1
|
Haynesworth K, Kemp TJ, Loftus SA, Metz J, Castro NC, Bullock J, Fetterer D, Pinto LA. Analytical measuring interval, linearity, and precision of serology assays for detection of SARS-CoV-2 antibodies according to CLSI guidelines. mSphere 2024; 9:e0039324. [PMID: 39480103 PMCID: PMC11580426 DOI: 10.1128/msphere.00393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Serology testing is commonly used to evaluate the immunogenicity of COVID-19 vaccines and measure antibodies as a marker of previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, four laboratory-developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike and anti-Nucleocapsid immunoglobin G [IgG] and immunoglobin M [IgM]) calibrated to the WHO International Standard 20/136 were validated via analytical measuring interval (limit of blank [LOB], limit of detection [LOD], and limit of quantification [LOQ]), linearity, and precision according to the Clinical and Laboratory Standards Institute (CLSI) guidelines EP17-A2, EP06 2nd Edition, and EP05-A3. For Spike IgG, LOB was 3.0 binding antibody units per milliliter (BAU/mL), LOD was 4.1 BAU/mL, and LOQ was 27.1 BAU/mL. For Nucleocapsid IgG, LOB was 1.9 BAU/mL, LOD was 3.2 BAU/mL, and LOQ was 24.6 BAU/mL. For Spike IgM, LOB was 57.1 BAU/mL, LOD was 69.0 BAU/mL, and LOQ was 113.5 BAU/mL. For Nucleocapsid IgM, LOD was 242.2 BAU/mL, LOD was 289.9 BAU/mL, and LOQ was 572.4 BAU/mL. Each assay displayed good linearity (max % deviation from linearity (≥LOQ) = 10.7%). The result of within-run repeatability evaluation for medium positive samples was 7.7% for Spike IgG, 4.6% for Nucleocapsid IgG, 7.5% for Spike IgM, and 10.1% for Nucleocapsid IgM. The total precision, including medium positive sample variability across 20 days, three reagent kits, and two operators, was 13.5% for Spike IgG, 14.5% for Nucleocapsid IgG, 17.6% for Spike IgM, and 16.2% for Nucleocapsid IgM. The assays were successfully validated following the applicable CLSI guidelines. All assays met the ±20% deviation from linearity and the ±20% coefficient of variation specification for precision and repeatability. IMPORTANCE Reliable and validated serology assays are of increasing importance as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to evolve and cause outbreaks. Validation of serology assays along with calibration to the International and National Standards (such as anti-SARS-CoV-2 Immunoglobulin WHO International Standard 20/136 or Frederick National Laboratory for Cancer Research's National Serology Standard COVID-NS01097) is critical to ensuring that results from clinical studies are reliable and comparable among various assays and laboratories. We describe the design and execution of a comprehensive study that established the analytical measuring intervals, linearity, precision, and repeatability of four in-house developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike immunoglobin G [IgG] and immunoglobin M [IgM] and anti-Nucleocapsid IgG and IgM) following applicable Clinical and Laboratory Standards Institute (CLSI) guidelines. Overall, this study provides practical guidance on experimental design strategies and data analysis techniques, pertaining to the validation of COVID-19 serology assays according to CLSI guidelines, for use in clinical research studies.
Collapse
Affiliation(s)
- Katarzyna Haynesworth
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy J. Kemp
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Sarah A Loftus
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jordan Metz
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Nicholas C. Castro
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jimmie Bullock
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - David Fetterer
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Ligia A. Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| |
Collapse
|
2
|
Sumner KM, Yadav R, Noble EK, Sandford R, Joshi D, Tartof SY, Wernli KJ, Martin ET, Gaglani M, Zimmerman RK, Talbot HK, Grijalva CG, Belongia EA, Chung JR, Rogier E, Coughlin MM, Flannery B. Anti-SARS-CoV-2 Antibody Levels Associated With COVID-19 Protection in Outpatients Tested for SARS-CoV-2, US Flu Vaccine Effectiveness Network, October 2021-June 2022. J Infect Dis 2024; 230:45-54. [PMID: 39052724 PMCID: PMC11272097 DOI: 10.1093/infdis/jiae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND We assessed associations between binding antibody (bAb) concentration <5 days from symptom onset and testing positive for COVID-19 among patients in a test-negative study. METHODS From October 2021 to June 2022, study sites in 7 states enrolled patients aged ≥6 months presenting with acute respiratory illness. Respiratory specimens were tested for SARS-CoV-2. In blood specimens, we measured concentrations of anti-SARS-CoV-2 antibodies against the spike protein receptor binding domain (RBD) and nucleocapsid antigens from the ancestral strain in standardized bAb units (BAU). Percentage change in odds of COVID-19 by increasing anti-RBD bAb was estimated via logistic regression as (1 - adjusted odds ratio of COVID-19) × 100, adjusting for COVID-19 mRNA vaccine doses, age, site, and high-risk exposure. RESULTS Out of 2018 symptomatic patients, 662 (33%) tested positive for acute SARS-CoV-2 infection. Geometric mean RBD bAb levels were lower among COVID-19 cases than SARS-CoV-2 test-negative controls during the Delta-predominant period (112 vs 498 BAU/mL) and Omicron-predominant period (823 vs 1189 BAU/mL). Acute-phase ancestral spike RBD bAb levels associated with 50% lower odds of COVID-19 were 1968 BAU/mL against Delta and 3375 BAU/mL against Omicron; thresholds may differ in other laboratories. CONCLUSIONS During acute illness, antibody concentrations against ancestral spike RBD were associated with protection against COVID-19.
Collapse
Affiliation(s)
- Kelsey M Sumner
- US Centers for Disease Control and Prevention, Atlanta, Georgia
- Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ruchi Yadav
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Emma K Noble
- US Centers for Disease Control and Prevention, Atlanta, Georgia
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Ryan Sandford
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Devyani Joshi
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sara Y Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Karen J Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, Texas
- Baylor College of Medicine–Temple, Temple, Texas
- College of Medicine, Texas A&M University, Temple, Texas
| | | | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Jessie R Chung
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Rogier
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | |
Collapse
|
3
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
4
|
Theel ES, Kirby JE, Pollock NR. Testing for SARS-CoV-2: lessons learned and current use cases. Clin Microbiol Rev 2024; 37:e0007223. [PMID: 38488364 PMCID: PMC11237512 DOI: 10.1128/cmr.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThe emergence and worldwide dissemination of SARS-CoV-2 required both urgent development of new diagnostic tests and expansion of diagnostic testing capacity on an unprecedented scale. The rapid evolution of technologies that allowed testing to move out of traditional laboratories and into point-of-care testing centers and the home transformed the diagnostic landscape. Four years later, with the end of the formal public health emergency but continued global circulation of the virus, it is important to take a fresh look at available SARS-CoV-2 testing technologies and consider how they should be used going forward. This review considers current use case scenarios for SARS-CoV-2 antigen, nucleic acid amplification, and immunologic tests, incorporating the latest evidence for analytical/clinical performance characteristics and advantages/limitations for each test type to inform current debates about how tests should or should not be used.
Collapse
Affiliation(s)
- Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R. Pollock
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Ferrari L, Ruggiero A, Stefani C, Benedetti L, Piermatteo L, Andreassi E, Caldara F, Zace D, Pagliari M, Ceccherini-Silberstein F, Jones C, Iannetta M, Geretti AM. Utility of accessible SARS-CoV-2 specific immunoassays in vaccinated adults with a history of advanced HIV infection. Sci Rep 2024; 14:8337. [PMID: 38594459 PMCID: PMC11003986 DOI: 10.1038/s41598-024-58597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Accessible SARS-CoV-2-specific immunoassays may inform clinical management in people with HIV, particularly in case of persisting immunodysfunction. We prospectively studied their application in vaccine recipients with HIV, purposely including participants with a history of advanced HIV infection. Participants received one (n = 250), two (n = 249) or three (n = 42) doses of the BNT162b2 vaccine. Adverse events were documented through questionnaires. Sample collection occurred pre-vaccination and a median of 4 weeks post-second dose and 14 weeks post-third dose. Anti-spike and anti-nucleocapsid antibodies were measured with the Roche Elecsys chemiluminescence immunoassays. Neutralising activity was evaluated using the GenScript cPass surrogate virus neutralisation test, following validation against a Plaque Reduction Neutralization Test. T-cell reactivity was assessed with the Roche SARS-CoV-2 IFNγ release assay. Primary vaccination (2 doses) was well tolerated and elicited measurable anti-spike antibodies in 202/206 (98.0%) participants. Anti-spike titres varied widely, influenced by previous SARS-CoV-2 exposure, ethnicity, intravenous drug use, CD4 counts and HIV viremia as independent predictors. A third vaccine dose significantly boosted anti-spike and neutralising responses, reducing variability. Anti-spike titres > 15 U/mL correlated with neutralising activity in 136/144 paired samples (94.4%). Three participants with detectable anti-S antibodies did not develop cPass neutralising responses post-third dose, yet displayed SARS-CoV-2 specific IFNγ responses. SARS-CoV-2 vaccination is well-tolerated and immunogenic in adults with HIV, with responses improving post-third dose. Anti-spike antibodies serve as a reliable indicator of neutralising activity. Discordances between anti-spike and neutralising responses were accompanied by detectable IFN-γ responses, underlining the complexity of the immune response in this population.
Collapse
Affiliation(s)
- Ludovica Ferrari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Alessandra Ruggiero
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Verona, Italy
| | - Chiara Stefani
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Verona, Italy
| | - Livia Benedetti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Eleonora Andreassi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Caldara
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Drieda Zace
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Matteo Pagliari
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | | | - Christopher Jones
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Falmer, UK
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Anna Maria Geretti
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
- Department of Infection, North Middlesex University Hospital, London, UK.
- School of Immunity & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
Wang L, Patrone PN, Kearsley AJ, Izac JR, Gaigalas AK, Prostko JC, Kwon HJ, Tang W, Kosikova M, Xie H, Tian L, Elsheikh EB, Kwee EJ, Kemp T, Jochum S, Thornburg N, McDonald LC, Gundlapalli AV, Lin-Gibson S. Monoclonal Antibodies as SARS-CoV-2 Serology Standards: Experimental Validation and Broader Implications for Correlates of Protection. Int J Mol Sci 2023; 24:15705. [PMID: 37958688 PMCID: PMC10650176 DOI: 10.3390/ijms242115705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
COVID-19 has highlighted challenges in the measurement quality and comparability of serological binding and neutralization assays. Due to many different assay formats and reagents, these measurements are known to be highly variable with large uncertainties. The development of the WHO international standard (WHO IS) and other pool standards have facilitated assay comparability through normalization to a common material but does not provide assay harmonization nor uncertainty quantification. In this paper, we present the results from an interlaboratory study that led to the development of (1) a novel hierarchy of data analyses based on the thermodynamics of antibody binding and (2) a modeling framework that quantifies the probability of neutralization potential for a given binding measurement. Importantly, we introduced a precise, mathematical definition of harmonization that separates the sources of quantitative uncertainties, some of which can be corrected to enable, for the first time, assay comparability. Both the theory and experimental data confirmed that mAbs and WHO IS performed identically as a primary standard for establishing traceability and bridging across different assay platforms. The metrological anchoring of complex serological binding and neuralization assays and fast turn-around production of an mAb reference control can enable the unprecedented comparability and traceability of serological binding assay results for new variants of SARS-CoV-2 and immune responses to other viruses.
Collapse
Affiliation(s)
- Lili Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Paul N. Patrone
- Applied and Computational Mathematics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (P.N.P.); (A.J.K.)
| | - Anthony J. Kearsley
- Applied and Computational Mathematics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (P.N.P.); (A.J.K.)
| | - Jerilyn R. Izac
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Adolfas K. Gaigalas
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | | | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Martina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Linhua Tian
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Elzafir B. Elsheikh
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Edward J. Kwee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Troy Kemp
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA;
| | - Simon Jochum
- Roche Diagnostics GmbH, 82377 Penzberg, Germany;
| | - Natalie Thornburg
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (N.T.); (L.C.M.); (A.V.G.)
| | - L. Clifford McDonald
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (N.T.); (L.C.M.); (A.V.G.)
| | - Adi V. Gundlapalli
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (N.T.); (L.C.M.); (A.V.G.)
| | - Sheng Lin-Gibson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| |
Collapse
|
7
|
Simon G, Favresse J, Gillot C, Closset M, Catry É, Dogné JM, Douxfils J, Wieërs G, Bayart JL. Kinetics and ability of binding antibody and surrogate virus neutralization tests to predict neutralizing antibodies against the SARS-CoV-2 Omicron variant following BNT162b2 booster administration. Clin Chem Lab Med 2023; 61:1875-1885. [PMID: 37078220 DOI: 10.1515/cclm-2022-1258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES To assess the long-term humoral immunity induced by booster administration, as well as the ability of binding antibody and surrogate virus neutralization tests (sVNT) to predict neutralizing antibodies (NAbs) against the SARS-CoV-2 Omicron variant. METHODS A total of 269 sera samples were analyzed from 64 healthcare workers who had received a homologous booster dose of BNT162b2. Neutralizing antibodies assessed by sVNT and anti-RBD IgG measured with the sCOVG assay (Siemens Healthineers®) were analyzed at five timepoints; before and up to 6 months following the booster. Antibody titers were correlated with neutralizing antibodies against the Omicron BA.1 variant obtained by pseudovirus neutralization test (pVNT) as a reference method. RESULTS While Wild-type sVNT percentage of inhibition (POI) remained above 98.6% throughout the follow-up period after booster administration, anti-RBD IgG and NAbs assessed by Omicron BA.1 pVNT showed respectively a 3.4-fold and 13.3-fold decrease after 6 months compared to the peak reached at day 14. NAbs assessed by Omicron sVNT followed a steady decline until reaching a POI of 53.4%. Anti-RBD IgG and Omicron sVNT assays were strongly correlated (r=0.90) and performed similarly to predict the presence of neutralizing antibodies with Omicron pVNT (area under the ROC: 0.82 for both assays). In addition, new adapted cut-off values of anti-RBD IgG (>1,276 BAU/mL) and Omicron sVNT (POI>46.6%) were found to be better predictors of neutralizing activity. CONCLUSIONS This study showed a significant drop in humoral immunity 6 months after booster administration. Anti-RBD IgG and Omicron sVNT assays were highly correlated and could predict neutralizing activity with moderate performance.
Collapse
Affiliation(s)
- Germain Simon
- Department of Laboratory Medicine, Clinique St-Pierre, Ottignies, Belgium
| | - Julien Favresse
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Constant Gillot
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | | | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
- QUALIblood SA, Namur, Belgium
| | - Grégoire Wieërs
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
- Department of Internal Medicine, Clinique St-Pierre, Ottignies, Belgium
| | - Jean-Louis Bayart
- Department of Laboratory Medicine, Clinique St-Pierre, Ottignies, Belgium
| |
Collapse
|
8
|
Sumner KM, Yadav R, Noble EK, Sandford R, Joshi D, Tartof SY, Wernli KJ, Martin ET, Gaglani M, Zimmerman RK, Talbot HK, Grijalva CG, Chung JR, Rogier E, Coughlin MM, Flannery B. Anti-SARS-CoV-2 Antibody Levels Associated with COVID-19 Protection in Outpatients Tested for SARS-CoV-2, US Flu VE Network, October 2021-June 2022. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295919. [PMID: 37790578 PMCID: PMC10543239 DOI: 10.1101/2023.09.21.23295919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background We assessed the association between antibody concentration ≤5 days of symptom onset and COVID-19 illness among patients enrolled in a test-negative study. Methods From October 2021-June 2022, study sites in seven states enrolled and tested respiratory specimens from patients of all ages presenting with acute respiratory illness for SARS-CoV-2 infection using rRT-PCR. In blood specimens, we measured concentration of anti-SARS-CoV-2 antibodies against the ancestral strain spike protein receptor binding domain (RBD) and nucleocapsid (N) antigens in standardized binding antibody units (BAU/mL). Percent reduction in odds of symptomatic COVID-19 by anti-RBD antibody was estimated using logistic regression modeled as (1-adjusted odds ratio of COVID-19)×100, adjusting for COVID-19 vaccination status, age, site, and high-risk exposure. Results A total of 662 (33%) of 2,018 symptomatic patients tested positive for acute SARS-CoV-2 infection. During the Omicron-predominant period, geometric mean anti-RBD binding antibody concentrations measured 823 BAU/mL (95%CI:690-981) among COVID-19 case-patients versus 1,189 BAU/mL (95%CI:1,050-1,347) among SARS-CoV-2 test-negative patients. In the adjusted logistic regression, increasing levels of anti-RBD antibodies were associated with reduced odds of COVID-19 for both Delta and Omicron infections. Conclusion Higher anti-RBD antibodies in patients were associated with protection against symptomatic COVID-19 during emergence of SARS-CoV-2 Delta and Omicron variants.
Collapse
Affiliation(s)
- Kelsey M. Sumner
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ruchi Yadav
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emma K. Noble
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Ryan Sandford
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Devyani Joshi
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sara Y. Tartof
- Kaiser Permanente Southern California, Department of Research & Evaluation
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Karen J. Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Emily T Martin
- University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University College of Medicine, Temple, TX, USA
| | | | | | | | - Jessie R. Chung
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Rogier
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|