform prolongs blood circulation time and enhances the targeting effect. Interestingly, compared with platelet membrane cloaking, red blood cell (RBC) membrane cloaking demonstrates stronger affinity with fibrin and more enrichment at the thrombus site. The Fol with RBC cloaking shows quick and efficient thrombolysis efficacy in vivo with less bleeding risk, more excellent blood compatibility, and better biosafety when compared with the clinical drug urokinase (UK). These findings not only validate the blood cell membrane cloaking strategy as an effective platform for Fol delivery on thrombolysis treatment, but also hold a great promising solution for other active nanoparticle deliveries in vivo.
Collapse
Affiliation(s)
- Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A YuquanLu, Shijingshan District, Beijing 100049, China
| | - Yujiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Haojun Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Shibo Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Wei Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Jianglong Kong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Yuelan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Xia Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Meiru Mao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A YuquanLu, Shijingshan District, Beijing 100049, China
| | - Xue Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A YuquanLu, Shijingshan District, Beijing 100049, China
| | - Jiacheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A YuquanLu, Shijingshan District, Beijing 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| |
Collapse
|
28
|
Kotouček J, Hubatka F, Mašek J, Kulich P, Velínská K, Bezděková J, Fojtíková M, Bartheldyová E, Tomečková A, Stráská J, Hrebík D, Macaulay S, Kratochvílová I, Raška M, Turánek J. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation. Sci Rep 2020; 10:5595. [PMID: 32221374 PMCID: PMC7101380 DOI: 10.1038/s41598-020-62500-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with “herring-bone” geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation.
Collapse
Affiliation(s)
- Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Kamila Velínská
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jaroslava Bezděková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic.,Mendel University in Brno, Department of Chemistry and Biochemistry, Zemedelska 1, 61300, Brno, Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Andrea Tomečková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jana Stráská
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 11, 78371, Olomouc, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Stuart Macaulay
- Malvern Panalytical, Malvern, Worcestershire, United Kingdom
| | - Irena Kratochvílová
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 8, Czechia.
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic. .,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic.
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
29
|
Šimečková P, Hubatka F, Kotouček J, Turánek Knötigová P, Mašek J, Slavík J, Kováč O, Neča J, Kulich P, Hrebík D, Stráská J, Pěnčíková K, Procházková J, Diviš P, Macaulay S, Mikulík R, Raška M, Machala M, Turánek J. Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages. Sci Rep 2020; 10:4780. [PMID: 32179785 PMCID: PMC7075985 DOI: 10.1038/s41598-020-60284-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.
Collapse
Affiliation(s)
| | | | - Jan Kotouček
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Josef Mašek
- Veterinary Research Institute, Brno, Czech Republic
| | - Josef Slavík
- Veterinary Research Institute, Brno, Czech Republic
| | - Ondrej Kováč
- Veterinary Research Institute, Brno, Czech Republic
| | - Jiří Neča
- Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Kulich
- Veterinary Research Institute, Brno, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology, Masaryk University, Brno, Czech Republic
| | - Jana Stráská
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic
| | | | | | - Pavel Diviš
- Faculty of Chemistry, Technical University, Brno, Czech Republic
| | | | - Robert Mikulík
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Neurology Department, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Milan Raška
- Veterinary Research Institute, Brno, Czech Republic
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
30
|
Xu J, Zhang Y, Xu J, Liu G, Di C, Zhao X, Li X, Li Y, Pang N, Yang C, Li Y, Li B, Lu Z, Wang M, Dai K, Yan R, Li S, Nie G. Engineered Nanoplatelets for Targeted Delivery of Plasminogen Activators to Reverse Thrombus in Multiple Mouse Thrombosis Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905145. [PMID: 31788896 DOI: 10.1002/adma.201905145] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Rapid cut-off of blood supply in diseases involving thrombosis is a major cause of morbidity and mortality worldwide. However, the current thrombolysis strategies offer limited results due to the therapeutics' short half-lives, low targeting ability, and unexpected bleeding complications. Inspired by the innate roles of platelets in hemostasis and pathological thrombus, platelet membrane-camouflaged polymeric nanoparticles (nanoplatelets) are developed for targeting delivery of the thrombolytic drug, recombinant tissue plasminogen activator (rt-PA), to local thrombus sites. The tailor-designed nanoplatelets efficiently accumulate at the thrombi in pulmonary embolism and mesenteric arterial thrombosis model mice, eliciting a significantly enhanced thrombolysis activity compared to free rt-PA. In addition, the nanoplatelets exhibit improved therapeutic efficacy over free rt-PA in an ischemic stroke model. Analysis of in vivo coagulation indicators suggests the nanoplatelets might possess a low risk of bleeding complications. The hybrid biomimetic nanoplatelets described offer a promising solution to improve the efficacy and reduce the bleeding risk of thrombolytic therapy in a broad spectrum of thrombosis diseases.
Collapse
Affiliation(s)
- Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Chunzhi Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, School of Basic Medical Sciences and Clinical Pharmacy, Nanjing, 210009, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningbo Pang
- Jiangsu Institute of Hematology, The First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China
| | - Chengzhi Yang
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Yanyi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, School of Basic Medical Sciences and Clinical Pharmacy, Nanjing, 210009, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meifang Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China
| | - Rong Yan
- Jiangsu Institute of Hematology, The First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Petroková H, Mašek J, Kuchař M, Vítečková Wünschová A, Štikarová J, Bartheldyová E, Kulich P, Hubatka F, Kotouček J, Turánek Knotigová P, Vohlídalová E, Héžová R, Mašková E, Macaulay S, Dyr JE, Raška M, Mikulík R, Malý P, Turánek J. Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders. Pharmaceutics 2019; 11:pharmaceutics11120642. [PMID: 31810280 PMCID: PMC6955937 DOI: 10.3390/pharmaceutics11120642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Development of tools for direct thrombus imaging represents a key step for diagnosis and treatment of stroke. Nanoliposomal carriers of contrast agents and thrombolytics can be functionalized to target blood thrombi by small protein binders with selectivity for fibrin domains uniquely formed on insoluble fibrin. We employed a highly complex combinatorial library derived from scaffold of 46 amino acid albumin-binding domain (ABD) of streptococcal protein G, and ribosome display, to identify variants recognizing fibrin cloth in human thrombus. We constructed a recombinant target as a stretch of three identical fibrin fragments of 16 amino acid peptide of the Bβ chain fused to TolA protein. Ribosome display selection followed by large-scale Enzyme-Linked ImmunoSorbent Assay (ELISA) screening provided four protein variants preferentially binding to insoluble form of human fibrin. The most specific binder variant D7 was further modified by C-terminal FLAG/His-Tag or double His-tag for the attachment onto the surface of nanoliposomes via metallochelating bond. D7-His-nanoliposomes were tested using in vitro flow model of coronary artery and their binding to fibrin fibers was demonstrated by confocal and electron microscopy. Thus, we present here the concept of fibrin-targeted binders as a platform for functionalization of nanoliposomes in the development of advanced imaging tools and future theranostics.
Collapse
Affiliation(s)
- Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
| | - Andrea Vítečková Wünschová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Jana Štikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U nemocnice 2094/1, 128 20 Praha 2, Czech Republic; (J.Š.); (J.E.D.)
| | - Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - František Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Pavlína Turánek Knotigová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Eva Vohlídalová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Renata Héžová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Eliška Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Stuart Macaulay
- Malvern Instruments Ltd., Enigma Business Park, Grove Lane, Malvern WR14 1XZ, UK;
| | - Jan Evangelista Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U nemocnice 2094/1, 128 20 Praha 2, Czech Republic; (J.Š.); (J.E.D.)
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Robert Mikulík
- The International Clinical Research Center ICRC and Neurology Department of St. Anne’s University Hospital in Brno, Pekařská 53, 656 91 Brno, Czech Republic;
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
- Correspondence: (P.M.); (J.T.); Tel.: +420-325-873-763 (P.M.); +420-732-813-577 (J.T.)
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
- Correspondence: (P.M.); (J.T.); Tel.: +420-325-873-763 (P.M.); +420-732-813-577 (J.T.)
| |
Collapse
|
32
|
Zhao S, Li Z, Huang F, Wu J, Gui L, Zhang X, Wang Y, Wang X, Peng S, Zhao M. Nano-scaled MTCA-KKV: for targeting thrombus, releasing pharmacophores, inhibiting thrombosis and dissolving blood clots in vivo. Int J Nanomedicine 2019; 14:4817-4831. [PMID: 31308660 PMCID: PMC6614858 DOI: 10.2147/ijn.s206294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In vitro (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxyl-Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (MTCA-KKV) adheres activated platelets, targets P-selectin and GPIIb/IIIa. This led to the development of MTCA-KKV as thrombus targeting nano-medicine. METHODS MTCA-KKV was characterized by nano-feature, anti-thrombotic activity, thrombolytic activity, thrombus target and targeting release. RESULTS In vivo 0.01 μmol/kg of MTCA-KKV formed nano-particles less than 100 nm in diameter, targeted thrombus, released anti-thrombotic and thrombolytic pharmacophores, prevented thrombosis and dissolved blood clots. CONCLUSION Based on the profiles of targeting thrombus, targeting release, inhibiting thrombosis and dissolving blood clots MTCA-KKV is a promising nano-medicine.
Collapse
Affiliation(s)
- Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Ze Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Fei Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaozhen Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| |
Collapse
|
33
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
34
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
35
|
Rostamabadi H, Falsafi SR, Jafari SM. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J Control Release 2019; 298:38-67. [DOI: 10.1016/j.jconrel.2019.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
|
36
|
Huang Y, Yu L, Ren J, Gu B, Longstaff C, Hughes AD, Thom SA, Xu XY, Chen R. An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy. J Control Release 2019; 300:1-12. [PMID: 30807804 DOI: 10.1016/j.jconrel.2019.02.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 11/28/2022]
Abstract
It remains a major challenge to develop a selective and effective fibrinolytic system for thrombolysis with minimal undesirable side effects. Herein, we report a multifunctional liposomal system (164.6 ± 5.3 nm in diameter) which can address this challenge through targeted delivery and controlled release of tissue plasminogen activator (tPA) at the thrombus site. The tPA-loaded liposomes were PEGylated to improve their stability, and surface coated with a conformationally-constrained, cyclic arginine-glycine-aspartic acid (cRGD) to enable highly selective binding to activated platelets. The in vitro drug release profiles at 37 °C showed that over 90% of tPA was released through liposomal membrane destabilization involving membrane fusion upon incubation with activated platelets within 1 h, whereas passive release of the encapsulated tPA in pH 7.4 PBS buffer was 10% after 6 h. The release of tPA could be readily manipulated by changing the concentration of activated platelets. The presence of activated platelets enabled the tPA-loaded, cRGD-coated, PEGylated liposomes to induce efficient fibrin clot lysis in a fibrin-agar plate model and the encapsulated tPA retained 97.4 ± 1.7% of fibrinolytic activity as compared with that of native tPA. Furthermore, almost complete blood clot lysis was achieved in 75 min, showing considerably higher and quicker thrombolytic activity compared to the tPA-loaded liposomes without cRGD labelling. These results suggest that the nano-sized, activated-platelet-sensitive, multifunctional liposomes could facilitate selective delivery and effective release of tPA at the site of thrombus, thus achieving efficient clot dissolution whilst minimising undesirable side effects.
Collapse
Affiliation(s)
- Yu Huang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Li Yu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Jie Ren
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Boram Gu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standards and Control, South Mimms, Herts, United Kingdom
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom; MRC Unit for Lifelong Health and Ageing at University College London, London, United Kingdom
| | - Simon A Thom
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom.
| |
Collapse
|
37
|
Aisina RB, Mukhametova LI, Gershkovich KB, Ivanova EM, Zakharyan EM, Karakhanov EA. Properties of Bioconjugates of Streptokinase with Anionic Polyamidoamine Dendrimers of Various Generations. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Heptapeptide-based modification leading to enhancing the action of MTCA on activated platelets, P-selectin, GPIIb/IIIa. Future Med Chem 2018; 10:1957-1970. [PMID: 29973078 DOI: 10.4155/fmc-2018-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The modification of platelet inhibitor to enhance its targeting capacity toward platelets is of clinical importance. Thus, (1R, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (MTCA), a platelet inhibitor, was modified with Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (KKV), platelet targeting peptide, to form MTCA-KKV. MATERIALS & METHODS MTCA and MTCA-KKV were synthesized to identify the effect of KKV modification on MTCA and platelets. RESULTS Atomic force microscopy imaged MTCA-KKV effectively accumulated on activated platelets. UV spectra showed that MTCA-KKV concentration dependently changed P-selectin and GPIIb/IIIa conformations. For platelet aggregation, the IC50 of MTCA-KKV was approximately 1/10 folds of MTCA. CONCLUSION KKV modification led to forming MTCA-KKV that is superior to MTCA in terms of accumulating on activated platelets, targeting P-selectin and GPIIb/IIIa and inhibiting platelet aggregation. MTCA-KKV could be a promising lead for further investigation.
Collapse
|
39
|
Bartheldyová E, Effenberg R, Mašek J, Procházka L, Knötigová PT, Kulich P, Hubatka F, Velínská K, Zelníčková J, Zouharová D, Fojtíková M, Hrebík D, Plevka P, Mikulík R, Miller AD, Macaulay S, Zyka D, Drož L, Raška M, Ledvina M, Turánek J. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem 2018; 29:2343-2356. [PMID: 29898364 DOI: 10.1021/acs.bioconjchem.8b00311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.
Collapse
Affiliation(s)
- Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Roman Effenberg
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Lubomír Procházka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavlína Turánek Knötigová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Kamila Velínská
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Jaroslava Zelníčková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Darina Zouharová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Robert Mikulík
- The International Clinical Research Center of St. Anne's University Hospital Brno , 656 91 Brno , Czech Republic
| | - Andrew D Miller
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Stuart Macaulay
- Malvern Instruments , Great Malvern WR14 1XZ , United Kingdom
| | - Daniel Zyka
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Ladislav Drož
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Milan Raška
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic.,Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry , Palacky University Olomouc , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | - Miroslav Ledvina
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| |
Collapse
|
40
|
Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front Chem 2018; 6:237. [PMID: 29988578 PMCID: PMC6026678 DOI: 10.3389/fchem.2018.00237] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Over the years, the scientific importance of nanoparticles for biomedical applications has increased. The high stability and biocompatibility, together with the low toxicity of the nanoparticles developed lead to their use as targeted drug delivery systems, bioimaging systems, and biosensors. The wide range of nanoparticles size, from 10 nm to 1 μm, as well as their optical properties, allow them to be studied using microscopy and spectroscopy techniques. In order to be effectively used, the physicochemical properties of nanoparticle formulations need to be taken into account, namely, particle size, surface charge distribution, surface derivatization and/or loading capacity, and related interactions. These properties need to be optimized considering the final nanoparticle intended biodistribution and target. In this review, we cover light scattering based techniques, namely dynamic light scattering and zeta-potential, used for the physicochemical characterization of nanoparticles. Dynamic light scattering is used to measure nanoparticles size, but also to evaluate their stability over time in suspension, at different pH and temperature conditions. Zeta-potential is used to characterize nanoparticles surface charge, obtaining information about their stability and surface interaction with other molecules. In this review, we focus on nanoparticle characterization and application in infection, cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Patrícia M Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Guo R, Duan D, Hong S, Zhou Y, Wang F, Wang S, Wu W, Bao B. A marine fibrinolytic compound FGFC1 stimulating enzymatic kinetic parameters of a reciprocal activation system based on a single chain urokinase-type plasminogen activator and plasminogen. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Zhang N, Li C, Zhou D, Ding C, Jin Y, Tian Q, Meng X, Pu K, Zhu Y. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater 2018; 70:227-236. [PMID: 29412186 DOI: 10.1016/j.actbio.2018.01.038] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/01/2022]
Abstract
Thrombosis, a critical event in blood vessels, not only is associated with myocardial infarction and stroke, but also accounts for considerable morbidity and mortality. Thrombolytic drugs are usually applied to the treatment of acute myocardial infarction, acute cerebral infarction and pulmonary embolism. However, thrombolytic drugs show limited efficacy in clinical practice because of the short half-life in plasma and systemic side effects. In this study, the cyclic RGD (cRGD) functionalized liposomes were prepared to encapsulate urokinase, a cheap and widely used thrombolytic drug in clinic and better thrombolysis efficacy was achieved. The flow cytometry analysis showed that the cRGD liposomes could bind to the activated platelets while not to the resting platelets. In vitro release study revealed that the release percentage reached plateau in about 5 h with 60% urokinase being released from liposomes. Results from the in vitro thrombolysis experiments demonstrated a good thrombolysis potential of the cRGD urokinase liposomes. The in vivo thrombolysis study demonstrated that the cRGD liposomes could significantly reduce the dose of urokinase by 75% while achieving the equivalent thrombolysis effect as the free urokinase in mouse mesenteric thrombosis model. In conclusion, the cRGD liposomes encapsulating urokinase hold great promise in clinic for better thrombolytic efficacy. STATEMENT OF SIGNIFICANCE In this paper, the cRGD liposomes were prepared to encapsulate urokinase for targeted thrombolysis therapy. The cRGD liposomes could specifically bind to the activated platelets and could stably and continuously release its loaded urokinase. The mouse mesenteric thrombosis model was established to evaluate the thrombolysis effect of the cRGD urokinase liposomes. The results demonstrated that the cRGD liposomes could improve the thrombolytic efficacy by almost 4-fold over free urokinase. In conclusion, the cRGD liposomes encapsulating urokinase had great potential for the clinical treatment of thrombosis.
Collapse
Affiliation(s)
- Nengpan Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunlin Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Dayong Zhou
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215002, China
| | - Chen Ding
- China Pharmaceutical University, Nanjing 211198, China
| | - Yaqing Jin
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qingmei Tian
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiangzhou Meng
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kefeng Pu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
43
|
Vankayala R, Corber SR, Mac JT, Rao MP, Shafie M, Anvari B. Erythrocyte-Derived Nanoparticles as a Theranostic Agent for Near-Infrared Fluorescence Imaging and Thrombolysis of Blood Clots. Macromol Biosci 2018; 18:e1700379. [PMID: 29479820 DOI: 10.1002/mabi.201700379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/21/2018] [Indexed: 12/29/2022]
Abstract
Ischemic stroke occurs when a blood clot obstructs or narrows the arteries that supply blood to the brain. Currently, tissue plasminogen activator (tPA), a thrombolytic agent, is the only United States Food and Drug Administration (FDA)-approved pharmacologic treatment for ischemic stroke. Despite its effective usage, the major limitation of tPA that stems from its short half-life in plasma (≈5 min) is the potential for increased risk of hemorrhagic complications. To circumvent these limitations, herein, the first proof-of-principle demonstration of a theranostic nanoconstruct system derived from erythrocytes doped with the FDA-approved near-infrared (NIR) imaging agent, indocyanine green, and surface-functionalized with tPA is reported. Using a clot model, the dual functionality of these nanoconstructs in NIR fluorescence imaging and clot lysis is demonstrated. These biomimetic theranostic nanoconstructs may ultimately be effective in imaging and treatment of blood clots involved in ischemic stroke.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Samantha R Corber
- Department of Mechanical Engineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Jenny T Mac
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Masaru P Rao
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.,Department of Mechanical Engineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.,Material Science and Engineering Program, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Mohammad Shafie
- School of Medicine, Department of Neurology, University of California, Irvine, 200 S. Manchester Ave. Ste 206, Orange, CA, 92868, USA
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.,Department of Mechanical Engineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.,Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| |
Collapse
|
44
|
Yang L, Yan S, Zhang Y, Hu X, Guo Q, Yuan Y, Zhang J. Novel enzyme formulations for improved pharmacokinetic properties and anti-inflammatory efficacies. Int J Pharm 2018; 537:268-277. [DOI: 10.1016/j.ijpharm.2017.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
|
45
|
Abstract
Understanding and exploiting molecular mechanisms in biology is central to chemical biology. In 20 years, chemical biology research has advanced from simple mechanistic studies using isolated biological macromolecules to molecular-level and nanomolecular-level mechanistic studies involving whole organisms. This review documents the best of my personal and collaborative academic research work that has made use of a solid organic chemistry and chemical biology approach toward nanomedicine, in which my focus has been on the design, creation and use of synthetic, self-assembly lipid-based nanoparticle technologies for the functional delivery of active pharmaceutical ingredients to target cells in vivo. This research is now leading to precision therapeutics approaches (PTAs) for the treatment of diseases that may define the future of nanomedicine.
Collapse
|
46
|
Abstract
Streptokinase is an efficient thrombolytic agent used to treat thromboembolic disorders. Conventional streptokinase formulations have limited thrombolytic activity and several shortcomings because of their immunogenicity and dose-related side effects including short half-life, lack of tissue targeting and peripheral bleeding. Different liposomal formulations have been explored by researchers in order to improve thrombolytic activity of streptokinase. Liposomal formulations could improve plasma stability, retain drug for longer periods of time in the circulation and promote selective delivery to the thrombus. Side effects of conventional streptokinase formulations, such as immunogenicity and hemorrhage, can also be reduced by using liposomal carriers. In vivo therapeutic efficacy of the liposomal streptokinase has been demonstrated well in animal models. In the present review, we will discuss the potential of different liposomal carriers to improve thrombolytic efficacy of streptokinase.
Collapse
|
47
|
Liu S, Feng X, Jin R, Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv 2017; 15:173-184. [PMID: 28944694 DOI: 10.1080/17425247.2018.1384464] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Thrombolysis with intravenous tissue plasminogen activator (tPA) is the only FDA approved treatment for patients with acute ischemic stroke, but its use is limited by narrow therapeutic window, selective efficacy, and hemorrhagic complication. In the past two decades, extensive efforts have been undertaken to extend its therapeutic time window and explore alternative thrombolytic agents, but both show little progress. Nanotechnology has emerged as a promising strategy to improve the efficacy and safety of tPA. AREAS COVERED We reviewed the biology, thrombolytic mechanism, and pleiotropic functions of tPA in the brain and discussed current applications of various nanocarriers intended for the delivery of tPA for treatment of ischemic stroke. Current challenges and potential further directions of t-PA-based nanothrombolysis in stroke therapy are also discussed. EXPERT OPINION Using nanocarriers to deliver tPA offers many advantages to enhance the efficacy and safety of tPA therapy. Further research is needed to characterize the physicochemical characteristics and in vivo behavior of tPA-loaded nanocarriers. Combination of tPA based nanothrombolysis and neuroprotection represents a promising treatment strategy for acute ischemic stroke. Theranostic nanocarriers co-delivered with tPA and imaging agents are also promising for future stroke management.
Collapse
Affiliation(s)
- Shan Liu
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA.,b Pharmaceutics Department , Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College , Beijing , PR China
| | - Xiaozhou Feng
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Rong Jin
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Guohong Li
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
48
|
Parayath NN, Amiji MM. Therapeutic targeting strategies using endogenous cells and proteins. J Control Release 2017; 258:81-94. [DOI: 10.1016/j.jconrel.2017.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/14/2023]
|
49
|
Naeem S, Viswanathan G, Misran MB. Liposomes as colloidal nanovehicles: on the road to success in intravenous drug delivery. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
The advancement of research in colloidal systems has led to the increased application of this technology in more effective and targeted drug delivery. Nanotechnology enables control over functionality parameters and allows innovations in biodegradable, biocompatible, and stimuli-responsive delivery systems. The first closed bilayer phospholipid system, the liposome system, has been making steady progress over five decades of extensive research and has been efficient in achieving many desirable parameters such as remote drug loading, size-controlling measures, longer circulation half-lives, and triggered release. Liposome-mediated drug delivery has been successful in overcoming obstacles to cellular and tissue uptake of drugs with improved biodistribution in vitro and in vivo. These colloidal nanovehicles have moved on from a mere concept to clinical applications in various drug delivery systems for antifungal, antibiotic, and anticancer drugs.
Collapse
Affiliation(s)
- Sumaira Naeem
- Department of Chemistry , Faculty of Science, University of Malaya , 50603 Kuala Lumpur , Malaysia
- Department of Chemistry, Faculty of Science , University of Gujrat , Gujrat , Pakistan
| | - Geetha Viswanathan
- Department of Pharmacy , Faculty of Medicine Building, University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Misni Bin Misran
- Department of Chemistry , Faculty of Science, University of Malaya , 50603 Kuala Lumpur , Malaysia
| |
Collapse
|
50
|
Shekhar H, Bader KB, Huang S, Peng T, Huang S, McPherson DD, Holland CK. In vitro thrombolytic efficacy of echogenic liposomes loaded with tissue plasminogen activator and octafluoropropane gas. Phys Med Biol 2016; 62:517-538. [PMID: 28002053 DOI: 10.1088/1361-6560/62/2/517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Echogenic liposomes loaded with the thrombolytic recombinant tissue-type plasminogen activator (rt-PA) are under development for the treatment of ischemic stroke. These agents are designed to co-encapsulate cavitation nuclei to promote bubble activity in response to ultrasound exposure, and to enable localized delivery of thrombolytic. Stable cavitation improves the efficacy of the thrombolytic through enhanced fluid mixing. Echogenic liposomes that encapsulate air-filled microbubbles nucleate scant stable cavitation activity in response to 120 kHz intermittent ultrasound exposure, and have demonstrated thrombolytic efficacy equivalent to rt-PA alone. It was hypothesized that encapsulating octafluoropropane (OFP) gas within rt-PA-loaded liposomes instead of air will enhance ultrasound-mediated stable cavitation activity and increase thrombolytic efficacy compared to previous studies. The thrombolytic efficacy and cavitation activity nucleated from liposomes that encapsulate OFP microbubbles and rt-PA (OFP t-ELIP) was evaluated in vitro. Human whole blood clots were exposed to human fresh-frozen plasma alone, rt-PA (0, 0.32, 1.58, and 3.15 µg ml-1), or OFP t-ELIP at equivalent enzymatic activity, with and without exposure to intermittent ultrasound. Further, numerical simulations were performed to gain insight into the mechanisms of cavitation nucleation. Sustained ultraharmonic activity was nucleated from OFP t-ELIP when exposed to ultrasound. Furthermore, the thrombolytic efficacy was enhanced compared to rt-PA alone at concentrations of 1.58 µg ml-1 and 3.15 µg ml-1 (p < 0.05). These results indicate that OFP t-ELIP can nucleate sustained stable cavitation activity and enhance the efficacy of thrombolysis.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|