1
|
Liu T, Li S, Wang X, Liu M, Wang Y, Ying J, Zhang S, Lin Y, Wang N, Bai Y, Xie L, Chen T, Feng Q, Xu X. Deciphering the therapeutic effects of Xiyanping injection: insights into pulmonary and gut microbiome modulation, SerpinB2/PAI-2 targeting, and alleviation of influenza a virus-induced lung injury. Virol J 2025; 22:19. [PMID: 39875956 PMCID: PMC11776135 DOI: 10.1186/s12985-025-02636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections. However, its specific effects and mechanisms against IAV remain unclear. In this study, we established an IAV infection mice model, and utilized 16 S rRNA sequencing, RNA sequencing, protein chips, and molecular docking, to investigate the mechanisms of XYP injection on altering pulmonary and gut microbiota, and identifying its target sites. We revealed that XYP injection significantly reduced mortality, weight loss, lung viral titers, and lung pathology in IAV-infected mice. XYP injection down-regulated the activity of malondialdehyde, and the levels of interleukin (IL)-1β, IL-5, IL-6, tumor necrosis factor-α, IL-18, IL-15, granulocyte colony-stimulating factor, IL-9, chemokine (C-C motif) ligand-5, and C-X-C motif chemokine ligand 5, while up-regulated the activities of glutathione peroxidase reactive and superoxide dismutase, and the level of interferon-γ. The diversity of the pulmonary and gut microbiota was altered slightly after XYP injection. The linear discriminant analysis of the gut microbes revealed a higher proportion of potentially beneficial bacteria, including Akkermansia, Parabacteroides goldsteinii, Defluviitaleaceae, Oscillospirales, and Eubacterium_coprostanoligenes_group characterized the XYP group. Peritoneal macrophage RNA sequencing highlighted Serpinb2 as the most significantly regulated gene by XYP injection, along with consistent changes in multiple downstream Th2 structure genes. KEGG pathway analysis indicated significant modifications in genes associated with influenza A, mitogen-activated protein kinase signaling, nuclear factor kappa-B signaling, and apoptosis following XYP injection. Finally, human protein chips and molecular docking were carried out to confirm the binding of the main component of XYP injection, andrographolide, with SERPINB2/PAI-2 protein. Overall, our study provides valuable insights into the therapeutic potential of XYP injection in treating influenza, highlighting its multifaceted effects on host microbiota and immune responses, and pinpointing SerpinB2/PAI-2 as the target for XYP injection in exerting anti-inflammatory and antiviral therapeutic mechanisms.
Collapse
Affiliation(s)
- Tengwen Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China
- Laboratory of Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuchen Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Ying
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shuwen Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Ning Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Yungjing Bai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China
| | - Lan Xie
- Medical Systems Biology Research Center, Tsinghua University, Beijing, 100084, China
| | - Tengfei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Beijing Institute of Chinese Medicine, Beijing, 100010, China.
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China.
- Laboratory of Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
2
|
Yan M, Ma T, Shi X, Chen Q, Li L, Xu B, Pan X, Teng Q, Yuan C, Yan D, Zhang Z, Liu Q, Li Z. Isolation and Characterization of H1 Subtype Swine Influenza Viruses Recently Circulating in China. Viruses 2025; 17:185. [PMID: 40006940 PMCID: PMC11860390 DOI: 10.3390/v17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Pigs serve as a mixing vessel for influenza viruses and can independently promote the emergence of pandemic strains in humans. During our surveillance of pig populations from 2021 to 2023 in China, 11 H1 subtype swine influenza viruses (SIVs) were isolated. All viruses were reassortants, possessing internal genes of identical origins (PB2, PB1, PA, NP, M: pdm09/H1N1 origin, NS: North American triple reassortant origin). The H1N1 isolates were all the dominant G4 EA H1N1 viruses in China. Two H1N2 isolates carried early human pdm09/H1N1 HA genes, suggesting a possible pig-to-human transmission route. Mutations that dictate host range specificity were identified in all isolates, a phenomenon which may enhance the affinity to human receptors. These H1 subtype viruses effectively replicated both in vivo and in vitro without prior adaptation and exhibited different pathogenicity and growth characteristics. Some of the H1 viruses were even found to cause lethal infections in mice. Taken together, our study indicates that the H1 subtype SIVs recently circulating in China pose a potential threat to human health and emphasizes the importance of continuing to closely monitor their evolution and spread.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qinfang Liu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (M.Y.); (T.M.); (X.S.); (Q.C.); (L.L.); (B.X.); (X.P.); (Q.T.); (C.Y.); (D.Y.); (Z.Z.)
| | - Zejun Li
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (M.Y.); (T.M.); (X.S.); (Q.C.); (L.L.); (B.X.); (X.P.); (Q.T.); (C.Y.); (D.Y.); (Z.Z.)
| |
Collapse
|
3
|
Bhatia B, Sonar S, Khan S, Bhattacharya J. Pandemic-Proofing: Intercepting Zoonotic Spillover Events. Pathogens 2024; 13:1067. [PMID: 39770327 PMCID: PMC11728701 DOI: 10.3390/pathogens13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Zoonotic spillover events pose a significant and growing threat to global health. By focusing on preventing these cross-species transmissions, we can significantly mitigate pandemic risks. This review aims to analyze the mechanisms of zoonotic spillover events, identify key risk factors, and propose evidence-based prevention strategies to reduce future pandemic threats. Through a comprehensive literature review and analysis of major databases including PubMed, Web of Science, and Scopus from 1960-2024, we examined documented spillover events, their outcomes, and intervention strategies. This article emphasizes that targeting the root cause-the spillover event itself-is key to averting future pandemics. By analyzing historical and contemporary outbreaks, we extract crucial insights into the dynamics of zoonotic transmission. Factors underlying these events include increased human-animal contact due to habitat encroachment, agricultural intensification, and wildlife trade. Climate change, global travel, and inadequate healthcare infrastructure exacerbate risks. The diversity of potential viral reservoirs and rapid viral evolution present major challenges for prediction and prevention. Solutions include enhancing surveillance of wildlife populations, improving biosecurity measures, investing in diagnostic capabilities, and promoting sustainable wildlife management. A "One Health" approach integrating human, animal, and environmental health is crucial. Predictive modelling, international cooperation, and public education are key strategies. Developing pre-exposure prophylactics and post-exposure treatments is essential for mitigating outbreaks. While obstacles remain, advances in genomics and ecological modelling offer hope. A proactive, comprehensive approach addressing the root causes of spillover events is vital for safeguarding global health against future pandemics.
Collapse
Affiliation(s)
- Bharti Bhatia
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Sudipta Sonar
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Seema Khan
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Jayanta Bhattacharya
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
- Antibody Translational Research Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
4
|
Klivleyeva N, Saktaganov N, Glebova T, Lukmanova G, Ongarbayeva N, Webby R. Influenza A Viruses in the Swine Population: Ecology and Geographical Distribution. Viruses 2024; 16:1728. [PMID: 39599843 PMCID: PMC11598916 DOI: 10.3390/v16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the efforts of practical medicine and virology, influenza viruses remain the most important pathogens affecting human and animal health. Swine are exposed to infection with all types of influenza A, B, C, and D viruses. Influenza viruses have low pathogenicity for swine, but in the case of co-infection with other pathogens, the outcome can be much more serious, even fatal. Having a high zoonotic potential, swine play an important role in the ecology and spread of influenza to humans. In this study, we review the state of the scientific literature on the zoonotic spread of swine influenza A viruses among humans, their circulation in swine populations worldwide, reverse zoonosis from humans to swine, and their role in interspecies transmission. The analysis covers a long period to trace the ecology and evolutionary history of influenza A viruses in swine. The following databases were used to search the literature: Scopus, Web of Science, Google Scholar, and PubMed. In this review, 314 papers are considered: n = 107 from Asia, n = 93 from the U.S., n = 86 from Europe, n = 20 from Africa, and n = 8 from Australia. According to the date of publication, they are conditionally divided into three groups: contemporary, released from 2011 to the present (n = 121); 2000-2010 (n = 108); and 1919-1999 (n = 85).
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nurbol Saktaganov
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Tatyana Glebova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Galina Lukmanova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nuray Ongarbayeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| |
Collapse
|
5
|
Tang Z, Gao M, Gong F, Shan X, Yang Y, Zhang Y, Chen L, Wang F, Ji X, Zhou F, He Z. Quantum Dot Reporters Designed for CRISPR-Based Detection of Viral Nucleic Acids. Anal Chem 2024; 96:16017-16026. [PMID: 39324802 DOI: 10.1021/acs.analchem.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Diagnostic methods based on CRISPR technology have shown great potential due to their highly specific, efficient, and sensitive detection capabilities. Although the majority of the current studies rely on fluorescent dye-quencher reporters, the limitations of fluorescent dyes, such as poor photostability and small Stokes shifts, urgently necessitate the optimization of reporters. In this study, we developed innovative quantum dot (QD) reporters for the CRISPR/Cas systems, which not only leveraged the advantages of high photoluminescence quantum yield and large Stokes shifts of QDs but were also easily synthesized through a simple one-step hydrothermal method. Based on the trans-cleavage characteristics of Cas12a and Cas13a, two types of QD reporters were designed, the short DNA strand and the hybridization-based QD reporters, achieving the detection of DNA and RNA at the pM level, respectively, and validating the performance in the analysis of clinical samples. Furthermore, based on the unique property of QDs that allowed multicolor emission under one excitation, the application potential for simultaneous detection of diseases was further investigated. Taken together, this work proposed novel QD reporters that could be applied to the various CRISPR/Cas systems, providing a new toolbox to expand the diagnosis of bioanalytical and biomedical fields.
Collapse
Affiliation(s)
- Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Menglu Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Shan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yeling Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Gao T, Li T, Xu P. Risk analysis and assessment method for infectious diseases based on information entropy theory. Sci Rep 2024; 14:16898. [PMID: 39043801 PMCID: PMC11266543 DOI: 10.1038/s41598-024-67783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Infectious diseases risk is directly related to human life safety. After the COVID-19 pandemic, people have paid unprecedented attention to the risk of infectious diseases. Compared with treatment after the outbreak of the epidemic, identifying the influencing factors of infectious disease risk and quantitatively analyzing and assessing infectious disease risk before the outbreak of the epidemic plays an equally important role. This article focuses on the risk of irregular outbreaks of infectious diseases. On the one hand, a method based on information gain is proposed to calculate the weight of environmental factors directly related to infectious disease risk, to clarify the correlation between environmental factors and infectious disease risk. On the other hand, the risk calculation method based on risk weight number is proposed to calculate the risk level of different infectious diseases under the influence of specific environmental factors. Finally, the effectiveness and feasibility of the proposed method are verified through case analysis and discussion. By comparing it with other risk assessment methods, the advantages and disadvantages of the proposed method are demonstrated.
Collapse
Affiliation(s)
- Tilei Gao
- Yunnan University of Finance and Economics, Kunming, 650221, China.
- Yunnan Key Laboratory of Service Computing, Kunming, 650221, China.
| | - Tiebing Li
- Yunnan University of Finance and Economics, Kunming, 650221, China.
| | - Peng Xu
- Yunnan University of Finance and Economics, Kunming, 650221, China
| |
Collapse
|
7
|
Melk MM, El-Sayed AF. Phytochemical profiling, antiviral activities, molecular docking, and dynamic simulations of selected Ruellia species extracts. Sci Rep 2024; 14:15381. [PMID: 38965294 PMCID: PMC11224336 DOI: 10.1038/s41598-024-65387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The antiviral properties of the flowering aerial extracts of Ruellia tuberosa and Ruellia patula were investigated through phytochemical profiling via LC-MS/MS and HPLC techniques. Qualitative LC-MS/MS analyses identified seventy-seven metabolites from both Ruellia species. R. tuberosa had the highest phenolic content (49.3%), whereas R. patula had the highest flavonoid content (57.8%). Additionally, quantitative HPLC investigations of the compounds identified by LC-MS/MS were performed using the available standard compounds. The main constituents in the R. tuberosa extract was found to be catechin (5321.63 µg/g), gallic acid (2878.71 µg/g), and ellagic acid (2530.79 µg/g), whereas the major compounds in the R. patula extract was found to be rutin (11,074.19 µg/g) and chlorogenic acid (3157.35 µg/g). Furthermore, the antiviral activities of both Ruellia species against HAdV-40, herpes simplex type 2 and H1N1 were evaluated. These findings demonstrated that R. tuberosa was more active than R. patula against all tested viruses, except for the HSV-2 virus, against which R. patula showed greater activity than R. tuberosa, with IC50 values of 20, 65, 22.59, and 13.13 µg/ml for R. tuberosa flowering aerial parts and 32.26, 11.66, and 23.03 µg/ml for R. patula flowering aerial parts, respectively for HAdV-40, herpes simplex type 2, and H1N1. Additionally, computational docking and molecular dynamics simulations were used to assess the molecular interactions between the bioactive compounds and specific viral targets. The combined findings from the in-vitro and in-silico experiments comprehensively evaluated the antiviral activities of both Ruellia species extracts.
Collapse
Affiliation(s)
- Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
8
|
Tailor NK, Grewal AS, Deswal G, Dhingra AK. Germacrone: A Multi-targeting Sesquiterpene with Promising Anti-cancer and Chronic Disease Applications. Anticancer Agents Med Chem 2024; 24:1396-1406. [PMID: 39113300 DOI: 10.2174/0118715206312324240805075050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Germacrone, a naturally occurring active compound found in essential oils extracted from medicinal plants within the Zingiberaceae family, has garnered attention for its potential therapeutic applications. Extensive research has highlighted its multi-targeting capabilities, positioning it as a promising treatment for various chronic diseases, including cancer, cardiovascular conditions, and neurodegenerative disorders like Alzheimer's disease. OBJECTIVE This review aims to provide a comprehensive overview of germacrone as a scaffold for developing multi-targeting drugs with therapeutic potential against a range of chronic disorders. The study delves into the molecular mechanisms that underlie the therapeutic effects of germacrone and explores its potential targets, including NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction. METHODS A systematic review of literature databases was conducted to gather relevant studies on germacrone and its therapeutic applications. The molecular mechanisms and potential targets of germacrone were examined to elucidate its multi-targeting capabilities. RESULTS Germacrone exhibits significant potential in the management of chronic diseases, with demonstrated effects on various cellular pathways. The review highlights its impact on NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction, showcasing its versatility in targeting multiple pathways associated with chronic conditions. Germacrone has emerged as a promising candidate for the treatment of diverse chronic diseases. The understanding of its multi-targeting capabilities, coupled with its natural origin, positions it as a valuable scaffold for developing therapeutics. CONCLUSION The exploration of germacrone as a structural framework for multi-targeting drugs offers a potential avenue to enhance efficacy while minimizing potential side effects. Further research and clinical trials are warranted to validate the therapeutic potential of germacrone in diverse medical contexts.
Collapse
Affiliation(s)
- Navin Kumar Tailor
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ajmer Singh Grewal
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Geeta Deswal
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Sciences, Global Research Institute of Pharmacy, Radaur, Yamuna Nagar, Haryana, India
| |
Collapse
|
9
|
Liu L, Chen G, Huang S, Wen F. Receptor Binding Properties of Neuraminidase for influenza A virus: An Overview of Recent Research Advances. Virulence 2023; 14:2235459. [PMID: 37469130 PMCID: PMC10361132 DOI: 10.1080/21505594.2023.2235459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Influenza A viruses (IAVs) pose a serious risk to both human and animal health. IAVs' receptor binding characteristics account for a major portion of their host range and tissue tropism. While the function of neuraminidase (NA) in promoting the release of progeny virus is well-known, its role in the virus entry process remains poorly understood. Studies have suggested that certain subtypes of NA can act as receptor-binding proteins, either alone or in conjunction with haemagglutinin (HA). An important distinction is that NA from the avian influenza virus have a second sialic acid-binding site (2SBS) that is preserved in avian strains but missing in human or swine strains. Those observations suggest that the 2SBS may play a key role in the adaptation of the avian influenza virus to mammalian hosts. In this review, we provide an update of the recent research advances in the receptor-binding role of NA and highlight its underestimated importance during the early stages of the IAV life cycle. By doing so, we aim to provide new insights into the mechanisms underlying IAV host adaptation and pathogenesis.
Collapse
Affiliation(s)
- Lian Liu
- School of Medicine, Foshan University, Foshan, China
| | - Gaojie Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
10
|
Sylverken AA. Strengthening existing surveillance platforms to monitor pandemic-prone pathogens. Lancet Glob Health 2023; 11:e993-e994. [PMID: 37349044 PMCID: PMC10281641 DOI: 10.1016/s2214-109x(23)00237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Augustina Angelina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi 0000, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.
| |
Collapse
|
11
|
Shi X, Liu X, Sun Y. The Pathogenesis of Cytomegalovirus and Other Viruses Associated with Hearing Loss: Recent Updates. Viruses 2023; 15:1385. [PMID: 37376684 DOI: 10.3390/v15061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Virus infection is one of the most common etiologies of hearing loss. Hearing loss associated with viral infection can be unilateral or bilateral, mild or severe, sudden or progressive, and permanent or recoverable. Many viruses cause hearing loss in adults and children; however, the pathogenesis of hearing loss caused by viral infection is not fully understood. This review describes cytomegalovirus, the most common virus causing hearing loss, and other reported hearing loss-related viruses. We hope to provide a detailed description of pathogenic characteristics and research progress on pathology, hearing phenotypes, possible associated mechanisms, treatment, and prevention measures. This review aims to provide diagnostic and treatment assistance to clinical workers.
Collapse
Affiliation(s)
- Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Zhu H, Li X, Chen H, Qian P. Genetic characterization and pathogenicity of a Eurasian avian-like H1N1 swine influenza reassortant virus. Virol J 2022; 19:205. [PMID: 36461007 PMCID: PMC9716174 DOI: 10.1186/s12985-022-01936-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Swine influenza viruses (SIV), considered the "mixing vessels" of influenza viruses, posed a significant threat to global health systems and are dangerous pathogens. Eurasian avian-like H1N1(EA-H1N1) viruses have become predominant in swine populations in China since 2016. METHODS Lung tissue samples were obtained from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, and pathogens were detected by Next-generation sequencing (NGS) and PCR. The nucleic acid of isolates was extracted to detect SIV by RT-PCR. Then, SIV-positive samples were inoculated into embryonated chicken eggs. After successive generations, the isolates were identified by RT-PCR, IFA, WB and TEM. The genetic evolution and pathogenicity to mice of A/swine/Heilongjiang/GN/2020 were analyzed. RESULTS The major pathogens were influenza virus (31%), Simbu orthobunyavirus (15%) and Jingmen tick virus (8%) by NGS, while the pathogen that can cause miscarriage and respiratory disease was influenza virus. The SIV(A/swine/Heilongjiang/GN/2020) with hemagglutination activity was isolated from lung samples and was successfully identified by RT-PCR, IFA, WB and TEM. Homology and phylogenetic analysis showed that A/swine/Heilongjiang/GN/2020 is most closely related to A/swine/Henan/SN/10/2018 and belonged to EA-H1N1. Pathogenicity in mice showed that the EA-H1N1 could cause lethal or exhibit extrapulmonary virus spread and cause severe damage to respiratory tracts effectively proliferating in lung and trachea. CONCLUSION A/swine/Heilongjiang/GN/2020 (EA-H1N1) virus was isolated from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, China. Clinical signs associated with influenza infection were observed during 14 days with A/swine/Heilongjiang/GN/2020 infected mice. These data suggest that A/swine/Heilongjiang/GN/2020 (EA-H1N1) had high pathogenicity and could be systemic spread in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Xiangmin Li
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Ping Qian
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| |
Collapse
|
13
|
Christofferson RC, Cormier SA. Beyond the Unknown: A Broad Framing for Preparedness for Emerging Infectious Threats. Am J Trop Med Hyg 2022; 107:1159-1161. [PMID: 36191876 PMCID: PMC9768276 DOI: 10.4269/ajtmh.22-0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
There have been multiple instances of novel pathogen emergence that have affected the health and security of the global community. To highlight that these novel pathogens presented a clear danger to public health, the WHO included "Disease X" on their list of priority pathogens in 2018. Indeed, since the emergence of SARS-CoV-2, Disease X has been pointed to as the looming threat of "the next big thing." However, developing surveillance and preparedness plans with Disease X as the linchpin is too narrow and ignores a large swath of potential threats from already identified, often neglected diseases. We propose instead the idea of "Disease f(x)" as a preferred call to arms with which to prioritize research and programmatic development. The common mathematical notation f(x) represents the knowledge that outbreaks are a function of many variables that define the transmission trajectory of that pathogen. Disease f(x) exploits commonalities across pathogen groupings while recognizing that emergences and outbreaks are fluid and that responses need to be agile and progressively tailored to specific pathogens with cultural and regional context. Adoption of this mindset across sectors, including biotechnology, disaster management, and epidemiology, will allow us to develop more efficient and effective responses to address the next major infectious threat.
Collapse
Affiliation(s)
- Rebecca C. Christofferson
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana;,Address correspondence to Rebecca C. Christofferson, LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803. E-mail:
| | - Stephania A. Cormier
- College of Science, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
14
|
Mac Giolla Eain M, Cahill R, MacLoughlin R, Nolan K. Aerosol release, distribution, and prevention during aerosol therapy: a simulated model for infection control. Drug Deliv 2022; 29:10-17. [PMID: 34962221 PMCID: PMC8725970 DOI: 10.1080/10717544.2021.2015482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 10/24/2022] Open
Abstract
Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.
Collapse
Affiliation(s)
| | - Ronan Cahill
- School of Medicine, UCD Centre for Precision Surgery, University College Dublin, Dublin, Ireland
| | - Ronan MacLoughlin
- Aerogen Ltd, IDA Business Park, Galway, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Kevin Nolan
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Jia R, Zhang J, Zhang J, Bertagnin C, Bonomini A, Guizzo L, Gao Z, Ji X, Li Z, Liu C, Ju H, Ma X, Loregian A, Huang B, Zhan P, Liu X. Discovery of Novel Boron-Containing N-Substituted Oseltamivir Derivatives as Anti-Influenza A Virus Agents for Overcoming N1-H274Y Oseltamivir-Resistant. Molecules 2022; 27:molecules27196426. [PMID: 36234966 PMCID: PMC9571049 DOI: 10.3390/molecules27196426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
To address drug resistance to influenza virus neuraminidase inhibitors (NAIs), a series of novel boron-containing N-substituted oseltamivir derivatives were designed and synthesized to target the 150-cavity of neuraminidase (NA). In NA inhibitory assays, it was found that most of the new compounds exhibited moderate inhibitory potency against the wild-type NAs. Among them, compound 2c bearing 4-(3-boronic acid benzyloxy)benzyl group displayed weaker or slightly improved activities against group-1 NAs (H1N1, H5N1, H5N8 and H5N1-H274Y) compared to that of oseltamivir carboxylate (OSC). Encouragingly, 2c showed 4.6 times greater activity than OSC toward H5N1-H274Y NA. Moreover, 2c exerted equivalent or more potent antiviral activities than OSC against H1N1, H5N1 and H5N8. Additionally, 2c demonstrated low cytotoxicity in vitro and no acute toxicity at the dose of 1000 mg/kg in mice. Molecular docking of 2c was employed to provide a possible explanation for the improved anti-H274Y NA activity, which may be due to the formation of key additional hydrogen bonds with surrounding amino acid residues, such as Arg152, Gln136 and Val149. Taken together, 2c appeared to be a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Zhuo Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan 250023, China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan 250023, China
- Correspondence: (B.H.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012, China
- Correspondence: (B.H.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012, China
- Correspondence: (B.H.); (P.Z.); (X.L.)
| |
Collapse
|
16
|
Bernstein AS, Ando AW, Loch-Temzelides T, Vale MM, Li BV, Li H, Busch J, Chapman CA, Kinnaird M, Nowak K, Castro MC, Zambrana-Torrelio C, Ahumada JA, Xiao L, Roehrdanz P, Kaufman L, Hannah L, Daszak P, Pimm SL, Dobson AP. The costs and benefits of primary prevention of zoonotic pandemics. SCIENCE ADVANCES 2022; 8:eabl4183. [PMID: 35119921 PMCID: PMC8816336 DOI: 10.1126/sciadv.abl4183] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 05/15/2023]
Abstract
The lives lost and economic costs of viral zoonotic pandemics have steadily increased over the past century. Prominent policymakers have promoted plans that argue the best ways to address future pandemic catastrophes should entail, "detecting and containing emerging zoonotic threats." In other words, we should take actions only after humans get sick. We sharply disagree. Humans have extensive contact with wildlife known to harbor vast numbers of viruses, many of which have not yet spilled into humans. We compute the annualized damages from emerging viral zoonoses. We explore three practical actions to minimize the impact of future pandemics: better surveillance of pathogen spillover and development of global databases of virus genomics and serology, better management of wildlife trade, and substantial reduction of deforestation. We find that these primary pandemic prevention actions cost less than 1/20th the value of lives lost each year to emerging viral zoonoses and have substantial cobenefits.
Collapse
Affiliation(s)
- Aaron S. Bernstein
- Boston Children’s Hospital and the Center for Climate, Health and the Global Environment, Boston, MA 02115, USA
| | - Amy W. Ando
- Department of Agricultural and Consumer Economics, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Resources for the Future, 1616 P Street NW, Washington, DC 20036, USA
| | - Ted Loch-Temzelides
- Department of Economics and Baker Institute for Public Policy, Rice University, Houston, TX 77005, USA
| | - Mariana M. Vale
- Ecology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Ecology, Evolution and Biodiversity Conservation, Goiania, Brazil
| | - Binbin V. Li
- Environment Research Center, Duke Kunshan University, Kunshan, Jiangsu Province 215317, China
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Hongying Li
- EcoHealth Alliance, 520 Eighth Avenue, New York, NY 10018, USA
| | - Jonah Busch
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Colin A. Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, China
| | - Margaret Kinnaird
- Practice Leader, Wildlife, WWF International, The Mvuli, Mvuli Road, Westlands, Kenya
| | - Katarzyna Nowak
- The Safina Center, 80 North Country Road, Setauket, NY 11733, USA
| | - Marcia C. Castro
- Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | | | - Jorge A. Ahumada
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Lingyun Xiao
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Patrick Roehrdanz
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Les Kaufman
- Department of Biology and Pardee Center for the Study of the Longer-Range Future, Boston University, Boston, MA 02215, USA
| | - Lee Hannah
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Peter Daszak
- EcoHealth Alliance, 520 Eighth Avenue, New York, NY 10018, USA
| | - Stuart L. Pimm
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
17
|
Ding X, Li Z, Avery L, Ballesteros E, Makol R, Liu C. pH-EVD: A pH-Paper-Based Extraction and Visual Detection System for Instrument-Free SARS-CoV-2 Diagnostics. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100101. [PMID: 35441159 PMCID: PMC9011642 DOI: 10.1002/anbr.202100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths worldwide. However, most SARS-CoV-2 detection methods depend on time-consuming sample preparation and large detection instruments. Herein, a method employing nonbleeding pH paper to achieve both RNA extraction and visual isothermal amplification is proposed, enabling rapid, instrument-free SARS-CoV-2 detection. By taking advantage of capillary forces, pH-paper-based RNA extraction can be accomplished within 1 min without need for any equipment. Further, the pH paper can mediate dye-free visual isothermal amplification detection. In less than a 46-min sample-to-answer time, pH-paper-based extraction and visual detection (termed pH-EVD) can consistently detect 1200 genome equivalents per microliter of SARS-CoV-2 in saliva, which is comparable to TaqMan probe-based quantitative reverse transcription PCR (RT-qPCR). Through coupling with a chemically heated incubator called a smart cup, the instrument-free, pH-EVD-based SARS-CoV-2 detection method on 30 nasopharyngeal swab samples and 33 contrived saliva samples is clinically validated. Thus, the pH-EVD method provides simple, rapid, reliable, low-cost, and instrument-free SARS-CoV-2 detection and has the potential to streamline onsite COVID-19 diagnostics.
Collapse
Affiliation(s)
- Xiong Ding
- Department of Biomedical EngineeringUniversity of Connecticut Health Center263 Farmington AveFarmingtonCT06030USA
| | - Ziyue Li
- Department of Biomedical EngineeringUniversity of Connecticut Health Center263 Farmington AveFarmingtonCT06030USA
| | - Lori Avery
- Department of Pathology and Laboratory MedicineUniversity of Connecticut Health CenterFarmingtonCT06030USA
| | - Enrique Ballesteros
- Department of Pathology and Laboratory MedicineUniversity of Connecticut Health CenterFarmingtonCT06030USA
| | - Rohit Makol
- Department of Biomedical EngineeringUniversity of Connecticut Health Center263 Farmington AveFarmingtonCT06030USA
| | - Changchun Liu
- Department of Biomedical EngineeringUniversity of Connecticut Health Center263 Farmington AveFarmingtonCT06030USA
| |
Collapse
|
18
|
Ren C, Xi C, Wang J, Feng Z, Nasiri F, Cao SJ, Haghighat F. Mitigating COVID-19 infection disease transmission in indoor environment using physical barriers. SUSTAINABLE CITIES AND SOCIETY 2021; 74:103175. [PMID: 34306996 PMCID: PMC8278843 DOI: 10.1016/j.scs.2021.103175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 05/05/2023]
Abstract
During the normalized phase of COVID-19, droplets or aerosol particles produced by infected personnel are considered as the potential source of infection with uncertain exposure risk. As such, in densely populated open spaces, it is necessary to adopt strategies to mitigate the risk of infection disease transmission while providing sufficient ventilation air. An example of such strategies is use of physical barriers. In this study, the impact of barrier heights on the spread of aerosol particles is investigated in an open office environment with the well-designed ventilation mode and supply air rate. The risk of infection disease transmission is evaluated using simulation of particle concentration in different locations and subject to a number of source scenarios. It was found that a barrier height of at least 60 cm above the desk surface is needed to effectively prevent the transmission of viruses. For workstations within 4 m from the outlet, a 70 cm height is considered, and with a proper ventilation mode, it is shown that the barriers can reduce the risk of infection by 72%. However, for the workstations further away from the outlet (beyond 4 m), the effect of physical barrier cannot be that significant. In summary, this study provides a theoretical analysis for implementing physical barriers, as a low-cost mitigation strategy, subject to various height scenarios and investigation of their effectiveness in reducing the infection transmission probability.
Collapse
Affiliation(s)
- Chen Ren
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Chang Xi
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Junqi Wang
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Zhuangbo Feng
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Fuzhan Nasiri
- Energy and Environment Group, Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Shi-Jie Cao
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, United Kingdom
| | - Fariborz Haghighat
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
- Energy and Environment Group, Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
19
|
Shang J, Qiao Y, Mao G, Qian L, Liu G, Wang H. Bleomycin-Fe(II) agent with potentiality for treating drug-resistant H1N1 influenza virus: A study using electrochemical RNA beacons. Anal Chim Acta 2021; 1180:338862. [PMID: 34538316 DOI: 10.1016/j.aca.2021.338862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Rapid emergence of new strains of drug-resistant H1N1 influenza viruses calls for effective drugs for the controls prior to their outbreaks. In the present work, electrochemical H1N1 RNA beacons have been newly designed for exploring the potentiality of an anticancer agent of Bleomycin (BLM) with Fe (ΙΙ) ions (BLM-Fe(ΙΙ)) alternatively the treatment of drug-resistant H1N1 strains with H274Y gene mutation. Herein, biotinylated (-) ssRNA of H1N1 virus and its complementary (+) ssRNA were labeled with electrochemical signal probes of ferrocene and anthraquinone, respectively. The resultants were hybridized and conjugated with avidin-modified magnetic beads to create electrochemical RNA beacons. The electrochemical signal variation of the H1N1 RNA beacon treated with the RNA degradation agent of BLM-Fe(ΙΙ) were monitored. Results indicate that the BLM-Fe(ΙΙ) agent could effectively cleave both H1N1 dsRNAs and ssRNAs at selective cutting sites, as evidenced by the mass spectrometry analysis. This indicates that the BLM-Fe(II) agent could be utilized to block the viral-host infection process by curbing the host-cell viral RNA-mRNA transcription or inactivate the viruses through the cleavage of viral genomes. The efficiency of the BLM-Fe(ΙΙ) agent was verified with clinical seasonal H1N1 samples using real-time polymerase chain reaction. The therapeutic gene drug of BLM-Fe(ΙΙ) holds great potential for controlling new strains of H1N1 virus resistant to clinical antiviral drugs. More importantly, the so designed RNA beacons may provide a rapid, sensitive and cost-effective platform of drug screening by monitoring the drug-DNA/RNA interactions.
Collapse
Affiliation(s)
- Jizhen Shang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchun Qiao
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Ministry of Education, Henan Normal University, Xinxiang, 453007, PR China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Hua Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| |
Collapse
|
20
|
Molina P, Torres Arias M. Herramientas biotecnológicas en el diagnóstico, prevención y tratamiento frente a pandemias. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Las pandemias son consideradas como un problema emergente de salud pública a nivel mundial, las cuales además de caracterizarse por tasas altas de morbilidad y mortalidad, ocasionan conflictos en los aspectos sociales, económicos y políticos. Las herramientas biotecnológicas, por su parte, han ido evolucionando conforme al avance tecnológico-científico, lo que ha permitido optimizar métodos de diagnóstico con alta sensibilidad y especificidad, además de mejorar el desarrollo de productos biológicos para la prevención y terapia de enfermedades. El objetivo de esta revisión es identificar la actualización de las herramientas biotecnológicas en el diagnóstico, tratamiento terapéutico y profiláctico frente a los patógenos causantes de las enfermedades pandémicas a lo largo de la historia, mediante la recopilación de información científica. Con este estudio se logró establecer que las herramientas y productos de origen biotecnológico han constituido un papel fundamental en el control de pandemias a través de la innovación constante que ha permitido alcanzar resultados eficientes tanto en diagnóstico como en el tratamiento.
Collapse
Affiliation(s)
- Pamela Molina
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas ESPE] Av. General Rumiñahui S/N y Ambato, PO BOX 171-5-231B, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
21
|
Individualism or Collectivism: A Reinforcement Learning Mechanism for Vaccination Decisions. INFORMATION 2021. [DOI: 10.3390/info12020066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies have pointed out that it is hard to achieve the level of herd immunity for the population and then effectively stop disease propagation from the perspective of public health, if individuals just make vaccination decisions based on individualism. Individuals in reality often exist in the form of groups and cooperate in or among communities. Meanwhile, society studies have suggested that we cannot ignore the existence and influence of collectivism for studying individuals’ decision-making. Regarding this, we formulate two vaccination strategies: individualistic strategy and collectivist strategy. The former helps individuals taking vaccination action after evaluating their perceived risk and cost of themselves, while the latter focuses on evaluating their contribution to their communities. More significantly, we propose a reinforcement learning mechanism based on policy gradient. Each individual can adaptively pick one of these two strategies after weighing their probabilities with a two-layer neural network whose parameters are dynamically updated with his/her more and more vaccination experience. Experimental results on scale-free networks verify that the reinforcement learning mechanism can effectively improve the vaccine coverage level of communities. Moreover, communities can always get higher total payoffs with fewer costs paid, comparing that of pure individualistic strategy. Such performance mostly stems from individuals’ adaptively picking collectivist strategy. Our study suggests that public health authorities should encourage individuals to make vaccination decisions from the perspective of their local mixed groups. Especially, it is more worthy of noting that individuals with low degrees are more significant as their vaccination behaviors can more sharply improve vaccination coverage of their groups and greatly reduce epidemic size.
Collapse
|
22
|
Interface between Bats and Pigs in Heavy Pig Production. Viruses 2020; 13:v13010004. [PMID: 33375071 PMCID: PMC7822039 DOI: 10.3390/v13010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Bats are often claimed to be a major source for future viral epidemics, as they are associated with several viruses with zoonotic potential. Here we describe the presence and biodiversity of bats associated with intensive pig farms devoted to the production of heavy pigs in northern Italy. Since chiropters or signs of their presence were not found within animal shelters in our study area, we suggest that fecal viruses with high environmental resistance have the highest likelihood for spillover through indirect transmission. In turn, we investigated the circulation of mammalian orthoreoviruses (MRVs), coronaviruses (CoVs) and astroviruses (AstVs) in pigs and bats sharing the same environment. Results of our preliminary study did not show any bat virus in pigs suggesting that spillover from these animals is rare. However, several AstVs, CoVs and MRVs circulated undetected in pigs. Among those, one MRV was a reassortant strain carrying viral genes likely acquired from bats. On the other hand, we found a swine AstV and a MRV strain carrying swine genes in bat guano, indicating that viral exchange at the bat–pig interface might occur more frequently from pigs to bats rather than the other way around. Considering the indoor farming system as the most common system in the European Union (EU), preventive measures should focus on biosecurity rather than displacement of bats, which are protected throughout the EU and provide critical ecosystem services for rural settings.
Collapse
|
23
|
Jia R, Zhang J, Bertagnin C, Cherukupalli S, Ai W, Ding X, Li Z, Zhang J, Ju H, Ma X, Loregian A, Huang B, Zhan P, Liu X. Discovery of highly potent and selective influenza virus neuraminidase inhibitors targeting 150-cavity. Eur J Med Chem 2020; 212:113097. [PMID: 33385836 DOI: 10.1016/j.ejmech.2020.113097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Encouraged by our earlier discovery of N1-selective inhibitors, the 150-cavity of influenza virus neuraminidases (NAs) could be further exploited to yield more potent oseltamivir derivatives. Herein, we report the design, synthesis and biological evaluation of a series of novel oseltamivir derivatives via the structural modifications at C5-NH2 of oseltamivir targeting 150-cavity. Among them, compound 5c bearing 4-(3-methoxybenzyloxy)benzyl group exhibited the most potent activity, which was lower or modestly improved activities than oseltamivir carboxylate (OSC) against N1 (H1N1), N1 (H5N1) and N1 (H5N1-H274Y). Specifically, there was 30-fold loss of activity against the wild-type strain H1N1. However, 5c displayed 4.85-fold more potent activity than OSC against H5N1-H274Y NA. Also, 5c demonstrated low cytotoxicity in vitro and no acute toxicity in mice. Molecular docking studies provided insights into the high potency of 5c against N1 and N1-H274Y mutant NAs. Besides, the in silico prediction of physicochemical properties and CYP enzymatic inhibitory ability of representative compounds were conducted to evaluate their drug-like properties.
Collapse
Affiliation(s)
- Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, PR China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Wei Ai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhuo Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan, Shandong, 250023, PR China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan, Shandong, 250023, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
24
|
da Costa VG, Saivish MV, Santos DER, de Lima Silva RF, Moreli ML. Comparative epidemiology between the 2009 H1N1 influenza and COVID-19 pandemics. J Infect Public Health 2020; 13:1797-1804. [PMID: 33121906 PMCID: PMC7553061 DOI: 10.1016/j.jiph.2020.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
In a short time, humanity has experienced two pandemics: the influenza A virus pandemic (pH1N1) in 2009 and the coronavirus disease 2019 (COVID-19) pandemic in 2020. Therefore, it is likely that the general population will erroneously seek to compare the two pandemics and adopt similar attitudes in facing them. However, the two pandemics have their intrinsic characteristics that distinguish them considerably; for example, the virulence of the infectious agents and the availability of treatment and vaccine. Consequently, given this knowledge gap between the pH1N1 and COVID-19 pandemics, we conducted this review to clarify and summarize, above all, the epidemiological historical aspects of these two viruses of great importance to global public health.
Collapse
Affiliation(s)
- Vivaldo Gomes da Costa
- Department of Cellular Biology, University of Brasília, Brasília, DF, Brazil; Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, GO, Brazil.
| | | | | | | | - Marcos Lázaro Moreli
- Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, GO, Brazil
| |
Collapse
|
25
|
Jiang C, Yao X, Zhao Y, Wu J, Huang P, Pan C, Liu S, Pan C. Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season. Microbes Infect 2020; 22:236-244. [PMID: 32405236 PMCID: PMC7217786 DOI: 10.1016/j.micinf.2020.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to sweep the world, causing infection of millions and death of hundreds of thousands. The respiratory disease that it caused, COVID-19 (stands for coronavirus disease in 2019), has similar clinical symptoms with other two CoV diseases, severe acute respiratory syndrome and Middle East respiratory syndrome (SARS and MERS), of which causative viruses are SARS-CoV and MERS-CoV, respectively. These three CoVs resulting diseases also share many clinical symptoms with other respiratory diseases caused by influenza A viruses (IAVs). Since both CoVs and IAVs are general pathogens responsible for seasonal cold, in the next few months, during the changing of seasons, clinicians and public heath may have to distinguish COVID-19 pneumonia from other kinds of viral pneumonia. This is a discussion and comparison of the virus structures, transmission characteristics, clinical symptoms, diagnosis, pathological changes, treatment and prevention of the two kinds of viruses, CoVs and IAVs. It hopes to provide information for practitioners in the medical field during the epidemic season.
Collapse
Affiliation(s)
- Chao Jiang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China; School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Zhao
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Jianmin Wu
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Pan Huang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Chunhua Pan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510000, China.
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chungen Pan
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China.
| |
Collapse
|
26
|
弓 孟, 刘 莉, 吴 琛, 杨 越, 沈 杨, 李 杰, 林 凯, 郭 怡, 魏 红, 徐 泽, 朱 宏. [Conducting clinical studies during the epidemics of communicable diseases: perspectives of methodology and health economics]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:353-357. [PMID: 32376587 PMCID: PMC7167318 DOI: 10.12122/j.issn.1673-4254.2020.03.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/21/2022]
Abstract
In the setting of epidemics of communicable diseases, early initiation of epidemiological and clinical data collection and analysis and conducting relevant researches are essential to the success of epidemic containment. The coronavirus disease 2019 (COVID-19), starting initially as an epidemic in China in late 2019 and now becoming a pandemic globally, poses grave challenges to the global health care systems while also provides an opportunity for studying infectious diseases in the perspective of methodology. The authors propose the evaluation methods for case reports, randomized controlled trials (RCTs), real-world evidence studies and health economics researches during an epidemic. Case reports, which are of important value for health care workers during outbreaks of infectious diseases, should be written in standard format and style and published following a strict peer review process. RCTs provides the gold standard for evaluating the effectiveness of a given treatment for the patients from the outbreaks. We review the potential challenges faced in conducting RCTs during the outbreaks. The real-world data collected from the cases in designated hospitals allow the verification of the safety and effectiveness of the intervention measures. The data from health economics research also provide important support for optimizing communicable disease prevention and control strategies. Herein we summarize the health economics research methods, study design, and technical points during the outbreaks. We recommend that clinical research and health economics research be incorporated into the prevention and control plan and measures be taken to ensure both the standards and feasibility of these studies to improve the response capacity against outbreaks of communicable diseases.
Collapse
Affiliation(s)
- 孟春 弓
- 南方医科大学 卫生与健康管理研究院,广东 广州 510515Institute of Health Management, Southern Medical University, Guangzhou 510515, China
| | - 莉 刘
- 南方医科大学 南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 琛 吴
- 神州数码医疗科技股份有限公司,北京 100085Digital China Health Technologies Co. Ltd, Beijing 100085, China
| | - 越 杨
- 神州数码医疗科技股份有限公司,北京 100085Digital China Health Technologies Co. Ltd, Beijing 100085, China
| | - 杨 沈
- 神州数码医疗科技股份有限公司,北京 100085Digital China Health Technologies Co. Ltd, Beijing 100085, China
| | - 杰 李
- 神州数码医疗科技股份有限公司,北京 100085Digital China Health Technologies Co. Ltd, Beijing 100085, China
| | - 凯程 林
- 南方医科大学 南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 怡 郭
- 南方医科大学 南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 红云 魏
- 南方医科大学 南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 泽宇 徐
- 南方医科大学 南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 宏 朱
- 南方医科大学 卫生与健康管理研究院,广东 广州 510515Institute of Health Management, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Comparison of the Pathogenicity in Mice of A(H1N1)pdm09 Viruses Isolated between 2009 and 2015 in Japan. Viruses 2020; 12:v12020155. [PMID: 32013144 PMCID: PMC7077310 DOI: 10.3390/v12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
The A(H1N1)pdm09 virus emerged in 2009 and continues to circulate in human populations. Recent A(H1N1)pdm09 viruses, that is, A(H1N1)pdm09 viruses circulating in the post-pandemic era, can cause more or less severe infections than those caused by the initial pandemic viruses. To evaluate the changes in pathogenicity of the A(H1N1)pdm09 viruses during their continued circulation in humans, we compared the nucleotide and amino acid sequences of ten A(H1N1)pdm09 viruses isolated in Japan between 2009 and 2015, and experimentally infected mice with each virus. The severity of infection caused by these Japanese isolates ranged from milder to more severe than that caused by the prototypic pandemic strain A/California/04/2009 (CA04/09); however, specific mutations responsible for their pathogenicity have not yet been identified.
Collapse
|
28
|
Li L, Xie Q, Bian G, Zhang B, Wang M, Wang Y, Chen Z, Li Y. Anti-H1N1 viral activity of three main active ingredients from zedoary oil. Fitoterapia 2020; 142:104489. [PMID: 32004654 DOI: 10.1016/j.fitote.2020.104489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
Abstract
Influenza virus is one of the most widespread infectious diseases in the world. It poses a serious public health threat to humans. With the emergence of drug-resistant virus strains, antiviral drugs are urgently needed to control virus transmission and disease progression. In this study, three main active substances-curcumol, curdione and germacrone-were isolated from the traditional Chinese medicine zedoary. They inhibited the replication of influenza A (H1N1) virus in a dose-dependent manner. After treatment with these compounds, the expression of viral protein and RNA synthesis were inhibited. In vivo, these compounds also reduced H1N1-induced lung damage and the load of virus in serum as well as whole blood cells. In a proteomic analysis, after treatment with germacrone, the expression of antiviral protein and the amount of intracellular virus were significantly reduced, further proving that germacrone can inhibit viral replication. Our experiments have shown that curcumol, curdione and germacrone can inhibit the replication of H1N1 virus; in particular, germacrone shows potential both in vitro and in vivo as a therapeutic drug.
Collapse
Affiliation(s)
- Ling Li
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Qing Xie
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Gang Bian
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Biyan Zhang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengfei Wang
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yanping Wang
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zijun Chen
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yunsen Li
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
29
|
Identification, Genetic Analysis, and Pathogenicity of Classical Swine H1N1 and Human-Swine Reassortant H1N1 Influenza Viruses from Pigs in China. Viruses 2020; 12:v12010055. [PMID: 31906591 PMCID: PMC7019673 DOI: 10.3390/v12010055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
Swine influenza virus causes a substantial disease burden to swine populations worldwide and poses an imminent threat to the swine industry and humans. Given its importance, we characterized two swine influenza viruses isolated from Shandong, China. The homology and phylogenetic analyses showed that all eight gene segments of A/swine/Shandong/AV1522/2011(H1N1) were closely related to A/Maryland/12/1991(H1N1) circulating in North America. The HA, NA, M, and NS genes of the isolate were also confirmed to have a high homology to A/swine/Hubei/02/2008(H1N1) which appeared in China in 2008, and the virus was clustered into the classical swine lineage. The gene segments of A/swine/Shandong/AV1523/2011(H1N1) were highly homologous to the early human H1N1 and H2N2 influenza viruses, except for the HA gene, and the virus was a reassortant H1N1 virus containing genes from the classical swine (HA) and human (NA, PB2, PB1, PA, NP, M, and NS) lineages. Both the viruses could cause lethal infection and replicate efficiently in the lungs, brains, spleens, and kidneys of mice. Histopathological examinations showed that AV1522 and AV1523 viruses caused a spectrum of marked pneumonia and meningoencephalitis according to the duration of infection, demonstrating a progression of respiratory disease and neurological disease over the course of infection that ultimately resulted in lethality for the infected mice. The changes in the pathogenicity of swine influenza viruses to mammals, accompanied with the continuous reassortment and evolution of the viruses, highlights the importance of ongoing epidemiological investigation.
Collapse
|
30
|
Cheng J, Tao J, Li B, Shi Y, Liu H. The tyrosine 73 and serine 83 dephosphorylation of H1N1 swine influenza virus NS1 protein attenuates virus replication and induces high levels of beta interferon. Virol J 2019; 16:152. [PMID: 31805964 PMCID: PMC6896355 DOI: 10.1186/s12985-019-1255-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonstructural protein 1 (NS1) is a virulence factor encoded by influenza A virus (IAV) that is expressed in the nucleus and cytoplasm of host cells during the earliest stages of infection. NS1 is a multifunctional protein that plays an important role in virus replication, virulence and inhibition of the host antiviral immune response. However, to date, the phosphorylation sites of NS1 have not been identified, and the relationship between phosphorylation and protein function has not been thoroughly elucidated. METHOD In this study, potential phosphorylation sites in the swine influenza virus (SIV) NS1 protein were bioinformatically predicted and determined by Phos-tag SDS-PAGE analysis. To study the role of NS1 phosphorylation sites, we rescued NS1 mutants (Y73F and S83A) of A/swine/Shanghai/3/2014(H1N1) strain and compared their replication ability, cytokine production as well as the intracellular localization in cultured cells. Additionally, we used small interfering RNA (siRNA) assay to explore whether changes in the type I IFN response with dephosphorylation at positions 73 and 83 were mediated by the RIG-I pathway. RESULTS We checked 18 predicted sites in 30 SIV NS1 genes to exclude strain-specific sites, covering H1N1, H1N2 and H3N2 subtypes and identified two phosphorylation sites Y73 and S83 in the H1N1 SIV protein by Phos-tag SDS-PAGE analysis. We found that dephosphorylation at positions 73 and 83 of the NS1 protein attenuated virus replication and reduced the ability of NS1 to antagonize IFN-β expression but had no effect on nuclear localization. Knockdown of RIG-I dramatically impaired the induction of IFN-β and ISG56 in NS1 Y73F or S83A mutant-infected cells, indicating that RIG-I plays a role in the IFN-β response upon rSIV NS1 Y73F and rSIV NS1 S83A infection. CONCLUSION We first identified two functional phosphorylation sites in the H1N1 SIV protein: Y73 and S83. We found that dephosphorylation at positions 73 and 83 of the NS1 protein affected the antiviral state in the host cells, partly through the RIG-I pathway.
Collapse
Affiliation(s)
- Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China. .,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China. .,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China.
| |
Collapse
|
31
|
Grgić S, Čeljuska-Tošev E, Nikolić J, Markotić F, Vukojević M, Bebek-Ivanković H, Kuzman I. PANDEMIC INFLUENZA A (H1N1) 2009 PRESENTING AS A MILD DISEASE IN CHILDREN IN A CROATIAN CLINICAL CENTRE. Acta Clin Croat 2019; 58:421-429. [PMID: 31969753 PMCID: PMC6971810 DOI: 10.20471/acc.2019.58.03.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pandemic influenza A virus (H1N1) 2009 causes a disease that is epidemiologically and clinically not significantly different from seasonal influenza, but there are differences. The aim of the study was to display and compare epidemiological and clinical characteristics of pandemic influenza in children. At Dr. Fran Mihaljević University Hospital for Infectious Diseases in Zagreb, in the first two seasons, the incidence of pandemic influenza virus A (H1N1) in particular was exhaustively analyzed only in patients with laboratory-confirmed pandemic influenza A virus (H1N1) 2009. In hospitalized children with documented influenza pandemic, moderate form of the disease predominated, which ultimately meant shorter hospital stay and fewer complications. Otitis media was the rarest complication in children in both seasons. In conclusion, children younger than 5 years, especially boys, were vulnerable groups for pandemic influenza, presenting as a mild disease with low mortality and few complications. Most of the affected children with influenza did not have important risk factors such as asthma and obesity, highlighted by other authors as significant risk factors.
Collapse
Affiliation(s)
| | - Elvira Čeljuska-Tošev
- 1Department of Infectious Diseases, Mostar University Hospital, Mostar, Bosnia and Herzegovina; 2School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; 3School of Medicine, University of Zagreb, Dr. Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Jadranka Nikolić
- 1Department of Infectious Diseases, Mostar University Hospital, Mostar, Bosnia and Herzegovina; 2School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; 3School of Medicine, University of Zagreb, Dr. Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Filipa Markotić
- 1Department of Infectious Diseases, Mostar University Hospital, Mostar, Bosnia and Herzegovina; 2School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; 3School of Medicine, University of Zagreb, Dr. Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Mladenka Vukojević
- 1Department of Infectious Diseases, Mostar University Hospital, Mostar, Bosnia and Herzegovina; 2School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; 3School of Medicine, University of Zagreb, Dr. Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Helien Bebek-Ivanković
- 1Department of Infectious Diseases, Mostar University Hospital, Mostar, Bosnia and Herzegovina; 2School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; 3School of Medicine, University of Zagreb, Dr. Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Ilija Kuzman
- 1Department of Infectious Diseases, Mostar University Hospital, Mostar, Bosnia and Herzegovina; 2School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; 3School of Medicine, University of Zagreb, Dr. Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| |
Collapse
|
32
|
Complete genome sequence of a novel reassortant H3N3 avian influenza virus. Arch Virol 2019; 164:2881-2885. [PMID: 31456087 DOI: 10.1007/s00705-019-04386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Aquatic birds are known to be a reservoir for the most common influenza A viruses (IAVs). In the annual surveillance program, we collected the feces of migratory birds for the detection of IAVs in South Korea in November 2016. A novel reassorted H3N3 avian influenza virus (AIV) containing genes from viruses of wild and domestic birds was identified and named A/aquatic bird/South Korea/sw006/2016(H3N3). The polymerase basic 2 (PB2) and non-structural (NS) genes of this isolate are most closely related to those of wild-bird-origin AIV, while the polymerase basic 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), and matrix (M) genes are most closely related to those of domestic-bird-origin AIV. A/aquatic bird/South Korea/sw006/2016 contains PA, NP, M, and NS genes were most closely related to those of AIV subtype H4 and PB2, PB1, and HA genes that are most closely related to those of AIV subtype H3N8, while the NA gene was most closely related to those of subtype H10, which was recently detected in humans in China. These results suggest that novel reassortment of AIV strains occurred due to interaction between wild and domestic birds. Hence, we emphasize the need for continued surveillance of avian influenza virus in bird populations.
Collapse
|
33
|
Adam DC, Scotch M, MacIntyre CR. Phylodynamics of Influenza A/H1N1pdm09 in India Reveals Circulation Patterns and Increased Selection for Clade 6b Residues and Other High Mortality Mutants. Viruses 2019; 11:E791. [PMID: 31462006 PMCID: PMC6783925 DOI: 10.3390/v11090791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023] Open
Abstract
The clinical severity and observed case fatality ratio of influenza A/H1N1pdm09 in India, particularly in 2015 and 2017 far exceeds current global estimates. Reasons for these frequent and severe epidemic waves remain unclear. We used Bayesian phylodynamic methods to uncover possible genetic explanations for this, while also identifying the transmission dynamics of A/H1N1pdm09 between 2009 and 2017 to inform future public health interventions. We reveal a disproportionate selection at haemagglutinin residue positions associated with increased morbidity and mortality in India such as position 222 and clade 6B characteristic residues, relative to equivalent isolates circulating globally. We also identify for the first time, increased selection at position 186 as potentially explaining the severity of recent A/H1N1pdm09 epidemics in India. We reveal national routes of A/H1N1pdm09 transmission, identifying Maharashtra as the most important state for the spread throughout India, while quantifying climactic, ecological, and transport factors as drivers of within-country transmission. Together these results have important implications for future A/H1N1pdm09 surveillance and control within India, but also for epidemic and pandemic risk prediction around the world.
Collapse
Affiliation(s)
- Dillon C Adam
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Matthew Scotch
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- College of Public Service & Community Solutions, Arizona State University, Tempe, AZ 85004, USA
| |
Collapse
|
34
|
Al-Romaihi HE, Smatti MK, Ganesan N, Nadeem S, Farag E, Coyle PV, Nader JD, Al-Khatib HA, Elmagboul EB, Al Dhahry S, Al-Marri SA, Al Thani AA, Al Khal A, Al Maslamani MA, Yassine HM. Epidemiology of respiratory infections among adults in Qatar (2012-2017). PLoS One 2019; 14:e0218097. [PMID: 31194775 PMCID: PMC6563968 DOI: 10.1371/journal.pone.0218097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Limited data is available about the etiology of influenza like illnesses (ILIs) in Qatar. OBJECTIVES This study aimed at providing preliminary estimates of influenza and other respiratory infections circulating among adults in Qatar. METHODS We retrospectively collected data of about 44,000 patients who visited Hamad General Hospital clinics, sentinel sites, and all primary healthcare centers in Qatar between 2012 and 2017. All samples were tested for influenza viruses, whereas about 38,000 samples were tested for influenza and a panel of respiratory viruses using Fast Track Diagnostics (FTD) RT-PCR kit. RESULTS Among all ILIs cases, 20,278 (46.5%) tested positive for at least one respiratory pathogen. Influenza virus was predominating (22.6%), followed by human rhinoviruses (HRVs) (9.5%), and human coronaviruses (HCoVs) (5%). A detection rate of 2-3% was recorded for mycoplasma pneumonia, adenoviruses, human parainfluenza viruses (HPIVs), respiratory syncytial virus (RSV), and human metapneumovirus (HMPV). ILIs cases were reported throughout the year, however, influenza, RSV, and HMPV exhibited strong seasonal peaks in the winter, while HRVs circulated more during fall and spring. Elderly (>50 years) had the lowest rates of influenza A (13.9%) and B (4.2%), while presenting the highest rates of RSV (3.4%) and HMPV (3.3%). While males had higher rates of HRVs (11.9%), enteroviruses (1.1%) and MERS CoV (0.2%), females had higher proportions of influenza (26.3%), HPIVs (3.2%) and RSV (3.6%) infections. CONCLUSION This report provides a comprehensive insight about the epidemiology of ILIs among adults in the Qatar, as a representative of Gulf States. These results would help in improvement and optimization of diagnostic procedures, as well as control and prevention of the respiratory infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- * E-mail: (MAA); (HMY)
| |
Collapse
|
35
|
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses 2019; 11:252. [PMID: 30871179 PMCID: PMC6466164 DOI: 10.3390/v11030252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Well-developed mouse models are important for understanding the pathogenesis and progression of immunological response to viral infections in humans. Moreover, to test vaccines, anti-viral drugs and therapeutic agents, mouse models are fundamental for preclinical investigations. Human viruses, however, seldom infect mice due to differences in the cellular receptors used by the viruses for entry, as well as in the innate immune responses in mice and humans. In other words, a species barrier exists when using mouse models for investigating human viral infections. Developing transgenic (Tg) mice models expressing the human genes coding for viral entry receptors and knock-out (KO) mice models devoid of components involved in the innate immune response have, to some extent, overcome this barrier. Humanized mouse models are a third approach, developed by engrafting functional human cells and tissues into immunodeficient mice. They are becoming indispensable for analyzing human viral diseases since they nearly recapitulate the human disease. These mouse models also serve to test the efficacy of vaccines and antiviral agents. This review provides an update on the Tg, KO, and humanized mouse models that are used in studies investigating the pathogenesis of three important human-specific viruses, namely human immunodeficiency (HIV) virus 1, influenza, and dengue.
Collapse
Affiliation(s)
- Vinodhini Krishnakumar
- Department of Microbiology, School of Life Sciences, Central University of Tamilnadu, Tiruvarur 610 005, India.
| | | | - Kalichamy Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Min Li
- Neuroscience Research Laboratory, Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR, China.
| | | |
Collapse
|
36
|
Niu T, Zhao X, Jiang J, Yan H, Li Y, Tang S, Li Y, Song D. Evolution and Biological Evaluation of Matrinic Derivatives with Amantadine Fragments As New Anti-Influenza Virus Agents. Molecules 2019; 24:E921. [PMID: 30845734 PMCID: PMC6429159 DOI: 10.3390/molecules24050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
A series of novel tricyclic matrinic derivatives with 11-adamantyl substitution were designed, synthesized, and evaluated for their activities against Influenza A H3N2 virus, based on the privileged structure strategy. Structure-activity relationship (SAR) analysis indicated that the introduction of an 11-adamantyl might be helpful for the potency. Among them, compounds 9f and 9j exhibited the promising anti-H3N2 activities with IC50 values of 7.2 μM and 10.2 μM, respectively, better than that of lead 1. Their activities were further confirmed at the protein level. Moreover, compound 9f displayed a high pharmacokinetic (PK) stability profile in whole blood and a safety profile in vivo. In primary mechanism, compound 9f could inhibit the virus replication cycle at early stage by targeting M2 protein, consistent with that of the parent amantadine. This study provided powerful information for further strategic optimization to develop these compounds into a new class of anti-influenza agents.
Collapse
Affiliation(s)
- Tianyu Niu
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Xiaoqiang Zhao
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Jing Jiang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Haiyan Yan
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Yinghong Li
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Sheng Tang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Yuhuan Li
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Danqing Song
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| |
Collapse
|
37
|
The PA Subunit of the Influenza Virus Polymerase Complex Affects Replication and Airborne Transmission of the H9N2 Subtype Avian Influenza Virus. Viruses 2019; 11:v11010040. [PMID: 30634394 PMCID: PMC6356911 DOI: 10.3390/v11010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/17/2022] Open
Abstract
The polymerase acidic (PA) protein is the third subunit of the influenza A virus polymerase. In recent years, studies have shown that PA plays an important role in overcoming the host species barrier and host adaptation of the avian influenza virus (AIV). The objective of this study was to elucidate the role of the PA subunit on the replication and airborne transmission of the H9N2 subtype AIV. By reverse genetics, a reassortant rSD01-PA was derived from the H9N2 subtype AIV A/Chicken/Shandong/01/2008 (SD01) by introducing the PA gene from the pandemic influenza A H1N1 virus A/swine/Shandong/07/2011 (SD07). Specific pathogen-free (SPF) chickens and guinea pigs were selected as the animal models for replication and aerosol transmission studies. Results show that rSD01-PA lost the ability of airborne transmission among SPF chickens because of the single substitution of the PA gene. However, rSD01-PA could infect guinea pigs through direct contact, while the parental strain SD01 could not, even though the infection of rSD01-PA could not be achieved through aerosol. In summary, our results indicate that the protein encoded by the PA gene plays a key role in replication and airborne transmission of the H9N2 subtype AIV.
Collapse
|
38
|
Mikuła E, Silva CE, Kopera E, Zdanowski K, Radecki J, Radecka H. Highly sensitive electrochemical biosensor based on redox - active monolayer for detection of anti-hemagglutinin antibodies against swine-origin influenza virus H1N1 in sera of vaccinated mice. BMC Vet Res 2018; 14:328. [PMID: 30400888 PMCID: PMC6218974 DOI: 10.1186/s12917-018-1668-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Background In this work, we report an electrochemical biosensor for the detection of anti-hemagglutinin antibodies against the swine virus H1N1 present in mice sera immunized with mixture of His6-H1 HA in monomeric and oligomeric form. The oriented immobilization of the recombinant His-tagged hemagglutinin (His6-H1 HA) consists of: (i) formation of a mixed layer of 4-mercaptobutanol (MBT) and the thiol derivative of dipyrromethene (DPM); (ii) complexation of Cu (II) by DPM; (iii) immobilization of His6-H1 HA via coordination bonds between Cu (II) sites from DPM–Cu (II) complex and imidazole nitrogen atoms of a histidine tag; (iv) filling free spaces with bovine serum albumin. The interactions between recombinant His6- H1 HA covalently attached to the electrode surface and the anti-hemagglutinin H1 antibodies present in mice sera were explored with Osteryoung square-wave voltammetry. Results This analytical device was able to detect the antibodies present in vaccinated mice sera diluted from 1 × 109 to 1 × 108 fold. Conclusions The unprecedented sensitivity of described biosensor is much better than widely use ELISA test and other analytical methods for determination of antibodies against the influenza A viruses. It has been proved that redox active DPM-Cu (II) monolayer is a universal platform suitable for stable and oriented immobilization of any His-tagged sensing elements. Thus, this universal layer could be a base of numerous analytical devices suitable for detection of antibodies against different viruses.
Collapse
Affiliation(s)
- Edyta Mikuła
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Cristiane Erdmann Silva
- Universidade Estadual de Ponta Grossa - UEPG, Setor de Ciências Exatas e da Terra, Departamento de Química, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa/ PR, Brazil
| | - Edyta Kopera
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Research and Development Center, Olimp Laboratories, Pustynia, Dębica, Poland
| | - Konrad Zdanowski
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Institute of Chemistry, University of Natural Sciences and Humanities, 3 Maja 54, 08-110, Siedlce, Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
39
|
Li W, Lin F, Ma Y, Xi W, Wang Y, Zhou J. DTNs for monitoring of communicable diseases in urban environments. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2018. [DOI: 10.3233/jcm-180841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wenzao Li
- College of Communication Engineering, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Feng Lin
- School of Computer Science, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yuanji Ma
- Infectious Diseases Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wu Xi
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| | - Yan Wang
- School of Computer Science, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jiliu Zhou
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
| |
Collapse
|
40
|
Lee J, Henningson J, Ma J, Duff M, Lang Y, Li Y, Li Y, Nagy A, Sunwoo S, Bawa B, Yang J, Bai D, Richt JA, Ma W. Effects of PB1-F2 on the pathogenicity of H1N1 swine influenza virus in mice and pigs. J Gen Virol 2018; 98:31-42. [PMID: 28008819 DOI: 10.1099/jgv.0.000695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although several studies have exploited the effects of PB1-F2 in swine influenza viruses, its contribution to the pathogenicity of swine influenza viruses remains unclear. Herein, we investigated the effects of PB1-F2 on the pathogenicity of influenza virus using a virulent H1N1 A/swine/Kansas/77778/2007 (KS07) virus, which expresses a full-length PB1-F2, in mice and pigs. Using reverse genetics, we generated the wild-type KS07 (KS07_WT), a PB1-F2 knockout mutant (KS07_K/O) and its N66S variant (KS07_N66S). KS07_K/O showed similar pathogenicity in mice to the KS07_WT, whereas KS07_N66S displayed enhanced virulence when compared to the other two viruses. KS07_WT exhibited more efficient replication in lungs and nasal shedding in infected pigs than the other two viruses. Pigs infected with the KS07_WT had higher pulmonary levels of granulocyte-macrophage colony-stimulating factor, IFN-γ, IL-6 and IL-8 at 3 and 5 days post-infection, as well as lower levels of IL-2, IL-4 and IL-12 at 1 day post-infection compared to those infected with the KS07_K/O. These results indicate that PB1-F2 modulates KS07 H1N1 virus replication, pathogenicity and innate immune responses in pigs and the single substitution at position 66 (N/S) in the PB1-F2 plays a critical role in virulence in mice. Taken together, our results provide new insights into the effects of PB1-F2 on the virulence of influenza virus in swine and support PB1-F2 as a virulence factor of influenza A virus in a strain- and host-dependent manner.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Michael Duff
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Abdou Nagy
- Present address: Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Sunyoung Sunwoo
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jianmei Yang
- Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dingping Bai
- School of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, PR China.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
41
|
Thomas M, Pierson M, Uprety T, Zhu L, Ran Z, Sreenivasan CC, Wang D, Hause B, Francis DH, Li F, Kaushik RS. Comparison of Porcine Airway and Intestinal Epithelial Cell Lines for the Susceptibility and Expression of Pattern Recognition Receptors upon Influenza Virus Infection. Viruses 2018; 10:E312. [PMID: 29880757 PMCID: PMC6024858 DOI: 10.3390/v10060312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Influenza viruses infect the epithelial cells of the swine respiratory tract. Cell lines derived from the respiratory tract of pigs could serve as an excellent in vitro model for studying the pathogenesis of influenza viruses. In this study, we examined the replication of influenza viruses in the MK1-OSU cell line, which was clonally derived from pig airway epithelium. MK1-OSU cells expressed both cytokeratin and vimentin proteins and displayed several sugar moieties on the cell membrane. These cells also expressed both Sial2-3Gal and Sial2-6Gal receptors and were susceptible to swine influenza A, but not to human B and C viruses. Interestingly, these cells were also permissive to infection by influenza D virus that utilized 9-O-acetylated glycans. To study the differences in the expression of pattern recognition receptors (PRRs) upon influenza virus infection in the respiratory and digestive tract, we compared the protein expression of various PRRs in MK1-OSU cells with that in the SD-PJEC cell line, a clonally derived cell line from the porcine jejunal epithelium. Toll-like receptor 7 (TLR-7) and melanoma differentiation-associated protein 5 (MDA5) receptors showed decreased expression in influenza A infected MK1-OSU cells, while only TLR-7 expression decreased in SD-PJEC cells. Further research is warranted to study the mechanism behind the virus-mediated suppression of these proteins. Overall, this study shows that the porcine respiratory epithelial cell line, MK1-OSU, could serve as an in-vitro model for studying the pathogenesis and innate immune responses to porcine influenza viruses.
Collapse
Affiliation(s)
- Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Max Pierson
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Laihua Zhu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Zhiguang Ran
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSNTR, Brookings, SD 57007, USA.
| | - Ben Hause
- Cambridge Technologies, Oxford Street Worthington, MN 56187, USA.
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSNTR, Brookings, SD 57007, USA.
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
42
|
Lin X, Yu S, Guo K, Sun X, Yi H, Jin M. Reassortant H5N1 Avian Influenza Virus Bearing PB2 Gene From a 2009 Pandemic H1N1 Exhibits Increased Pathogenicity in Mice. Front Microbiol 2018; 9:631. [PMID: 29666618 PMCID: PMC5891601 DOI: 10.3389/fmicb.2018.00631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
Reassortment is a key driving force of the evolution and host adaptation of the influenza virus. A(H1N1)pdm2009 (pdm09), a novel H1N1 influenza viral subtype, caused a pandemic in 2009. The strain was established in pig herds and cocirculated with the highly pathogenic H5N1 avian influenza virus. The coexistence of pdm09 with H5N1 raises concerns that reassortment may cause the development of novel viral strains with unpredictable virulence. Given that the viral polymerase subunit PB2 is a determinant of host range and pathogenicity, and that the substantial amino acid differences in PB2 between pdm09 and H5N1, including positions 590/591 and 271, which are shown to play key roles in enhanced polymerase activity in mammalian host cells, we generated a reassortant virus containing PB2 derived from a pdm09 (A/Liaoning/1/2009, LN/09) to investigate if pdm09-derived PB2 can function in a heterologous avian virus isolate as an adaptive strategy, with H5N1 (A/duck/Hubei/hangmei01/2006, HM/06) as the backbone. We assessed the biological characteristics, including pathogenicity, replication, and polymerase activity, of the reassortant. Compared with HM/06 and LN/09, H5N1 hybrid virus containing PB2 from LN/09 exhibited significantly increased pathogenicity in mice and proliferation activity in mammalian cell lines, as well as markedly enhanced polymerase activity. Our results indicate that the coexistence of H5N1 and pdm09 may pose a great threat to public health through reassortment. Moreover, our results highlight the importance of monitoring the emergence of H5N1 reassortants containing pdm09-derived PB2.
Collapse
Affiliation(s)
- Xian Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shiman Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kelei Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haiming Yi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
43
|
Markov AV, Sen'kova AV, Warszycki D, Salomatina OV, Salakhutdinov NF, Zenkova MA, Logashenko EB. Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Sci Rep 2017; 7:13968. [PMID: 29070858 PMCID: PMC5656677 DOI: 10.1038/s41598-017-14029-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic influenza viruses pose a serious public health threat to humans. Although vaccines are available, new antivirals are needed to efficiently control disease progression and virus transmission due to the emergence of drug-resistant viral strains. In this study, we describe the anti-viral properties of Soloxolone methyl (SM) (methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate, a chemical derivative of glycyrrhetinic acid) against the flu virus. Anti-flu efficacy studies revealed that SM exhibits antiviral activity against the H1N1 influenza A virus in a dose-dependent manner causing a more than 10-fold decrease in virus titer and a reduction in the expression of NP and M2 viral proteins. In a time-of-addition study, SM was found to act at an early stage of infection to exhibit an inhibitory effect on both the attachment step and virus uptake into cells. Also, in infected cells SM downregulates the expression of the inflammatory cytokines IL-6 and TNF-α. In infected mice, SM administered intranasally prior to and after infection significantly decreases virus titers in the lung and prevents post-challenge pneumonia. Together, these results suggest that Soloxolone methyl might serve as an effective therapeutic agent to manage influenza outbreaks and virus-associated complications, and further preclinical and clinical investigation may be warranted.
Collapse
Affiliation(s)
- Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Alexandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Dawid Warszycki
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna street, Kraków, 31-343, Poland
| | - Oksana V Salomatina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Evgeniya B Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
44
|
Genome Sequence of an Unusual Reassortant H1N1 Swine Influenza Virus Isolated from a Pig in Russia, 2016. GENOME ANNOUNCEMENTS 2017; 5:5/36/e00747-17. [PMID: 28883131 PMCID: PMC5589525 DOI: 10.1128/genomea.00747-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the genome sequence of the influenza A virus strain A/swine/Siberia/1sw/2016, isolated from a swine in Russia. On the basis of sequence analysis, A/swine/Siberia/1sw/2016 is characterized by unusual surface glycoproteins phylogenetically distinct from those of swine A(H1N1)pdm09 influenza virus.
Collapse
|
45
|
Le TB, Lee IH, Kim HS, Oh SK, Seo SH. Genetic analysis of a novel reassortant H11N9 Isolated from waterfowl in South Korea in 2016. Virus Genes 2017; 53:656-660. [PMID: 28386784 DOI: 10.1007/s11262-017-1453-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/03/2017] [Indexed: 12/18/2022]
Abstract
Aquatic birds are known to harbor all the known influenza A viruses. In the winter of January 2016, we surveyed influenza A virus in the feces of migratory birds in South Korea. The novel re-assorted H11N9 avian influenza virus, which contains genes from avian influenza viruses of poultry and wild birds, was isolated. The polymerase basic 2 (PB2), polymerase basic 1 (PB1), hemagglutinin (HA), and nucleoprotein (NP) genes were most closely related to those of domestic duck-origin avian influenza viruses, while the non-structural (NS) gene was closely related to that of domestic goose-origin avian influenza virus. The polymerase acidic (PA), neuraminidase (NA), and matrix (M) genes were most similar to those of wild bird-origin avian influenza viruses. Our results suggested that the interaction between wild birds and domestic poultry could possibly create novel re-assorted avian influenza viruses circulating in wild birds.
Collapse
Affiliation(s)
- Tran Bac Le
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764, Republic of Korea
- Laboratory of Influenza Research, College of Veterinary Medicine, Institute of Influenza Virus, Chungnam National University, 99 Dae-Hak Ro, Yuseong Gu, Daejeon, 305-764, Republic of Korea
| | - In Hong Lee
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764, Republic of Korea
- Laboratory of Influenza Research, College of Veterinary Medicine, Institute of Influenza Virus, Chungnam National University, 99 Dae-Hak Ro, Yuseong Gu, Daejeon, 305-764, Republic of Korea
| | - Hyun Soo Kim
- Laboratory of Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Seung Kyoo Oh
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764, Republic of Korea
- Laboratory of Influenza Research, College of Veterinary Medicine, Institute of Influenza Virus, Chungnam National University, 99 Dae-Hak Ro, Yuseong Gu, Daejeon, 305-764, Republic of Korea
| | - Sang Heui Seo
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764, Republic of Korea.
- Laboratory of Influenza Research, College of Veterinary Medicine, Institute of Influenza Virus, Chungnam National University, 99 Dae-Hak Ro, Yuseong Gu, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
46
|
Morris DE, Cleary DW, Clarke SC. Secondary Bacterial Infections Associated with Influenza Pandemics. Front Microbiol 2017; 8:1041. [PMID: 28690590 PMCID: PMC5481322 DOI: 10.3389/fmicb.2017.01041] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012). Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.
Collapse
Affiliation(s)
- Denise E. Morris
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - David W. Cleary
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - Stuart C. Clarke
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
- Global Health Research Institute, University of SouthamptonSouthampton, United Kingdom
- NIHR Southampton Respiratory Biomedical Research UnitSouthampton, United Kingdom
| |
Collapse
|
47
|
Retamal M, Abed Y, Rhéaume C, Baz M, Boivin G. In vitro and in vivo evidence of a potential A(H1N1)pdm09 antigenic drift mediated by escape mutations in the haemagglutinin Sa antigenic site. J Gen Virol 2017. [PMID: 28631598 DOI: 10.1099/jgv.0.000800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza A(H1N1)pdm09 virus continues to circulate worldwide without evidence of significant antigenic drift between 2009 and 2016. By using escape mutants, we previously identified six haemagglutinin (HA) changes (T80R, G143E, G158E, N159D, K166E and A198E) that were located within antigenic sites. Combinations of these mutations were introduced into the A(H1N1)pdm09 HA plasmid by mutagenesis. Reassortant 6 : 2 viruses containing both the HA and NA genes of the A(H1N1)pdm09 and the six internal gene segments of A/PR/8/34 were rescued by reverse genetics. In vitro, HA inhibition and microneutralization assays showed that the HA hexa-mutant reassortant virus (RG1) escaped A(H1N1)pdm09 hyper-immune ferret antiserum recognition. C57Black/6 mice that received the vaccine formulated with A/California/07/09 were challenged with 2×104 p.f.u. of either the 6 : 2 wild-type (WT) or RG1 viruses. Reductions in body weight loss, mortality rate and lung viral titre were observed in immunized animals challenged with the 6 : 2 WT virus compared to non-immunized mice. However, immunization did not protect mice challenged with RG1 virus. To further characterize the mutations causing this antigenic change, 11 additional RG viruses whose HA gene contained single or combinations of mutations were evaluated in vitro. Although the RG1 virus was still the least reactive against hyper-immune serum by HAI testing, mutations G158E and N159D within the Sa antigenic site appeared to play the major role in the altered antigenicity of the A(H1N1)pdm09 virus. These results show that the Sa antigenic site contains the most prominent epitopes susceptible to cause an antigenic drift, escaping actual vaccine protection.
Collapse
Affiliation(s)
- Miguel Retamal
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Yacine Abed
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Chantal Rhéaume
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Mariana Baz
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| |
Collapse
|
48
|
Adi-Kusumo F. The Dynamics of a SEIR–SIRC Antigenic Drift Influenza Model. Bull Math Biol 2017; 79:1412-1425. [DOI: 10.1007/s11538-017-0290-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/03/2017] [Indexed: 11/30/2022]
|
49
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
50
|
Alam S, Chan C, Qiu X, Shannon I, White CL, Sant AJ, Nayak JL. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection. PLoS One 2017; 12:e0176407. [PMID: 28493882 PMCID: PMC5426616 DOI: 10.1371/journal.pone.0176407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/09/2017] [Indexed: 01/07/2023] Open
Abstract
A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- Epitopes/immunology
- Hemagglutinins, Viral/immunology
- Humans
- Immunologic Memory
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Pandemics
- Vaccination
Collapse
Affiliation(s)
- Shabnam Alam
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Cory Chan
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ian Shannon
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chantelle L. White
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jennifer L. Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|