1
|
Kole E, Jadhav K, Singh R, Mandpe S, Abhang A, Verma RK, Naik J. Recent Developments in Tyrosine Kinase Inhibitor-based Nanotherapeutics for EGFR-resistant Non-small Cell Lung Cancer. Curr Drug Deliv 2025; 22:249-260. [PMID: 38275043 DOI: 10.2174/0115672018278617231207051907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
The advent of drug resistance in response to epidermal growth factor receptor (EGFR)- tyrosine kinase inhibitor (TKI) targeted therapy represents a serious challenge in the management of non-small cell lung cancer (NSCLC). These acquired resistance mutations, attributed to several advanced EGFR mutations and, necessitated the development of new-generation TKIs. Nanomedicine approaches provide a plausible way to address these problems by providing targeted delivery and sustained release, which have demonstrated success in preclinical trials. This review article provides a summary of nano-formulations designed for EGFR-TKI-resistant NSCLC, highlighting their efficacy in both in vitro and in vivo models. These findings reveal insights into the design of nanoparticles and multifunctional nanosystems, offering a potential avenue for efficacious treatment of EGFR-TKIresistant NSCLC.
Collapse
Affiliation(s)
- Eknath Kole
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon M.S., 425001, India
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology, Sahibzada Ajit Singh Nagar (Mohali), Punjab, 140306, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology, Sahibzada Ajit Singh Nagar (Mohali), Punjab, 140306, India
| | - Shilpa Mandpe
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon M.S., 425001, India
| | - Ashwin Abhang
- Department of Biopharmaceutics, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India
| | - Rahul K Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology, Sahibzada Ajit Singh Nagar (Mohali), Punjab, 140306, India
| | - Jitendra Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon M.S., 425001, India
| |
Collapse
|
2
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2025; 27:42-69. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Ning J, Lu X, Dong J, Xue C, Ou C, Zhang Y, Zhang X, Gao F. Advanced Strategies for Strengthening the Immune Activation Effect of Traditional Antitumor Therapies. ACS Biomater Sci Eng 2024; 10:4701-4715. [PMID: 38959418 DOI: 10.1021/acsbiomaterials.4c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The utilization of traditional therapies (TTS), such as chemotherapy, reactive oxygen species-based therapy, and thermotherapy, to induce immunogenic cell death (ICD) in tumor cells has emerged as a promising strategy for the activation of the antitumor immune response. However, the limited effectiveness of most TTS in inducing the ICD effect of tumors hinders their applications in combination with immunotherapy. To address this challenge, various intelligent strategies have been proposed to strengthen the immune activation effect of these TTS, and then achieve synergistic antitumor efficacy with immunotherapy. These strategies primarily focus on augmenting the tumor ICD effect or facilitating the antigen (released by the ICD tumor cells) presentation process during TTS, and they are systematically summarized in this review. Finally, the existing bottlenecks and prospects of TTS in the application of tumor immune regulation are also discussed.
Collapse
Affiliation(s)
- Jingyi Ning
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Xinxin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Jianhui Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| |
Collapse
|
4
|
Hu Q, Lan H, Tian Y, Li X, Wang M, Zhang J, Yu Y, Chen W, Kong L, Guo Y, Zhang Z. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia. J Control Release 2024; 365:176-192. [PMID: 37992873 DOI: 10.1016/j.jconrel.2023.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Coacervate droplets formed by liquid-liquid phase separation have attracted considerable attention due to their ability to enrich biomacromolecules while preserving their bioactivities. However, there are challenges to develop coacervate droplets as delivery vesicles for therapeutics resulting from the lack of physiological stability and inherent lack of membranes in coacervate droplets. Herein, polylysine-polynucleotide complex coacervate droplets with favorable physiological stability are formulated to efficiently and facilely concentrate small molecules, biomacromolecules and nanoparticles without organic solvents. To improve the biocompatibility, the PEGylated phospholipid membrane is further coated on the surface of the coacervate droplets to prepare coacervate-based artificial protocells (ArtPC) with membrane-like and cytoplasm-like structures. The ArtPC can confine the cyclic catalytic system of uricase and catalase inside to degrade uric acid and deplete the toxicity of H2O2. This biofunctional ArtPC effectively reduces blood uric acid levels and prevents renal injuries in mice with persistent hyperuricemia. The ArtPC-based therapy can bridge the disciplines of synthetic biology, pharmaceutics and therapeutics.
Collapse
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengmeng Wang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan 430030, China.
| |
Collapse
|
5
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Tao S, Song Y, Ding S, He R, Shi Q, Hu F. Dendrobium officinale polysaccharide-based carrier to enhance photodynamic immunotherapy. Carbohydr Polym 2023; 317:121089. [PMID: 37364958 DOI: 10.1016/j.carbpol.2023.121089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Photodynamic therapy (PDT) eradicates tumors via the generation of toxic reactive oxygen species (ROS) by activation of a photosensitizer (PS) with appropriate light. Local PDT toward tumors can trigger the immune response to inhibit distant tumors, but the immune response is usually insufficient. Herein, we used a biocompatible herb polysaccharide with immunomodulatory activity as the carrier of PS to enhance the immune inhibition of tumors after PDT. The Dendrobium officinale polysaccharide (DOP) is modified with hydrophobic cholesterol to serve as an amphiphilic carrier. The DOP itself can promote dendritic cell (DC) maturation. Meanwhile, TPA-3BCP are designed to be cationic aggregation-induced emission PS. The structure of one electron-donor linking to three electron-acceptors endows TPA-3BCP with high efficiency to produce ROS upon light irradiation. And the nanoparticles are designed with positively charged surfaces to capture antigens released after PDT, which can protect the antigens from degradation and improve the antigen-uptake efficiency by DCs. The combination of DOP-induced DC maturation and antigen capture-increased antigen-uptake efficiency by DCs significantly improves the immune response after DOP-based carrier-mediated PDT. Since DOP is extracted from the medicinal and edible Dendrobium officinale, the DOP-based carrier we designed is promising to be developed for enhanced photodynamic immunotherapy in clinic.
Collapse
Affiliation(s)
- Shengchang Tao
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China; Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yuchen Song
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shaobo Ding
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Ruirong He
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Qiankun Shi
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Fang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
7
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Li S, Ren X, Yu S, Meng X. Nano-engineering nanomedicines with customized functions for tumor treatment applications. J Nanobiotechnology 2023; 21:250. [PMID: 37533106 PMCID: PMC10399036 DOI: 10.1186/s12951-023-01975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Nano-engineering with unique "custom function" capability has shown great potential in solving technical difficulties of nanomaterials in tumor treatment. Through tuning the size and surface properties controllablly, nanoparticles can be endoewd with tailored structure, and then the characteristic functions to improve the therapeutic effect of nanomedicines. Based on nano-engineering, many have been carried out to advance nano-engineering nanomedicine. In this review, the main research related to cancer therapy attached to the development of nanoengineering nanomedicines has been presented as follows. Firstly, therapeutic agents that target to tumor area can exert the therapeutic effect effectively. Secondly, drug resistance of tumor cells can be overcome to enhance the efficacy. Thirdly, remodeling the immunosuppressive microenvironment makes the therapeutic agents work with the autoimmune system to eliminate the primary tumor and then prevent tumor recurrence and metastasis. Finally, the development prospects of nano-engineering nanomedicine are also outlined.
Collapse
Affiliation(s)
- Yuxin Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shimei Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
9
|
Chang J, Yu B, Saltzman WM, Girardi M. Nanoparticles as a Therapeutic Delivery System for Skin Cancer Prevention and Treatment. JID INNOVATIONS 2023; 3:100197. [PMID: 37205301 PMCID: PMC10186617 DOI: 10.1016/j.xjidi.2023.100197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
The use of nanoparticles (NPs) as a therapeutic delivery system has expanded markedly over the past decade, particularly regarding applications targeting the skin. The delivery of NP-based therapeutics to the skin requires special consideration owing to its role as both a physical and immunologic barrier, and specific technologies must not only take into consideration the target but also the pathway of delivery. The unique challenge this poses has been met with the development of a wide panel of NP-based technologies meant to precisely address these considerations. In this review article, we describe the application of NP-based technologies for drug delivery targeting the skin, summarize the types of NPs, and discuss the current landscape of NPs for skin cancer prevention and skin cancer treatment as well as future directions within these applications.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Beverly Yu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Bohmer M, Xue Y, Jankovic K, Dong Y. Advances in engineering and delivery strategies for cytokine immunotherapy. Expert Opin Drug Deliv 2023; 20:579-595. [PMID: 37104673 PMCID: PMC10330431 DOI: 10.1080/17425247.2023.2208344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Cytokine immunotherapy is a growing field for the treatment of cancer, infectious disease, autoimmunity, and other ailments. Therapeutic cytokines are a class of secreted, small proteins that play a pivotal role in regulating the innate and adaptive immune system by provoking or mitigating immune responses. In the clinic, cytokines are frequently combined with other treatments, such as small molecules and monoclonal antibodies. However, the clinical translation of cytokine therapies is hindered by their short half-life, pleiotropic nature, and off-target effects, which cause diminished efficacy and severe systemic toxicity. Such toxicity limits dosage, thus resulting in suboptimal doses. Accordingly, numerous efforts have been devoted to exploring strategies to promote cytokine therapies by improving their tissue specificity and pharmacokinetics. AREAS COVERED Preclinical and clinical research into bioengineering and delivery strategies for cytokines, consisting of bioconjugation, fusion proteins, nanoparticles, and scaffold-based systems. EXPERT OPINION These approaches pave the way for the development of next-generation cytokine treatments with greater clinical benefit and reduced toxicity, circumventing such issues currently associated with cytokine therapy.
Collapse
Affiliation(s)
- Margaret Bohmer
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Katarina Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Metabolism, Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
11
|
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. MATERIALS HORIZONS 2023; 10:361-392. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Therapeutic cancer vaccines, which are designed to amplify tumor-specific T cell responses, have been envisioned as one of the most powerful tools for effective cancer immunotherapy. However, increasing the potency, quality and durability of the vaccine response remains a big challenge. In recent years, materials-based delivery systems focusing on the co-delivery of antigens and adjuvants to enhance cancer vaccination therapy have attracted increasing interest. Among various materials, polymeric nanoparticles (NPs) with different physicochemical properties which can incorporate multiple immunological cues are of great interest. In this review, the recent progress in the design and construction of both ex vivo subunit and in situ cancer vaccines using polymeric NPs is summarized. Especially, we will focus on how these NPs improve the adjuvanticity of vaccines. The design principles of polymeric NPs for ex vivo subunit cancer vaccines and in situ cancer vaccination are also discussed. Finally, we want to briefly discuss molecular chaperones in cancer immunity and the applications of our unique self-assembly mixed shell polymeric micelle-based nanochaperones for cancer vaccines.
Collapse
Affiliation(s)
- Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiajing Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
| |
Collapse
|
12
|
Chen J, Cong X. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects. Biomed Pharmacother 2023; 157:113998. [PMID: 36399829 DOI: 10.1016/j.biopha.2022.113998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer immunotherapy is a therapeutic strategy to inhibit tumor growth and metastasis by intervening in the immune response process. Strategies applied to cancer immunotherapy mainly include blocking immune checkpoints, adoptive transfer of engineered immune cells, cytokine therapy, cancer vaccines, and oncolytic virus infection. However, many factors, such as off-target side effects, immunosuppressive cell infiltration and/or upregulation of immune checkpoint expression, cancer cell heterogeneity, and lack of antigen presentation, affect the therapeutic effect of immunotherapy on cancer. To improve the efficacy of targeted immunotherapy and reduce off-target effects, over the past two decades, nanoparticle delivery platforms have been increasingly used in tumor immunotherapy. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has prompted a series of engineered nanoparticles to overcome specific obstacles and transfer the accumulation of payloads to tumor-infiltrating immune cells. In recent years, new techniques and chemical methods have been employed to modify or functionalize the surfaces of nanoparticles. This review discusses the recent progress of surface-engineered nanoparticles in inducing tumor immune responses and immunotherapy, as well as future directions for the development of next-generation nanomedicines.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
13
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
14
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
15
|
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201734. [PMID: 35652198 PMCID: PMC9353475 DOI: 10.1002/advs.202201734] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.
Collapse
Affiliation(s)
- Zhilin Li
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoqin Lai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqin Fu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Long Ren
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Zhongwei Gu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelei Ma
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
16
|
Akkın S, Varan G, Aksüt D, Malanga M, Ercan A, Şen M, Bilensoy E. A different approach to immunochemotherapy for colon Cancer: Development of nanoplexes of cyclodextrins and Interleukin-2 loaded with 5-FU. Int J Pharm 2022; 623:121940. [PMID: 35724824 DOI: 10.1016/j.ijpharm.2022.121940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022]
Abstract
Immune system deficiencies are crucial in the progression of cancer, predominantly because immune cells are not stimulated by cytokines to eradicate cancer cells. Immunochemotherapy is currently considered an innovative approach that creates pathways in cancer treatment, sometimes also aiding in the efficacy of chemotherapeutics. The aim of this study was to prepare a cyclodextrin (CD) nanoplex based on charge interaction to deliver the anticancer drug 5-fluorouracil (5-FU) and Interleukin-2 (IL-2), thereby forming a nanoscale drug delivery system aimed at chemo-immunotherapy for colorectal cancers. The CD:IL-2 nanoplexes were obtained with a particle size below 100 nm and a cationic surface charge based on the extent of charge interaction of the cationic CD polymer with negatively charged IL-2. The loading capacity of CD nanoplexes was 40% for 5-FU and 99.8% for IL-2. Nanoplexes maintained physical stability in terms of particle size and zeta potential in aqueous solution for 1 week at + 4 °C. Moreover, the structural integrity of IL-2 loaded into CD nanoplexes was confirmed by SDS-PAGE analysis. The cumulative release rates of both 5-FU and IL-2 were found to be more than 80% in simulated biological fluids in 12 h. Cell culture studies demonstrate that CD polymers are safe on healthy L929 mouse fibroblast cells. Drug-loaded CD nanoplexes were determined to have a higher anticancer effect than free drug solution against CT26 mouse colon carcinoma cells. In addition, intestinal permeability studies supported the conclusion that CD nanoplexes could be promising candidates for oral chemotherapy as well. In conclusion, effective cancer therapy utilizing the absorptive/cellular uptake effect of CDs, the synergic effect and co-transport of chemotherapeutic drugs and immunotherapeutic molecules is a promising approach. Furthermore, the transport of IL-2 with this nano-sized system can reduce or avoid its toxicity problem in the clinic.
Collapse
Affiliation(s)
- Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Davut Aksüt
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Milo Malanga
- CycloLab- Cyclodextrin Research & Development Laboratory, Organic Synthesis Laboratory, 1097 Budapest, Hungary
| | - Ayşe Ercan
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Murat Şen
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| |
Collapse
|
17
|
Hanurry EY, Birhan YS, Darge HF, Mekonnen TW, Arunagiri V, Chou HY, Cheng CC, Lai JY, Tsai HC. PAMAM Dendritic Nanoparticle-Incorporated Hydrogel to Enhance the Immunogenic Cell Death and Immune Response of Immunochemotherapy. ACS Biomater Sci Eng 2022; 8:2403-2418. [PMID: 35649177 DOI: 10.1021/acsbiomaterials.2c00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The efficiency of chemotherapy is frequently affected by its multidrug resistance, immune suppression, and severe side effects. Its combination with immunotherapy to reverse immune suppression and enhance immunogenic cell death (ICD) has emerged as a new strategy to overcome the aforementioned issues. Herein, we construct a pH-responsive PAMAM dendritic nanocarrier-incorporated hydrogel for the co-delivery of immunochemotherapeutic drugs. The stepwise conjugation of moieties and drug load was confirmed by various techniques. In vitro experimental results demonstrated that PAMAM dendritic nanoparticles loaded with a combination of drugs exhibited spherical nanosized particles, facilitated the sustained release of drugs, enhanced cellular uptake, mitigated cell viability, and induced apoptosis. The incorporation of PAB-DOX/IND nanoparticles into thermosensitive hydrogels also revealed the formation of a gel state at a physiological temperature and further a robust sustained release of drugs at the tumor microenvironment. Local injection of this formulation into HeLa cell-grafted mice significantly suppressed tumor growth, induced immunogenic cell death-associated cytokines, reduced cancer cell proliferation, and triggered a CD8+ T-cell-mediated immune response without obvious systemic toxicity, which indicates a synergistic ICD effect and reverse of immunosuppression. Hence, the localized delivery of immunochemotherapeutic drugs by a PAMAM dendritic nanoparticle-incorporated hydrogel could provide a promising strategy to enhance antitumor activity in cancer therapy.
Collapse
Affiliation(s)
- Endris Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Vinothini Arunagiri
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.,Department of Chemical Engineering & Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
18
|
Shang L, Jiang X, Yang T, Xu H, Xie Q, Hu M, Yang C, Kong L, Zhang Z. Enhancing cancer chemo-immunotherapy by biomimetic nanogel with tumor targeting capacity and rapid drug-releasing in tumor microenvironment. Acta Pharm Sin B 2022; 12:2550-2567. [PMID: 35646526 PMCID: PMC9136611 DOI: 10.1016/j.apsb.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
In the development of chemo-immunotherapy, many efforts have been focusing on designing suitable carriers to realize the co-delivery of chemotherapeutic and immunotherapeutic with different physicochemical properties and mechanisms of action. Besides, rapid drug release at the tumor site with minimal drug degradation is also essential to facilitate the antitumor effect in a short time. Here, we reported a cancer cell membrane-coated pH-responsive nanogel (NG@M) to co-deliver chemotherapeutic paclitaxel (PTX) and immunotherapeutic agent interleukin-2 (IL-2) under mild conditions for combinational treatment of triple-negative breast cancer. In the designed nanogels, the synthetic copolymer PDEA-co-HP-β-cyclodextrin-co-Pluronic F127 and charge reversible polymer dimethylmaleic anhydride-modified polyethyleneimine endowed nanogels with excellent drug-loading capacity and rapid responsive drug-releasing behavior under acidic tumor microenvironment. Benefited from tumor homologous targeting capacity, NG@M exhibited 4.59-fold higher accumulation at the homologous tumor site than heterologous cancer cell membrane-coated NG. Rapidly released PTX and IL-2 enhanced the maturation of dendritic cells and quickly activated the antitumor immune response in situ, followed by prompted infiltration of immune effector cells. By the combined chemo-immunotherapy, enhanced antitumor effect and efficient pulmonary metastasis inhibition were achieved with a prolonged median survival rate (39 days).
Collapse
Affiliation(s)
- Lihuan Shang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbo Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Xie
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors. Tel./fax: +86 27 83692762.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors. Tel./fax: +86 27 83692762.
| |
Collapse
|
19
|
Zhang J, Zhang Y, Zhao B, Lv M, Chen E, Zhao C, Jiang L, Qian H, Huang D, Zhong Y, Chen W. Cascade-Responsive Hierarchical Nanosystems for Multisite Specific Drug Exposure and Boosted Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58319-58328. [PMID: 34855343 DOI: 10.1021/acsami.1c16636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise delivery of multiple drugs to their distinct destinations plays a significant role in safe and efficient combination therapy; however, it is highly challenging to simultaneously realize the targets and overcome the intricate biological hindrances using an all-in-one nanosystem. Herein, a cascade-responsive hierarchical nanosystem containing checkpoint inhibitor anti-PD-L1 antibody (αPD-L1) and paclitaxel (PTX) is developed for spatially programed delivery of multiple drugs and simultaneously overcoming biological pathway barriers. The hierarchical nanoparticles (MPH-NP@A) are composed of pH-sensitive hyaluronic acid-acetal-PTX prodrugs (HA-ace-PTX(SH)) chaperoned by αPD-L1 and metalloproteinase-9 (MMP-9)-responsive outer shells, which could be fast cleaved to release αPD-L1 in the tumor microenvironment (TME). The released αPD-L1 sequentially synergizes with PTX released in the cytoplasm for boosted chemoimmunotherapy due to direct killing of PTX and intensified immune responses through immunogenic cell death (ICD) as well as suppression of immune escape by blocking the PD-1/PD-L1 axis. The in vitro and in vivo studies demonstrate that MPH-NP@A evokes distinct ICD, enhanced cytotoxic T lymphocytes infiltration, as well as significant tumor inhibition, thus providing a promising therapeutic nano-platform for safe and efficient combination therapy.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Enping Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Linyang Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Duan XC, Peng LY, Yao X, Xu MQ, Li H, Zhang SQ, Li ZY, Wang JR, Feng ZH, Wang GX, Liao A, Chen Y, Zhang X. The synergistic antitumor activity of 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) and anti-PD-L1 antibody inducing immunogenic cell death. Drug Deliv 2021; 28:800-813. [PMID: 33866918 PMCID: PMC8079060 DOI: 10.1080/10717544.2021.1909180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy is a strategy that is moving to the frontier of cancer treatment in the current decade. In this study, we show evidence that 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs), act as immunogenic cell death (ICD) inducers, stimulating an antitumor response which results in synergistic antitumor activity by combining anti-PD-L1 antibody (aPD-L1) in vivo. To investigate the antitumor immunity induced by NPPA-PTX NPs, the expression of both ICD marker calreticulin (CRT) and high mobility group box 1 (HMGB1) were analyzed. In addition, the antitumor activity of NPPA-PTX NPs combined with aPD-L1 in vivo was also investigated. The immune response was also measured through quantitation of the infiltration of T cells and the secretion of pro-inflammatory cytokines. The results demonstrate that NPPA-PTX NPs induce ICD of MDA-MB-231 and 4T1 cells through upregulation of CRT and HMGB1, reactivating the antitumor immunity via recruitment of infiltrating CD3+, CD4+, CD8+ T cells, secreting IFN-γ, TNF-α, and the enhanced antitumor activity by combining with aPD-L1. These data suggest that the combined therapy has a synergistic antitumor activity and has the potential to be developed into a novel therapeutic regimen for cancer patients.
Collapse
Affiliation(s)
- Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Li-Yuan Peng
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xin Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Shuai-Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zhuo-Yue Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Jing-Ru Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zhen-Han Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Guang-Xue Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Ai Liao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Ying Chen
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Jiang M, Chen W, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. Sequentially pH-Responsive Drug-Delivery Nanosystem for Tumor Immunogenic Cell Death and Cooperating with Immune Checkpoint Blockade for Efficient Cancer Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43963-43974. [PMID: 34506118 DOI: 10.1021/acsami.1c10643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemoimmunotherapy has anchored a new blueprint for cancer management. As a burgeoning approach, immunotherapy has shifted the paradigm of traditional chemotherapy and opened up new prospects for cancer treatment. Here, a sequentially pH-responsive doxorubicin (DOX) delivery nanosystem is designed for simultaneous chemotherapy and tumor immunogenic cell death (ICD). DOX is modified into pH-sensitive cis-aconityl-doxorubicin (CAD) for being easily adsorbed by polycationic polyethylenimine (PEI), and the PEI/CAD complexes are in situ-shielded by aldehyde-modified polyethylene glycol (PEG). The PEG/PEI/CAD nanoparticles (NPs) can keep stable in neutral physiological pH during systemic circulation but will detach PEG shielding once in slightly acidic tumor extracellular pH. The exposed positive PEI/CAD complexes are endocytosed effortlessly, and CAD is then converted back to DOX by endosomal-acidity-triggered cis-aconityl cleavage. The released DOX further elicits ICD, and the moribund tumor cells will release antigens and damage-associated molecular patterns to recruit dendritic cells and activate antitumor immunity. An excellent therapeutic effect is achieved when the immune checkpoint PD-1 antibody (aPD-1) is utilized to cooperate with the PEG/PEI/CAD NPs for blocking tumor immune escape and maintaining antitumor activity of the ICD-instigated T cells. The sequentially pH-responsive DOX delivery nanosystem cooperating with immune checkpoint blockade will provide a potential strategy for cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wenqiang Chen
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wenjing Yu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Zhiwei Xu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinyue Liu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Qingmiao Jia
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
22
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
23
|
Geng Z, Wang L, Liu K, Liu J, Tan W. Enhancing anti‐PD‐1 Immunotherapy by Nanomicelles Self‐Assembled from Multivalent Aptamer Drug Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Weihong Tan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
24
|
Geng Z, Wang L, Liu K, Liu J, Tan W. Enhancing anti-PD-1 Immunotherapy by Nanomicelles Self-Assembled from Multivalent Aptamer Drug Conjugates. Angew Chem Int Ed Engl 2021; 60:15459-15465. [PMID: 33904236 DOI: 10.1002/anie.202102631] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/09/2021] [Indexed: 12/11/2022]
Abstract
A tumor-targeting enhanced chemotherapy, enabled by aptamer-drug conjugate nanomicelles, is reported that boosts antitumor immune responses. Multivalent aptamer drug conjugate (ApMDC), an amphiphilic telodendrimer consisting of a hydrophilic aptamer and a hydrophobic monodendron anchored with four anticancer drugs by acid-labile linkers, was designed and synthesized. By co-self-assembly with an ApMDC analogue, in which aptamer is replaced with polyethylene glycol, the surface aptamer density of these nanomicelles can be screened to reach an optimal complementation between blood circulation and tumor-targeting ability. Optimized nanomicelles can enhance immunogenic cell death of tumor cells, which strikingly augments the tumor-specific immune responses of the checkpoint blockade in immunocompetent tumor-bearing mice. ApMDC nanomicelles represent a robust platform for structure-function optimization of drug conjugates and nanomedicines.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weihong Tan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
25
|
Geng Z, Chen F, Wang X, Wang L, Pang Y, Liu J. Combining anti-PD-1 antibodies with Mn 2+-drug coordinated multifunctional nanoparticles for enhanced cancer therapy. Biomaterials 2021; 275:120897. [PMID: 34052523 DOI: 10.1016/j.biomaterials.2021.120897] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Immune checkpoint blockade therapy, particularly the use of engineered monoclonal antibodies against programmed cell death protein 1 (α-PD1) for activating T cells to kill cancer cells, becomes an effective strategy for cancer treatment. Despite its durable clinical responses, the modest response rates largely restrict the extensive implementation of this approach. Here, a combination of chemotherapy and photodynamic therapy to augment antitumor responses of α-PD1 has been achieved by core-shell metal ion-drug nanoparticles. The core and shell are separately formed by self-assembly of manganese ions with chemotherapeutic doxorubicin and photosensitizer chlorin e6, resulting in nanoparticles with drug loading up to 90 weight%. To assist systemic delivery and prolong circulation time, the obtained nanoparticles are coated with red blood cell membranes that can improve their dispersity and stability. Following intravenous injection into immunocompetent tumor-bearing mice, the coated nanoparticles initiate enhanced antitumor responses of α-PD1 against both primary and distant tumors. In addition, the presence of manganese ions offers strong contrast in T1-weighted magnetic resonance imaging of tumors. Multimodal core-shell metal ion-drug nanoparticles suggest an alternative to boost anticancer responses and open a window for improving the response rates of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fangjie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
26
|
Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021; 19:110. [PMID: 33865432 PMCID: PMC8052859 DOI: 10.1186/s12951-021-00861-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Nowadays, a potent challenge in cancer treatment is considered the lack of efficacious strategy, which has not been able to significantly reduce mortality. Chemoimmunotherapy (CIT) as a promising approach in both for the first-line and relapsed therapy demonstrated particular benefit from two key gating strategies, including chemotherapy and immunotherapy to cancer therapy; therefore, the discernment of their participation and role of potential synergies in CIT approach is determinant. In this study, in addition to balancing the pros and cons of CIT with the challenges of each of two main strategies, the recent advances in the cancer CIT have been discussed. Additionally, immunotherapeutic strategies and the immunomodulation effect induced by chemotherapy, which boosts CIT have been brought up. Finally, harnessing and development of the nanoparticles, which mediated CIT have expatiated in detail.
Collapse
Affiliation(s)
- Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147, Urmia, Iran.
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, 5166-15731, Tabriz, Iran.
| |
Collapse
|
27
|
Jarak I, Varela CL, Tavares da Silva E, Roleira FFM, Veiga F, Figueiras A. Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. Eur J Med Chem 2020; 206:112526. [PMID: 32971442 DOI: 10.1016/j.ejmech.2020.112526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Pluronics are a class of amphiphilic tri-block copolymers with wide pharmaceutical applicability. In the past decades, the ability to form biocompatible nanosized micelles was exploited to formulate stable drug nanovehicles with potential use in antitumor therapy. Due to the great potential for tuning physical and structural properties of Pluronic unimers, a panoply of drug or polynucleotide-loaded micelles was prepared and tested for their antitumoral activity. The attractive inherent antitumor properties of Pluronic polymers in combination with cell targeting and stimuli-responsive ligands greatly improved antitumoral therapeutic effects of tested drugs. In spite of that, the extraordinary complexity of biological challenges in the delivery of micellar drug payload makes their therapeutic potential still not exploited to the fullest. In this review paper we attempt to present the latest developments in the field of Pluronic based nanovehicles and their application in anticancer therapy with an overview of the chemistry involved in the preparation of these nanovehicles.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Carla L Varela
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Elisiário Tavares da Silva
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Fernanda F M Roleira
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
| |
Collapse
|
28
|
Qin T, Xu X, Zhang Z, Li J, You X, Guo H, Sun H, Liu M, Dai Z, Zhu H. Paclitaxel/sunitinib-loaded micelles promote an antitumor response in vitro through synergistic immunogenic cell death for triple-negative breast cancer. NANOTECHNOLOGY 2020; 31:365101. [PMID: 32434167 DOI: 10.1088/1361-6528/ab94dc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemotherapy-induced immunogenic cell death (ICD) may offer a strategy to improve the effect of the therapeutic treatment of triple-negative breast cancer (TNBC) by eliciting broad antitumor immunity. However, chemotherapy shows a limited therapeutic effect because of multi-drug resistance and the immunosuppressive tumor microenvironment (TME) of TNBC. The unique pharmacological actions of sunitinib (SUN) indicate its possible synergies with paclitaxel (PTX) to enhance chemo-immunotherapy for TNBC. Here, we prepared a co-delivery platform composed of poly(styrene-co-maleic anhydride) (SMA) via a self-assembly process for a combination of PTX and SUN, which was able to induce a higher synergistic ICD. The nanomicellar delivery of PTX and SUN loaded at an optimal ratio of 1:5 (PTX:SUN) presented the characteristics of an appropriate particle size, long-term stability, and time sequence release which synergistically promoted the apoptosis of MDA-MB-231 tumor cells. Moreover, we demonstrated that the combination of PTX and SUN could significantly induce a synergistic effect because it promoted an ICD response, improved tumor immunogenicity, and regulated immunosuppressive factors in the TME. Overall, PTX and SUN with synergistic effects entrapped in a self-assembly nano-delivery system could offer the potential for clinical applicationof a combination chemo-immunotherapy strategy to improve the effect of the therapeutic treatment of TNBC.
Collapse
Affiliation(s)
- Tang Qin
- School of Food and Biological Engineering. National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei Province 430068, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gao J, Wang WQ, Pei Q, Lord MS, Yu HJ. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacol Sin 2020; 41:986-994. [PMID: 32317755 PMCID: PMC7470797 DOI: 10.1038/s41401-020-0400-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Current cancer immunotherapy has limited response rates in a large variety of solid tumors partly due to the low immunogenicity of the tumor cells and the immunosuppressive tumor microenvironment (ITM). A number of clinical cancer treatment modalities, including radiotherapy, chemotherapy, photothermal and photodynamic therapy, have been shown to elicit immunogenicity by inducing immunogenic cell death (ICD). However, ICD-based immunotherapy is restricted by the ITM limiting its efficacy in eliciting a long-term antitumor immune response, and by severe systemic toxicity. To address these challenges, nanomedicine-based drug delivery strategies have been exploited for improving cancer immunotherapy by boosting ICD of the tumor cells. Nanosized drug delivery systems are promising for increasing drug accumulation at the tumor site and codelivering ICD inducers and immune inhibitors to simultaneously elicit the immune response and relieve the ITM. This review highlights the recent advances in nanomedicine-based immunotherapy utilizing ICD-based approaches. A perspective on the clinical translation of nanomedicine-based cancer immunotherapy is also provided.
Collapse
Affiliation(s)
- Jing Gao
- Key Laboratory of Drug Research & Centre of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Peking University Shenzhen Institute, Shenzhen, 518055, China
| | - Wei-Qi Wang
- Key Laboratory of Drug Research & Centre of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Qing Pei
- Key Laboratory of Drug Research & Centre of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hai-Jun Yu
- Key Laboratory of Drug Research & Centre of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
30
|
Liu C, Zhang T, Chen L, Chen Y. The choice of anti-tumor strategies based on micromolecules or drug loading function of biomaterials. Cancer Lett 2020; 487:45-52. [PMID: 32474154 DOI: 10.1016/j.canlet.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023]
Abstract
With advances in modern medicine, diverse tumor therapies have been developed. However, because of a lack of effective methods, the delivery of drugs or micromolecules in the human body has many limitations. Biomaterials are natural or synthetic functional materials that are prone to contact or interact with living systems. Therefore, the application of biomaterials provides innovative anti-tumor strategies, especially in tumor targeting, chemotherapy sensitization, tumor immunotherapy. The combination of biomaterials and drugs provides a promising strategy to overcome the biological barriers of drug delivery. Nanomaterials can target specific tumor sites to enhance the efficiency of tumor therapies and decrease the toxicity of drug through passive targeting, active targeting and direct targeting. Additionally, biomaterials can be used to enhance the sensitivity of tumor cells to chemotherapy drugs. Furthermore, modifiable biomaterials can induce effective anti-tumor immune response. Currently, the developmental trend of biomaterial for drug delivery is motivated by the combination and diversification of different therapies. With interdisciplinary development, a variety of anti-tumor strategies will emerge in an endless stream to bring great hope for tumor therapy. In this review, we will discuss the anti-tumor strategies based on nanoparticles and injectable scaffolds.
Collapse
Affiliation(s)
- Chengyi Liu
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China; Department of Urology, Lu'an Affiliated Hospital of Anhui Medical University, 237000, Anhui, China
| | - Tianke Zhang
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China; Department of Anorectal Surgery, Tianjin Union Medical Center, 300121, Tianjin, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| | - Yue Chen
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China.
| |
Collapse
|
31
|
Hu Q, Shang L, Wang M, Tu K, Hu M, Yu Y, Xu M, Kong L, Guo Y, Zhang Z. Co-Delivery of Paclitaxel and Interleukin-12 Regulating Tumor Microenvironment for Cancer Immunochemotherapy. Adv Healthc Mater 2020; 9:e1901858. [PMID: 32348030 DOI: 10.1002/adhm.201901858] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Indexed: 12/12/2022]
Abstract
In the treatment of malignant tumors, the combination of chemotherapy that can directly kill tumor cells and immunotherapy that can activate the body's immune system and regulate tumor microenvironments is becoming one of the most promising cancer treatments. However, to co-deliver agents with different physicochemical properties for immunochemotherapy is still facing a challenge. Here, nanoparticles are developed for the co-delivery of the hydrophobic chemotherapeutic drug paclitaxel (PTX) and biomacromolecule interleukin-12 (IL-12) through the acid-sensitive material mPEG-Dlinkm -PDLLA and low-temperature expansion effect of Pluronic F127. The nanoparticles encrich in the tumor site, significantly inhibit the growth and metastasis of breast cancer cells 4T1, and prolong the overall survival of tumor-bearing mice. The underlying immune mechanism is further explored. The combination of PTX and IL-12 activates T lymphocytes and NK cells to release IFN-γ, selectively inhibits regulatory T cells and induces M1-type differentiation of tumor-related macrophages, thereby improving tumor immunosuppressive microenvironments. This study may provide an effective strategy for cancer immunochemotherapy through co-delivery of chemotherapeutic drug and immune cytokine by the facile thermo-sponge nanoparticles.
Collapse
Affiliation(s)
- Qian Hu
- Liyuan HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Lihuan Shang
- Tongji School of PharmacyHuazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Mengmeng Wang
- Liyuan HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Kun Tu
- Tongji School of PharmacyHuazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Mei Hu
- Tongji School of PharmacyHuazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yulin Yu
- Tongji School of PharmacyHuazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Mingwang Xu
- Liyuan HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Li Kong
- Tongji School of PharmacyHuazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuanyuan Guo
- Liyuan HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Zhiping Zhang
- Tongji School of PharmacyNational Engineering Research Centre for NanomedicineHubei Engineering Research Centre for Novel Drug Delivery SystemHuazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
32
|
Li N, Guo W, Li Y, Zuo H, Zhang H, Wang Z, Zhao Y, Yang F, Ren G, Zhang S. Construction and anti-tumor activities of disulfide-linked docetaxel-dihydroartemisinin nanoconjugates. Colloids Surf B Biointerfaces 2020; 191:111018. [PMID: 32304917 DOI: 10.1016/j.colsurfb.2020.111018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Abstract
Co-delivery of anti-tumor agents with outstanding stimulus-triggered drug release in tumor cells, especially with the aid of nanotechnology, provided the possibility to enhance delivery efficiency for targeting tumor cells and antitumor efficacy. In this paper, docetaxel-dihydroartemisinin nanoconjugates linked by disulfide bond were designed to increase co-delivery and anti-tumor efficacy. Docetaxel and dihydroartemisinin were synthesized using two-step reaction and furtherly assembled to nanoconjugates. Nanoprescription was optimized to evaluate its physicochemical properties. In vitro anti-tumor activities of nanoformulation were assessed by MTT. The flow cytometry was adopted to analyze cell apoptosis and cell cycle arrest. The wound healing assay was used to evaluate antimigratory-property. In vivo pharmacokinetic and pharmacodynamic studies were investigated in rats and 4T1 bearing Balb/c mice model after intravenous injection, respectively. The chemical structure of conjugate was confirmed. The prepared nanoparticles possessed uniform size distribution (172.10 ± 1.70 nm, PDI 0.05 ± 0.01), was stable during storage period, sustained release profiles and sensitive reduction responsiveness. MTT assay indicated that the toxicity of nanoconjugates was slightly weak. Flow cytometry studies showed that nanoconjugates could promote early apoptosis significantly and mainly arose from G0/G1 phase. The wound healing assay provided an obvious antimetastatic potential of nanoparticles in 4T1 cells. The result of pharmacokinetic study suggested that nanoconjugates exhibited higher exposure levels. In vivo pharmacodynamic research showed that mice treated with docetaxel-dihydroartemisinin nanoconjugates had lower systemic toxicity and higher survival ratio than those of control groups. This potential of nanoconjugates was developed as a novel nanoplateform to treat tumor.
Collapse
Affiliation(s)
- Ning Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yujie Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hengtong Zuo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huihui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyun Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongdan Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
33
|
Tu K, Deng H, Kong L, Wang Y, Yang T, Hu Q, Hu M, Yang C, Zhang Z. Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16018-16030. [PMID: 32192326 DOI: 10.1021/acsami.9b23084] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blocking immune checkpoints with monoclonal antibody has been verified to achieve potential clinical successes for cancer immunotherapy. However, its application has been impeded by the "cold" tumor microenvironment. Here, weak acidity-responsive nanoparticles co-loaded with CRISPR/Cas9 and paclitaxel (PTX) with the ability to convert "cold" tumor into "hot" tumor are reported. The nanoparticles exhibited high cargo packaging capacity, superior transfection efficiency, well biocompatibility, and effective tumor accumulation. The CRISPR/Cas9 encapsulated in nanoparticles could specifically knock out cyclin-dependent kinase 5 gene to significantly attenuate the expression of programmed death-ligand 1 on tumor cells. More importantly, PTX co-delivered in nanoparticles could significantly induce immunogenic cell death, reduce regulatory T lymphocytes, repolarize tumor-associated macrophages, and enhance antitumor immunity. Therefore, the nanoparticles could effectively convert cold tumor into hot tumor, achieve effective tumor growth inhibition, and prolong overall survival from 16 to 36 days. This research provided a referable strategy for the development of combinatorial immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Kun Tu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Deng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Li Kong
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Hu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
34
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
35
|
Anfray C, Mainini F, Andón FT. Nanoparticles for immunotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
36
|
Zhao H, Xu J, Li Y, Guan X, Han X, Xu Y, Zhou H, Peng R, Wang J, Liu Z. Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. ACS NANO 2019; 13:13127-13135. [PMID: 31710460 DOI: 10.1021/acsnano.9b05974] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor vaccines to induce robust immunity for cancer treatment have attracted tremendous interests in cancer immunotherapy. In this work, a type of cancer vaccine is prepared by using nanoscale coordination polymer (NCP) formed between Mn2+ ions and a nucleotide oligomerization binding domain 1 (Nod1) agonist, meso-2,6-diaminopimelic acid (DAP), as the organic ligand, to encapsulate a model protein antigen, ovalbumin (OVA). The obtained OVA@Mn-DAP nanoparticles could act as an effective tumor vaccine to promote the maturation of dendritic cells (DCs) as well as their antigen cross-presentation via increasing the cellular uptake of antigen and stimulating Nod1 pathway with DAP. Such OVA@Mn-DAP vaccine could migrate into lymph nodes after local injection, as revealed by in vivo magnetic resonance (MR) and fluorescence imaging. Importantly, vaccination with OVA@Mn-DAP could not only offer prophylactic to protect mice from challenged B16-OVA tumors but also result in significant therapeutic effect to inhibit growth of already-established tumors if in combination with anti-programmed cell death protein 1 antibody (α-PD-1) immune checkpoint blockade therapy. Therefore, this work presents an innovative platform to construct effective nanovaccine for tumor immunotherapy.
Collapse
Affiliation(s)
- He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yan Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xinxian Guan
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yunyun Xu
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Huiting Zhou
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
37
|
Hu L, Cao Z, Ma L, Liu Z, Liao G, Wang J, Shen S, Li D, Yang X. The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials 2019; 223:119469. [PMID: 31520886 DOI: 10.1016/j.biomaterials.2019.119469] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022]
Abstract
Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been proven as a promising type of immunotherapy in a number of cancers, but the relatively low response rates limit their scope of clinical application. Here, we report the use of cascade chemo-photodynamic therapy (chemo-PDT) with reactive oxygen species (ROS)-sensitive lipid-polymer hybrid nanoparticles TKHNP-C/D to potentiate the antitumor efficacy of anti-PD-L1 antibody (aPD-L1). Under light irradiation, TKHNP-C/D not only induced photodynamic therapy (PDT) but also boosted intracellular DOX release via the rapid degradation of its hydrophobic core, promoting an efficient cascade of chemo-PDT to inhibit tumor growth by a single treatment. More importantly, the cascade chemo-PDT could evoke anticancer immune responses and efficiently synergize with aPD-L1 to generate an abscopal effect, which could simultaneously inhibit primary and distant tumor growth.
Collapse
Affiliation(s)
- Liqin Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, 510006, China
| | - Leilei Ma
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Junxia Wang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, 510006, China.
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangzhou, 510006, PR China
| | - Dongdong Li
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| |
Collapse
|
38
|
Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2019; 69:376-390. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
Female-specific cancers are the most common cancers in women worldwide. Early detection methods remain unavailable for most of these cancers, signifying that most of them are diagnosed at later stages. Furthermore, current treatment options for most female-specific cancers are surgery, radiation and chemotherapy. Although important milestones in molecularly targeted approaches have been achieved lately, current therapeutic strategies for female-specific cancers remain limited, ineffective and plagued by the emergence of chemoresistance, which aggravates prognosis. Recently, the application of nanotechnology to the medical field has allowed the development of novel nano-based approaches for the management and treatment of cancers, including female-specific cancers. These approaches promise to improve patient survival rates by reducing side effects, enabling selective delivery of drugs to tumor tissues and enhancing the uptake of therapeutic compounds, thus increasing anti-tumor activity. In this review, we focus on the application of nano-based technologies to the design of novel and innovative diagnostic and therapeutic strategies in the context of female-specific cancers, highlighting their potential uses and limitations.
Collapse
Affiliation(s)
- Balney Rajitha
- Department of Pathology, WellStar Hospital, Marietta, GA, 30060, USA
| | - Rama Rao Malla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP, 516003, India
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, TS, 500004, India
| | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Seema Kumari
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon 22212, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, AP, 532410, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
39
|
Kim J, Manspeaker MP, Thomas SN. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomater 2019; 88:1-14. [PMID: 30769136 DOI: 10.1016/j.actbio.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Despite the recent approvals of multiple cancer immunotherapies, low tumor immunogenicity and immunosuppressive tumor microenvironments prevent a large portion of patients from responding to these treatment modalities. Given the immunomodulatory and adjuvant effects of conventional chemotherapy as well as its widespread clinical use, the use of chemotherapy in combination with immunotherapy (so-called chemoimmunotherapy) is an attractive approach to potentiate the effects of immunotherapy in more patient populations. However, due to the limited extent of tumor accumulation, poorly controlled interactions with the immune system, and effects on systemic healthy tissues by chemotherapeutic drugs, the incorporation of anti-cancer agents into biomaterial-based structures, such as nanocarriers, is highly attractive to improve the safety and efficacy of chemoimmunotherapy. Herein, we review the recent progress in drug delivery systems (DDSs) for potentiating the immunomodulatory effects of chemotherapeutics in chemoimmunotherapy, which represent among the most promising next generation strategies for cancer treatment in the immunotherapy era. STATEMENT OF SIGNIFICANCE: Given the benefits of cancer immunotherapy in inducing durable, albeit low rates, of patient response, interest in the immunomodulatory and adjuvant effects of conventional chemotherapy has been re-invigorated. This review article discusses the recent progress towards understanding the synergies between these two treatment types, how they can be used in combination (so-called chemoimmunotherapy), and the potential for drug delivery systems to optimize their effects in translational settings.
Collapse
|
40
|
Mi Y, Hagan CT, Vincent BG, Wang AZ. Emerging Nano-/Microapproaches for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801847. [PMID: 30937265 PMCID: PMC6425500 DOI: 10.1002/advs.201801847] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Indexed: 05/15/2023]
Abstract
Cancer immunotherapy has achieved remarkable clinical efficacy through recent advances such as chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB) therapy, and neoantigen vaccines. However, application of immunotherapy in a clinical setting has been limited by low durable response rates and immune-related adverse events. The rapid development of nano-/microtechnologies in the past decade provides potential strategies to improve cancer immunotherapy. Advances of nano-/microparticles such as virus-like size, high surface to volume ratio, and modifiable surfaces for precise targeting of specific cell types can be exploited in the design of cancer vaccines and delivery of immunomodulators. Here, the emerging nano-/microapproaches in the field of cancer vaccines, immune checkpoint blockade, and adoptive or indirect immunotherapies are summarized. How nano-/microparticles improve the efficacy of these therapies, relevant immunological mechanisms, and how nano-/microparticle methods are able to accelerate the clinical translation of cancer immunotherapy are explored.
Collapse
Affiliation(s)
- Yu Mi
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - C. Tilden Hagan
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer CenterDepartment of Microbiology & ImmunologyCurriculum in Bioinformatics and Computational BiologyDivision of Hematology/OncologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Andrew Z. Wang
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
41
|
Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules 2019; 24:E1035. [PMID: 30875934 PMCID: PMC6471357 DOI: 10.3390/molecules24061035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are involved in the development of cancers and their effects on survival rate. Many are related to chemo-resistance of tumor cells. Thus, treatment with a single therapeutic agent is often inadequate for successful cancer therapy. Ideally, combination therapy inhibits tumor growth through multiple pathways by enhancing the performance of each individual therapy, often resulting in a synergistic effect. Polymeric nanoparticles prepared from block co-polymers have been a popular platform for co-delivery of combinations of drugs associated with the multiple functional compartments within such nanoparticles. Various polymeric nanoparticles have been applied to achieve enhanced therapeutic efficacy in cancer therapy. However, reported drug ratios used in such systems often vary widely. Thus, the same combination of drugs may result in very different therapeutic outcomes. In this review, we investigated polymeric co-delivery systems used in cancer treatment and the drug combinations used in these systems for synergistic anti-cancer effect. Development of polymeric co-delivery systems for a maximized therapeutic effect requires a deeper understanding of the optimal ratio among therapeutic agents and the natural heterogenicity of tumors.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Kobra Rostamizadeh
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Cheng YJ, Qin SY, Ma YH, Chen XS, Zhang AQ, Zhang XZ. Super-pH-Sensitive Mesoporous Silica Nanoparticle-Based Drug Delivery System for Effective Combination Cancer Therapy. ACS Biomater Sci Eng 2019; 5:1878-1886. [DOI: 10.1021/acsbiomaterials.9b00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yin-Jia Cheng
- School of Chemistry and Materials Science, South-Central University for Nationalities, 182 minyuan Road, Hongshan District, Wuhan, Hubei 430074, P. R. China
| | - Si-Yong Qin
- School of Chemistry and Materials Science, South-Central University for Nationalities, 182 minyuan Road, Hongshan District, Wuhan, Hubei 430074, P. R. China
| | - Yi-Han Ma
- School of Chemistry and Materials Science, South-Central University for Nationalities, 182 minyuan Road, Hongshan District, Wuhan, Hubei 430074, P. R. China
| | - Xiao-Sui Chen
- School of Chemistry and Materials Science, South-Central University for Nationalities, 182 minyuan Road, Hongshan District, Wuhan, Hubei 430074, P. R. China
| | - Ai-Qing Zhang
- School of Chemistry and Materials Science, South-Central University for Nationalities, 182 minyuan Road, Hongshan District, Wuhan, Hubei 430074, P. R. China
| | - Xian-Zheng Zhang
- A Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
43
|
Wu T, Qiao Q, Qin X, Zhang D, Zhang Z. Immunostimulatory cytokine and doxorubicin co-loaded nanovesicles for cancer immunochemotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:66-77. [PMID: 30831276 DOI: 10.1016/j.nano.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Taking advantages of drug delivery system, immunostimulatory and chemotherapeutic agents with different physiochemical properties can be co-delivered to realize synergistic antitumor effect. Here the immunostimulatory cytokine interleukin-2 (IL-2) was firstly adsorbed in doxorubicin (DOX) loaded nanovesicles (NV-DOXIL-2) with high encapsulation efficiency by a facile solvent free method. After intravenous injection to melanoma bearing mice, NV-DOXIL-2 can accumulate in tumor and remarkably suppress tumor growth with negligible systemic toxicity. To extend the comprehensive application of this strategy, interferon-γ (IFN-γ) was further introduced to the combinatorial system to develop cytokine cocktails adsorbed NVs. This kind of NVs can significantly inhibit the primary tumor growth and lung metastasis of triple-negative breast cancer. With exploration of underlying mechanism, the cytokine cocktails adsorbed NVs can facilitate maturation of dendritic cells, promote the infiltration and activation of CD8+ T lymphocytes and natural killer cells, and increase the recruitment of CD45+ immune cells and Ly6G+ neutrophils.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China; Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Qi Qiao
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Xianya Qin
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
44
|
In situ vaccination with biocompatibility controllable immuno-sensitizer inducing antitumor immunity. Biomaterials 2019; 197:32-40. [PMID: 30639548 DOI: 10.1016/j.biomaterials.2019.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
Anticancer immunotherapy is emerging as a promising tumor treatment that can replace the conventional tumor treatment such as surgery, radiation and chemo drug, but its therapeutic effect against solid tumor is limited due to the tumor microenvironment (TME). Herein, to overcome this limitation, the biocompatibility controllable immuno-sensitizer (BCI) based on polyethylene imine that can be applied to solid tumors is developed. BCI accumulates in the tumors by EPR effect and induces in situ tumor destruction that convert tumors into antigen source by biocompatibility change through surface charge switching in response to the acidic TME. Generated tumor antigens promote the maturation of dendritic cells and recruitment of cytotoxic T cells in tumors. Results from in vitro and in vivo experiments reveal that the BCI effectively induces tumor destruction and antitumor immune response. In consequence, the synergic effect of in situ tumor destruction and antitumor immune response induced by BCI's biocompatibility conversion remarkably enhances immunotherapeutic effect. This study may provide a way to improve immunotherapeutic effect on solid tumors by demonstrating the therapeutic effect of BCI against solid tumor and suggest a platform to control the toxicity of cationic polymer for the its extended biomedical application.
Collapse
|
45
|
Chen Z, Liu L, Liang R, Luo Z, He H, Wu Z, Tian H, Zheng M, Ma Y, Cai L. Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-tumor Immunity and Abscopal Effect. ACS NANO 2018; 12:8633-8645. [PMID: 30005164 DOI: 10.1021/acsnano.8b04371] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An ideal cancer therapeutic strategy is expected to possess potent ability to not only ablate primary tumors but also prevent distance metastasis and relapse. In this study, human serum albumin was hybridized with hemoglobin by intermolecular disulfide bonds to develop a hybrid protein oxygen nanocarrier with chlorine e6 encapsulated (C@HPOC) for oxygen self-sufficient photodynamic therapy (PDT). C@HPOC realized the tumor-targeted co-delivery of photosensitizer and oxygen, which remarkably relieved tumor hypoxia. C@HPOC was favorable for more efficient PDT and enhanced infiltration of CD8+ T cells in tumors. Moreover, oxygen-boosted PDT of C@HPOC induced immunogenic cell death, with the release of danger-associated molecular patterns to activate dendritic cells, T lymphocytes, and natural killer cells in vivo. Notably, C@HPOC-mediated immunogenic PDT could destroy primary tumors and effectively suppress distant tumors and lung metastasis in a metastatic triple-negative breast cancer model by evoking systemic anti-tumor immunity. This study provides a paradigm of oxygen-augmented immunogenic PDT for metastatic cancer treatment.
Collapse
Affiliation(s)
- Zhikuan Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Zhenyu Luo
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Zhihao Wu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Hao Tian
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine , Guangdong Medical University , Dongguan 523808 , P. R. China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine , Guangdong Medical University , Dongguan 523808 , P. R. China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| |
Collapse
|
46
|
Yin Y, Hu Q, Xu C, Qiao Q, Qin X, Song Q, Peng Y, Zhao Y, Zhang Z. Co-delivery of Doxorubicin and Interferon-γ by Thermosensitive Nanoparticles for Cancer Immunochemotherapy. Mol Pharm 2018; 15:4161-4172. [PMID: 30011369 DOI: 10.1021/acs.molpharmaceut.8b00564] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-sensitive nanoparticle delivery system was constructed by incorporating an acid sensitive hydrazone linker into thermosensitive nanoparticles (TSNs) for co-encapsulating doxorubicin (DOX) and interferon γ (IFNγ) and to realize the co-delivery of chemotherapy and immunotherapy agents against melanoma. DOX, a chemotherapeutic drug, was conjugated to TSNs by a pH-sensitive chemical bond, and IFNγ, a potent immune-modulator, was absorbed into TSNs through the thermosensitivity and electrostatics of nanoparticles. Consequently, the dual sensitive drug-loaded TSN delivery systems were successfully built and showed an obvious core-shell structure, good encapsulation efficiency of drugs, sustained and sensitive drug release, prolonged circulation time, as well as excellent synergistic antitumor efficiency against B16F10 tumor bearing mice. Moreover, the combinational antitumor immune responses of hydrazone bearing DOX/IFNγ-TSN (hyd) were strengthened by activating Th1-type CD4+ T cells, cytotoxic T lymphocytes, and natural killer cells, downregulating the expression levels of immunosuppressive cytokines, such as IL10 and TGFβ, and upregulating the secretion of IL2 and TNFα. Taken together, the multifunctional TSNs system provides a promising strategy for multiple drugs co-delivery with distinct properties.
Collapse
|