1
|
Blumberg EA, Witzke O, Harber M, Ison MG, Saliba F, Kamar N, Sundberg AK, Gu J, Kumar D, La Hoz RM. Maribavir for refractory cytomegalovirus infection (with or without resistance) in solid organ transplant recipients: Subgroup analysis of the phase 3 randomized SOLSTICE study. J Heart Lung Transplant 2025; 44:986-994. [PMID: 39613120 DOI: 10.1016/j.healun.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND In the phase 3 SOLSTICE study (NCT02931539), maribavir was superior to investigator-assigned therapy (IAT) for confirmed cytomegalovirus viremia clearance at study week 8 in hematopoietic cell/solid organ transplant (HCT/SOT) recipients. We report additional efficacy and safety analyses from the SOT subgroup. METHODS Eligible SOT recipients (n=211) received maribavir 400 mg twice daily (n=142) or IAT (n=69) for 8 weeks (12 weeks' follow-up). Cytomegalovirus viremia clearance at week 8 (primary endpoint) and cytomegalovirus viremia clearance plus symptom control at the end of week 8 maintained through week 16 (key secondary endpoint) were assessed. Graft outcomes and treatment-emergent adverse events were analyzed. RESULTS A higher proportion of maribavir-treated patients achieved the primary endpoint than with IAT across transplant organ types, including kidney (maribavir: 59.5%, IAT: 34.4%), lung (47.5%, 13.6%), and heart (42.9%, 11.1%). Similar proportions of patients achieved the key secondary endpoint in both arms (13.4% versus 11.6%; adjusted difference: 2.4%; 95% CI: -7.05, 11.83%; p=0.620). Rates of treatment-emergent adverse events were: maribavir (96.5%), IAT (88.4%). Maribavir (3.5%) had fewer treatment discontinuations due to treatment-emergent adverse events than IAT (23.2%). There were no graft losses; patients in both arms experienced acute rejection (maribavir: 9 [6.3%]; IAT: 4 [5.8%]). Treatment-emergent maribavir mutations occurred in 28.2% of patients; 19/33 patients achieved viremia clearance with subsequent alternative treatment. CONCLUSIONS Consistent with findings in the overall SOLSTICE population, this subgroup analysis of SOT recipients demonstrated greater effectiveness of maribavir for cytomegalovirus viremia clearance and fewer discontinuations due to treatment-emergent adverse events than IAT. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov; NCT02931539.
Collapse
Affiliation(s)
- Emily A Blumberg
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Duisburg-Essen, Essen 45141, Germany
| | - Mark Harber
- Department of Renal Medicine, University College London. Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | | | - Faouzi Saliba
- University Paris-Saclay, INSERM Unit 1193, France; AP-HP Hôpital Paul Brousse, Hepato-Biliary Centre, 94800 Villejuif, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INFINITY-Inserm U1291-CNRS U5051, University Paul Sabatier, Toulouse 31062, France
| | - Aimee K Sundberg
- Clinical Sciences, Takeda Development Center Americas, Inc., Lexington, MA 02421
| | - Joan Gu
- Biostatistics, Takeda Development Center Americas, Inc., Lexington, MA 02421
| | - Deepali Kumar
- Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Ricardo M La Hoz
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
2
|
Corcione S, Lupia T, Vita D, Sidoti F, Zanotto E, Solidoro P, Biancone L, Costa C, Balagna R, De Rosa FG. Maribavir treatment for resistant cytomegalovirus disseminated disease in kidney transplant recipients: A case-based scoping review of real life data in literature. Transplant Rev (Orlando) 2024; 38:100873. [PMID: 39178643 DOI: 10.1016/j.trre.2024.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/26/2024]
Abstract
The treatment of refractory CMV is often associated with high toxicity. Maribavir (MBV) is a novel oral antiviral, known for its favourable safety profile in fragile patients. We describe a case of CMV disease with end organ damage following kidney transplantation at high risk, for recipient-donor serological mismatch. A 54-year-old female with history of obesity, hypertension, and chronic kidney disease, on prednisone and tacrolimus after kidney transplantation in November 2022, soon after developed primary CMV infection, treated with Valganciclovir and CMV Ig. In January 2023 the patient presented with fever and dyspnea. Pulmonary miliary opacities and right-upper lobe consolidation were found at CT-scan along with CMV-DNA positivity on BAL and serum. Lung biopsy confirmed CMV infection. Antiviral was switched to Ganciclovir. Despite initial benefit, fever and respiratory failure happened 8 days later, leading to intubation at day 15. Due to slow decrease serum CMV-DNA and detection of UL97 mutation, conferring resistance to valganciclovir and ganciclovir, the patient was started on foscarnet and letermovir. She was extubated after a gradual respiratory improvement and discharged from ICU to rehabilitation department with HFNC; reduction in serum CMV-DNA, but persistently elevated CMV-DNA on BAL were documented. At week 8, MBV was started and letermovir continued, for a 8 weeks course, without notable adverse effects. Respiratory function improved but soon after septic shock occurred. A bone marrow biopsy resulted in lymphoma, without indications for treatment: the patient developed coma and died 6 months after admission. MBV has recently been approved in Europe for treatment of R/R CMV in HSCT and SOT recipients. MBV showed superior rates of viraemia clearance after 8 weeks compared to SOC, demonstrating also a favourable safety profile with fewer patients discontinuing treatment and being affected by nephrotoxicity and neutropenia. Its main side effects are taste impairment, gastro-intestinal symptoms and asthenia. Based on actual promising perspectives regarding antiviral stewardship, more data are required to corroborate benefit of MBV in terms of toxicity and impact on mortality in highly fragile populations as SOT recipients. MBV received approval for the treatment of refractory or resistant CMV infections to other antiviral agents. Nevertheless, real-life data on efficacy and safety of MBV are still lacking. We conducted a narrative review of the current literature on MBV as treatment for CMV infection in kidney transplant recipients to understand clinical characteristics, safety and outcomes of MBV in this population. A search was run on the main scientific databases. 194 papers were identified, of which 188 were excluded by title and abstract evaluation. Subsequently, 6 papers were included. We performed descriptive statistics on the entire study population. The studies included in our analysis showed a higher prevalence of male subjects. The median age was 57 year. CKD was the most frequently reported comorbidity. Seven patients reported a donor/recipient mismatch (D+/R-). The case report and the cohort of patients collected from the literature show that MBV was used as an option in R/R CMV, notably for the presence or suspicion of CMV resistance to previous treatment. The clinical presentation of CMV in kidney SOT was heterogenous and varied from isolated reactivation of CMV-DNAemia, isolated fever or gastrointestinal involvement. For mild to moderate CMV disease, as with the cases reported in our review, or for proven ganciclovir, foscarnet or cidofovir resistance, MBV could be a valuable option. Outcomes of the patients treated with MBV were not reported in all the studies; however, where reported, 45.4% of the cases developed virological failure during MBV treatment with the development of specific resistance to MBV. MBV was generally well-tolerated, with low rates of toxicity, normally reversible. The introduction of new oral antivirals, such as MBV, could improve treatment, prophylaxis and preemptive treatment strategies, especially in anti-CMV treatment experienced patients.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Davide Vita
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy.
| | - Francesca Sidoti
- S.C. Microbiology and Virology U, A.O.U. "Città della Salute e della Scienza di Torino", Turin, Italy
| | - Elisa Zanotto
- S.C. Microbiology and Virology U, A.O.U. "Città della Salute e della Scienza di Torino", Turin, Italy
| | - Paolo Solidoro
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; Division of Respiratory Medicine, Cardiovascular and Thoracic Department, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Luigi Biancone
- Nephrology, Dialysis and Transplantation U, Department of General and Specialized Medicine, City of Health and Science, CTO Hospital, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristina Costa
- S.C. Microbiology and Virology U, A.O.U. "Città della Salute e della Scienza di Torino", Turin, Italy
| | - Roberto Balagna
- Anesthesia and Intensive Care Unit 2, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | | |
Collapse
|
3
|
Hardinger KL, Brennan DC. Cytomegalovirus Treatment in Solid Organ Transplantation: An Update on Current Approaches. Ann Pharmacother 2024; 58:1122-1133. [PMID: 38501850 DOI: 10.1177/10600280241237534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE The article reviews the safety and efficacy of treatments for cytomegalovirus (CMV) in solid organ transplantation. DATA SOURCES A literature review was conducted in PubMed, MEDLINE, and Clinicaltrials.gov from database inception through January 2024, using terms CMV, therapy, and solid organ transplantation. STUDY SELECTION AND DATA EXTRACTION Clinical trials, meta-analyses, cohort studies, case reports, and guidelines were included. Letters to the editor, reviews, and commentaries were excluded. DATA SYNTHESIS After abstract screening and full-text review of 728 citations for eligibility, 53 were included. Valganciclovir and intravenous ganciclovir are drugs of choice for CMV management and, until recently, the availability of alternative options has been restricted due to toxicity. For instance, foscarnet and cidofovir serve as second-line agents due to potential bone marrow and renal toxicity. In patients with refractory or resistant CMV, maribavir, a novel oral agent, has proven efficacy and a lower adverse effect profile. However, in refractory or resistant CMV, foscarnet and cidofovir are preferred in invasive disease (CMV gastritis, CMV retinitis, and CMV encephalitis), high viral loads, and inability to tolerate oral preparations. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Consensus guidelines have not been revised since approval of novel antivirals in solid organ transplantation. Valganciclovir and ganciclovir remain drugs of choice for initial CMV therapy. Foscarnet, cidofovir, and maribavir are treatments for refractory or resistant-CMV. CONCLUSIONS Selection of CMV antiviral treatment should be determined by patient-specific factors, including severity of illness, resistant or refractory disease, dose-limiting adverse effects, and the preferred route of administration.
Collapse
Affiliation(s)
- Karen L Hardinger
- Division of Pharmacy Practice and Administration, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Daniel C Brennan
- Johns Hopkins Comprehensive Transplant Center, Baltimore, MD, USA
| |
Collapse
|
4
|
Marschall M, Schütz M, Wild M, Socher E, Wangen C, Dhotre K, Rawlinson WD, Sticht H. Understanding the Cytomegalovirus Cyclin-Dependent Kinase Ortholog pUL97 as a Multifaceted Regulator and an Antiviral Drug Target. Cells 2024; 13:1338. [PMID: 39195228 PMCID: PMC11352327 DOI: 10.3390/cells13161338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Kishore Dhotre
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Biomedical Sciences, Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney 2050, Australia;
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, 91054 Erlangen, Germany;
| |
Collapse
|
5
|
Monday LM, Keri V, Chandrasekar PH. Advances in pharmacotherapies for cytomegalovirus infection: what is the current state of play? Expert Opin Pharmacother 2024; 25:685-694. [PMID: 38717943 DOI: 10.1080/14656566.2024.2353627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) remains a serious opportunistic infection in hematopoietic cell transplant (HCT) and solid-organ transplant (SOT) recipients. Traditional anti-CMV drugs are limited by toxicities and the development of resistance. Letermovir and maribavir are newly approved antivirals for the prevention and treatment of CMV. AREAS COVERED Prior reviews have discussed use of letermovir for prevention of CMV after HCT and maribavir for resistant or refractory (R/R) CMV post HCT or SOT. Subsequent data have expanded their use including letermovir for primary CMV prophylaxis in high-risk renal transplant recipients and new recommendations for extending prophylaxis through day + 200 in certain HCT patients. Data on the use of maribavir for first asymptomatic CMV infection post-HCT has also been published. This review compares the pharmacology of anti-CMV agents and discusses the updated literature of these new drugs in the prevention and treatment of CMV. EXPERT OPINION Letermovir and maribavir are much needed tools that spare toxicities of ganciclovir, foscarnet, and cidofovir. High cost is a challenge preventing their integration into clinical practice in resource-limited countries. Transplant centers need to exercise restraint in overuse to avoid resistance, particularly in the setting of high viral loads.
Collapse
Affiliation(s)
- Lea M Monday
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Vishakh Keri
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
6
|
Valencia Deray KG, Danziger-Isakov LA, Downes KJ. Current and Emerging Antiviral Agents in the Prevention and Treatment of Cytomegalovirus in Pediatric Transplant Recipients. J Pediatric Infect Dis Soc 2024; 13:S14-S21. [PMID: 38417084 PMCID: PMC10901473 DOI: 10.1093/jpids/piad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/16/2023] [Indexed: 03/01/2024]
Abstract
Despite current prophylaxis regimens, cytomegalovirus (CMV) is common in hematopoietic cell transplantation (HCT) and solid organ transplantation (SOT) and remains a significant cause of morbidity and mortality. Newer antiviral medications are reshaping the landscape for prevention and treatment of CMV DNAemia, infection, and disease. Letermovir is approved for CMV prevention in adult HCT patients and is attractive due to the absence of marrow suppression seen with ganciclovir/valganciclovir. Letermovir should not be routinely used for CMV treatment due to its low threshold for resistance. Maribavir is approved for the treatment of refractory or resistant CMV disease in HCT and SOT recipients ≥12 years of age, though it has no current role in CMV prevention. More research is needed to fully elucidate the roles, efficacy, and safety of these newer agents in prevention and treatment of CMV in pediatric transplant recipients.
Collapse
Affiliation(s)
- Kristen G Valencia Deray
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Lara A Danziger-Isakov
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J Downes
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Chou S, Watanabe J. Ganciclovir and maribavir cross-resistance revisited: Relative drug susceptibilities of canonical cytomegalovirus mutants. Antiviral Res 2024; 222:105792. [PMID: 38163624 PMCID: PMC10922325 DOI: 10.1016/j.antiviral.2023.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Therapeutic use of maribavir for human cytomegalovirus infection has renewed attention to the extent of cross-resistance with ganciclovir as the existing standard therapy. Each drug selects in vivo for a characteristic set of resistance mutations in the viral UL97 kinase gene. To improve the calibration of relative susceptibilities to each drug, genetic variants at relevant UL97 codons were extensively phenotyped using the same baseline viral clone, cell culture conditions and growth readout. Ganciclovir-selected mutations at codons 460, 520, 592, 594, 595 and 603 conferred 2.8-fold (C603Y) to 12-fold (M460I) increases in ganciclovir 50% inhibitory concentrations (EC50) over wild type baseline, while conferring maribavir EC50 fold changes ranging from 0.21-fold (M460I) to 1.9-fold (A594V). Maribavir-selected mutations at codons 409, 411 and 480 conferred maribavir EC50 fold changes ranging from 17 (H411Y) to 210 (C480F), while conferring ganciclovir EC50 fold changes ranging from 0.7 (H411Y) to 2.3 (C480F). The P-loop substitution F342Y, selected by either drug, is confirmed to confer 4.7-fold and 6-fold increases in maribavir and ganciclovir EC50s respectively, and suggests this part of the ATP-binding domain of UL97 to be involved in moderate resistance to both drugs. The maribavir hypersensitivity of M460I and M460V may be advantageous.
Collapse
Affiliation(s)
- Sunwen Chou
- Department of Veterans Affairs Medical Center, Portland, OR, USA; Division of Infectious Diseases, Oregon Health and Science University, USA.
| | - Justin Watanabe
- Department of Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
8
|
Piret J, Boivin G. Management of Cytomegalovirus Infections in the Era of the Novel Antiviral Players, Letermovir and Maribavir. Infect Dis Rep 2024; 16:65-82. [PMID: 38247977 PMCID: PMC10801527 DOI: 10.3390/idr16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cytomegalovirus (CMV) infections may increase morbidity and mortality in immunocompromised patients. Until recently, standard antiviral drugs against CMV were limited to viral DNA polymerase inhibitors (val)ganciclovir, foscarnet and cidofovir with a risk for cross-resistance. These drugs may also cause serious side effects. This narrative review provides an update on new antiviral agents that were approved for the prevention and treatment of CMV infections in transplant recipients. Letermovir was approved in 2017 for CMV prophylaxis in CMV-seropositive adults who received an allogeneic hematopoietic stem cell transplant. Maribavir followed four years later, with an indication in the treatment of adult and pediatric transplant patients with refractory/resistant CMV disease. The target of letermovir is the CMV terminase complex (constituted of pUL56, pUL89 and pUL51 subunits). Letermovir prevents the cleavage of viral DNA and its packaging into capsids. Maribavir is a pUL97 kinase inhibitor, which interferes with the assembly of capsids and the egress of virions from the nucleus. Both drugs have activity against most CMV strains resistant to standard drugs and exhibit favorable safety profiles. However, high-level resistance mutations may arise more rapidly in the UL56 gene under letermovir than low-grade resistance mutations. Some mutations emerging in the UL97 gene under maribavir can be cross-resistant with ganciclovir. Thus, letermovir and maribavir now extend the drug arsenal available for the management of CMV infections and their respective niches are currently defined.
Collapse
Affiliation(s)
| | - Guy Boivin
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
9
|
Sun K, Fournier M, Sundberg AK, Song IH. Maribavir: Mechanism of action, clinical, and translational science. Clin Transl Sci 2024; 17:e13696. [PMID: 38071422 PMCID: PMC10801391 DOI: 10.1111/cts.13696] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Maribavir is an oral benzimidazole riboside for treatment of post-transplant cytomegalovirus (CMV) infection/disease that is refractory to prior antiviral treatment (with or without resistance). Through competitive inhibition of adenosine triphosphate, maribavir prevents the phosphorylation actions of UL97 to inhibit CMV DNA replication, encapsidation, and nuclear egress. Maribavir is active against CMV strains with viral DNA polymerase mutations that confer resistance to other CMV antivirals. After oral administration, maribavir is rapidly and highly absorbed (fraction absorbed >90%). The approved dose of 400 mg twice daily (b.i.d.) achieves a steady-state area under the curve per dosing interval of 128 h*μg/mL and trough concentration of 4.90 μg/mL (13.0 μM). Maribavir is highly bound to human plasma proteins (98%) with a small apparent volume of distribution of 27.3 L. Maribavir is primarily cleared by hepatic CYP3A4 metabolism; its major metabolite, VP44669 (pharmacologically inactive), is excreted in the urine and feces. There is no clinically relevant impact on maribavir pharmacokinetics by age, sex, race/ethnicity, body weight, transplant type, or hepatic/renal impairment status. In phase II dose-ranging studies, maribavir showed similar rates of CMV viral clearance across 400, 800, or 1200 mg b.i.d. groups, ranging from 62.5-70% in study 202 (NCT01611974) and 74-83% in study 203 (EudraCT 2010-024247-32). In the phase III SOLSTICE trial (NCT02931539), maribavir 400 mg b.i.d. demonstrated superior CMV viremia clearance at week 8 versus investigator-assigned treatments, with lower treatment discontinuation rates. Dysgeusia, nausea, vomiting, and diarrhea were commonly experienced adverse events among patients treated with maribavir in clinical trials.
Collapse
Affiliation(s)
- Kefeng Sun
- Quantitative Clinical PharmacologyTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Martha Fournier
- Clinical Sciences, Rare Genetics & Hematology Therapeutic Area UnitTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Aimee K. Sundberg
- Clinical Sciences, Rare Genetics & Hematology Therapeutic Area UnitTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Ivy H. Song
- Quantitative Clinical PharmacologyTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| |
Collapse
|
10
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
11
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
12
|
Razonable RR. Oral antiviral drugs for treatment of cytomegalovirus in transplant recipients. Clin Microbiol Infect 2023; 29:1144-1149. [PMID: 36963566 DOI: 10.1016/j.cmi.2023.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is an opportunistic pathogen responsible for substantial morbidity after solid organ transplantation and haematopoietic stem cell transplantation. Treatment of CMV disease involves a two-pronged approach with antiviral drug treatment coupled with strategies to minimize the intensity of immune suppression. OBJECTIVES This narrative review examines the evidence for the current treatment of CMV disease in transplant recipients, including the use of oral antiviral drugs. SOURCES Literature search was performed on PubMed with keywords cytomegalovirus, transplantation, ganciclovir, valganciclovir, maribavir, letermovir, cidofovir, and foscarnet. CONTENT Intravenous and oral valganciclovir are the standard first-line treatment of cytomegalovirus disease after transplantation. Oral maribavir has demonstrated superior efficacy and safety over CMV DNA polymerase inhibitors for the treatment of refractory or resistant CMV infection. Transplant patients with severe and life-threatening CMV disease, those with very high viral load, and patients with impaired gastrointestinal absorption should still be treated initially with intravenous antiviral drugs, including ganciclovir and foscarnet. Criteria for the safe transition from intravenous therapies to oral antiviral drugs include achieving clinical improvement and satisfactory decline in viral load. Recurrence of CMV viremia and disease is common, particularly among transplant patients who are lymphopenic and have impaired CMV-specific immunity. IMPLICATIONS Oral antiviral drugs for the treatment of CMV infection and disease in transplant recipients have improved the CMV landscape, because they reduce the cost and mitigate the inconvenience and risks related to prolonged hospitalization and the need for long-term intravascular access. However, their antiviral efficacy should be complemented by an intentional strategy of reducing the degree of immune suppression to allow for immunologic recovery that ensures durable control of CMV infection.
Collapse
|
13
|
Song I, Suttle B, Wu J, Ilic K. Pharmacokinetics and Safety Evaluation of Maribavir in Healthy Japanese and Matched White Participants: A Phase I, Open-Label Study. Clin Pharmacol Drug Dev 2023. [PMID: 37036111 DOI: 10.1002/cpdd.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023]
Abstract
This phase I study compared pharmacokinetics and safety of maribavir in Japanese and White participants, and evaluated dose proportionality in Japanese participants. Under fasting conditions, 12 healthy adult participants of Japanese descent and 12 matched White participants received a single 400-mg dose of maribavir. Japanese participants received 2 further doses of maribavir: 200 mg and 800 mg, or 800 mg and 200 mg, separated by a ≥72-hour washout period. Serial blood samples were collected up to 24 hours after dosing for pharmacokinetic assessments. Following the 400-mg dose, the geometric mean ratios (90% confidence interval) of Japanese versus White participants were 110% (91.7%-133%) for maximum plasma concentration, 122% (96.8%-155%) for area under the plasma concentration-time curve (AUC) from time of dosing to the last measurable concentration, and 125% (98.0%-160%) for AUC extrapolated to infinity. In Japanese participants, maribavir AUC extrapolated to infinity and AUC from time of dosing to the last measurable concentration increased in a dose-proportional fashion over 200-800 mg; maximum plasma concentration increased less than dose proportionally. Seven participants reported treatment-emergent adverse events (TEAEs; Japanese participants, 400 mg: 2 [16.7%], 200 mg: 1 [8.3%]; White participants, 400 mg: 4 [33.3%]), all mild and most commonly dysgeusia. No serious TEAEs or TEAEs leading to discontinuation were reported. This study demonstrated higher maribavir systemic exposure in Japanese than White participants and similar safety outcomes. This difference in exposure is not considered clinically important and its significance remains to be determined.
Collapse
Affiliation(s)
- Ivy Song
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Ben Suttle
- qPharmetra, LLC, Raleigh, North Carolina, USA
| | - Jingyang Wu
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Katarina Ilic
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Abstract
Maribavir was approved by the U.S. Food and Drug Administration in November 2021 for the treatment of adult and pediatric patients with post-transplant cytomegalovirus (CMV) infection/disease that is refractory to treatment (with or without genotypic resistance) with ganciclovir, valganciclovir, cidofovir, or foscarnet. Maribavir is an oral benzimidazole riboside with potent and selective multimodal anti-CMV activity. It utilizes a novel mechanism of action which confers activity against CMV strains that are resistant to traditional anti-CMV agents, and also offers a more favorable safety profile relative to the dose-limiting side effects of previously available therapies. Maribavir was initially studied as an agent for CMV prophylaxis in solid organ and hematopoietic stem cell recipients, but initial phase III trials failed to meet clinical efficacy endpoints. It has been more recently studied as a therapeutic agent at higher doses for refractory-resistant (R-R) CMV infections with favorable outcomes. After an overview of maribavir's chemistry and clinical pharmacology, this review will summarize clinical efficacy, safety, tolerability, and resistance data associated with maribavir therapy.
Collapse
|
15
|
Santos Bravo M, Plault N, Sánchez-Palomino S, Rodríguez C, Navarro Gabriel M, Mosquera MM, Fernández Avilés F, Suarez-Lledó M, Rovira M, Bodro M, Moreno A, Linares L, Cofan F, Berengua C, Esteva C, Cordero E, Martin-Davila P, Aranzamendi M, Pérez Jiménez AB, Vidal E, Fernández Sabé N, Len O, Hantz S, Alain S, Marcos MÁ. Genotypic and phenotypic study of antiviral resistance mutations in refractory cytomegalovirus infection. J Infect Dis 2022; 226:1528-1536. [PMID: 35993155 DOI: 10.1093/infdis/jiac349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
This study describes the genotypic and phenotypic characterisation of novel human cytomegalovirus (HCMV) genetic variants of a cohort of 94 clinically-resistant HCMV patients. Antiviral-resistant mutations were detected in the UL97, UL54 and UL56 target genes of 25/94 (26.6%) patients. The genotype-phenotype correlation study resolved the status of 5 uncharacterised UL54 DNA polymerase (G441S, A543V, F460S, R512C, A928T) and 2 UL56 terminase (F345L, P800L) mutations found in clinical isolates. A928T conferred high triple-resistance to ganciclovir, foscarnet and cidofovir, and A543V had 10-fold reduced susceptibility to cidofovir. Viral growth assays showed G441S, A543V, F345L and P800L impaired viral growth capacities compared with wild-type AD169 HCMV. 3D modelling predicted A543V and A928T phenotypes but not R512C, reinforcing the need for individual characterisation of mutations by recombinant phenotyping. Extending mutation databases is crucial to optimize treatments and to improve the assessment of patients with resistant/refractory HCMV infection.
Collapse
Affiliation(s)
- Marta Santos Bravo
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Nicolas Plault
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sonsoles Sánchez-Palomino
- AIDS Research Group, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic I Provincial de Barcelona, University of Barcelona, Barcelona, Spain
| | - Cristina Rodríguez
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Mireia Navarro Gabriel
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - María Mar Mosquera
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Francesc Fernández Avilés
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - María Suarez-Lledó
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Montserrat Rovira
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Bodro
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Laura Linares
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Frederic Cofan
- Renal Transplantation Unit, Department of Nephrology. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carla Berengua
- Microbiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Esteva
- Molecular Microbiology Unit, Hospital Universitari Sant Joan de Déu, Barcelona, Spain. Malalties Prevenibles amb Vacunes, Institut de Recerca Sant Joan de Déu, Universitat de Barcelona. Centre of Biomedical Research for Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine. Viral and Infectious Diseases in Immunodeficient Group. Institute of Biomedicine of Seville (IBiS). Virgen del Rocio University Hospital. University of Seville. Seville, Spain
| | | | - Maitane Aranzamendi
- Microbiology Department. Hospital Universitario de Cruces, Donostia, Gipuzkoa, Spain
| | - Ana Belén Pérez Jiménez
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Elisa Vidal
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Nuria Fernández Sabé
- Department of Infectious Diseases, Bellvitge University Hospital, Insitut D'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Sebastien Hantz
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sophie Alain
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - María Ángeles Marcos
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | | |
Collapse
|
16
|
Gandhi RG, Kotton CN. Evaluating the Safety of Maribavir for the Treatment of Cytomegalovirus. Ther Clin Risk Manag 2022; 18:223-232. [PMID: 35308097 PMCID: PMC8926008 DOI: 10.2147/tcrm.s303052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose of Review Cytomegalovirus (CMV) infections are a common complication in solid organ (SOT) and hematopoietic stem cell transplant (HSCT) recipients, leading to increased morbidity and mortality. Currently available treatment options have reduced the burden of infection, but utilization of these agents can be limited by toxicities such as nephrotoxicity and/or myelosuppression as well as emergence of resistance. The expansion of our current armamentarium towards CMV infection is crucial. Here, we review an emerging therapy, maribavir, and the safety and efficacy of this potential new agent for the prophylaxis and treatment of CMV infections including resistant/refractory disease. Recent Findings Maribavir is a novel agent with CMV activity approved by Federal Food and Drug Administration (FDA) in December 2021 for resistant/refractory disease. Compared to currently available treatment for CMV infection, maribavir has a unique mechanism of action, retains activity against most (val)ganciclovir resistant strains, provides a more predictable pharmacokinetic profile, and fewer severe toxicities. Maribavir has been studied in phase 2 and 3 studies with ongoing phase 3 studies. While maribavir failed to meet the primary endpoints in the initial phase 3 study for prophylaxis therapy in allogeneic-HSCT and liver transplant recipients, results from the phase 2 study when used for pre-emptive therapy after HSCT show similar efficacy to valganciclovir, and results from the phase 3 study examining resistant/refractory disease demonstrate superiority to investigator-initiated therapy of (val)ganciclovir, foscarnet, or cidofovir. Summary Maribavir provides a new agent for the management of resistant/refractory CMV infection. Results of the recently published phase 3 study provide further insight into the role of this novel therapy.
Collapse
Affiliation(s)
- Ronak G Gandhi
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
- Correspondence: Ronak G Gandhi, Senior Attending Pharmacist – Infectious Diseases, Department of Pharmacy, Massachusetts General Hospital, 55 Fruit Street, GRB 005, Boston, MA02114, USA, Tel +1 617-643-6570, Fax +1 617-726-9232, Email
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Chitosan/benzyloxy-benzaldehyde modified ZnO nano template having optimized and distinct antiviral potency to human cytomegalovirus. Carbohydr Polym 2022; 278:118965. [PMID: 34973780 DOI: 10.1016/j.carbpol.2021.118965] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Utilization of biomolecules encapsulated nano particles is currently originating ample attention to generate unconventional nanomedicines in antiviral research. Zinc oxide nanoparticle has been extensively studied for antimicrobial, antifungal and antifouling properties due to high surface to volume ratios and distinctive chemical as well as physical properties. Nevertheless, still minute information is available on their response on viruses. Here, in situ nanostructured and polysaccharide encapsulated ZnO NPs are fabricated with having antiviral potency and low cytotoxicity (%viability ~ 90%) by simply controlling the formation within interspatial 3D networks of hydrogels through perfect locking mechanism. The two composites ChH@ZnO and ChB@ZnO shows exceedingly effective antiviral activity toward Human cytomegalovirus (HCMV) having cell viability 93.6% and 92.4% up to 400 μg mL-1 concentration. This study brings significant insights regarding the role of ZnO NPs surface coatings on their nanotoxicity and antiviral action and could potentially guide to the development of better antiviral drug.
Collapse
|
18
|
Avery RK, Alain S, Alexander BD, Blumberg EA, Chemaly RF, Cordonnier C, Duarte RF, Florescu DF, Kamar N, Kumar D, Maertens J, Marty FM, Papanicolaou GA, Silveira FP, Witzke O, Wu J, Sundberg AK, Fournier M, SOLSTICE Trial Investigators. Maribavir for Refractory Cytomegalovirus Infections With or Without Resistance Post-Transplant: Results From a Phase 3 Randomized Clinical Trial. Clin Infect Dis 2021; 75:690-701. [PMID: 34864943 PMCID: PMC9464078 DOI: 10.1093/cid/ciab988] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Therapies for refractory cytomegalovirus infections (with or without resistance [R/R]) in transplant recipients are limited by toxicities. Maribavir has multimodal anti-cytomegalovirus activity through the inhibition of UL97 protein kinase. METHODS In this phase 3, open-label study, hematopoietic-cell and solid-organ transplant recipients with R/R cytomegalovirus were randomized 2:1 to maribavir 400 mg twice daily or investigator-assigned therapy (IAT; valganciclovir/ganciclovir, foscarnet, or cidofovir) for 8 weeks, with 12 weeks of follow-up. The primary endpoint was confirmed cytomegalovirus clearance at end of week 8. The key secondary endpoint was achievement of cytomegalovirus clearance and symptom control at end of week 8, maintained through week 16. RESULTS 352 patients were randomized (235 maribavir; 117 IAT). Significantly more patients in the maribavir versus IAT group achieved the primary endpoint (55.7% vs 23.9%; adjusted difference [95% confidence interval (CI)]: 32.8% [22.80-42.74]; P < .001) and key secondary endpoint (18.7% vs 10.3%; adjusted difference [95% CI]: 9.5% [2.02-16.88]; P = .01). Rates of treatment-emergent adverse events (TEAEs) were similar between groups (maribavir, 97.4%; IAT, 91.4%). Maribavir was associated with less acute kidney injury versus foscarnet (8.5% vs 21.3%) and neutropenia versus valganciclovir/ganciclovir (9.4% vs 33.9%). Fewer patients discontinued treatment due to TEAEs with maribavir (13.2%) than IAT (31.9%). One patient per group had fatal treatment-related TEAEs. CONCLUSIONS Maribavir was superior to IAT for cytomegalovirus viremia clearance and viremia clearance plus symptom control maintained post-therapy in transplant recipients with R/R cytomegalovirus. Maribavir had fewer treatment discontinuations due to TEAEs than IAT. Clinical Trials Registration. NCT02931539 (SOLSTICE).
Collapse
Affiliation(s)
- Robin K Avery
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sophie Alain
- Department of Virology and National Reference Center for Herpesviruses, Limoges University Hospital, UMR Inserm 1092, University of Limoges, Limoges, France
| | - Barbara D Alexander
- Division of Infectious Diseases and International Health, Duke University, Durham, North Carolina, USA
| | - Emily A Blumberg
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Catherine Cordonnier
- Haematology Department, Henri Mondor Hospital and University Paris-Est-Créteil, Créteil, France
| | - Rafael F Duarte
- Department of Haematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Diana F Florescu
- Infectious Diseases Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INFINITY-Inserm U1291-CNRS U5051, University Paul Sabatier, Toulouse, France
| | - Deepali Kumar
- Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Johan Maertens
- Haematology Department, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Fernanda P Silveira
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jingyang Wu
- Biostatistics, Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Aimee K Sundberg
- Clinical Sciences, Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Martha Fournier
- Correspondence: M. Fournier, Takeda Development Center Americas, Inc, 300 Shire Way, Lexington, MA 02421 ()
| | | |
Collapse
|
19
|
Infection risk and prophylaxis in patients with lymphoid cancer. Blood 2021; 139:1517-1528. [PMID: 34748625 DOI: 10.1182/blood.2019003687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
Infections are a common cause of morbidity and mortality in patients with lymphoid cancer. With evolving cancer therapeutics, including new targeted and immunotherapies, clinicians need to be aware of additional risk factors and infections that may arise in patients treated with these agents. This "How I Treat" article will highlight fundamental issues including risk factors for infection, infectious diseases screenings and antimicrobial prophylaxis recommendations in patients with lymphoid cancers. We present 4 scenarios of patients with lymphoid cancers with varied infections and describe a treatment approach based on a combination of evidence-based data and experience, as there are limitations in objective infection data especially with newer agents. The goal of this discussion is to provide a framework for institutions and health care providers to develop their own approach in preventing and treating infections in patients with lymphoid cancer.
Collapse
|
20
|
Imlay HN, Kaul DR. Letermovir and Maribavir for the Treatment and Prevention of Cytomegalovirus Infection in Solid Organ and Stem Cell Transplant Recipients. Clin Infect Dis 2021; 73:156-160. [PMID: 33197929 DOI: 10.1093/cid/ciaa1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Until recently, available drugs for cytomegalovirus (CMV) prevention and treatment in transplant patients included (val)ganciclovir, foscarnet, and cidofovir. Use of these drugs is limited by toxicity and the development of resistance. The 2017 approval of letermovir for prevention of CMV after stem cell transplant marked the first approval of an anti-CMV agent since 2003. The role of letermovir in treatment of established CMV infection or disease remains largely unstudied, although early reports suggest that a low barrier to resistance will likely limit efficacy as primary therapy for patients with refractory or resistant disease. The investigational agent maribavir has shown promise as preemptive treatment; in patients with refractory or resistant disease the emergence of resistance while on treatment has been observed and ongoing studies will define efficacy in this population. Both agents have unique mechanisms of action limiting cross resistance, and neither exhibit myelotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Hannah N Imlay
- University of Utah, Department of Internal Medicine, Division of Infectious Diseases, Salt Lake City, Utah, USA
| | - Daniel R Kaul
- University of Michigan, Department of Internal Medicine, Division of Infectious Diseases, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Perera MR, Wills MR, Sinclair JH. HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses 2021; 13:817. [PMID: 34062863 PMCID: PMC8147263 DOI: 10.3390/v13050817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. In healthy people, primary infection is generally asymptomatic, and the virus can go on to establish lifelong latency in cells of the myeloid lineage. However, HCMV often causes severe disease in the immunosuppressed: transplant recipients and people living with AIDS, and also in the immunonaive foetus. At present, there are several antiviral drugs licensed to control HCMV disease. However, these are all faced with problems of poor bioavailability, toxicity and rapidly emerging viral resistance. Furthermore, none of them are capable of fully clearing the virus from the host, as they do not target latent infection. Consequently, reactivation from latency is a significant source of disease, and there remains an unmet need for treatments that also target latent infection. This review briefly summarises the most common HCMV antivirals used in clinic at present and discusses current research into targeting the latent HCMV reservoir.
Collapse
Affiliation(s)
| | | | - John H. Sinclair
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (M.R.P.); (M.R.W.)
| |
Collapse
|
22
|
Piret J, Boivin G. Antiviral Drugs Against Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:1-30. [PMID: 34258735 DOI: 10.1007/978-981-16-0267-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the nucleoside analogue, acyclovir, represented a milestone in the management of infections caused by herpes simplex virus and varicella-zoster virus. Ganciclovir, another nucleoside analogue, was then used for the management of systemic and organ-specific human cytomegalovirus diseases. The pyrophosphate analogue, foscarnet, and the nucleotide analogue, cidofovir, have been approved subsequently and constitute the second-line antiviral drugs. However, the viral DNA polymerase is the ultimate target of all these antiviral agents with a possible emergence of cross-resistance between these drugs. Recently, letermovir that targets the viral terminase complex was approved for the prophylaxis of human cytomegalovirus infections in hematopoietic stem cell transplant recipients. Other viral targets such as the protein kinase and the helicase-primase complex are also evaluated for the development of novel potent inhibitors against herpesviruses.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Laval University, Quebec City, QC, Canada.
| |
Collapse
|
23
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is widely prevalent but mostly harmless in immunocompetent individuals. In the post hematopoietic stem cell transplant (HSCT) setting unrestricted viral replication can cause end-organ damage (CMV disease) and, in a small proportion, mortality. Current management strategies are based on sensitive surveillance programmes, with the more recent introduction of an effective prophylactic antiviral drug, letermovir, but all aim to bridge patients until reconstitution of endogenous immunity is sufficient to constrain viral replication. AREAS COVERED Over the past 25 years, the adoptive transfer of CMV-specific T-cells has developed from the first proof of concept transfer of CD 8 + T-cell clones, to the development of 'off the shelf' third party derived Viral-Specific T-cells (VSTs). In this review, we cover the current management of CMV, and discuss the developments in CMV adoptive cellular therapy. EXPERT OPINION Due to the adoption of letermovir as a prophylaxis in standard therapy, the incidence of CMV reactivation is likely to decrease, and any widely adopted cellular therapy needs to be economically competitive. Current clinical trials will help to identify the patients most likely to gain the maximum benefit from any form of cell therapy.
Collapse
Affiliation(s)
- Lorna Neill
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
24
|
Investigational Antiviral Therapy Models for the Prevention and Treatment of Congenital Cytomegalovirus Infection during Pregnancy. Antimicrob Agents Chemother 2020; 65:AAC.01627-20. [PMID: 33077661 DOI: 10.1128/aac.01627-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Congenital cytomegalovirus (HCMV) infection may cause significant fetal malformation, lifelong disease, and, in severe cases, fetal or neonatal death. Placental infection with HCMV is the major mechanism of mother-to-child transmission (MTCT) and fetal injury. Thus, any pharmaceutical antiviral interference to reduce viral load may reduce placental damage, MTCT, and fetal disease. However, there is currently no licensed HCMV antiviral for use during pregnancy. In this study, aciclovir and the HCMV-specific antivirals letermovir, maribavir, and cidofovir were compared with ganciclovir for antiviral effects in model systems of pregnancy, including first-trimester TEV-1 trophoblast cell cultures and third-trimester ex vivo placental explant histocultures. HCMV-infected trophoblasts at 7 days postinfection (dpi) showed an EC50 of 21 μM for aciclovir, 0.0007 μM for letermovir, 0.11 μM for maribavir, and 0.29 μM for cidofovir, relative to 0.42 μM for ganciclovir. Antivirals added at 10 μM showed no cytotoxic effects and did not affect trophoblast cell proliferation (P > 0.9999). Multiple-round HCMV replication measured at 7 dpi showed letermovir, maribavir, and cidofovir treatment inhibited immediate early, early, and true late viral protein expression as assayed on Western blots. Antiviral treatment of HCMV-infected placental explants showed significant inhibition (P < 0.05) of viral replication with letermovir (83.3%), maribavir (83.6%), cidofovir (89.3%), and ganciclovir (82.4%), but not aciclovir (P > 0.9999). In ex vivo model systems, recently trialed HCMV antivirals letermovir and maribavir were effective at inhibiting HCMV replication. They partly fulfil requirements for use as safe and effective therapeutics during pregnancy to control congenital HCMV. Clinical trials of these newer agents would assist assessment of their utility in pregnancy.
Collapse
|
25
|
Papanicolaou GA, Silveira FP, Langston AA, Pereira MR, Avery RK, Uknis M, Wijatyk A, Wu J, Boeckh M, Marty FM, Villano S. Maribavir for Refractory or Resistant Cytomegalovirus Infections in Hematopoietic-cell or Solid-organ Transplant Recipients: A Randomized, Dose-ranging, Double-blind, Phase 2 Study. Clin Infect Dis 2020; 68:1255-1264. [PMID: 30329038 PMCID: PMC6451997 DOI: 10.1093/cid/ciy706] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Background Cytomegalovirus (CMV) infections that are refractory or resistant (RR) to available antivirals ([val]ganciclovir, foscarnet, cidofovir) are associated with higher mortality in transplant patients. Maribavir is active against RR CMV strains. Methods Hematopoietic-cell or solid-organ transplant recipients ≥12 years old with RR CMV infections and plasma CMV deoxyribonucleic acid (DNA) ≥1000 copies/mL were randomized (1:1:1) to twice-daily dose-blinded maribavir 400, 800, or 1200 mg for up to 24 weeks. The primary efficacy endpoint was the proportion of patients with confirmed undetectable plasma CMV DNA within 6 weeks of treatment. Safety analyses included the frequency and severity of treatment-emergent adverse events (TEAEs). Results From July 2012 to December 2014, 120 patients were randomized and treated (40 per dose group): 80/120 (67%) patients achieved undetectable CMV DNA within 6 weeks of treatment (95% confidence interval, 57–75%), with rates of 70%, 63%, and 68%, respectively, for maribavir 400, 800, and 1200 mg twice daily. Recurrent on-treatment CMV infections occurred in 25 patients; 13 developed mutations conferring maribavir resistance. Maribavir was discontinued due to adverse events in 41/120 (34%) patients, and 17/41 discontinued due to CMV infections. During the study, 32 (27%) patients died, 4 due to CMV disease. Dysgeusia was the most common TEAE (78/120; 65%) and led to maribavir discontinuation in 1 patient. Absolute neutrophil counts <1000/µL were noted in 12/106 (11%) evaluable patients, with rates similar across doses. Conclusions Maribavir ≥400 mg twice daily was active against RR CMV infections in transplant recipients; no new safety signals were identified. Clinical Trials Registration NCT01611974.
Collapse
Affiliation(s)
| | - Fernanda P Silveira
- The Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Marcus R Pereira
- Department of Medicine, Columbia University Medical Center, New York, New York
| | | | - Marc Uknis
- Shire Pharmaceuticals, Wayne, Pennsylvania
| | | | - Jingyang Wu
- Shire Pharmaceuticals, Lexington, Massachusetts
| | - Michael Boeckh
- The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight novel advances in prophylaxis against and treatment of CMV in kidney transplant recipients. Current options include intravenous ganciclovir and oral valganciclovir, but use of these agents is limited by side effects, such as myelosuppression as well as evolving resistance in CMV strains. RECENT FINDINGS Advances in the field include novel drugs that have shown promise in preliminary studies and are now being tested in large-scale clinical trials. Moreover, there is a developing focus in enhancing host immune responses to better protect against viral infection using anti-CMV vaccines. Studying host immune responses to CMV has also led to improved monitoring strategies, such as the QuantiFERON assay, which will allow for improved risk stratification and targeted therapies in transplant recipients. SUMMARY In summary, although options for prophylaxis and treatment against CMV have been somewhat limited to date, a number of new strategies are currently under development with several drugs in phase 3 trials. Therefore, the landscape of CMV management in kidney transplant recipients will be changing significantly in the coming years with the ultimate goal of safer and more effective therapies to combat CMV.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW CMV DNA polymerase inhibitors such as ganciclovir and foscarnet have dramatically reduced the burden of CMV infection in the HCT recipient. However, their use is often limited by toxicities and resistance. Agents with novel mechanisms and favorable toxicity profiles are critically needed. We review recent developments in CMV antivirals and immune-based approaches to mitigating CMV infection. RECENT FINDINGS Letermovir, an inhibitor of the CMV terminase complex, was approved in 2017 for primary CMV prophylaxis in adult seropositive allogeneic HCT recipients. Maribavir, an inhibitor of the CMV UL97 kinase, is currently in two phase 3 treatment studies. Adoptive immunotherapy using third-party T cells has proven safe and effective in preliminary studies. Vaccine development continues, with several promising candidates currently under study. No longer limited to DNA polymerase inhibitors, the prevention and treatment of CMV infections in the HCT recipient is a rapidly evolving field which should translate into improvements in CMV-related outcomes.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail code L457, Portland, OR, 97239, USA.
| |
Collapse
|
28
|
Clausen ES, Zaffiri L. Infection prophylaxis and management of viral infection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:415. [PMID: 32355859 PMCID: PMC7186616 DOI: 10.21037/atm.2019.11.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viral infections are associated with significant morbidity and mortality in lung transplant recipients. Importantly, several viral infections have been associated with the development of chronic lung allograft dysfunction (CLAD). Community-acquired respiratory viruses (CARV) such as influenza and respiratory syncytial virus (RSV), are frequently associated with acute and chronic rejection. Cytomegalovirus (CMV) remains a significant burden in regards to morbidity and mortality in lung transplant recipients. Epstein-Barr virus (EBV) is mostly involved with the development of post-transplant lymphoproliferative disorder (PTLD), a lymphoid proliferation that occurs in the setting of immunosuppression. On the other hand, the development of direct acting antivirals for hepatitis C virus (HCV) is changing the use of HCV-positive organs in transplantation. In this article we will focus on reviewing common viral infections that have a significant impact on lung transplant recipients looking at epidemiology, prevention and potential treatment.
Collapse
Affiliation(s)
- Emily S Clausen
- Department of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lorenzo Zaffiri
- Department of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
29
|
Advances in the genotypic diagnosis of cytomegalovirus antiviral drug resistance. Antiviral Res 2020; 176:104711. [PMID: 31940472 DOI: 10.1016/j.antiviral.2020.104711] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/22/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) drug resistance mutation maps are updated with recent information for polymerase inhibitors, the terminase inhibitor letermovir and the UL97 kinase inhibitor maribavir. Newly mapped mutations and their phenotypes provide more detail on cross-resistance properties and suggest the need to expand the CMV gene regions covered in diagnostic testing. Next-generation deep sequencing technology offers a more sensitive, higher resolution view of emerging antiviral resistance and is recommended for use in clinical trials. Issues of standardization and diagnostic utility in comparison with traditional Sanger sequencing remain unresolved. Quality control is important for the accurate and reproducible detection of mutant viral populations in clinical specimens.
Collapse
|
30
|
Song IH, Ilic K, Murphy J, Lasseter K, Martin P. Effects of Maribavir on P-Glycoprotein and CYP2D6 in Healthy Volunteers. J Clin Pharmacol 2020; 60:96-106. [PMID: 31385617 PMCID: PMC6972521 DOI: 10.1002/jcph.1504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
Abstract
Maribavir is an investigational drug being evaluated in transplant recipients with cytomegalovirus infection. To understand potential drug-drug interactions, we examined the effects of multiple doses of maribavir on cytochrome P450 (CYP) 2D6 and P-glycoprotein (P-gp) activity using probe substrates in healthy volunteers. During this phase 1 open-label study (NCT02775240), participants received the probe substrates digoxin (0.5 mg) and dextromethorphan (30 mg) before and after maribavir (400 mg twice daily for 8 days). Serial plasma samples were analyzed for digoxin, dextromethorpha, dextrorphan, and maribavir concentrations. Pharmacokinetic parameters were calculated (noncompartmental analysis) and analyzed with a linear mixed-effects model for treatment comparison to estimate geometric mean ratios (GMRs) and 90% confidence intervals (CIs). CYP2D6 polymorphisms were genotyped using polymerase chain reaction. Overall, 17 of 18 participants (94.4%) completed the study. All participants were genotyped as CYP2D6 intermediate/extensive metabolizers. GMR (90%CI) of digoxin Cmax , AUClast , and AUC0-∞ with and without maribavir was 1.257 (1.139-1.387), 1.187 (1.088-1.296), and 1.217 (1.110-1.335), respectively, outside the "no-effect" window (0.8-1.25). GMR (90%CI) of dextromethorphan AUClast and AUClast ratio of dextromethorphan/dextrorphan were 0.877 (0.692-1.112) and 0.901 (0.717-1.133), respectively, marginally outside the no-effect window, although large variability was observed in these pharmacokinetic parameters. Pharmacokinetic parameters of dextrorphan were unaffected. Maribavir inhibited P-gp activity but did not affect CYP2D6 activity. Maribavir's effect on the pharmacokinetics of P-gp substrates should be evaluated individually, and caution should be exercised with P-gp substrates with narrow therapeutic windows.
Collapse
Affiliation(s)
- Ivy H. Song
- Shire, a Takeda companyLexingtonMassachusettsUSA
| | | | | | | | | |
Collapse
|
31
|
Chou S, Wu J, Song K, Bo T. Novel UL97 drug resistance mutations identified at baseline in a clinical trial of maribavir for resistant or refractory cytomegalovirus infection. Antiviral Res 2019; 172:104616. [PMID: 31568799 DOI: 10.1016/j.antiviral.2019.104616] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
In a Phase 2 clinical trial, 120 subjects with cytomegalovirus (CMV) infection refractory or resistant to standard therapy were randomized equally to 3 doses of oral maribavir treatment, and 70% achieved undetectable plasma CMV DNA within 12 weeks. At study entry, standard diagnostic UL97 genotyping was available for 71 subjects, with 60 (85%) revealing well-characterized ganciclovir resistance mutations that did not preclude a therapeutic response to maribavir. Central laboratory testing of a range of UL97 codons (288-468) not fully covered by standard genotyping was done on 93 subjects at baseline. This detected no previously known maribavir resistance mutations, but identified atypical mutations in 3 subjects, including a P-loop substitution F342Y, and ATP-binding region substitutions K359E/Q. By recombinant phenotyping, K359E and K359Q each conferred a nearly 4-fold increased ganciclovir 50% inhibitory concentration (EC50) without maribavir resistance, whereas F342Y conferred a 6-fold increased ganciclovir EC50 and a 4.5-fold increased maribavir EC50. The subject with F342Y detected at baseline did not achieve plasma CMV DNA clearance after 12 weeks of maribavir therapy and later developed an additional UL97 substitution H411Y known to confer 12- to 20-fold increased MBV EC50 by itself. The combination of F342Y and H411Y was shown to increase the maribavir EC50 by 56-fold. Diagnostic genotyping of UL97 should be expanded to cover the ATP-binding region beginning at codon 335 to enable the detection of atypical resistance mutations and further correlation of their clinical significance.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Department of Veterans Affairs Medical Center, Portland, Oregon, USA.
| | | | | | - Tien Bo
- Shire, a Takeda Company, Lexington, MA, USA
| |
Collapse
|
32
|
Maertens J, Cordonnier C, Jaksch P, Poiré X, Uknis M, Wu J, Wijatyk A, Saliba F, Witzke O, Villano S. Maribavir for Preemptive Treatment of Cytomegalovirus Reactivation. N Engl J Med 2019; 381:1136-1147. [PMID: 31532960 DOI: 10.1056/nejmoa1714656] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Maribavir is a benzimidazole riboside with activity against cytomegalovirus (CMV). The safety and efficacy of maribavir for preemptive treatment of CMV infection in transplant recipients is not known. METHODS In a phase 2, open-label, maribavir dose-blinded trial, recipients of hematopoietic-cell or solid-organ transplants (≥18 years of age, with CMV reactivation [1000 to 100,000 DNA copies per milliliter]) were randomly assigned to receive maribavir at a dose of 400, 800, or 1200 mg twice daily or the standard dose of valganciclovir for no more than 12 weeks. The primary efficacy end point was the percentage of patients with a response to treatment, defined as confirmed undetectable CMV DNA in plasma, within 3 weeks and 6 weeks after the start of treatment. The primary safety end point was the incidence of adverse events that occurred or worsened during treatment. RESULTS Of the 161 patients who underwent randomization, 159 received treatment, and 156 had postbaseline data available - 117 in the maribavir group and 39 in the valganciclovir group. The percentage of patients with postbaseline data available who had a response to treatment within 3 weeks was 62% among those who received maribavir and 56% among those who received valganciclovir. Within 6 weeks, 79% and 67% of patients, respectively, had a response (risk ratio, 1.20; 95% confidence interval, 0.95 to 1.51). The percentages of patients with a response to treatment were similar among the maribavir dose groups. Two patients who had a response to treatment had a recurrence of CMV infection within 6 weeks after starting maribavir at a dose of 800 mg twice daily; T409M resistance mutations in CMV UL97 protein kinase developed in both patients. The incidence of serious adverse events that occurred or worsened during treatment was higher in the maribavir group than in the valganciclovir group (52 of 119 patients [44%] vs. 13 of 40 [32%]). A greater percentage of patients in the maribavir group discontinued the trial medication because of an adverse event (27 of 119 [23%] vs. 5 of 40 [12%]). A higher incidence of gastrointestinal adverse events was reported with maribavir, and a higher incidence of neutropenia was reported with valganciclovir. CONCLUSIONS Maribavir at a dose of at least 400 mg twice daily had efficacy similar to that of valganciclovir for clearing CMV viremia among recipients of hematopoietic-cell or solid-organ transplants. A higher incidence of gastrointestinal adverse events - notably dysgeusia - and a lower incidence of neutropenia were found in the maribavir group. (Funded by ViroPharma/Shire Development; EudraCT number, 2010-024247-32.).
Collapse
Affiliation(s)
- Johan Maertens
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Catherine Cordonnier
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Peter Jaksch
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Xavier Poiré
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Marc Uknis
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Jingyang Wu
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Anna Wijatyk
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Faouzi Saliba
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Oliver Witzke
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| | - Stephen Villano
- From the Hematology Department, University Hospitals Leuven, KU Leuven, Leuven (J.M.), and the Section of Hematology, Cliniques Universitaires Saint-Luc, Brussels (X.P.) - both in Belgium; the Hematology Department, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris-Est-Créteil, Créteil (C.C.), and AP-HP Hôpital Paul Brousse, Villejuif (F.S.) - all in France; the Medical University of Vienna, General Hospital, Vienna (P.J.); Shire, Wayne, PA (M.U., S.V.); Shire, Lexington, MA (J.W., A.W.); and the Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany (O.W.)
| |
Collapse
|
33
|
Cho SY, Lee DG, Kim HJ. Cytomegalovirus Infections after Hematopoietic Stem Cell Transplantation: Current Status and Future Immunotherapy. Int J Mol Sci 2019; 20:2666. [PMID: 31151230 PMCID: PMC6600658 DOI: 10.3390/ijms20112666] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) infection after hematopoietic stem cell transplantation (HSCT) is one of the critical infectious complications related to host immune recovery. The spectrum of CMV infection is quite extensive, from asymptomatic CMV reactivation presenting mainly as CMV DNAemia to fatal CMV diseases involving gut, liver, lungs, or brain. In addition to organ involvement, CMV reactivation can exert indirect effects such as immunosuppression or graft failure that may result in the development of concurrent infectious complications. Currently, preemptive therapy, which is based on PCR-based monitoring of CMV from blood, is a mainstay enabling improvement in CMV-related outcomes. During the past decades, new antiviral drugs, clinical trials for prophylaxis in high-risk groups, and vaccines for preventing CMV infection have been introduced. In addition, data for immunologic monitoring and adoptive immunotherapy have also been accumulated. Here, we review the current status and recent updates in this field, with future perspectives including immunotherapy in HSCT recipients.
Collapse
Affiliation(s)
- Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Hee-Je Kim
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
34
|
Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res 2019; 163:91-105. [PMID: 30690043 DOI: 10.1016/j.antiviral.2019.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/28/2023]
Abstract
The prevention and treatment of human cytomegalovirus (HCMV) infections is based on the use of antiviral agents that currently target the viral DNA polymerase and that may cause serious side effects. The search for novel inhibitors against HCMV infection led to the discovery of new molecular targets, the viral terminase complex and the viral pUL97 kinase. The most advanced compounds consist of letermovir (LMV) and maribavir (MBV). LMV inhibits the cleavage of viral DNA and its packaging into capsids by targeting the HCMV terminase complex. LMV is safe and well tolerated and exhibits pharmacokinetic properties that allow once daily dosing. LMV showed efficacy in a phase III prophylaxis study in hematopoietic stem cell transplant (HSCT) recipients seropositive for HCMV. LMV was recently approved under the trade name Prevymis™ for prophylaxis of HCMV infection in adult seropositive recipients of an allogeneic HSCT. Amino acid substitutions conferring resistance to LMV selected in vitro map primarily to the pUL56 and rarely to the pUL89 and pUL51 subunits of the HCMV terminase complex. MBV is an inhibitor of the viral pUL97 kinase activity and interferes with the morphogenesis and nuclear egress of nascent viral particles. MBV is safe and well tolerated and has an excellent oral bioavailability. MBV was effective for the treatment of HCMV infections (including those that are refractory or drug-resistant) in transplant recipients in two phase II studies and is further evaluated in two phase III trials. Mutations conferring resistance to MBV map to the UL97 gene and can cause cross-resistance to ganciclovir. MBV-resistant mutations also emerged in the UL27 gene in vitro and could compensate for the inhibition of pUL97 kinase activity by MBV. Thus, LMV and probably MBV will broaden the armamentarium of antiviral drugs available for the prevention and treatment of HCMV infections.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
35
|
In vitro comparison of currently available and investigational antiviral agents against pathogenic human double-stranded DNA viruses: A systematic literature review. Antiviral Res 2019; 163:50-58. [PMID: 30677427 DOI: 10.1016/j.antiviral.2019.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Double-stranded (ds) DNA virus infections often occur concomitantly in immunocompromised patients. We performed a systematic search of published in vitro activity for nine approved and investigational antivirals to understand the spectrum of in vitro activity against dsDNA viruses. METHODS A literature search was performed (PubMed and the WoS Core Collection) using keywords related to: 1) targeted approved/developmental antivirals (acyclovir, artesunate, brincidofovir, cidofovir, cyclopropavir (filociclovir), foscarnet, ganciclovir, letermovir, and maribavir); 2) pathogenic dsDNA viruses; 3) in vitro activity. We summarized data from 210 publications. RESULTS Activity against ≤3 viruses was documented for maribavir (cytomegalovirus, Epstein-Barr virus), and letermovir, while activity against > 3 viruses was shown for ganciclovir, cidofovir, acyclovir, foscarnet, cyclopropavir, artesunate, and brincidofovir. The EC50 values of brincidofovir were the lowest, ranging from 0.001 to 0.27 μM, for all viruses except papillomaviruses. The next most potent agents included cidofovir, ganciclovir, foscarnet, and acyclovir with EC50 values between 0.1 μM and >10 μM for cytomegalovirus, herpes simplex virus, and adenovirus. CONCLUSION Most of the identified antivirals had in vitro activity against more than one dsDNA virus. Brincidofovir and cidofovir have broad-spectrum activity, and brincidofovir has the lowest EC50 values. These findings could assist clinical practice and developmental research.
Collapse
|
36
|
Poole CL, James SH. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin Ther 2018; 40:1282-1298. [PMID: 30104016 PMCID: PMC7728158 DOI: 10.1016/j.clinthera.2018.07.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE The objective of this review was to summarize the recent literature describing the current burden of disease due to herpesviruses in the antiviral and transplant era; describe mechanisms of action of antiviral agents and the development of resistance; summarize the literature of recent antiviral agents brought to market as well as agents under development; and to present literature on future strategies for herpesvirus therapeutics. METHODS An extensive search of the medical literature related to antiherpesviral therapy was conducted to compose this narrative review. Literature searches were performed via PubMed and ultimately 137 articles were included as most relevant to the scope of this article. FINDINGS Herpesviruses are a family of DNA viruses that are ubiquitous throughout human populations and share the feature of establishing lifelong infections in a latent phase with the potential of periodic reactivation. With the exception of herpes simplex virus, varicella zoster virus, and Epstein-Barr virus, which have a significant disease burden in individuals with normal immune function, the morbidity and mortality of the remaining viruses are primarily associated with the immunocompromised host. Over the last half-century, several agents have been tested in large randomized, placebo-controlled trials that have resulted in safe and effective antiviral agents for the treatment of many of these infections. IMPLICATIONS With increasing use of antiherpesviral agents for extended periods, particularly in immunocompromised hosts, the emergence of resistant viruses has necessitated the development of newer agents with novel targets and better side-effect profiles.
Collapse
Affiliation(s)
- Claudette L Poole
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott H James
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
37
|
Frange P, Leruez-Ville M. Maribavir, brincidofovir and letermovir: Efficacy and safety of new antiviral drugs for treating cytomegalovirus infections. Med Mal Infect 2018; 48:495-502. [PMID: 29650261 DOI: 10.1016/j.medmal.2018.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/22/2017] [Accepted: 03/16/2018] [Indexed: 12/15/2022]
Abstract
Cytomegalovirus (CMV) infection is a common complication in immunocompromised patients, especially after hematopoietic stem cell or solid organ transplantation. Therapeutic antiviral options [(val)ganciclovir, foscarnet, cidofovir] are still limited and can expose to severe toxicities. Moreover, prolonged antiviral drug exposure and ongoing viral replication are key factors in the development of antiviral drug resistance. After many years of few tangible advances in terms of new antiviral drugs, we are now experiencing an exciting period characterized by a series of phase III clinical trials incorporating three novel agents: maribavir, brincidofovir, and letermovir. This article summarizes the current state of the prevention and treatment of CMV infections as well as data of investigational drugs in clinical development.
Collapse
Affiliation(s)
- P Frange
- Laboratoire de microbiologie clinique, hôpital Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris (AP-HP), 149, rue de Sèvres, 75015 Paris, France; Unité d'immunologie, hématologie et rhumatologie pédiatriques, hôpital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France; EA7327, université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France.
| | - M Leruez-Ville
- Laboratoire de microbiologie clinique, hôpital Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris (AP-HP), 149, rue de Sèvres, 75015 Paris, France; EA7328, université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France; CNR cytomégalovirus, laboratoire associé, 149, rue de Sèvres, 75015 Paris, France
| |
Collapse
|
38
|
Chan ST, Logan AC. The clinical impact of cytomegalovirus infection following allogeneic hematopoietic cell transplantation: Why the quest for meaningful prophylaxis still matters. Blood Rev 2017; 31:173-183. [DOI: 10.1016/j.blre.2017.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/16/2016] [Accepted: 01/31/2017] [Indexed: 11/28/2022]
|
39
|
Mirarab A, Mohebbi A, Moradi A, Javid N, Vakili MA, Tabarraei A. Frequent pUL27 Variations in HIV-Infected Patients. Intervirology 2017; 59:262-266. [PMID: 28402975 DOI: 10.1159/000471484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Drug-resistant isolates of human cytomegalovirus (HCMV) have led to the development of new anti-HCMV drugs. Maribavir (MBV) is a novel inhibitor of the HCMV viral kinase. Resistance to MBV is mapped to gene UL27, a viral nuclear protein. In this study, we investigated UL27 polymorphisms in MBV-naive HIV-positive and HCMV congenitally infected clinical samples. METHODS DNA was extracted from 20 CMV-positive HIV (9/20) and congenitally infected (11/20) patients and used for UL27 polymerase chain reaction amplification. Sanger sequencing and multiple sequence alignment of products was performed. RESULTS K90 was the most prevalent polymorphism in both HIV-positive and congenitally infected patients. Polymorphisms Q54, D123, and R107 (10%) were seen in more than one sample. There were significantly more polymorphisms in the HIV-positive samples (p = 0.038). CONCLUSION HCMV pUL27 is highly variable in adult immunocompromised HIV-positive patients.
Collapse
Affiliation(s)
- Azam Mirarab
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | | | | | | |
Collapse
|
40
|
Frange P, Leruez-Ville M. Traitements antiviraux de l’infection sévère à cytomégalovirus – état des lieux et perspectives. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-015-1157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Stachel D, Stevens-Ayers T, Boeckh M. In vitro studies of the impact of maribavir on CMV-specific cellular immune responses. J Clin Virol 2015; 75:53-9. [PMID: 26780109 DOI: 10.1016/j.jcv.2015.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ganciclovir has demonstrated immunosuppressive effects in vitro which may lead to delayed cytomegalovirus (CMV)-specific immune reconstitution when the drug is given prophylactically. Maribavir is a new and more potent anti-CMV drug that is under evaluation for therapeutic use in transplant recipients. OBJECTIVES The objective of this study was to evaluate the potential effect of maribavir on CMV-specific T cell function in comparison to ganciclovir. STUDY DESIGN In ten immunocompetent CMV seropositive donors, maribavir and ganciclovir were compared over a broad range of concentrations (0.2-500μM) regarding their effects on lymphoproliferation, CMV-specific CD4+ and CD8+ cytokine expression, T cell multifunctionality, degranulation and apoptosis. RESULTS Maribavir inhibited lymphocyte proliferation at concentrations of 50μM and above, however, cytokine expression, cellular degranulation and multifunctionality of CD4+ and CD8+ T cells in response to CMV lysate and pp65 peptide mix were not impaired except at the highest concentration of 500μM. Ganciclovir inhibited lymphoproliferative responses starting at 10μM. As with maribavir, other cellular responses following stimulation with CMV lysate and pp65 peptide mix were only impaired at the highest concentration of 500μM of ganciclovir. Neither maribavir nor ganciclovir showed induction of lymphocyte apoptosis. CONCLUSIONS Maribavir exhibits a low potential to suppress CMV-specific T cell function. This finding supports the use of higher doses in the prophylactic setting than originally proposed.
Collapse
Affiliation(s)
- Daniel Stachel
- From the Vaccine and Infectious Disease and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, and the Department of Medicine, University of Washington, Seattle, WA, United States
| | - Terry Stevens-Ayers
- From the Vaccine and Infectious Disease and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, and the Department of Medicine, University of Washington, Seattle, WA, United States
| | - Michael Boeckh
- From the Vaccine and Infectious Disease and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, and the Department of Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
42
|
Hanson KE, Swaminathan S. Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol 2015; 10:1545-8. [PMID: 26437628 PMCID: PMC11616969 DOI: 10.2217/fmb.15.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kimberly E Hanson
- Department of Medicine, Division of Infectious Diseases, University of Utah, UT, USA
- Department of Pathology, ARUP Laboratories, University of Utah, UT, USA
| | - Sankar Swaminathan
- Department of Medicine, Division of Infectious Diseases, University of Utah, UT, USA
| |
Collapse
|
43
|
Slavov SN, Vilar FC, Wagatsuma VMD, Santana RC, Machado AA, Fonseca BALD, Kashima S, Covas DT. Late emergence of A594V and L595W mutations related to ganciclovir resistance in a patient with HCMV retinitis and long-term HIV progression. ACTA ACUST UNITED AC 2015; 48:777-81. [PMID: 26270327 PMCID: PMC4568804 DOI: 10.1590/1414-431x20154507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/13/2015] [Indexed: 11/22/2022]
Abstract
The emergence of ganciclovir (GCV) resistance during the treatment of human cytomegalovirus (HCMV) infection is a serious clinical challenge, and is associated with high morbidity and mortality. In this case report, we describe the emergence of two consecutive mutations (A594V and L595W) related to GCV resistance in a patient with HCMV retinitis and long-term HIV progression after approximately 240 days of GCV use. Following the diagnosis of retinitis, the introduction of GCV did not result in viral load reduction. The detected mutations appeared late in the treatment, and we propose that other factors (high initial HCMV load, previous GCV exposure, low CD4+ cell count), in addition to the presence of resistance mutations, may have contributed to the treatment failure of HCMV infection in this patient.
Collapse
Affiliation(s)
- S N Slavov
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - F C Vilar
- Divisão de Moléstias Infecciosas e Tropicais, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - V M D Wagatsuma
- Laboratório de Hematologia Experimental, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - R C Santana
- Divisão de Moléstias Infecciosas e Tropicais, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - A A Machado
- Divisão de Moléstias Infecciosas e Tropicais, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - B A L da Fonseca
- Divisão de Moléstias Infecciosas e Tropicais, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - S Kashima
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - D T Covas
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| |
Collapse
|
44
|
Andrassy J, Illner WD, Rentsch M, Jaeger G, Jauch KW, Fischereder M. Leflunomide: a treatment option for ganciclovir-resistant cytomegalovirus infection after renal transplantation. NDT Plus 2015; 2:149-51. [PMID: 25949314 PMCID: PMC4421354 DOI: 10.1093/ndtplus/sfp004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 01/06/2009] [Indexed: 11/13/2022] Open
Abstract
Cytomegalovirus (CMV) infection after renal transplantation is a problem of increasing concern resulting in significant morbidity and mortality. Widespread use of ganciclovir (GCV) and valganciclovir (VGCV) may cause an increase of CMV resistance to these first line drugs. Other treatment options are sparse and often complicated by adverse events, namely nephrotoxicity associated with foscarnet and cidofovir. Leflunomide may be another treatment option for CMV infections. So far it is not clear if leflunomide can also be used in the case of GCV-resistant CMV infections. Here we describe the use of leflunomide in two patients after renal transplantation with GCV-resistant CMV infections.
Collapse
Affiliation(s)
- Joachim Andrassy
- Department of Surgery , Ludwig-Maximilian's University , Grosshadern, Munich , Germany
| | - Wilf Dieter Illner
- Department of Surgery , Ludwig-Maximilian's University , Grosshadern, Munich , Germany
| | - Markus Rentsch
- Department of Surgery , Ludwig-Maximilian's University , Grosshadern, Munich , Germany
| | - Gundula Jaeger
- Department of Virology , Ludwig-Maximilian's University , Munich , Germany
| | - Karl W Jauch
- Department of Surgery , Ludwig-Maximilian's University , Grosshadern, Munich , Germany
| | - Michael Fischereder
- Department of Medicine , Ludwig-Maximilian's University , IS, Munich , Germany
| |
Collapse
|
45
|
Reprint of: Recent Advances in Cytomegalovirus: An Update on Pharmacologic and Cellular Therapies. Biol Blood Marrow Transplant 2015; 21:S19-24. [DOI: 10.1016/j.bbmt.2014.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 12/18/2022]
|
46
|
Romero PP, Blanco P, Giménez E, Solano C, Navarro D. An update on the management and prevention of cytomegalovirus infection following allogeneic hematopoietic stem cell transplantation. Future Virol 2015. [DOI: 10.2217/fvl.14.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT A significant progress has been made in deciphering critical aspects of the biology and immunology of CMV infection in the allogeneic stem cell transplantation setting. Genetic traits predisposing to active CMV infection and CMV end-organ disease have begun to be delineated. Reliable molecular assays for CMV DNA load quantitation in body fluids have been developed. Elucidation of immune mechanisms affording control of CMV infection will help to improve the management of active CMV infection. Finally, the advent of new CMV-specific antivirals and promising vaccine prototypes as well as the development of fine procedures for large-scale ex vivo generation of functional CMV-specific T cells for adoptive T cell transfer therapies will certainly minimize the negative impact of CMV on survival in these patients.
Collapse
Affiliation(s)
- Pilar Pérez Romero
- Infectious Diseases, Microbiology & Preventive Medicine Unit, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Pilar Blanco
- Infectious Diseases, Microbiology & Preventive Medicine Unit, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematology & Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
47
|
Recent advances in cytomegalovirus: an update on pharmacologic and cellular therapies. Biol Blood Marrow Transplant 2014; 21:24-9. [PMID: 25452035 DOI: 10.1016/j.bbmt.2014.11.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 12/19/2022]
Abstract
The 2015 Tandem American Society for Blood and Marrow Transplantation/Center for International Blood and Marrow Transplant Meetings provide an opportunity to review the current status and future perspectives on therapy for cytomegalovirus (CMV) infection in the setting of hematopoietic stem cell transplantation (HSCT). After many years during which we have seen few tangible advances in terms of new antiviral drugs, we are now experiencing an exciting period of late-stage drug development, characterized by a series of phase III trials incorporating a variety of novel agents. These trials have the potential to shift our current standard therapeutic strategies, which generally involve pre-emptive therapy based on sensitive molecular surveillance, towards the prophylactic approaches we see more generally with other herpes viruses such as herpes simplex and varicella zoster. This comes at a time when the promise of extensive preclinical research has been translated into encouraging clinical responses with several cellular immunotherapy strategies, which have also been moved towards definitive late-stage clinical trials. How these approaches will be integrated with the new wave of antiviral drugs remains open to conjecture. Although most of the focus of these cellular immunotherapy studies has been on adaptive immunity, and in particular T cells, an increasing awareness of the possible role of other cellular subsets in controlling CMV infection has developed. In particular, the role of natural killer (NK) cells is being revisited, along with that of γδ T cells. Depletion of NK cells in mice results in higher titers of murine CMV in tissues and increased mortality, whereas NK cell deficiency in humans has been linked to severe CMV disease. We will review recent progress in these areas.
Collapse
|
48
|
Gambarino S, Callea S, Rizzo G, Montanari P, Loiacono E, Bergallo M. Evaluation of UL99 transcript as a target for antiviral treatment efficacy. J Virol Methods 2014; 207:104-9. [PMID: 24977314 DOI: 10.1016/j.jviromet.2014.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/31/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
Human cytomegalovirus (HCMV) is a virus belonging to the Beta Herpes virus family. Its genome contains many different genes clustered in immediate early, early and late genes. This last cluster includes UL99, a late gene that encodes for a tegument protein called pp28. In immunocompetent patients, HCMV infection occurs asymptomatically, while its reactivation in immunocompromised patients can be a cause of pneumonia, retinitis and gastrointestinal diseases. To prevent or to contrast HCMV infection, several drugs (such as Ganciclovir, Acyclovir, Foscarnet) are available, and their efficiency is evaluated by HCMV DNA load monitoring, as also for antiviral resistance onset that may occur after the therapy. In this study is described the development of a Real Time PCR for the detection and quantification of UL99 transcript and the clearance of this target compared to HCMV DNA, both in vitro and in vivo on bronchoalveolar lavage samples.
Collapse
Affiliation(s)
- Stefano Gambarino
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Stefano Callea
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Giovanna Rizzo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Elisa Loiacono
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| |
Collapse
|
49
|
Tong J, Sun Z, Liu H, Geng L, Zheng C, Tang B, Song K, Yao W, Liu X. Risk factors of CMV infection in patients after umbilical cord blood transplantation: a multicenter study in China. Chin J Cancer Res 2014; 25:695-703. [PMID: 24385697 DOI: 10.3978/j.issn.1000-9604.2013.11.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/21/2013] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE This retrospective study examined risk factors for cytomegalovirus (CMV) infection after umbilical cord blood transplantation (UCBT) and the impact of CMV infection on patient survival. METHODS In all 176 patients, plasma CMV DNA was negative prior to the transplantation, and examined twice a week for 100 d, and then once weekly for additional 300 d. Preemptive antiviral therapy (ganciclovir or foscarnet) was started in patients with >1,000/mL copies of CMV DNA but no full-blown CMV disease, and was discontinued upon two consecutive negative reports of blood CMV DNA test. The survival and risk factors for CMV infection or disease were examined using logistic regression. RESULTS CMV infection developed in 71% (125/176) of the patients, with a median onset of 32 d. Four patients (2.3%) developed CMV disease. Neither the 5-year overall survival (OS) nor event-free survival (EFS) differed significantly in infected patients vs. those with no infection (59.4% vs. 64.8%, P=0.194; 53.4% vs. 59.1%, P=0.226). A stepwise multivariate analysis indicated an association of CMV infection with age, high-dose glucocorticoids, the number of transplanted CD34(+) cells, and the number of platelet transfusion, but not with gender, the conditioning regimen, and the day of neutrophil recovery and chronic graft-versus-host disease (cGVHD). CONCLUSIONS CMV infection is very common after UCBT, but does not seem to affect long-term survival with preemptive antiviral treatment.
Collapse
Affiliation(s)
- Juan Tong
- Shandong University, School of Medicine, Jinan 250012, China; ; Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Zimin Sun
- Shandong University, School of Medicine, Jinan 250012, China; ; Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Huilan Liu
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Liangquan Geng
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Changcheng Zheng
- Shandong University, School of Medicine, Jinan 250012, China; ; Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Baolin Tang
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Kaidi Song
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Wen Yao
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Xin Liu
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
50
|
Komatsu TE, Pikis A, Naeger LK, Harrington PR. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: A comprehensive review of putative resistance pathways. Antiviral Res 2014; 101:12-25. [DOI: 10.1016/j.antiviral.2013.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
|