1
|
Gao Y, Guo J, Li S, Ye L, Lu B, Liu J, Luo J, Zhu Y, Chen L, Peng T, Yang J, Wang D, Xie C, Deng X, Hu B. A Bio-Adaptive Janus-Adhesive Dressing with Dynamic Lubrication Overlayer for Prevention of Postoperative Infection and Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500138. [PMID: 40112168 PMCID: PMC12079332 DOI: 10.1002/advs.202500138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Wound postoperative infection and adhesion are prevalent clinical conditions resulting from surgical trauma. However, integrating intraoperative repair and postoperative management into a dressing suitable for wounds with unpredictable surface shapes and surroundings remains a formidable challenge. Here, we attempt to introduce a dynamic antifouling surface as wound protective covering and report an in situ formation of slippery-adhesive Janus gel (SAJG) by assembling hydrogel (N-hydrosuccinimide ester-activated powders) and elastomer (Silicon oil-infused polydimethylsiloxane). First powders can rapidly absorb interfacial water to gel and bond to tissue based on network entanglement, forming a tough adhesive hydrogel. Then precured organosilicon is applied to hydrogel and bonded together, forming a slippery elastomer. Due to the molecular polarity difference between hydrogel and elastomer, SAJG exhibits anisotropic surface behavior as evidenced by liquid repellency (hydrophilic vs. hydrophobic), and adhesion performance (bioadhesion vs. antiadhesion). Further, in vivo models are constructed and results demonstrated that the SAJG can effectively prevent bacterial infection to promote wound healing and avoid postoperative adhesion. Predictably, the morphologically adaptive SAJG with slippery and adhesive properties will have tremendous potential in addressing complex wound infections and postoperative complications.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Gastroenterology and HepatologyDigestive Endoscopy Medical Engineering Research LaboratoryWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610064P. R. China
| | - Junchang Guo
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Shuangyang Li
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Liansong Ye
- Department of Gastroenterology and HepatologyDigestive Endoscopy Medical Engineering Research LaboratoryWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610064P. R. China
| | - Binyang Lu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Jiaxin Liu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Yijia Zhu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Liuxiang Chen
- Department of Gastroenterology and HepatologyDigestive Endoscopy Medical Engineering Research LaboratoryWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610064P. R. China
| | - Tingfa Peng
- Department of Gastroenterology and HepatologyDigestive Endoscopy Medical Engineering Research LaboratoryWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610064P. R. China
| | - Jinlong Yang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Dehui Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Xu Deng
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Bing Hu
- Department of Gastroenterology and HepatologyDigestive Endoscopy Medical Engineering Research LaboratoryWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610064P. R. China
| |
Collapse
|
2
|
Yang H, Kim D, Lee JJ, Kim YJ, Song S, Yeo S, Hwang SJ. A Celecoxib-Loaded Emulsion Gel for Enhanced Drug Delivery and Prevention of Postoperative Adhesion. Pharmaceutics 2025; 17:427. [PMID: 40284421 PMCID: PMC12030702 DOI: 10.3390/pharmaceutics17040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Postoperative adhesions are a common complication following abdominal surgery, affecting over 90% of patients and leading to significant morbidity. Current anti-adhesion strategies, such as the use of physical and chemical barriers, have limitations such as short retention time, mechanical fragility, and inefficient drug delivery. This study developed a pectin-based emulsion gel loaded with celecoxib to prevent adhesions and provide localized pain relief. Methods: Formulations (F1-F4) with different pectin concentrations were evaluated for rheological properties, mucoadhesion, degradation rate, and celecoxib release. In vivo efficacy was evaluated in Sprague-Dawley rats via a standardized model of peritoneal abrasion, in which the formulations were compared to a commercially available anti-adhesion barrier. Results: The optimized emulsion gel (F4) exhibited improved mucoadhesion (9009 mPa·s), prolonged retention, and controlled celecoxib release over 14 days, reaching 80% release by day 9. In vivo, formulation F4 significantly reduced adhesions compared to a commercially available product. Pharmacokinetic analysis showed rapid absorption (Tmax = 2 h) and sustained celecoxib plasma levels, confirming its effectiveness as a localized drug-delivery system. The celecoxib-loaded pectin-based gel successfully prevented postoperative adhesions and provided sustained pain relief. Conclusions: These findings suggest its potential clinical utility, though further preclinical and clinical evaluations are required.
Collapse
Affiliation(s)
| | | | | | | | | | - Sooho Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (H.Y.); (D.K.); (J.-J.L.); (Y.J.K.); (S.S.)
| | - Sung-Joo Hwang
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (H.Y.); (D.K.); (J.-J.L.); (Y.J.K.); (S.S.)
| |
Collapse
|
3
|
Zhao J, Chen Y, Qin Y, Li Y, Lu X, Xie C. Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction. Macromol Rapid Commun 2025; 46:e2400835. [PMID: 39803789 DOI: 10.1002/marc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering. However, traditional hydrogels lack the necessary conductivity to restore electrical signal transmission in the infarcted regions. Imparting conductivity to hydrogels while also enhancing their adhesive properties enables them to adhere closely to myocardial tissue, establish stable electrical connections, and facilitate synchronized contraction and myocardial tissue repair within the infarcted area. This paper reviews the strategies for constructing conductive and adhesive hydrogels, focusing on their application in MI repair. Furthermore, the challenges and future directions in developing adhesive and conductive hydrogels for MI repair are discussed.
Collapse
Affiliation(s)
- Jialiang Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ying Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuanyuan Qin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yongqi Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
4
|
Qin C, Yang H, Lu Y, Li B, Ma S, Ma Y, Zhou F. Tribology in Nature: Inspirations for Advanced Lubrication Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420626. [PMID: 39972641 DOI: 10.1002/adma.202420626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Friction-induced energy consumption is a significant global concern, driving researchers to explore advanced lubrication materials. In nature, lubrication is vital for the life cycle of animals, plants, and humans, playing key roles in movement, predation, and decomposition. After billions of years of evolution, natural lubrication exhibits remarkable professionalism, high efficiency, durability, and intelligence, offering valuable insights for designing advanced lubrication materials. This review focuses on the lubrication mechanisms of natural organisms and significant advancements in biomimetic soft matter lubrication materials. It begins by summarizing common biological lubrication behaviors and their underlying mechanisms, followed by current design strategies for biomimetic soft matter lubrication materials. The review then outlines the development and performance of these materials based on different mechanisms and strategies. Finally, it discusses potential research directions and prospects for soft matter lubrication materials. This review will be a valuable resource for advancing research in biomimetic lubrication materials.
Collapse
Affiliation(s)
- Chenxi Qin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiong Lu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
5
|
Bi X, Mao Z, Li L, Zhang Y, Yang L, Hou S, Guan J, Zheng Y, Li X, Fan Y. Janus decellularized membrane with anisotropic cell guidance and anti-adhesion silk-based coatings for spinal dural repair. Nat Commun 2025; 16:1674. [PMID: 39955276 PMCID: PMC11829971 DOI: 10.1038/s41467-025-56872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
The repair of soft tissues with anisotropic structures, such as spinal dura mater, requires the use of biomaterials to guide tissue directional growth while minimizing epidural fibrotic adhesion. Herein, we construct the Janus small intestinal submucosa (SIS) via silk-based hydrogel coatings, which provides extracellular matrix-mimicking features and anti-adhesion performance for spinal dural defect repair. We demonstrate that the silk fibroin and methacrylated silk fibroin (SilMA) composite microgroove hydrogel coating at the inner surface via water vapor annealing treatment exhibits excellent structure stability, stable attachment to SIS substrate, and shows orientated cell morphology and extracellular matrix produced by fibroblasts, good histocompatibility and promotes the polarization of macrophages towards the anti-inflammatory phenotype. The methacrylated hyaluronic acid and SilMA composite coating outer surface serves as favorable physical barrier shows effective resistance to protein adsorption, cell and tissue adhesion, and can mitigate fibrosis reactions. Spinal dura mater defect experiments on male rats demonstrate that the Janus SIS simultaneously promotes dural regeneration and inhibits epidural fibrosis.
Collapse
Affiliation(s)
- Xuewei Bi
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, China
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Materials Science & Engineering, Beihang University, Beijing, China
| | - Linhao Li
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China.
| | - Yilin Zhang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Lingbing Yang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Juan Guan
- School of Materials Science & Engineering, Beihang University, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaoming Li
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China.
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, China.
| | - Yubo Fan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China.
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, China.
| |
Collapse
|
6
|
Badaraev AD, Plotnikov EV, Bukal VR, Dubinenko GE, Frueh J, Rutkowski S, Tverdokhlebov SI. Fabrication of PVA Coatings Applied to Electrospun PLGA Scaffolds to Prevent Postoperative Adhesions. J Funct Biomater 2025; 16:57. [PMID: 39997591 PMCID: PMC11856736 DOI: 10.3390/jfb16020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
There is currently a demand for anti-adhesive materials that are capable of preventing the formation of intra-abdominal adhesions. In this study, electrospun poly(lactide-co-glycolide) scaffolds were dip-coated in aqueous solutions of polyvinyl alcohol with concentrations of 3 wt.%, 6 wt.% and 9 wt.% to obtain a nontoxic and anti-adhesive biomedical material. The viscosities of the applied 3 wt.%, 6 wt.% and 9 wt.% polyvinyl alcohol solutions were 7.7 mPa∙s, 38.2 mPa∙s and 180.8 mPa∙s, respectively, and increased exponentially. It is shown that increasing the viscosity of the polyvinyl alcohol solution from 6 wt.% to 9 wt.% increases the thickness of the polyvinyl alcohol layer from (3.32 ± 0.97) µm to (8.09 ± 1.43) µm. No pronounced polyvinyl alcohol layer can be observed on samples dip-coated in 3 wt.% PVA solution. Increasing the viscosity of the polyvinyl alcohol solution from 3 wt.% to 9 wt.% increases the mechanical properties of the poly(lactide-co-glycolide) samples by a factor of 1.16-1.45. Cytotoxicity analysis of all samples reveals that none is toxic to 3T3-L1 fibroblast cells. A cell adhesion assay indicates that the anti-adhesion properties increase with increasing viscosity of the polyvinyl alcohol solution and the thickness of the polyvinyl alcohol layer on the poly(lactide-co-glycolide) scaffolds. Fluorescence images of the cells show that as the thickness of the polyvinyl alcohol coating increases, the number of cells decreases, and they do not cover the surface of the samples and form spherical three-dimensional agglomerates. The highest mechanical and anti-adhesion properties are obtained with the poly(lactide-co-glycolide) scaffold sample dip-coated in the 9 wt.% polyvinyl alcohol solution. This is because this sample has the thickest polyvinyl alcohol coating.
Collapse
Affiliation(s)
- Arsalan D. Badaraev
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Evgenii V. Plotnikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634000 Tomsk, Russia;
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 634014 Tomsk, Russia
| | - Vladislav R. Bukal
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Gleb E. Dubinenko
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Johannes Frueh
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Sven Rutkowski
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Sergei I. Tverdokhlebov
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| |
Collapse
|
7
|
Li T, Wen G, Zhao H, Qu Y, Wu H, Sun Y, Zhao J, Li W. Protein-based supramolecular adhesive capable of on-demand adhesion and anti-adhesion for preventing undesired epidural tissue adhesion. CHEMICAL ENGINEERING JOURNAL 2025; 505:159778. [DOI: 10.1016/j.cej.2025.159778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
8
|
Liu L, Zhao F, Zhang Y, Yu X, Chen H, Rong H, Yuan H, Zhang J, Deng L, Li S, Dong A. An In Situ UV Cross-Linking Asymmetric Adhesive Hydrogel for Noncompressible Hemostasis and Postoperative Adhesion Prevention. ACS Biomater Sci Eng 2025; 11:595-608. [PMID: 39644223 DOI: 10.1021/acsbiomaterials.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Noncompressible hemorrhage control is vital for clinical outcome after surgical treatment and prehospital trauma injuries. Meanwhile, wound bleeding and tissue damage could induce postoperative adhesions, leading to a severe threat to the health of patients. Considerable research had been conducted on the development of hemostatic and antiadhesive materials. However, it was still a great challenge to realize hemostasis and antiadhesion simultaneously especially in inaccessible and irregular wound sites. In this study, a kind of fluid hemostatic agent composed of gelatin methacryloyl/sulfobetaine methacrylate/oxidized konjac glucomannan (termed GOS) was developed, which spread immediately upon contacting the hepatic trauma surface and turned into hydrogels under UV radiation within 5 s, resulting in rapid hemostasis and firm adhesion to tissues (shear strength 486.08 kPa). Importantly, the surface of the as-formed GOS hydrogel exhibited lubricious and nonadhesive properties, exhibiting excellent anti-postoperative adhesion performance in a rat liver hemostasis model and a rat abdominal wall-cecum adhesion model. In addition, the GOS hydrogel reduced the postoperative secretion of inflammatory factors TNF-α and IL-6, facilitating the tissue repair. Therefore, the asymmetrical adhesive GOS hydrogel could fulfill the requirements for simultaneously rapid hemostasis, tissue adhesion, and subsequent excellent antiadhesion, which demonstrated significant potential for diverse clinical surgical operation scenarios.
Collapse
Affiliation(s)
- Lingyuan Liu
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Zhao
- Chest Hospital, Tianjin University, Tianjin 300000, China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinghui Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hongjin Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Rong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haicheng Yuan
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Zhang J, Luo X, Liu J, Wu M, Feng J, Zhou J. A "Janus" Zwitterionic Hydrogel Patch for Tissue Repair and Prevention of Post-Operative Adhesions. Adv Healthc Mater 2025; 14:e2404082. [PMID: 39641177 DOI: 10.1002/adhm.202404082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Anti-peritoneal adhesions (PA) are very important after abdominal surgery for that PA often leads to other medical problems and imposes a huge financial burden on the national healthcare system. In this work, a "Janus" zwitterionic hydrogel patch where one side can adhere firmly to the tissue, while the other side has anti-fouling properties and has little interaction with the surrounding tissue has been developed. The "Janus" hydrogel patch is prepared by in situ formation of a bonding polymer layer poly(acrylic-co-N-hydroxysuccinimide acrylate) on one side of zwitterionic hydrogel. The mechanical, swelling, adhesion, biodegradability and biocompatibility tests are performed to study the function of "Janus" hydrogel patch to prevent wound adhesion and rapid repair. It is found that the adhesive side of the hydrogel patch has stable adhesion to tissues, avoiding the slippage faced by many commercial anti-adhesion gels in the body. The other zwitterionic side can resist proteins and fibroblasts and prevent external interactions or adhesion with other tissues. This convenient and effective method provides a new idea for the design of postoperative anti-adhesion materials and broadens the application of hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinxin Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiaqi Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Minmin Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jia Zhou
- Cancer Center, Gamma Knife Treatment Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
10
|
Tao Z, Wang S, Liu J, Zhu T, Jiang J, Liu S, Ma X. Sustainable Immunomodulatory via Macrophage P2Y12 Inhibition Mediated Bioactive Patche for Peritendinous Antiadhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409128. [PMID: 39630942 PMCID: PMC11775537 DOI: 10.1002/advs.202409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/25/2024] [Indexed: 12/07/2024]
Abstract
Persistent anti-inflammatory responses are critical for the prevention of peritendinous adhesion. Although modified anti-adhesion barriers have been studied extensively, the immune response induced by the implants and the unclear mechanism limits their application. In this research, the advantage of the multi-functionalities of CA (caffeic acid) is taken to synthesize biodegradable poly (ester urethane) urea elastomers with ester- and carbamate-bonded CA (PEUU-CA). PEUU-CA is electrospun into bioactive patches that can uniquely present a sustained CA niche, referred to as BPSN. In the early stage of degradation, the breakage of the ester bond from BPSN is the dominant factor contributing to the early release of CA. In the later stage of BPSN degradation, the breakage of the ester and carbamate bonds contributes to the sustained release of CA. In vitro experiments showed that CA, when specifically bound to the P2Y12 receptor, down-regulated the expression and function of active P2Y12, effectively inhibiting the aberrant activation of macrophages and the secretion of inflammatory chemokines. BPSN addresses the foreign body reaction induced by macrophage-dominated biomaterial implantation and the issue of the short-term release of drugs at later stages of adhesion, providing a feasible strategy for the prevention and treatment of tissue adhesion, and more broadly, the well-known implant-derived inflammatory responses.
Collapse
Affiliation(s)
- Zaijin Tao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Shuo Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Jingwen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced MaterialsInstitute for Frontier Medical TechnologySchool of Chemistry and Chemical EngineeringShanghai University of Engineering Science333 Longteng Rd.Shanghai201620P. R. China
| | - Jia Jiang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Shen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Xin Ma
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| |
Collapse
|
11
|
Xiang Z, Chen H, Wu F, Pan H. Polyamino Acid Based Zwitterionic Coating can Inhibit Coagulation and Inflammation Through Anti-Fouling and Restoring Microenvironment. Macromol Biosci 2025; 25:e2400336. [PMID: 39513645 DOI: 10.1002/mabi.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Indexed: 11/15/2024]
Abstract
Protein adhesion and thrombosis formation caused by limited surface properties pose great challenges to biomedical implants. Although various hydrophilic coating or drug release coatings are reported, the single coating cannot cope with cases under the condition of complex physiological environment, which causes the coating effect is limited. In this study, a polyamino acid-derived zwitterionic coating is constructed to eliminate reactive oxygen species (ROS) in the microenvironment. It is demonstrated that the coating has excellent hydrophilicity, stability, and lubricity, and can obviously prevent protein adhesion. At the same time, the coating can eliminate hydrogen peroxide and maintain the stability of the microenvironment. The in vivo and in vitro experiments show that the coating has good biocompatibility, and inhibits thrombus. Amino acid zwitterion coating prevents protein deposition, alleviates the inflammatory process, inhibit of thrombosis, reduces the risk of implantable medical devices, and prolongs their service time. Hence, the work paves a new way to develop amino acid based zwitterionic polymer coating that can reduce the implant complications.
Collapse
Affiliation(s)
- Zehong Xiang
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| | - Honghong Chen
- Chen, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Feng Wu
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| | - Haobo Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
12
|
Kambe Y, Kawano Y, Sasaki M, Koga M, Fujita N, Kameda T. Enhanced Biodegradation of Silk Fibroin Hydrogel for Preventing Postoperative Adhesion. ACS Biomater Sci Eng 2024; 10:7441-7450. [PMID: 39496577 DOI: 10.1021/acsbiomaterials.4c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
An absorbable adhesion barrier is a medical device that prevents postoperative adhesion and matches its biodegradation time with the regeneration period of its target tissues, which is important for antiadhesion effects. Physical hydrogels of Bombyx mori silk fibroin (SF) proteins are degradable in vivo. However, their biodegradation time is too long to exert antiadhesion effects. To shorten the biodegradation time of the SF hydrogels, we decreased the molecular weight (MW) of the SF proteins by alkaline treatment and prepared low-MW (LMW) SF hydrogels. The hydrogels contained less β-sheet crystalline and more amorphous structures than conventional, high-MW (HMW) SF hydrogels. Because of the potential loosened SF molecular structures in the hydrogel networks, the LMW SF hydrogels showed enhanced biodegradation (i.e., shorter in vitro enzymatic biodegradation time and faster in vivo biodegradation rate) as well as a lower affinity for plasma proteins and fibroblasts, which are involved in postoperative adhesion formation. An antiadhesion test using a rat abdominal adhesion model demonstrated that the LMW SF hydrogel applied to the abraded cecum was almost completely degraded within two weeks postimplantation, with a significantly lower adhesion severity score than that in the untreated model rat group. Conversely, the HMW SF hydrogel remained between the cecum and abdominal wall, with the same adhesion severity as that of the untreated model rat group. Therefore, we concluded that the antiadhesion effects of SF hydrogels were induced by enhanced biodegradation. The results of this study indicate the potential of LMW SF hydrogels as absorbable adhesion barriers.
Collapse
Affiliation(s)
- Yusuke Kambe
- Silk Materials Research Group, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yusuke Kawano
- Department of Orthopaedic Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Makoto Sasaki
- Charlie Lab Inc., 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Maito Koga
- Silk Materials Research Group, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tsunenori Kameda
- Silk Materials Research Group, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
13
|
Liu ZH, Huang YC, Kuo CY, Govindaraju DT, Chen NY, Yip PK, Chen JP. Docosahexaenoic Acid-Infused Core-Shell Fibrous Membranes for Prevention of Epidural Adhesions. Int J Mol Sci 2024; 25:13012. [PMID: 39684723 DOI: 10.3390/ijms252313012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Avoiding epidural adhesion following spinal surgery can reduce clinical discomfort and complications. As the severity of epidural adhesion is positively correlated with the inflammatory response, implanting a fibrous membrane after spinal surgery, which can act as a physical barrier to prevent adhesion formation while simultaneously modulates postoperative inflammation, is a promising approach to meet clinical needs. Toward this end, we fabricated an electrospun core-shell fibrous membrane (CSFM) based on polylactic acid (PLA) and infused the fiber core region with the potent natural anti-inflammatory compound docosahexaenoic acid (DHA). The PLA/DHA CSFM can continuously deliver DHA for up to 36 days in vitro and reduce the penetration and attachment of fibroblasts. The released DHA can downregulate the gene expression of inflammatory markers (IL-6, IL-1β, and TNF-α) in fibroblasts. Following an in vivo study that implanted a CSFM in rats subjected to lumbar laminectomy, the von Frey withdrawal test indicates the PLA/DHA CSFM treatment can successfully alleviate neuropathic pain-like behaviors in the treated rats, showing 3.60 ± 0.49 g threshold weight in comparison with 1.80 ± 0.75 g for the PLA CSFM treatment and 0.57 ± 0.37 g for the untreated control on day 21 post-implantation. The histological analysis also indicates that the PLA/DHA CSFM can significantly reduce proinflammatory cytokine (TNF-α and IL-1β) protein expression at the lesion and provide anti-adhesion effects, indicating its vital role in preventing epidural fibrosis by mitigating the inflammatory response.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | | | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Ping K Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
14
|
Wen J, Liu K, Bu Y, Zhang Y, Zheng Y, He J, Huang Y, Hu D, Wang K. An injectable and antifouling hydrogel prevents the development of abdominal adhesions by inhibiting the CCL2/CCR2 interaction. Biomaterials 2024; 311:122661. [PMID: 38875883 DOI: 10.1016/j.biomaterials.2024.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Abdominal adhesion, a serious complication of abdominal surgery, often resists mitigation by current drug administration and physical barriers. To address this issue, we developed an injectable, antifouling hydrogel through the free-radical polymerization of methacrylate chondroitin sulfate (CS-GMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) monomers, dubbed the CGM hydrogel. We systematically analyzed its physicochemical properties, including rheological strength, biocompatibility, and antifouling capabilities. A rat abdominal cecum adhesion model was constructed to assess the effectiveness of CGM hydrogel in preventing postoperative adhesion and recurrent adhesion. In addition, multi-omics analyses identified the relationship between adhesion development and CCL2/CCR2 interaction. Notably, CGM hydrogel can thwart the recruitment and aggregation of fibroblasts and macrophages by inhibiting the CCL2/CCR2 interaction. Moreover, CGM hydrogel significantly dampens the activity of fibrosis-linked cytokines (TGF-βR1) and recalibrates extracellular matrix deposition-related cytokines (t-PA and PAI-1, Col Ⅰ and MMP-9). Cumulatively, the dual action of CGM hydrogel-as a physical barrier and cytokine regulator-highlights its promising potential in clinical application for abdominal adhesion prevention.
Collapse
Affiliation(s)
- Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yizhuo Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunhe Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiangchuan He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Huang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
15
|
Wang S, Sha P, Zhao X, Tao Z, Liu S. Peritendinous adhesion: Therapeutic targets and progress of drug therapy. Comput Struct Biotechnol J 2024; 23:251-263. [PMID: 38173878 PMCID: PMC10762322 DOI: 10.1016/j.csbj.2023.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Peritendinous adhesion (PA) is one of the most common complications following hand surgery and characterized with abnormal hyperplasia of connective tissue and excessive deposition of extracellular matrix. Subsequently, various clinical symptoms such as chronic pain, limb dyskinesia and even joint stiffness occur and patients are always involved in the vicious cycle of "adhesion - release - re-adhesion", which seriously compromise the quality of life. Until present, the underlying mechanism remains controversial and lack of specific treatment, with symptomatic treatment being the only option to relieve symptoms, but not contributing no more to the fundamentally rehabilitation of basic structure and function. Recently, novel strategies have been proposed to inhibit the formation of adhesion tissues including implantation of anti-adhesion barriers, anti-inflammation, restraint of myofibroblast transformation and regulation of collagen overproduction. Furthermore, gene therapy has also been considered as a promising anti-adhesion treatment. In this review, we provide an overview of anti-adhesion targets and relevant drugs to summarize the potential pharmacological roles and present subsequent challenges and prospects of anti-adhesion drugs.
Collapse
Affiliation(s)
| | | | | | - Zaijin Tao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Hanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Hanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
16
|
Sun L, Li X, Hao L, Dong Y, Zhou L, Zhao J, Ye W, Jiang R. Microenvironment-Responsive Hydrogel Enclosed with Bioactive Nanoparticle for Synergistic Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60933-60947. [PMID: 39446062 DOI: 10.1021/acsami.4c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Postoperative adhesion (PA) is a severe complication of abdominal surgery caused by the inability of clinical physical barriers to cope with diverse pathological factors in the process of PA formation. Herein, we described a multifunctional hydrogel composed of bioactive nanoparticles (BNs) and dual-responsive hydrogel to serve as a combination of physical and pharmacological therapy for preventing PA. Specifically, BNs with pro-inflammatory cell-targeted aggregation were designed by integrating hyaluronic acid onto the polydopamine (PDA)-coated hollow ZrO2 nanoparticles loaded with antimicrobial peptides and platelet lysates that can eliminate bacterial infection and promote tissue repair. PDA can remove the excessive reactive oxygen species (ROS) and thus suppress the oxidative stress damage and accompanying inflammation in the presence of high ROS. The dynamically cross-linked host hydrogel presents injectable yet microenvironment-responsive properties, which enables complete coverage of the uneven tissue and instantly forms a physical barrier to effectively isolate injured tissues and neighboring organs, and synchronously acts as a niche to deliver the BNs in a controlled way. The hydrogel demonstrates a remarkable antiadhesion effect in a rat cecum-abdominal wall adhesion model. Together, this "all-in-one" composite hydrogel strategy capable of a physical barrier capability and pharmacological effects represents a promising clinical solution to prevent PA.
Collapse
Affiliation(s)
- Liwei Sun
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Xinmeng Li
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lingwan Hao
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Yanhong Dong
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lu Zhou
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
17
|
Liao J, Li X, Yang H, He W, Wang B, Liu S, Fan Y. Construction of a Curcumin‐Loaded PLLA/PCL Micro‐Nano Conjugated Fibrous Membrane to Synergistically Prevent Postoperative Adhesion From Multiple Perspectives. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202407983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 02/02/2025]
Abstract
AbstractPostoperative adhesion (POA) has emerged as a prevalent clinical challenge in soft tissue repair, emphasizing the critical need for preventive measures. However, the complex POA development process makes POA prevention from a single aspect insufficient. Hence, a curcumin‐loaded poly‐L‐lactic acid‐poly (caprolactone) micro‐nano conjugated fibrous membrane (PAPC MCFM (cur)) is engineered to synergistically prevent POA from multiple perspectives, in which poly (caprolactone) (PCL) nanofibers (118 ± 12 nm) with low orientation traverse the oriented poly‐L‐lactic acid (PLLA) microfibers (2.0 ± 0.3 µm). The PAPC MCFM not only significantly improves the mechanical properties of the anisotropic fibrous membrane (AIFM) that the modulus of elasticity and the tensile strength in the direction vertical to microfiber orientation increase by 4.5 and 13.0 times, respectively, but also can further enhance the “contact guidance effect” of AIFM, i.e., hindering fibroblast adhesion, proliferation, and differentiation to myofibroblast through inhibiting integrin β1 activation, vinculin expression and focal adhesion (FA) formation, and the nuclear localization activation of yes‐associated protein (YAP). Except for these effects, PAPC MCFM loading with 2.5 mg mL−1 curcumin can further prevent POA by delivering anti‐inflammatory, antioxidant, and antibacterial properties, and by suppressing fibrosis through decreased transforming growth factor‐β1(TGF‐β1) expression, showing effective POA prevention in rat abdominal cavity and rabbit dura mater models.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
- Department of Biomedical Materials Science College of Biomedical Engineering Third Military Medical University Chongqing 400038 China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Huiqi Yang
- Department of Hernia and Abdominal Wall Surgery Beijing Chao‐Yang Hospital Beijing 100043 China
| | - Wei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Shuyu Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| |
Collapse
|
18
|
Wang S, Zheng Y, Gao Y, He J, Lv F, Bu Y, Liu K, Zhang Y, Wen J, Wang L, Wang K, Zhang X. In situ crosslinked injectable chondroitin sulfate hydrogel for preventing postoperative adhesion. Biomed Pharmacother 2024; 180:117495. [PMID: 39326100 DOI: 10.1016/j.biopha.2024.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Postoperative adhesion is a common clinical disease caused by surgical trauma, accompanying serious subsequent complications. Current non-surgical drug therapy and biomaterial barrier administration have limited therapeutic effects due to their inherent deficiencies. Therefore, developing a simple, effective, and feasible method to effectively prevent postoperative adhesions after surgical procedures remains a challenge. An injectable chondroitin sulfate complex hydrogel was prepared based on aldehyde-modified chondroitin sulfate (ChS-CHO) and hydrazine-modified chondroitin sulfate (ChS-ADH). The hydrogel showed enhanced strength and good self-healing ability. By using the Schiff base reaction principle that aldehyde group reacts with hydrazide to form hydrazone bond, C-A hydrogel physical barrier is formed at the wound site to reduce the occurrence of postoperative adhesion. There is no use of chemical crosslinkers in the whole reaction system to prepare C-A hydrogel, which has excellent biocompatibility and is safe and non-toxic. The results showed that C-A hydrogel showed excellent mechanical properties, good self-healing, and biocompatibility. The cecal-abdominal wall adhesion model and hepatic adhesion model of rats were constructed respectively to evaluate its preventive effect on postoperative adhesion. The results showed that C-A hydrogel had a more significant preventive effect on postoperative adhesion, and appears to be a promising candidate for postoperative adhesion.
Collapse
Affiliation(s)
- Shijun Wang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Yunhe Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanyao Gao
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Jiangchuan He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Feng Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yizhuo Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Xiqian Zhang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Henan 450002, China.
| |
Collapse
|
19
|
Vinitpairot C, Yik JHN, Haudenschild DR, Szabo RM, Bayne CO. Current trends in the prevention of adhesions after zone 2 flexor tendon repair. J Orthop Res 2024; 42:2149-2158. [PMID: 38761143 DOI: 10.1002/jor.25874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
Treating flexor tendon injuries within the digital flexor sheath (commonly referred to as palmar hand zone 2) presents both technical and logistical challenges. Success hinges on striking a delicate balance between safeguarding the surgical repair for tendon healing and initiating early rehabilitation to mitigate the formation of tendon adhesions. Adhesions between tendon slips and between tendons and the flexor sheath impede tendon movement, leading to postoperative stiffness and functional impairment. While current approaches to flexor tendon repair prioritize maximizing tendon strength for early mobilization and adhesion prevention, factors such as pain, swelling, and patient compliance may impede postoperative rehabilitation efforts. Moreover, premature mobilization could risk repair failure, necessitating additional surgical interventions. Pharmacological agents offer a potential avenue for minimizing inflammation and reducing adhesion formation while still promoting normal tendon healing. Although some systemic and local agents have shown promising results in animal studies, their clinical efficacy remains uncertain. Limitations in these studies include the relevance of chosen animal models to human populations and the adequacy of tools and measurement techniques in accurately assessing the impact of adhesions. This article provides an overview of the clinical challenges associated with flexor tendon injuries, discusses current on- and off-label agents aimed at minimizing adhesion formation, and examines investigational models designed to study adhesion reduction after intra-synovial flexor tendon repair. Understanding the clinical problem and experimental models may serve as a catalyst for future research aimed at addressing intra-synovial tendon adhesions following zone 2 flexor tendon repair.
Collapse
Affiliation(s)
- Chaiyos Vinitpairot
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jasper H N Yik
- Department of Translational Orthopedic Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dominik R Haudenschild
- Department of Translational Orthopedic Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Robert M Szabo
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Christopher O Bayne
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
20
|
Deng J, Yao Z, Wang S, Zhang X, Zhan L, Wang T, Yu W, Zeng J, Wu J, Fu S, Wu S, Ouyang Y, Huang C. Uni-directional release of ibuprofen from an asymmetric fibrous membrane enables effective peritendinous anti-adhesion. J Control Release 2024; 372:251-264. [PMID: 38908755 DOI: 10.1016/j.jconrel.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Drug-loaded porous membranes have been deemed to be effective physicochemical barriers to separate postoperative adhesion-prone tissues in tendon healing. However, cell viability and subsequent tissue regeneration might be severely interfered with the unrestricted release and the locally excessive concentration of anti-inflammatory drugs. Herein, we report a double-layered membrane with sustained and uni-directional drug delivery features to prevent peritendinous adhesion without hampering the healing outcome. A vortex-assisted electrospinning system in combination with ibuprofen (IBU)-in-water emulsion was utilized to fabricate IBU-loaded poly-ʟ-lactic-acid (PLLA) fiber bundle membrane (PFB-IBU) as the anti-adhesion layer. The resultant highly porous structure, oleophilic and hydrophobic nature of PLLA fibers enabled in situ loading of IBU with a concentration gradient across the membrane thickness. Aligned collagen nanofibers were further deposited at the low IBU concentration side of the membrane for regulating cell growth and achieving uni-directional release of IBU. Drug release kinetics showed that the release amount of IBU from the high concentration side reached 79.32% at 14 d, while it was only 0.35% at the collagen side. Therefore, fibroblast proliferation at the high concentration side was successfully inhibited without affecting the oriented growth of tendon-derived stem cells at the other side. In vivo evaluation of the rat Achilles adhesion model confirmed the successful peritendinous anti-adhesion of our double-layered membrane, in that the macrophage recruitment, the inflammatory factor secretion and the deposition of pathological adhesion markers such as α-SMA and COL-III were all inhibited, which greatly improved the peritendinous fibrosis and restored the motor function of tendon.
Collapse
Affiliation(s)
- Jixia Deng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhixiao Yao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Shikun Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xinyu Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lei Zhan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Tongyu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhua Yu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiamei Zeng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jinglei Wu
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry and Chemical Engineering and Biological Engineering, Donghua University, Shanghai 201620, China
| | - Shaoju Fu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China.
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Chen Huang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
21
|
Liu Y, Li S, Huang J, Li Z, Chen K, Qu G, Wu X, Ren J. Establishment and evaluation of an improved rat model of open abdomen. Animal Model Exp Med 2024; 7:562-569. [PMID: 38158631 PMCID: PMC11369015 DOI: 10.1002/ame2.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION This study aimed to establish an animal model of open abdomen (OA) through temporary abdominal closure via different techniques. METHODS Adult male Sprague-Dawley rats were randomly divided into three groups: group A (OA with polypropylene mesh alone); group B (OA with polypropylene mesh combined with a patch); and group C (OA with polypropylene mesh and a sutured patch). Vital signs, pathophysiological changes, and survival rates were closely monitored in the rats for 7 days after surgery. Abdominal X-rays and histopathological examinations were performed to assess abdominal organ changes and wound healing. RESULTS The results showed no significant difference in mortality rates among the three groups (p > 0.05). However, rats in group B exhibited superior overall condition, cleaner wounds, and a higher rate of wound healing compared to the other groups (p < 0.05). Abdominal X-rays indicated that varying degrees of distal intestinal obstruction in all groups. Histopathological examinations revealed fibrous hyperplasia, inflammatory cell infiltration, neovascularization, and collagen deposition in all groups. Group B demonstrated enhanced granulation tissue generation, neovascularization, and collagen deposition compared to the other groups (p < 0.05). CONCLUSIONS Polypropylene mesh combined with patches is the most suitable method for establishing an animal model of OA. This model successfully replicated the pathological and physiological changes in postoperative patients with OA, specifically the progress of abdominal skin wound healing. It provides a practical and reliable animal model for OA research.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, Southeast UniversityNanjingChina
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Sicheng Li
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jinjian Huang
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Ze Li
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Kang Chen
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Guiwen Qu
- School of Medicine, Southeast UniversityNanjingChina
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Xiuwen Wu
- School of Medicine, Southeast UniversityNanjingChina
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jianan Ren
- School of Medicine, Southeast UniversityNanjingChina
- Research Institute of General SurgeryAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
22
|
Sideri AI, Pappa EI, Skampardonis V, Barbagianni M, Georgiou SG, Psalla D, Marouda C, Prassinos NN, Galatos AD, Gouletsou PG. Prevention of Adhesions after Bone Fracture Using a Carboxymethylcellulose and Polyethylene Oxide Composite Gel in Dogs. Vet Sci 2024; 11:343. [PMID: 39195798 PMCID: PMC11360353 DOI: 10.3390/vetsci11080343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The formation of adhesions is a common complication following traumatic injuries and surgical procedures, often resulting in pain, stiffness, and loss of function. This study aimed to evaluate the feasibility and safety of using a composite material comprising of carboxymethylcellulose (CMC), polyethylene oxide (PEO), and calcium chloride, for preventing adhesions between muscle and bone during the healing stage, as well as its effect on the bone healing process. Ten healthy purpose-bred laboratory Beagle dogs were randomly subjected to two consecutive operations with a 6-month interval, alternating between left and right forelimbs. On the left forelimb an osteotomy at the ulna was performed, while on the right forelimb the same procedure was supplemented by the application of the anti-adhesion agent in the osteotomy site prior to closure. Clinical, diagnostic imaging, macroscopic, and histological evaluations were performed at various time points. The results showed no significant differences in surgical site perimeter (p = 0.558), lameness (p = 0.227), and radiographic bone healing (p = 0.379) between the two groups. However, the macroscopic (p = 0.006) and histological assessments revealed significantly lower adhesion scores (p = 0.0049) and better healing (p = 0.0102) in the group that received the anti-adhesion agent. These findings suggest that the CMC/PEO composite material is a safe and potentially effective intervention for preventing post-traumatic and post-surgical adhesions in canine patients without compromising bone healing. Further research is warranted to fully characterize the clinical benefits of this approach.
Collapse
Affiliation(s)
- Aikaterini I. Sideri
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Elena I. Pappa
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Vassilis Skampardonis
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, School of Health Sciences, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece;
| | - Mariana Barbagianni
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Stefanos G. Georgiou
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Dimitra Psalla
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutira 11, GR 54124 Thessaloniki, Greece; (D.P.); (C.M.); (N.N.P.)
| | - Christina Marouda
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutira 11, GR 54124 Thessaloniki, Greece; (D.P.); (C.M.); (N.N.P.)
| | - Nikitas N. Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutira 11, GR 54124 Thessaloniki, Greece; (D.P.); (C.M.); (N.N.P.)
| | - Apostolos D. Galatos
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Pagona G. Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece
| |
Collapse
|
23
|
Chen X, Yan D, Deng H, Yang H, Peng S, Zhang W, Cai S, Zhang Q, Ren H, Yan Y. CuSO 4/H 2O 2induced polydopamine/polysulfobetaine methacrylate co-deposition on poly(amino acid) membranes for improved anti-protein adsorption and antibacterial activity. Biomed Mater 2024; 19:055008. [PMID: 38917812 DOI: 10.1088/1748-605x/ad5ba6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Stopping postoperative soft tissue adhesions is one of the most challenging clinical problems that needs to be addressed urgently to avoid secondary injury and pain to patients. Currently, membrane materials with anti-protein adsorption and antibacterial activity are recognized as an effective and promising anti-adhesion barrier to prevent postoperative adhesion and the recurrent adhesion after adhesiolysis. Herein, poly(amino acid) (PAA), which is structurally similar to collagen, is selected as the membrane base material to successfully synthesize PAA-5 membranes with excellent mechanical and degradation properties by in-situ melt polymerization and hot-melt film-forming technology. Subsequently, the co-deposition of polydopamine/polysulfobetaine methacrylate (PDA/PSBMA) coatings induced by CuSO4/H2O2on PAA-5 membranes results in the formation of PDC-5S and PDC-10S, which exhibit excellent hemocompatibility, protein antifouling properties, and cytocompatibility. Additionally, PDC-5S and PDC-10S demonstrated significant antibacterial activity againstEscherichia coliandStaphylococcus aureus, with an inhibition rate of more than 90%. As a result, this study sheds light on newly discovered PAA membranes with anti-protein adsorption and antibacterial activity can sever as one of the promising candidates for the prevention of postoperative peritoneum adhesions.
Collapse
Affiliation(s)
- Xiaolu Chen
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Dawei Yan
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Hao Deng
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Hulin Yang
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Suping Peng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Wei Zhang
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Shijie Cai
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
24
|
Ni Z, Zhou H, Yu H, Wang L, Ouyang C, Yang J, Dong Y, Alhaskawi A, Tu T, Lu H. Time-space regulating prodrug hydrogels for prevention of peritendinous adhesion. CHEMICAL ENGINEERING JOURNAL 2024; 491:151891. [DOI: 10.1016/j.cej.2024.151891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
|
25
|
Liu J, Chen L, Sun Z, Tao Z, Pavel V, Li Y, Wang F, Cui W, Liu S. Unidirectional gene delivery electrospun fibrous membrane via charge repulsion for tendon repair. Bioact Mater 2024; 37:191-205. [PMID: 38549775 PMCID: PMC10972767 DOI: 10.1016/j.bioactmat.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 11/12/2024] Open
Abstract
Gene therapy is capable of efficiently regulating the expression of abnormal genes in diseased tissues and expected to be a therapeutic option for refractory diseases. However, unidirectional targeting gene therapy is always desired at the tissue interface. In this study, inspired by the principle that like charges repulse each other, a positively charged micro-nano electrospun fibrous membrane with dual-layer structure was developed by electrospinning technology to achieve unidirectional delivery of siRNA-loaded cationic nanocarriers, thus realizing unidirectional gene therapy at the tendon-paratenon interface. Under the charge repulsion of positively charged layer, more cationic COX-2 siRNA nanocarriers were enriched in peritendinous tissue, which not only improved the bioavailability of the gene drug to prevent the peritendinous adhesion formation, but also avoided adverse effects on the fragile endogenous healing of tendon itself. In summary, this study provides an innovative strategy for unidirectional targeting gene therapy of tissue interface diseases by utilizing charge repulsion to facilitate unidirectional delivery of gene drugs.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Belarusian State Medical University, Minsk 220024, Belarus
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| |
Collapse
|
26
|
Lu X, Xu L, Song Y, Yu X, Li Q, Liu F, Li X, Xi J, Wang S, Wang L, Wang Z. A Graphene Composite Film Based Wearable Far-Infrared Therapy Apparatus (GRAFT) for Effective Prevention of Postoperative Peritoneal Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309330. [PMID: 38526158 PMCID: PMC11165485 DOI: 10.1002/advs.202309330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Postoperative peritoneal adhesion (PPA) is the most frequent complication after abdominal surgery. Current anti-adhesion strategies largely rely on the use of physical separating barriers creating an interface blocking peritoneal adhesion, which cannot reduce inflammation and suffers from limited anti-adhesion efficacy with unwanted side effects. Here, by exploiting the alternative activated macrophages to alleviate inflammation in adhesion development, a flexible graphene-composite-film (F-GCF) generating far-infrared (FIR) irradiation that effectively modulates the macrophage phenotype toward the anti-inflammatory M2 type, resulting in reduced PPA formation, is designed. The anti-adhesion effect of the FIR generated by F-GCF is determined in the rat abdominal wall abrasion-cecum defect models, which exhibit reduced incidence and area of PPA by 67.0% and 92.1% after FIR treatment without skin damage, significantly superior to the clinically used chitosan hydrogel. Notably, within peritoneal macrophages, FIR reduces inflammation reaction and promotes tissue plasminogen activator (t-PA) level via the polarization of peritoneal macrophages through upregulating Nr4a2 expression. To facilitate clinical use, a wirelessly controlled, wearable, F-GCF-based FIR therapy apparatus (GRAFT) is further developed and its remarkable anti-adhesion ability in the porcine PPA model is revealed. Collectively, the physical, biochemical, and in vivo preclinical data provide compelling evidence demonstrating the clinical-translational value of FIR in PPA prevention.
Collapse
Affiliation(s)
- Xiaohuan Lu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu Song
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiangnan Yu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Qilin Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Feng Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaoqiong Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiangbo Xi
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyWuhan430205China
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationDepartment of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
27
|
Vakilian S, Al-Hashmi S, Al-Kindi J, Al-Fahdi F, Al-Wahaibi N, Shalaby A, Al-Riyami H, Al-Harrasi A, Jamshidi-Adegani F. Avastin-Loaded 3D-Printed Alginate Scaffold as an Effective Antiadhesive Barrier to Prevent Postsurgical Adhesion Bands Formation. Macromol Biosci 2024; 24:e2300530. [PMID: 38319279 DOI: 10.1002/mabi.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Postoperative adhesion can cause complications, such as pain and organ blockage, in the abdominal regions. To address this issue, surgical techniques and antiadhesive treatments are applied. Given the significant role of vascularization in adhesion band formation, Avastin (Ava) that targets vascular endothelial growth factor (VEGF) can be applied to prevent peritoneal adhesion bands. Moreover, Alginate (Alg), a natural polysaccharide, is a promising physical barrier to prevent adhesion bands. Incorporating Ava into Alg hydrogel in a form of 3D-printed scaffold (Alg/Ava) has potential to suppress inflammation and angiogenesis, leading to reduce peritoneal adhesion bands. Following physical, morphological, and biocompatibility evaluations, the efficacy of Alg and Ava alone and their combination in Alg/Ava on the formation of postsurgical adhesions is evaluated. Upon confirming physical stability and sustained release of Ava, the Alg/Ava scaffold effectively diminishes both the extent and strength of adhesion bands. Histopathological examination shows that the reduction in fibrosis and inflammation is responsible for preventing adhesion bands by the Alg/Ava scaffold. Additionally, the cytokine assessment reveals that this is due to the inhibition in the secretion of VEGF and Interleukin 6 suppressing vascularization and inflammatory pathways. This study suggests that a 3D-printed Alg/Ava scaffold has great potential to prevent the postsurgical adhesion bands.
Collapse
Affiliation(s)
- Saeid Vakilian
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Juhaina Al-Kindi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Fahad Al-Fahdi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Nasar Al-Wahaibi
- Department of Biomedical Science, College of Medicine & Health Sciences, Sultan Qaboos University, Alkoudh, 123, Oman
- Department of Pathology, College of Medicine & Health Sciences, Sultan Qaboos University, P. O. Box: 35, Alkoudh, 123, Oman
| | - Asem Shalaby
- Department of Pathology, College of Medicine & Health Sciences, Sultan Qaboos University, P. O. Box: 35, Alkoudh, 123, Oman
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Dakahlia, 35516, Egypt
| | - Hamad Al-Riyami
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, PC 123, Oman
| | - Ahmed Al-Harrasi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Fatemeh Jamshidi-Adegani
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| |
Collapse
|
28
|
Wei S, Li Z, Xia H, Wang Z, Deng J, Li L, Huang R, Ye T, Huang Y, Yang Y. An endometrial biomimetic extracellular matrix (ECM) for enhanced endometrial regeneration using hyaluronic acid hydrogel containing recombinant human type III collagen. Int J Biol Macromol 2024; 268:131723. [PMID: 38649072 DOI: 10.1016/j.ijbiomac.2024.131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Endometrial injury poses a significant challenge in tissue regeneration, with type III collagen (COL III) playing a pivotal role in maintaining endometrial integrity and facilitating repair. Our study explored the utility of recombinant human type III collagen (RHC) as an intervention for endometrial damage. To address the challenges associated with the inherent instability and rapid degradation of COL III in vivo, we developed an RHC-HA hydrogel by conjugating RHC with hyaluronic acid (HA), thus ensuring a more stable and sustained delivery. Our findings suggested that the RHC-HA hydrogel significantly promoted endometrial regeneration and restored fertility. The hydrogel facilitated prolonged retention of RHC in the uterus, leading to a substantial improvement in the repair process. The synergistic interaction between RHC and HA greatly enhances cell proliferation and adhesion, surpassing the efficacy of HA or RHC alone. Additionally, the RHC-HA hydrogel demonstrated notable anti-fibrotic effects, which are crucial for preventing abnormalities during endometrial healing. These findings suggested that the RHC-HA hydrogel presented a therapeutic strategy in the treatment of uterine endometrial injuries, which may improve female reproductive health.
Collapse
Affiliation(s)
- Siying Wei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China.
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China.
| |
Collapse
|
29
|
Dec P, Żyłka M, Burszewski P, Modrzejewski A, Pawlik A. Recent Advances in the Use of Stem Cells in Tissue Engineering and Adjunct Therapies for Tendon Reconstruction and Future Perspectives. Int J Mol Sci 2024; 25:4498. [PMID: 38674084 PMCID: PMC11050411 DOI: 10.3390/ijms25084498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Due to their function, tendons are exposed to acute injuries. This type of damage to the musculoskeletal system represents a challenge for clinicians when natural regeneration and treatment methods do not produce the expected results. Currently, treatment is long and associated with long-term complications. In this review, we discuss the use of stem cells in the treatment of tendons, including how to induce appropriate cell differentiation based on gene therapy, growth factors, tissue engineering, proteins involved in regenerative process, drugs and three-dimensional (3D) structures. A multidirectional approach as well as the incorporation of novel components of the therapy will improve the techniques used and benefit patients with tendon injuries in the future.
Collapse
Affiliation(s)
- Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Małgorzata Żyłka
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Piotr Burszewski
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
30
|
Zhu Y, Zhang C, Liang Y, Shi J, Yu Q, Liu S, Yu D, Liu H. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci 2024; 12:1643-1661. [PMID: 38411223 DOI: 10.1039/d3bm02038j] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Tissue adhesion is one of the most common postoperative complications, which is frequently accompanied by inflammation, pain, and even dyskinesia, significantly reducing the quality of life of patients. Thus, to prevent the formation of tissue adhesions, various strategies have been explored. Among these methods, placing anti-adhesion membranes over the injured site to separate the wound from surrounding tissues is a simple and prominently favored method. Recently, electrospun nanofibers have been the most frequently investigated antiadhesive membranes due to their tunable porous structure and high porosities. They not only can act as an essential barrier and functional carrier system but also allow for high permeability and nutrient transport, showing great potential for preventing tissue adhesion. Herein, we provide a short review of the most recent applications of electrospun nanofibrous antiadhesive membranes in tendons, the abdominal cavity, dural sac, pericardium, and meninges. Firstly, each section highlights the most representative examples and they are sorted based on the latest progress of related research. Moreover, the design principles, preparation strategies, overall performances, and existing problems are highlighted and evaluated. Finally, the current challenges and several future ways to develop electrospun nanofibrous antiadhesive membranes are proposed. The systematic discussion and proposed directions can shed light on ideas and guide the reasonable design of electrospun nanofibrous membranes, contributing to the development of exceptional tissue anti-adhesive materials in the foreseeable future.
Collapse
Affiliation(s)
- Yanting Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Chenwei Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Ying Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jianyuan Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qiuhao Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, PR China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
31
|
Xu Z, Hu B, Zheng G, Yu W, Yang C, Wang H, Chen K, He S, Liang L, Xu C, Wu X, Zang F, Yuan WE, Chen H. Metformin-grafted polycaprolactone nanoscaffold targeting sensory nerve controlled fibroblasts reprograming to alleviate epidural fibrosis. J Control Release 2024; 367:791-805. [PMID: 38341179 DOI: 10.1016/j.jconrel.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Epidural fibrosis (EF), associated with various biological factors, is still a major troublesome clinical problem after laminectomy. In the present study, we initially demonstrate that sensory nerves can attenuate fibrogenic progression in EF animal models via the secretion of calcitonin gene-related peptide (CGRP), suggesting a new potential therapeutic target. Further studies showed that CGRP could inhibit the reprograming activation of fibroblasts through PI3K/AKT signal pathway. We subsequently identified metformin (MET), the most widely prescribed medication for obesity-associated type 2 diabetes, as a potent stimulator of sensory neurons to release more CGRP via activating CREB signal way. We copolymerized MET with innovative polycaprolactone (PCL) nanofibers to develop a metformin-grafted PCL nanoscaffold (METG-PCLN), which could ensure stable long-term drug release and serve as favorable physical barriers. In vivo results demonstrated that local implantation of METG-PCLN could penetrate into dorsal root ganglion cells (DRGs) to promote the CGRP synthesis, thus continuously inhibit the fibroblast activation and EF progress for 8 weeks after laminectomy, significantly better than conventional drug loading method. In conclusion, this study reveals the unprecedented potential of sensory neurons to counteract EF through CGRP signaling and introduces a novel strategy employing METG-PCLN to obstruct EF by fine-tuning sensory nerve-regulated fibrogenesis.
Collapse
Affiliation(s)
- Zeng Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hui Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Keyi Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shatong He
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lei Liang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
32
|
Qiu R, Cai K, Zhang K, Ying Y, Hu H, Jiang G, Luo K. The current status and development trend of hydrogel application in spinal surgery. J Mater Chem B 2024; 12:1730-1747. [PMID: 38294330 DOI: 10.1039/d3tb02613b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Spinal diseases often result in compromised mobility and diminished quality of life due to the intricate anatomy surrounding the nervous system. Medication and surgical interventions remain the primary treatment methods for spinal conditions. However, currently available medications have limited efficacy in treating spinal surgical diseases and cannot achieve a complete cure. Furthermore, surgical intervention frequently results in inevitable alterations and impairments to the initial anatomical integrity of the spinal structure, accompanied by the consequential loss of certain physiological functionalities. Changes in spine surgery treatment concepts and modalities in the last decade have led to a deepening of minimally invasive treatment, with treatment strategies focusing more on repairing and reconstructing the patient's spine and preserving physiological functions. Therefore, developing novel and more efficient treatment strategies to reduce spinal lesions and iatrogenic injuries is essential. In recent years, significant advancements in biomedical research have led to the discovery that hydrogels possess excellent biocompatibility, biodegradability, and adjustable mechanical properties. The application of hydrogel-based biotechnology in spinal surgery has demonstrated remarkable therapeutic potential. This review presents the therapeutic strategies for spinal diseases based on hydrogel tissue engineering technology.
Collapse
Affiliation(s)
- Rongzhang Qiu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Kaiwen Cai
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Kai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Yijian Ying
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Hangtian Hu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Guoqiang Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Kefeng Luo
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| |
Collapse
|
33
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
34
|
Zhang P, Gong Y, Pan Q, Fan Z, Li G, Pei M, Zhang J, Wang T, Zhou G, Wang X, Ren W. Multifunctional calcium polyphenol networks reverse the hostile microenvironment of trauma for preventing postoperative peritoneal adhesions. Biomater Sci 2023; 11:6848-6861. [PMID: 37646188 DOI: 10.1039/d3bm01091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abdominal adhesions, a commonly observed complication of abdominal surgery, have a high incidence and adversely affect patients' physical and mental health. The primary causes of abdominal adhesions are intraoperative trauma, acute inflammatory response, bleeding, and foreign body infection. Because most current treatment approaches for abdominal adhesions are limited, improved and novel postoperative anti-adhesion regimens are urgently needed. In this study, we developed calcium polyphenol network (CaPN) microspheres based on the self-assembly of the natural triphenolic compound gallic acid and Ca2+ in solution. The physicochemical properties of CaPNs, including their hemostatic, antibacterial, antioxidant, and anti-inflammatory activities, were investigated in vitro. Bleeding and cecal-abdominal wall adhesion models were established to observe the hemostatic activity of CaPNs and their preventive effect on postoperative abdominal wall adhesion in vivo. The results showed that CaPNs significantly reduced inflammation, oxidative stress, fibrosis, and abdominal adhesion formation and had good hemostatic and antibacterial properties. Our findings suggest a novel strategy for the prevention of postoperative adhesions.
Collapse
Affiliation(s)
- Pei Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Yan Gong
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingqing Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zhenlin Fan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Genke Li
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Mengyu Pei
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Junhe Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Tianyun Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Guangdong Zhou
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiansong Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| |
Collapse
|
35
|
Braet H, Fransen PP, Chen Y, Van Herck S, Mariën R, Vanhoorne V, Ceelen W, Madder A, Ballet S, Hoogenboom R, De Geest B, Hoorens A, Dankers PYW, De Smedt SC, Remaut K. Smart hydrogels delivered by high pressure aerosolization can prevent peritoneal adhesions. J Control Release 2023; 362:138-150. [PMID: 37619864 DOI: 10.1016/j.jconrel.2023.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Postoperative peritoneal adhesions occur in the majority of patients undergoing intra-abdominal surgery and are one of the leading causes of hospital re-admission. There is an unmet clinical need for effective anti-adhesive biomaterials, which can be applied evenly across the damaged tissues. We examined three different responsive hydrogel types, i.e. a thermosensitive PLGA-PEG-PLGA, a pH responsive UPy-PEG and a shear-thinning hexapeptide for this purpose. More specifically, their potential to be homogeneously distributed in the peritoneal cavity by high pressure nebulization and prevent peritoneal adhesions was evaluated. Solutions of each polymer type could be successfully nebulized while retaining their responsive gelation behavior in vitro and in vivo. Furthermore, none of the polymers caused in vitro toxicity on SKOV3-IP2 cells. Following intraperitoneal administration, both the PLGA-PEG-PLGA and the hexapeptide hydrogels resulted in local inflammation and fibrosis and failed in preventing peritoneal adhesions 7 days after adhesion induction. In contrast, the pH sensitive UPy-PEG formulation was well tolerated and could significantly reduce the formation of peritoneal adhesions, even outperforming the commercially available Hyalobarrier® as positive control. To conclude, local nebulization of the bioresponsive UPy-PEG hydrogel can be considered as a promising approach to prevent postsurgical peritoneal adhesions.
Collapse
Affiliation(s)
- Helena Braet
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Remco Mariën
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Wim Ceelen
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Richard Hoogenboom
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Bruno De Geest
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Anne Hoorens
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Patricia Y W Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Stefaan C De Smedt
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Katrien Remaut
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
36
|
Huang Y, Jing W, Zeng J, Xue Y, Zhang Y, Yu X, Wei P, Zhao B, Dong J. Highly Tough and Biodegradable Poly(ethylene glycol)-Based Bioadhesives for Large-Scaled Liver Injury Hemostasis and Tissue Regeneration. Adv Healthc Mater 2023; 12:e2301086. [PMID: 37421335 DOI: 10.1002/adhm.202301086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Conventional tissue adhesives face challenges for hemostasis and tissue regeneration in large-scaled hemorrhage and capillary hypobaric bleeding due to weak adhesion, and inability to degrade at specific sites. Herein, convenient and injectable poly(ethylene glycol) (PEG)-based adhesives are developed to address the issues for liver hemostasis. The PEG-bioadhesives are composed of tetra-armed PEG succinimide glutarate (PEG-SG), tetra-armed PEG amine (PEG-NH2 ), and tri-lysine. By mixing the components, the PEG-bioadhesives can be rapidly formulated for use of liver bleeding closure in hepatectomy. The PEG-bioadhesives also possess mechanical compliance to native tissues (elastic modulus ≈40 kPa) and tough tissue adhesion (≈28 kPa), which enables sufficient adhering to the injured tissues and promotes liver regeneration with the PEG-bioadhesive degradation. In both rats of liver injury and pigs of large-scaled hepatic hemorrhage, the PEG-bioadhesives show effective hemostasis with superior blood loss than conventional tissue adhesives. Due to biocompatibility and degradability, the PEG-bioadhesive is advantageous for liver regeneration, while commercial adhesives (e.g., N-octyl cyanoacrylate) display adhesion failure and limited liver reconstructions. These PEG-bioadhesive components are FDA-approved, and demonstrate excellent adhesion to various tissues not only for liver hemostasis, it is a promising candidate in biomedical translations and clinical applications.
Collapse
Affiliation(s)
- Yiqian Huang
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Jianping Zeng
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yunxia Xue
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Yan Zhang
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| |
Collapse
|
37
|
Wang K, Chen D, Wang Z, Yang J, Liu W. An Injectable and Antifouling Supramolecular Polymer Hydrogel with Microenvironment-Regulatory Function to Prevent Peritendinous Adhesion and Promote Tendon Repair. Macromol Biosci 2023; 23:e2300142. [PMID: 37317041 DOI: 10.1002/mabi.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Indexed: 06/16/2023]
Abstract
The imbalance of extrinsic and intrinsic healing of tendon is thought to be the main cause of peritendinous adhesions. In this work, an injectable supramolecular poly(N-(2-hydroxypropyl) acrylamide) (PHPAm) hydrogel is prepared merely via side chain hydrogen-bonding crosslinks. This PHPAm exhibits good antifouling and self-healing properties. The supramolecular hydrogel simultaneously loaded with Prussian blue (PB) nanoparticles and platelet lysate (PL) is explored as a functional physical barrier, which can significantly resist the adhesion of fibrin and fibroblasts, attenuate the local inflammatory response, and enhance the tenocytes activity, thus balancing extrinsic and intrinsic healing. The PHPAm hydrogel is shown to prevent peritendinous adhesions considerably by inhibiting NF-κB inflammatory pathway and TGF-β1/Smad3-mediated fibrosis pathway, thereby significantly improving tendon repair by releasing bioactive factors to regulate the tenocytes behavior. This work provides a new strategy for developing physical barriers to prevent peritendinous adhesions and promote tissue repair effectively.
Collapse
Affiliation(s)
- Kuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Danyang Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
38
|
Xia W, Wang Q, Liu M, Lu S, Yu H, Yin H, You M, Chen Q, Wang B, Lin F. Antifouling and Injectable Granular Hydrogel for the Prevention of Postoperative Intrauterine Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44676-44688. [PMID: 37721504 DOI: 10.1021/acsami.3c07846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Postoperative intrauterine adhesion (IUA), caused by endometrial basal layer injury, is one of the main causes of female infertility. The excessive deposition of fibrin as well as fibroblast is considered the root cause of IUA. However, few clinical strategies are effective in preventing extracellular matrix (ECM) deposition at endometrial wounds that include protein and cell deposits. Herein, the injectable granular poly(N-(2-hydroxyethyl) acrylamide) (PHEAA) hydrogel (granular PHEAA gel), which presents excellent antifouling properties and remarkably prevents protein and cell adhesions, is used to prevent postoperative IUA. The granular PHEAA gel with a jammed network structure exhibits outstanding injectability and superior stability. Compared with the IUA group, the granular PHEAA gel can promote regeneration of the endometrium while reducing the area of endometrial fibrosis. Immunohistochemical staining experiments indicate that the granular PHEAA gel can improve the proliferation of the endometrium, promote vascularization, and enhance anti-inflammatory effect in IUA rats. And the granular PHEAA gel can effectively slow down the fibrosis of uterine tissue. Importantly, the number of embryos is significantly increased after injecting granular PHEAA gel, inferring that there is an obvious reproductive function recovery of injured endometrium.
Collapse
Affiliation(s)
| | - Qilin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | | | - Shaoping Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Hui Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Bujun Wang
- Department of Obstetrics, Pingyang People's Hospital of Wenzhou Medical University, Wenzhou 325499, China
| | | |
Collapse
|
39
|
Gao R, Li F, Zhang Y, Kong P, Gao Y, Wang J, Liu X, Li S, Jiang L, Zhang J, Zhang C, Feng Z, Huang P, Wang W. An anti-inflammatory chondroitin sulfate-poly(lactic- co-glycolic acid) composite electrospinning membrane for postoperative abdominal adhesion prevention. Biomater Sci 2023; 11:6573-6586. [PMID: 37602380 DOI: 10.1039/d3bm00786c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Postoperative abdominal adhesion is a very common and serious complication, resulting in pain, intestinal obstruction and heavy economic burden. Post-injury inflammation that could activate the coagulation cascade and deposition of fibrin is a major cause of adhesion. Many physical barrier membranes are used to prevent abdominal adhesion, but their efficiency is limited due to the lack of anti-inflammatory activity. Here, an electrospinning membrane composed of poly(lactic-co-glycolic acid) (PLGA) providing support and mechanical strength and chondroitin sulfate (CS) conferring anti-inflammation activity is fabricated for preventing abdominal adhesion after injury. The PLGA/CS membrane shows a highly dense fiber network structure with improved hydrophilicity and good cytocompatibility. Importantly, the PLGA/CS membrane with a mass ratio of CS at 20% provides superior anti-adhesion efficiency over a native PLGA membrane and commercial poly(D, L-lactide) (PDLLA) film in abdominal adhesion trauma rat models. The mechanism is that the PLGA/CS membrane could alleviate the local inflammatory response as indicated by the promoted percentage of anti-inflammatory M2-type macrophages and decreased expression of pro-inflammatory factors, such as IL-1β, TNF-α and IL-6, resulting in the suppression of the coagulation system and the activation of the fibrinolytic system. Furthermore, the deposition of fibrin at the abdominal wall was inhibited, and the damaged abdominal tissue was repaired with the treatment of the PLGA/CS membrane. Collectively, the PLGA/CS electrospinning membrane is a promising drug-/cytokine-free anti-inflammatory barrier for post-surgery abdominal adhesion prevention and a bioactive composite for tissue regeneration.
Collapse
Affiliation(s)
- Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Fenghui Li
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extra-corporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Yushan Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pengxu Kong
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yu Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Xiang Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Shuangyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Liqin Jiang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
40
|
Du F, A W, Liu F, Wu B, Liu Y, Zheng W, Feng W, Li G, Wang X. Hydrophilic chitosan/graphene oxide composite sponge for rapid hemostasis and non-rebleeding removal. Carbohydr Polym 2023; 316:121058. [PMID: 37321741 DOI: 10.1016/j.carbpol.2023.121058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Hydrophilic hemostatic sponge plays an important role in trauma bleeding control because of its robust coagulant functions. However, its strong tissue adhesion can easily result in wound tear and rebleeding during removing the sponge. Herein, the design of a hydrophilic anti-adhesive chitosan/graphene oxide composite sponge (CSAG) that possesses stable mechanical strength, rapid liquid absorption and strong intrinsic/extrinsic coagulation stimulations, is reported. For one thing, CSAG exhibits outstanding hemostatic performance, which significantly outperforms two commercial hemostats in two in vivo serious bleeding models. For another, CSAG shows low tissue adhesion; its peeling force is approximately 79.3 % lower than the commercial gauze. Moreover, in the peeling process, CSAG triggers partial detachment of the blood scab, because of the exist of bubbles or cavities at the interface, allowing the CSAG to be easily and safely peeled off from the wound without rebleeding. This study opens new avenues in constructing anti-adhesive trauma hemostatic materials.
Collapse
Affiliation(s)
- Fanglin Du
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenjing A
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bingxin Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yichun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weitao Zheng
- Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei Province, China
| | - Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
41
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
42
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
43
|
Klicova M, Rosendorf J, Erben J, Horakova J. Antiadhesive Nanofibrous Materials for Medicine: Preventing Undesirable Tissue Adhesions. ACS OMEGA 2023; 8:20152-20162. [PMID: 37323398 PMCID: PMC10268260 DOI: 10.1021/acsomega.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Undesirable postoperative tissue adhesions remain among the most common complications after surgery. Apart from pharmacological antiadhesive agents, various physical barriers have been developed in order to prevent postoperative tissue adhesions. Nevertheless, many introduced materials suffer from shortcomings during in vivo application. Thus, there is an increasing need to develop a novel barrier material. However, various challenging criteria have to be met, so this issue pushes the research in materials to its current limits. Nanofibers play a major role in breaking the wall of this issue. Due to their properties, such as a large surface area for functionalization, tunable degradation rate, or the possibility of layering individual nanofibrous materials, it is feasible to create an antiadhesive surface while maintaining biocompatibility. There are many ways to produce nanofibrous material; electrospinning is the most used and versatile technique. This review reveals the different approaches and puts them into context.
Collapse
Affiliation(s)
- Marketa Klicova
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jachym Rosendorf
- Biomedical
Center, Faculty of Medicine in Pilsen, Charles
University, Alej Svobody
1655/76, 323 00 Plzen, Czech Republic
| | - Jakub Erben
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jana Horakova
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| |
Collapse
|
44
|
Abstract
Over the years, various physical and chemical/biological methods of inhibiting adhesion formation have been developed, focusing on how to suppress healing around the tendon and not inhibit healing within the tendon. Unfortunately, however, these methods are accompanied by drawbacks, both large and small, and no absolute antiadhesion method capable of maintaining tendon repair strength has yet been developed. Recent innovations in biomaterials science and tissue engineering have produced new antiadhesion technologies, such as barriers combined with cytokines and cells, which have improved outcomes in animal models, and which may find clinical relevance in the future.
Collapse
Affiliation(s)
- Tomoyuki Kuroiwa
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Peter C Amadio
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, USA.
| |
Collapse
|
45
|
Karimi H, Rabbani S, Babadi D, Dadashzadeh S, Haeri A. Piperine Liposome-Embedded in Hyaluronan Hydrogel as an Effective Platform for Prevention of Postoperative Peritoneal Adhesion. J Microencapsul 2023; 40:279-301. [PMID: 36948888 DOI: 10.1080/02652048.2023.2194415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This study aimed to prepare piperine (PIP) loaded liposomes in hyaluronic acid (HA) hydrogel to provide a hybrid superstructure for postoperative adhesion prevention. Liposomes were prepared using thin-film hydration method. The optimised formulation was characterised by size, SEM, TEM, FTIR, encapsulation efficiency (EE)% (w/w), and release pattern. Liposome-in-hydrogel formulation was investigated by rheology, SEM, and release studies. The efficacy was evaluated in a rat peritoneal abrasion model. EE% (w/w) increased with increasing lipid concentration from 10 to 30; however, a higher percentage of Chol reduced EE% (w/w). The optimised liposome (EE: 68.10 ± 4.18% (w/w), average diameter: 513 ± 14.67 nm, PDI: 0.15 ± 0.04) was used for hydrogel embedding. No sign of adhesion in 5/8 rats and no collagen deposition confirmed the in vivo effectiveness of the optimised formulation. Overall, providing a sustained delivery of PIP, the developed liposome-in-hydrogel formulation can be a promising carrier to prevent postoperative adhesion.
Collapse
Affiliation(s)
- Hanieh Karimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delaram Babadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
47
|
Biological and Mechanical Factors and Epigenetic Regulation Involved in Tendon Healing. Stem Cells Int 2023; 2023:4387630. [PMID: 36655033 PMCID: PMC9842431 DOI: 10.1155/2023/4387630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Tendons are an important part of the musculoskeletal system. Connecting muscles to bones, tendons convert force into movement. Tendon injury can be acute or chronic. Noticeably, tendon healing requires a long time span and includes inflammation, proliferation, and remodeling processes. The mismatch between endogenous and exogenous healing may lead to adhesion causing further negative effects. Management of tendon injuries and complications such as subsequent adhesion formation are still challenges for clinicians. Due to numerous factors, tendon healing is a complex process. This review introduces the role of various biological and mechanical factors and epigenetic regulation processes involved in tendon healing.
Collapse
|
48
|
Nikam SP, Hsu YH, Marks JR, Mateas C, Brigham NC, McDonald SM, Guggenheim DS, Ruppert D, Everitt JI, Levinson H, Becker ML. Anti-adhesive bioresorbable elastomer-coated composite hernia mesh that reduce intraperitoneal adhesions. Biomaterials 2023; 292:121940. [PMID: 36493714 DOI: 10.1016/j.biomaterials.2022.121940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Intraperitoneal adhesions (IAs) are a major complication arising from abdominal repair surgeries, including hernia repair procedures. Herein, we fabricated a composite mesh device using a macroporous monofilament polypropylene mesh and a degradable elastomer coating designed to meet the requirements of this clinical application. The degradable elastomer was synthesized using an organo-base catalyzed thiol-yne addition polymerization that affords independent control of degradation rate and mechanical properties. The elastomeric coating was further enhanced by the covalent tethering of antifouling zwitterion molecules. Mechanical testing demonstrated the elastomer forms a robust coating on the polypropylene mesh does not exhibit micro-fractures, cracks or mechanical delamination under cyclic fatigue testing that exceeds peak abdominal loads (50 N/cm). Quartz crystal microbalance measurements showed the zwitterionic functionalized elastomer further reduced fibrinogen adsorption by 73% in vitro when compared to unfunctionalized elastomer controls. The elastomer exhibited degradation with limited tissue response in a 10-week murine subcutaneous implantation model. We also evaluated the composite mesh in an 84-day study in a rabbit cecal abrasion hernia adhesion model. The zwitterionic composite mesh significantly reduced the extent and tenacity of IAs by 94% and 90% respectively with respect to uncoated polypropylene mesh. The resulting composite mesh device is an excellent candidate to reduce complications related to abdominal repair through suppressed fouling and adhesion formation, reduced tissue inflammation, and appropriate degradation rate.
Collapse
Affiliation(s)
- Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Jessica R Marks
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Catalin Mateas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Natasha C Brigham
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | | | - Dana S Guggenheim
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - David Ruppert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University, Durham, NC, 27708, United States
| | - Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States; Department of Orthopaedic Surgery, Duke University, Durham, NC, 27708, United States; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
49
|
Yue Z, Hu B, Chen Z, Zheng G, Wang Y, Yang C, Cao P, Wu X, Liang L, Zang F, Wang J, Li J, Zhang T, Wu J, Chen H. Continuous release of mefloquine featured in electrospun fiber membranes alleviates epidural fibrosis and aids in sensory neurological function after lumbar laminectomy. Mater Today Bio 2022; 17:100469. [PMID: 36340590 PMCID: PMC9633751 DOI: 10.1016/j.mtbio.2022.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Recurrent low back pain after spinal surgeries, such as lumbar laminectomy, is a major complication of excessive epidural fibrosis. Although multiple preclinical and clinical methods have been aimed at ameliorating epidural fibrosis, their safety and efficacy remain largely unclear. Single implanted electrospun fibrous membranes provide physical barriers that can decrease tissue fibrosis after surgery; however, they also trigger local inflammation due to the implantation of a foreign body, thus subsequently attenuating their anti-fibrosis properties. Here, we designed a strategy that permits easy incorporation of mefloquine into polylactic acid membranes, and stable long-term mefloquine release, to potentially improve anti-fibrosis effects and relieve or prevent low back pain. The electrospun fibrous membranes grafted with mefloquine showed a well-controlled early temporary peak release, and secondary drug release occurred smoothly over several weeks. Histopathological and histomorphometric results indicated that the drug-loaded membranes had excellent anti-fibrosis effects after laminectomy in rats. Inflammation and neovascularization at the surgical site indicated that the mefloquine-grafted electrospun fibrous membranes provided sustained anti-inflammatory outcomes while effectively alleviating associated neuropathic pain hypersensitivity. In summary, our study indicated that polylactic acid-mefloquine grafted electrospun fibrous membranes may be a potential local agent to mitigate epidural fibrosis and support sensory neurological function after laminectomy, thereby potentially improving patients' postoperative outcomes.
Collapse
Affiliation(s)
- Zhihao Yue
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhe Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Cao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Liang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianxi Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Li
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai, 200433, China
| | - Tao Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, 200030, Shanghai, China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
50
|
Hyon W, Hyon SH, Matsumura K. Evaluation of the optimal dose for maximizing the anti-adhesion performance of a self-degradable dextran-based material. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|