1
|
Liu Y, Dissanayaka WL, Yiu C. Therapeutic implications of mitochondrial transfer on stem cell fate in regenerative medicine. J Transl Med 2025; 23:568. [PMID: 40399970 PMCID: PMC12093763 DOI: 10.1186/s12967-025-06472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/08/2025] [Indexed: 05/23/2025] Open
Abstract
With the discovery of intercellular mitochondrial transfer, the intricate mitochondrial regulatory networks on stem cell fate have aroused intense academic interest. Apart from capturing freely released mitochondria from donor cells, stem cells are able to receive mitochondria through tunneling nanotubes (TNTs), gap junctional channels (GJCs) and extracellular vesicles (EVs), especially when undergoing stressful conditions such as inflammation, hypoxia, chemotherapy drug exposure, and irradiation. Stem cells that are potentiated by exogenous mitochondria show enhanced potential for proliferation, differentiation, and immunomodulation. The well-tolerated nature of either autogenous or allogenous mitochondria when locally injected in the human ischemic heart has validated the safety and therapeutic potential of mitochondrial transplantation. In children diagnosed with mitochondrial DNA deletion syndrome, functional improvements have been observed when empowering their hematopoietic stem cells with maternally derived mitochondria. Apart from the widely investigated applications of mitochondrial transfer in ischemia-reperfusion injury, neurodegenerative diseases and mitochondrial diseases etc., therapeutic potentials of mitochondrial transfer in tissue repair and regeneration are equally noteworthy, though there has been no systematic summary in this regard.This review analyzed the research and development trends of mitochondrial transfer in stem cells and regenerative medicine over the past decade from a bibliometric perspective, introduced the concept and associated mechanisms of mitochondrial transfer, summarized the regulations of intercellular mitochondrial transfer on stem cell fate. Finally, the therapeutic application of mitochondrial transplantation in diseases and tissue regeneration has been reviewed, including recent clinical studies related to mitochondrial transplantation.Mitochondrial transfer shows promise in modifying and reshaping the cellular properties of stem cells, making them more conducive to regeneration. Mesenchymal stem cells (MSCs)-derived mitochondria have shown multifaceted potential in promoting the revitalization and regeneration of cardiac, cutaneous, muscular, neuronal tissue. This review integrates novel research findings on mitochondrial transfer in stem cell biology and regenerative medicine, emphasizing the crucial translational value of mitochondrial transfer in regeneration. It serves to underscore the significant impact of mitochondrial transfer and provides a valuable reference for further exploration in this field.
Collapse
Affiliation(s)
- Ying Liu
- Paediatric Dentistry, Prince Philp Dental Hospital, Faculty of Dentistry, University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Prince Philp Dental Hospital, Faculty of Dentistry, University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Cynthia Yiu
- Paediatric Dentistry, Prince Philp Dental Hospital, Faculty of Dentistry, University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
| |
Collapse
|
2
|
Marshall KL, Velayutham M, Khramtsov VV, Mizener A, Cifarelli CP. Enhancing radiation-induced reactive oxygen species generation through mitochondrial transplantation in human glioblastoma. Sci Rep 2025; 15:7618. [PMID: 40038364 PMCID: PMC11880374 DOI: 10.1038/s41598-025-91331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain malignancy in adults, with high recurrence rates and resistance to standard therapies. This study explores mitochondrial transplantation as a novel method to enhance the radiobiological effect (RBE) of ionizing radiation (IR) by increasing mitochondrial density in GBM cells, potentially boosting reactive oxygen species (ROS) production and promoting radiation-induced cell death. Using cell-penetrating peptides (CPPs), mitochondria were transplanted into GBM cell lines U3035 and U3046. Transplanted mitochondria were successfully incorporated into recipient cells, increasing mitochondrial density significantly. Mitochondrial chimeric cells demonstrated enhanced ROS generation post-irradiation, as evidenced by increased electron paramagnetic resonance (EPR) signal intensity and fluorescent ROS assays. The transplanted mitochondria retained functionality and viability for up to 14 days, with mitochondrial DNA (mtDNA) sequencing confirming high transfection and retention rates. Notably, mitochondrial transplantation was feasible in radiation-resistant GBM cells, suggesting potential clinical applicability. These findings support mitochondrial transplantation as a promising strategy to overcome therapeutic resistance in GBM by amplifying ROS-mediated cytotoxicity, warranting further investigation into its efficacy and mechanisms in vivo.
Collapse
Affiliation(s)
- Kent L Marshall
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Drive, Morgantown, WV, 26506-9183, USA
| | - Murugesan Velayutham
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Valery V Khramtsov
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Alan Mizener
- West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Christopher P Cifarelli
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Drive, Morgantown, WV, 26506-9183, USA.
- West Virginia University Cancer Institute, Morgantown, WV, USA.
- Department of Radiation Oncology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
3
|
Brestoff JR, Singh KK, Aquilano K, Becker LB, Berridge MV, Boilard E, Caicedo A, Crewe C, Enríquez JA, Gao J, Gustafsson ÅB, Hayakawa K, Khoury M, Lee YS, Lettieri-Barbato D, Luz-Crawford P, McBride HM, McCully JD, Nakai R, Neuzil J, Picard M, Rabchevsky AG, Rodriguez AM, Sengupta S, Sercel AJ, Suda T, Teitell MA, Thierry AR, Tian R, Walker M, Zheng M. Recommendations for mitochondria transfer and transplantation nomenclature and characterization. Nat Metab 2025; 7:53-67. [PMID: 39820558 DOI: 10.1038/s42255-024-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025]
Abstract
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Keshav K Singh
- Department of Genetics, I Heersink School of Medicine, University of Alabama at Birmhingham, Birmingham, AL, USA.
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lance B Becker
- Department of Emergency Medicine, Northwell Health, Manhassett, NY, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Michael V Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Eric Boilard
- Département de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Québec, Canada
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina and Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de salud Carlos III (CIBERFES), Madrid, Spain
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Harvard Medical School, Massachusetts General Hospital East 149-2401, Charlestown, MA, USA
| | - Maroun Khoury
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Patricia Luz-Crawford
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James D McCully
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Alexander G Rabchevsky
- Department of Physiology & the Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Anne-Marie Rodriguez
- UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | | | - Alexander J Sercel
- MitoWorld, National Laboratory for Education Transformation, Oakland, CA, USA
| | - Toshio Suda
- Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Sciences and Peking Union Medical College, Tianjin, China
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, Department of Bioengineering, and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alain R Thierry
- Institute of Research in Cancerology of Montpellier, INSERM U1194, University of Montpellier, ICM, Institut du Cancer de Montpellier, Montpellier, France
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School of the University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Marshall KL, Velayutham M, Khramtsov VV, Mizener A, Cifarelli CP. Enhancing Radiation-induced Reactive Oxygen Species Generation Through Mitochondrial Transplantation in Human Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619301. [PMID: 39484465 PMCID: PMC11526886 DOI: 10.1101/2024.10.20.619301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain malignancy in adults, with high recurrence rates and resistance to standard therapies. This study explores mitochondrial transplantation as a novel method to enhance the radiobiological effect (RBE) of ionizing radiation (IR) by increasing mitochondrial density in GBM cells, potentially boosting reactive oxygen species (ROS) production and promoting radiation-induced cell death. Using cell-penetrating peptides (CPPs), mitochondria were transplanted into GBM cell lines U3020 and U3035. Transplanted mitochondria were successfully incorporated into recipient cells, increasing mitochondrial density significantly. Mitochondrial chimeric cells demonstrated enhanced ROS generation post-irradiation, as evidenced by increased electron paramagnetic resonance (EPR) signal intensity and fluorescent ROS assays. The transplanted mitochondria retained functionality and viability for up to 14 days, with mitochondrial DNA (mtDNA) sequencing confirming high transfection and retention rates. Notably, mitochondrial transplantation was feasible in radiation-resistant GBM cells, suggesting potential clinical applicability. These findings support mitochondrial transplantation as a promising strategy to overcome therapeutic resistance in GBM by amplifying ROS-mediated cytotoxicity, warranting further investigation into its efficacy and mechanisms in vivo .
Collapse
|
5
|
Kuo FC, Chen PC, You SY, Tsai CC, Tsai HY, Liu CJ, Wu DC, Lin MW, Huang B. Transplanting mitochondria from gastric epithelial cells reduces the malignancy of gastric cancer. Mitochondrion 2024; 78:101939. [PMID: 39067839 DOI: 10.1016/j.mito.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria are essential for energy supplementation and metabolic homeostasis of cancer cells. Using mitochondria transplantation to reduce the malignancy of gastric cancer (GC) cells is herein proposed. In our study normal human gastric mucous epithelium cell line (GES-1) showed a lower mitochondrial membrane potential (MMP) compared to immortalized human vascular endothelial cell line (EAhy 926) and human gastric adenocarcinoma cell line (AGS). The transplantation of GES-1 mitochondria to AGS were confirmed both by confocal microscopy and flow cytometry. After transplanting GES-1 mitochondria, the AGS showed a reduced cell migration, and invasion without affecting cell viability and apoptosis. Investigating the expression of proteins involved in epithelial-mesenchymal-transition (EMT), transplanted GES-1 mitochondria reduced the expression of mesenchymal markers α-SMA, MMP-9, snail, vimentin and N-cadherin, whereas the epithelial markers E-cadherin and clauding-1 were not changed. The proteins implicated in the cell cycle such as cyclin B1 and D1 were decreased. In mice, inoculation with AGS carrying the transplanted GES-1 mitochondria resulted in smaller sized tumors. Further investigating the mitochondrial balance, the transplanted GES-1 mitochondria were more stably preserved compared to endogenous AGS mitochondria. The MMP, ATP production and mitochondrial mass decreased in GES-1 mitochondria and the mitophagic proteins LC3 II and PINK1 were up-regulated. In conclusion the decreased malignancy of AGS was a result of exogenous GES-1 mitochondria transplantation. This suggests for a therapy with low efficiency mitochondria transplantation in the treatment of cancer cells.
Collapse
Affiliation(s)
- Fu-Chen Kuo
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ping-Chen Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Sheng-Yu You
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chung Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Hsin-Yi Tsai
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Bin Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
6
|
Jiao Q, Xiang L, Chen Y. Mitochondrial transplantation: A promising therapy for mitochondrial disorders. Int J Pharm 2024; 658:124194. [PMID: 38703929 DOI: 10.1016/j.ijpharm.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
As a vital energy source for cellular metabolism and tissue survival, the mitochondrion can undergo morphological or positional change and even shuttle between cells in response to various stimuli and energy demands. Multiple human diseases are originated from mitochondrial dysfunction, but the curative succusses by traditional treatments are limited. Mitochondrial transplantation therapy (MTT) is an innovative therapeutic approach that is to deliver the healthy mitochondria either derived from normal cells or reassembled through synthetic biology into the cells and tissues suffering from mitochondrial damages and finally replace their defective mitochondria and restore their function. MTT has already been under investigation in clinical trials for cardiac ischemia-reperfusion injury and given an encouraging performance in animal models of numerous fatal critical diseases including central nervous system disorders, cardiovascular diseases, inflammatory conditions, cancer, renal injury, and pulmonary damage. This review article summarizes the mechanisms and strategies of mitochondrial transfer and the MTT application for types of mitochondrial diseases, and discusses the potential challenge in MTT clinical application, aiming to exhibit the good therapeutic prospects of MTTs in clinics.
Collapse
Affiliation(s)
- Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China.
| |
Collapse
|
7
|
Li H, Zhang J, Shen Y, Ye Y, Jiang Q, Chen L, Sun B, Chen Z, Shen L, Fang H, Yang J, Gu H. Targeting Mitochondrial Complex I Deficiency in MPP +/MPTP-induced Parkinson's Disease Cell Culture and Mouse Models by Transducing Yeast NDI1 Gene. Biol Proced Online 2024; 26:9. [PMID: 38594619 PMCID: PMC11003148 DOI: 10.1186/s12575-024-00236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), original found in synthetic heroin, causes Parkinson's disease (PD) in human through its metabolite MPP+ by inhibiting complex I of mitochondrial respiratory chain in dopaminergic neurons. This study explored whether yeast internal NADH-quinone oxidoreductase (NDI1) has therapeutic effects in MPTP- induced PD models by functionally compensating for the impaired complex I. MPP+-treated SH-SY5Y cells and MPTP-treated mice were used as the PD cell culture and mouse models respectively. The recombinant NDI1 lentivirus was transduced into SH-SY5Y cells, or the recombinant NDI1 adeno-associated virus (rAAV5-NDI1) was injected into substantia nigra pars compacta (SNpc) of mice. RESULTS The study in vitro showed NDI1 prevented MPP+-induced change in cell morphology and decreased cell viability, mitochondrial coupling efficiency, complex I-dependent oxygen consumption, and mitochondria-derived ATP. The study in vivo revealed that rAAV-NDI1 injection significantly improved the motor ability and exploration behavior of MPTP-induced PD mice. Accordingly, NDI1 notably improved dopaminergic neuron survival, reduced the inflammatory response, and significantly increased the dopamine content in striatum and complex I activity in substantia nigra. CONCLUSIONS NDI1 compensates for the defective complex I in MPP+/MPTP-induced models, and vastly alleviates MPTP-induced toxic effect on dopaminergic neurons. Our study may provide a basis for gene therapy of sporadic PD with defective complex I caused by MPTP-like substance.
Collapse
Affiliation(s)
- Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China.
| | - Jing Zhang
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuqi Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Yifan Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Qingyou Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Lan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhuo Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Luxi Shen
- Department of Internal Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Jifeng Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Wang X, Liu Z, Zhang L, Hu G, Tao L, Zhang F. Mitochondrial transplantation for the treatment of cardiac and noncardiac diseases: mechanisms, prospective, and challenges. LIFE MEDICINE 2024; 3:lnae017. [PMID: 39872662 PMCID: PMC11749488 DOI: 10.1093/lifemedi/lnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 01/30/2025]
Abstract
Mitochondrial transplantation (MT) is a promising therapeutic strategy that involves introducing healthy mitochondria into damaged tissues to restore cellular function. This approach has shown promise in treating cardiac diseases, such as ischemia-reperfusion injury, myocardial infarction, and heart failure, where mitochondrial dysfunction plays a crucial role. Transplanting healthy mitochondria into affected cardiac tissue has resulted in improved cardiac function, reduced infract size, and enhanced cell survival in preclinical studies. Beyond cardiac applications, MT is also being explored for its potential to address various noncardiac diseases, including stroke, infertility, and genetic mitochondrial disorders. Ongoing research focused on refining techniques for mitochondrial isolation, preservation, and targeted delivery is bolstering the prospects of MT as a clinical therapy. As the scientific community gains a deeper understanding of mitochondrial dynamics and pathology, the development of MT as a clinical therapy holds significant promise. This review provides an overview of recent research on MT and discusses the methodologies involved, including sources, isolation, delivery, internalization, and distribution of mitochondria. Additionally, it explores the effects of MT and potential mechanisms in cardiac diseases, as well as non-cardiac diseases. Future prospects for MT are also discussed.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhiyuan Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guangyu Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
9
|
Yang W, Abe S, Tabata Y. Association with cationized gelatin nanospheres enhances cell internalization of mitochondria efficiency. Regen Ther 2023; 24:190-200. [PMID: 37483433 PMCID: PMC10359715 DOI: 10.1016/j.reth.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023] Open
Abstract
The objective of this study is to confirm the methodological feasibility of cationized gelatin nanospheres (cGNS) to enhance the internalization efficiency of mitochondria (Mt) isolated to cells for their increasing functions. The cGNS were simply associated on the surface of Mt by the electrostatic interaction. Different sizes of cGNS were used to allow Mt to associate on the Mt surface (Mt-cGNS). As a control, cationized gelatin (cG) was used to modify the Mt surface (Mt-cG). The Mt-cG and Mt-cGNS prepared were cultured with H9c2 cells to examine their internalization. The internalization efficiency significantly increased by utilizing cGNS. However, there was no significant difference in the internalization efficiency among cGNS with different sizes. After incubation of Mt, Mt-cG, and Mt-cGNS, the superoxide amount and ATP generation were evaluated. Significantly lower superoxide amount and higher ATP amount were observed for the Mt-cGNS group compared with those of non-modified Mt group. It is conceivable that cGNS enhance the cellular internalization of Mt, leading to an improve mitochondrial functions in the recipient cells. In conclusion, cGNS are promising to improve the efficacy in mitochondria internalization.
Collapse
|
10
|
Capelluto F, Alberico H, Ledo-Hopgood P, Tilly JL, Woods DC. Lineage-Mismatched Mitochondrial Replacement in an Inducible Mitochondrial Depletion Model Effectively Restores the Original Proteomic Landscape of Recipient Cells. Adv Biol (Weinh) 2023; 7:e2200246. [PMID: 36651121 DOI: 10.1002/adbi.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Indexed: 01/19/2023]
Abstract
In addition to critical roles in bioenergetics, mitochondria are key contributors to the regulation of many other functions in cells, ranging from steroidogenesis to apoptosis. Numerous studies further demonstrate that cell type-specific differences exist in mitochondria, with cells of a given lineage tailoring their endogenous mitochondrial population to suit specific functional needs. These findings, coupled with studies of the therapeutic potential of mitochondrial transplantation, provide a strong impetus to better understand how mitochondria can influence cell function or fate. Here an inducible mitochondrial depletion modelis used to study how cells lacking endogenous mitochondria respond, on a global protein expression level, to transplantation with lineage-mismatched (LM) mitochondria. It is shown that LM mitochondrial transplantation does not alter the proteomic profile in nonmitochondria-depleted recipient cells; however, enforced depletion of endogenous mitochondria results in dramatic changes in the proteomic landscape, which returns to the predepletion state following internalization of LM mitochondria. These data, derived from a cell system that can be rendered free of influence by endogenous mitochondria, indicate that transplantation of mitochondria-even from a source that differs significantly from the recipient cell population, effectively restores a normal proteomic landscape to cells lacking their own mitochondria.
Collapse
Affiliation(s)
- Fausto Capelluto
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Hannah Alberico
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Paula Ledo-Hopgood
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Yang J, Liu L, Oda Y, Wada K, Ago M, Matsuda S, Hattori M, Goto T, Kawashima Y, Matsuzaki Y, Taketani T. Highly-purified rapidly expanding clones, RECs, are superior for functional-mitochondrial transfer. Stem Cell Res Ther 2023; 14:40. [PMID: 36927781 PMCID: PMC10022310 DOI: 10.1186/s13287-023-03274-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction caused by mutations in mitochondrial DNA (mtDNA) or nuclear DNA, which codes for mitochondrial components, are known to be associated with various genetic and congenital disorders. These mitochondrial disorders not only impair energy production but also affect mitochondrial functions and have no effective treatment. Mesenchymal stem cells (MSCs) are known to migrate to damaged sites and carry out mitochondrial transfer. MSCs grown using conventional culture methods exhibit heterogeneous cellular characteristics. In contrast, highly purified MSCs, namely the rapidly expanding clones (RECs) isolated by single-cell sorting, display uniform MSCs functionality. Therefore, we examined the differences between RECs and MSCs to assess the efficacy of mitochondrial transfer. METHODS We established mitochondria-deficient cell lines (ρ0 A549 and ρ0 HeLa cell lines) using ethidium bromide. Mitochondrial transfer from RECs/MSCs to ρ0 cells was confirmed by PCR and flow cytometry analysis. We examined several mitochondrial functions including ATP, reactive oxygen species, mitochondrial membrane potential, and oxygen consumption rate (OCR). The route of mitochondrial transfer was identified using inhibition assays for microtubules/tunneling nanotubes, gap junctions, or microvesicles using transwell assay and molecular inhibitors. RESULTS Co-culture of ρ0 cells with MSCs or RECs led to restoration of the mtDNA content. RECs transferred more mitochondria to ρ0 cells compared to that by MSCs. The recovery of mitochondrial function, including ATP, OCR, mitochondrial membrane potential, and mitochondrial swelling in ρ0 cells co-cultured with RECs was superior than that in cells co-cultured with MSCs. Inhibition assays for each pathway revealed that RECs were sensitive to endocytosis inhibitor, dynasore. CONCLUSIONS RECs might serve as a potential therapeutic strategy for diseases linked to mitochondrial dysfunction by donating healthy mitochondria.
Collapse
Affiliation(s)
- Jiahao Yang
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
| | - Lu Liu
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan.,Faculty of Nursing, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yasuaki Oda
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
| | - Keisuke Wada
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
| | - Mako Ago
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
| | - Shinichiro Matsuda
- Department of Medical Oncology, Shimane University Hospital, Izumo, Shimane, Japan
| | - Miho Hattori
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
| | - Tsukimi Goto
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
| | - Yuki Kawashima
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1, Enya, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
12
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
13
|
Fairley LH, Grimm A, Eckert A. Mitochondria Transfer in Brain Injury and Disease. Cells 2022; 11:3603. [PMID: 36429030 PMCID: PMC9688459 DOI: 10.3390/cells11223603] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
Intercellular mitochondria transfer is a novel form of cell signalling in which whole mitochondria are transferred between cells in order to enhance cellular functions or aid in the degradation of dysfunctional mitochondria. Recent studies have observed intercellular mitochondria transfer between glia and neurons in the brain, and mitochondrial transfer has emerged as a key neuroprotective mechanism in a range of neurological conditions. In particular, artificial mitochondria transfer has sparked widespread interest as a potential therapeutic strategy for brain disorders. In this review, we discuss the mechanisms and effects of intercellular mitochondria transfer in the brain. The role of mitochondrial transfer in neurological conditions, including neurodegenerative disease, brain injury, and neurodevelopmental disorders, is discussed as well as therapeutic strategies targeting mitochondria transfer in the brain.
Collapse
Affiliation(s)
- Lauren H. Fairley
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
| | - Amandine Grimm
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
| |
Collapse
|
14
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
15
|
Li H, Sun B, Huang Y, Zhang J, Xu X, Shen Y, Chen Z, Yang J, Shen L, Hu Y, Gu H. Gene therapy of yeast NDI1 on mitochondrial complex I dysfunction in rotenone-induced Parkinson’s disease models in vitro and vivo. Mol Med 2022; 28:29. [PMID: 35255803 PMCID: PMC8900322 DOI: 10.1186/s10020-022-00456-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/18/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Purpose
Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction.
Method
Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement.
Results
NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of α-synuclein and pS129 α-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group.
Conclusion
Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.
Collapse
|
16
|
Huang T, Zhang T, Gao J. Targeted mitochondrial delivery: A therapeutic new era for disease treatment. J Control Release 2022; 343:89-106. [DOI: 10.1016/j.jconrel.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
|
17
|
Mitochondrial Transplantation. J Cardiovasc Pharmacol 2022; 79:759-768. [DOI: 10.1097/fjc.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
|
18
|
Nguyen H, Zerimech S, Baltan S. Astrocyte Mitochondria in White-Matter Injury. Neurochem Res 2021; 46:2696-2714. [PMID: 33527218 PMCID: PMC8935665 DOI: 10.1007/s11064-021-03239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Collapse
Affiliation(s)
- Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
19
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
20
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
21
|
Xu Y, Yu Y, Yang B, Hui J, Zhang C, Fang H, Bian X, Tao M, Lu Y, Shang Z. Extracellular Mitochondrial Components and Effects on Cardiovascular Disease. DNA Cell Biol 2021; 40:1131-1143. [PMID: 34370602 DOI: 10.1089/dna.2021.0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides being powerhouses of the cell, mitochondria released into extracellular space act as intercellular signaling. Mitochondria and their components mediate cell-to-cell communication in free form or embedded in a carrier. The pathogenesis of cardiovascular disease is complex, which shows close relationship with inflammation and metabolic abnormalities. Since mitochondria sustain optimal function of the heart, extracellular mitochondria are emerging as a key regulator in the development of cardiovascular disease. In this review, we provide recent findings in the presence and forms of mitochondria transfer between cells, as well as the effects of these mitochondria on vascular inflammation and ischemic myocardium. Mitochondrial transplantation is a novel treatment paradigm for patients suffering from acute cardiovascular accident and challenges the traditional methods of mitochondria isolation.
Collapse
Affiliation(s)
- Yu Xu
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yanhua Yu
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Bowen Yang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jingjiao Hui
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Cai Zhang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Hua Fang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Xiaoyun Bian
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Min Tao
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yipeng Lu
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| |
Collapse
|
22
|
Mitotherapy: Unraveling a Promising Treatment for Disorders of the Central Nervous System and Other Systemic Conditions. Cells 2021; 10:cells10071827. [PMID: 34359994 PMCID: PMC8304896 DOI: 10.3390/cells10071827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are key players of aerobic respiration and the production of adenosine triphosphate and constitute the energetic core of eukaryotic cells. Furthermore, cells rely upon mitochondria homeostasis, the disruption of which is reported in pathological processes such as liver hepatotoxicity, cancer, muscular dystrophy, chronic inflammation, as well as in neurological conditions including Alzheimer’s disease, schizophrenia, depression, ischemia and glaucoma. In addition to the well-known spontaneous cell-to-cell transfer of mitochondria, a therapeutic potential of the transplant of isolated, metabolically active mitochondria has been demonstrated in several in vitro and in vivo experimental models of disease. This review explores the striking outcomes achieved by mitotherapy thus far, and the most relevant underlying data regarding isolated mitochondria transplantation, including mechanisms of mitochondria intake, the balance between administration and therapy effectiveness, the relevance of mitochondrial source and purity and the mechanisms by which mitotherapy is gaining ground as a promising therapeutic approach.
Collapse
|
23
|
Chang JC, Chao YC, Chang HS, Wu YL, Chang HJ, Lin YS, Cheng WL, Lin TT, Liu CS. Intranasal delivery of mitochondria for treatment of Parkinson's Disease model rats lesioned with 6-hydroxydopamine. Sci Rep 2021; 11:10597. [PMID: 34011937 PMCID: PMC8136477 DOI: 10.1038/s41598-021-90094-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
The feasibility of delivering mitochondria intranasally so as to bypass the blood-brain barrier in treating Parkinson's disease (PD), was evaluated in unilaterally 6-OHDA-lesioned rats. Intranasal infusion of allogeneic mitochondria conjugated with Pep-1 (P-Mito) or unconjugated (Mito) was performed once a week on the ipsilateral sides of lesioned brains for three months. A significant improvement of rotational and locomotor behaviors in PD rats was observed in both mitochondrial groups, compared to sham or Pep-1-only groups. Dopaminergic (DA) neuron survival and recovery > 60% occurred in lesions of the substantia nigra (SN) and striatum in Mito and P-Mito rats. The treatment effect was stronger in the P-Mito group than the Mito group, but the difference was insignificant. This recovery was associated with restoration of mitochondrial function and attenuation of oxidative damage in lesioned SN. Notably, P-Mito suppressed plasma levels of inflammatory cytokines. Mitochondria penetrated the accessory olfactory bulb and doublecortin-positive neurons of the rostral migratory stream (RMS) on the ipsilateral sides of lesions and were expressed in striatal, but not SN DA neurons, of both cerebral hemispheres, evidently via commissural fibers. This study shows promise for intranasal delivery of mitochondria, confirming mitochondrial internalization and migration via RMS neurons in the olfactory bulb for PD therapy.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan.
| | - Yi-Chun Chao
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan
| | - Huei-Shin Chang
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan
| | - Yu-Ling Wu
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan
| | - Hui-Ju Chang
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan
| | - Yong-Shiou Lin
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan.
- Department of Neurology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50094, Taiwan.
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, 40447, Taiwan.
| |
Collapse
|
24
|
Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Cheng J, Lu Y. Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1α activation. STEM CELLS (DAYTON, OHIO) 2021; 39:913-928. [PMID: 33739541 DOI: 10.1002/stem.3375] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) have fueled ample translation for treatment of immune-mediated diseases. Our previous study had demonstrated that MSCs could elicit macrophages (Mφ) into anti-inflammatory phenotypes, and alleviate kidney injury in diabetic nephropathy (DN) mice via improving mitochondrial function of Mφ, yet the specific mechanism was unclear. Recent evidence indicated that MSCs communicated with their microenvironment through exchanges of mitochondria. By a coculture system consisting of MSCs and Mφ, we showed that MSCs-derived mitochondria (MSCs-Mito) were transferred into Mφ, and the mitochondrial functions were improved, which contributed to M2 polarization. Furthermore, we found that MSCs-Mito transfer activated peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α)-mediated mitochondrial biogenesis. In addition, PGC-1α interacted with TFEB in high glucose-induced Mφ, leading to the elevated lysosome-autophagy, which was essential to removal of damaged mitochondria. As a result, in Mφ, the mitochondrial bioenergy and capacity to combat inflammatory response were enhanced. Whereas, the immune-regulatory activity of MSCs-Mito was significantly blocked in PGC-1α knockdown Mφ. More importantly, MSCs-Mito transfer could be observed in DN mice, and the adoptive transfer of MSCs-Mito educated Mφ (MφMito ) inhibited the inflammatory response and alleviated kidney injury. However, the kidney-protective effects of MφMito were abolished when the MSCs-Mito was impaired with rotenone, and the similar results were also observed when MφMito were transfected with sipgc-1α before administration. Collectively, these findings suggested that MSCs elicited Mφ into anti-inflammatory phenotype and ameliorated kidney injury through mitochondrial transfer in DN mice, and the effects were relied on PGC-1α-mediated mitochondrial biogenesis and PGC-1α/TFEB-mediated lysosome-autophagy.
Collapse
Affiliation(s)
- Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
25
|
Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P. Mitochondrial Transfer in Cancer: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22063245. [PMID: 33806730 PMCID: PMC8004668 DOI: 10.3390/ijms22063245] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.
Collapse
|
26
|
Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther 2021; 6:65. [PMID: 33589598 PMCID: PMC7884415 DOI: 10.1038/s41392-020-00440-z] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
As the crucial powerhouse for cell metabolism and tissue survival, the mitochondrion frequently undergoes morphological or positional changes when responding to various stresses and energy demands. In addition to intracellular changes, mitochondria can also be transferred intercellularly. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, the intercellular mitochondrial transfer also occurs under physiological conditions. In this review, the phenomenon of mitochondrial transfer is described according to its function under both physiological and pathological conditions, including tissue homeostasis, damaged tissue repair, tumor progression, and immunoregulation. Then, the mechanisms that contribute to this process are summarized, such as the trigger factors and transfer routes. Furthermore, various perspectives are explored to better understand the mysteries of cell-cell mitochondrial trafficking. In addition, potential therapeutic strategies for mitochondria-targeted application to rescue tissue damage and degeneration, as well as the inhibition of tumor progression, are discussed.
Collapse
|
27
|
Povea-Cabello S, Villanueva-Paz M, Suárez-Rivero JM, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Advances in mt-tRNA Mutation-Caused Mitochondrial Disease Modeling: Patients' Brain in a Dish. Front Genet 2021; 11:610764. [PMID: 33510772 PMCID: PMC7835939 DOI: 10.3389/fgene.2020.610764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of rare genetic disorders that can be caused by mutations in nuclear (nDNA) or mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with several maternally inherited genetic diseases, with mitochondrial dysfunction as a main pathological feature. These diseases, although frequently multisystemic, mainly affect organs that require large amounts of energy such as the brain and the skeletal muscle. In contrast to the difficulty of obtaining neuronal and muscle cell models, the development of induced pluripotent stem cells (iPSCs) has shed light on the study of mitochondrial diseases. However, it is still a challenge to obtain an appropriate cellular model in order to find new therapeutic options for people suffering from these diseases. In this review, we deepen the knowledge in the current models for the most studied mt-tRNA mutation-caused mitochondrial diseases, MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonic epilepsy with ragged red fibers) syndromes, and their therapeutic management. In particular, we will discuss the development of a novel model for mitochondrial disease research that consists of induced neurons (iNs) generated by direct reprogramming of fibroblasts derived from patients suffering from MERRF syndrome. We hypothesize that iNs will be helpful for mitochondrial disease modeling, since they could mimic patient’s neuron pathophysiology and give us the opportunity to correct the alterations in one of the most affected cellular types in these disorders.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marina Villanueva-Paz
- Instituto de Investigación Biomédica de Málaga, Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
28
|
Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci 2020; 21:ijms21176365. [PMID: 32887310 PMCID: PMC7504154 DOI: 10.3390/ijms21176365] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial transplantation therapy is an innovative strategy for the treatment of mitochondrial dysfunction. The approach has been reported to be useful in the treatment of cardiac ischemic reperfusion injuries in human clinical trials and has also been shown to be useful in animal studies as a method for treating mitochondrial dysfunction in various tissues, including the heart, liver, lungs, and brain. On the other hand, there is no methodology for using preserved mitochondria. Research into the pharmaceutical formulation of mitochondria to promote mitochondrial transplantation therapy as the next step in treating many patients is urgently needed. In this review, we overview previous studies on the therapeutic effects of mitochondrial transplantation. We also discuss studies related to immune responses that occur during mitochondrial transplantation and methods for preserving mitochondria, which are key to their stability as medicines. Finally, we describe research related to mitochondrial targeting drug delivery systems (DDS) and discuss future perspectives of mitochondrial transplantation.
Collapse
|
29
|
Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice. Biomed Pharmacother 2020; 130:110520. [PMID: 32707439 DOI: 10.1016/j.biopha.2020.110520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
The mechanism of hair loss caused by aging is related to mitochondrial dysfunction. Pep-1-mediated mitochondrial transplantation is a potential therapeutic application for mitochondrial disorders, but its efficacy against hair aging remains unknown. This study compared platelet-rich plasma (PRP) therapy with mitochondrial transplantation for hair restoration and examined the related regulation in naturally aging mice. After dorsal hair removal, 100-week-old mice received weekly unilateral injections of 200 μg of allogeneic mitochondria-labeled 5-bromo-2'-deoxyuridine with (P-Mito) or without Pep-1 conjugation (Mito) or human PRP with a stamp-type electric injector for 1 month. The contralateral sides were used as corresponding sham controls. Compared with the control and corresponding sham groups, all treatments stimulated hair regrowth, and the effectiveness of P-Mito was equal to that of PRP. However, histology revealed that only P-Mito maintained hair length until day 28 and yielded more anagen follicles with abundant dermal collagen equivalent to that of the PRP group. Mitochondrial transplantation increased the thickness of subcutaneous fat compared with the control and PRP groups, and only P-Mito consistently increased mitochondria in the subcutaneous muscle and mitochondrial DNA copies in the skin layer. Therefore, P-Mito had a higher penetrating capacity than Mito did. Moreover, P-Mito treatment was as effective as PRP treatment in comprehensively reducing the expression of aging-associated gene markers, such as IGF1R and MRPS5, and increasing antiaging Klotho gene expression. This study validated the efficacy of mitochondrial therapy in the restoration of aging-related hair loss and demonstrated the distinct effects of PRP treatment.
Collapse
|
30
|
Chang JC, Chang HS, Wu YC, Cheng WL, Lin TT, Chang HJ, Chen ST, Liu CS. Antitumor Actions of Intratumoral Delivery of Membrane-Fused Mitochondria in a Mouse Model of Triple-Negative Breast Cancers. Onco Targets Ther 2020; 13:5241-5255. [PMID: 32606744 PMCID: PMC7294573 DOI: 10.2147/ott.s238143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background The transfer of whole mitochondria has been demonstrated to be beneficial for treating breast cancer because it induces apoptosis and drug sensitivity; however, in vivo evidence of this benefit remains scant. The present study compared the transplantation of mitochondria with instinctive (Mito) and membrane-fused morphologies induced by Pep-1 conjugation (P-Mito) using a mouse model of triple-negative breast cancers. Materials and Methods Mice with advanced severe immunodeficiency received orthotopic implantation of MDA-MB-231 human breast cancer cells followed by transplants of 5-bromo-2'-deoxyuridine (BrdU)-labeled Mito or P-Mito (200 μg [10 μg/μL]) through intratumoral injection at multiple points once a week for 4 weeks. Results After 1 month of consecutive treatment, 8.2% and 14.2% of the BrdU-labeled mitochondria were preserved in tumors of the Mito and P-Mito groups, respectively. Both Pep-1 and P-Mito treatments reduced tumor weight (21.7% ± 2.43% vs 40.6% ± 2.28%) and led to marked inhibition of Ki67 staining and angiogenesis. However, only the P-Mito group exhibited obvious necrosis and DNA fragmentation accompanied by an altered tumor microenvironment, which included reduced oxidative stress and size of cancer-associated fibroblast populations and enhanced immune cell infiltration. Transmission electron microscopy images further revealed an elongated network of perinuclear mitochondria fused with a few peripheral mitochondria in the nonnecrotic area in the P-Mito group as well as increases in mitochondrial fusion proteins and parkin compared with mitochondrial fission proteins. Conclusion In this study, the results of mitochondrial transplantation emphasized that the facilitation of mitochondrial fusion is a critical regulator in breast cancer therapy.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Huei-Shin Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Yao-Chung Wu
- Department of Medicine, College of Medicine, China Medical University, Taichung 40447, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Hui-Ju Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Shou-Tung Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 50094, Taiwan.,Department of Medical Research, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua 50094, Taiwan.,School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
31
|
Maeda H, Kami D, Maeda R, Murata Y, Jo JI, Kitani T, Tabata Y, Matoba S, Gojo S. TAT-dextran-mediated mitochondrial transfer enhances recovery from models of reperfusion injury in cultured cardiomyocytes. J Cell Mol Med 2020; 24:5007-5020. [PMID: 32212298 PMCID: PMC7205789 DOI: 10.1111/jcmm.15120] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction is a leading cause of death among single organ diseases. Despite successful reperfusion therapy, ischaemia reperfusion injury (IRI) can induce oxidative stress (OS), cardiomyocyte apoptosis, autophagy and release of inflammatory cytokines, resulting in increased infarct size. In IRI, mitochondrial dysfunction is a key factor, which involves the production of reactive oxygen species, activation of inflammatory signalling cascades or innate immune responses, and apoptosis. Therefore, intercellular mitochondrial transfer could be considered as a promising treatment strategy for ischaemic heart disease. However, low transfer efficiency is a challenge in clinical settings. We previously reported uptake of isolated exogenous mitochondria into cultured cells through co‐incubation, mediated by macropinocytosis. Here, we report the use of transactivator of transcription dextran complexes (TAT‐dextran) to enhance cellular uptake of exogenous mitochondria and improve the protective effect of mitochondrial replenishment in neonatal rat cardiomyocytes (NRCMs) against OS. TAT‐dextran–modified mitochondria (TAT‐Mito) showed a significantly higher level of cellular uptake. Mitochondrial transfer into NRCMs resulted in anti‐apoptotic capability and prevented the suppression of oxidative phosphorylation in mitochondria after OS. Furthermore, TAT‐Mito significantly reduced the apoptotic rates of cardiomyocytes after OS, compared to simple mitochondrial transfer. These results indicate the potential of mitochondrial replenishment therapy in OS‐induced myocardial IRI.
Collapse
Affiliation(s)
- Hideki Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryotaro Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Murata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Lin YT, Chen ST, Chang JC, Teoh RJ, Liu CS, Wang GJ. Green extraction of healthy and additive free mitochondria with a conventional centrifuge. LAB ON A CHIP 2019; 19:3862-3869. [PMID: 31625549 DOI: 10.1039/c9lc00633h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this research, we propose a novel centrifugal device for the massive extraction of healthy mitochondria with a centrifuge used in general laboratories within 30 minutes. The device mainly consists of two key components. One component is a microfluidic device, which is fabricated by photolithography, nickel electroforming, and polydimethylsiloxane casting, for the efficient disruption of the cell membrane. The other component is a stainless steel container, which is manufactured by computer numerical control machining, for the storage of the cell suspension. After assembly, the appropriate number of cells is pushed through the microfluidic device for cell membrane disruption by centrifugal force generated by a general laboratory centrifuge. The solution which contains cell debris and mitochondria are collected to purify the crude mitochondria via differential centrifugation. Compared with the quantity and efficiency of mitochondria isolated from the same number of cells using a conventional kit, device-extracted mitochondria show a more complete mitochondrial electron transport chain complex and a similar number of mitochondria verified by Western blot analysis of mitochondrial complexes I-V and mitochondrial outer membrane protein Tom20, respectively, as well as a normal mitochondrial structure revealed by transmission electron microscopy. Moreover, the mitochondrial membrane potential of device-extracted mitochondria stained with tetramethylrhodamine ethyl ester is higher than that of kit-extracted mitochondria. Furthermore, the coculture of device-extracted mitochondria with fibroblasts revealed that fibroblasts could uptake foreign mitochondria through endocytosis without drug treatment. These results show that the proposed microfluidic device preserves mitochondrial protein structure, membrane integrity, and membrane potential within 30 minutes of extraction and is a useful tool for therapeutic mitochondrial transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Ying-Ting Lin
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan. and Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Sung-Tzu Chen
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Jui-Chih Chang
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ren-Jie Teoh
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Gou-Jen Wang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan. and Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan and Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
33
|
Al Khatib I, Shutt TE. Advances Towards Therapeutic Approaches for mtDNA Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:217-246. [PMID: 31452143 DOI: 10.1007/978-981-13-8367-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria maintain and express their own genome, referred to as mtDNA, which is required for proper mitochondrial function. While mutations in mtDNA can cause a heterogeneous array of disease phenotypes, there is currently no cure for this collection of diseases. Here, we will cover characteristics of the mitochondrial genome important for understanding the pathology associated with mtDNA mutations, and review recent approaches that are being developed to treat and prevent mtDNA disease. First, we will discuss mitochondrial replacement therapy (MRT), where mitochondria from a healthy donor replace maternal mitochondria harbouring mutant mtDNA. In addition to ethical concerns surrounding this procedure, MRT is only applicable in cases where the mother is known or suspected to carry mtDNA mutations. Thus, there remains a need for other strategies to treat patients with mtDNA disease. To this end, we will also discuss several alternative means to reduce the amount of mutant mtDNA present in cells. Such methods, referred to as heteroplasmy shifting, have proven successful in animal models. In particular, we will focus on the approach of targeting engineered endonucleases to specifically cleave mutant mtDNA. Together, these approaches offer hope to prevent the transmission of mtDNA disease and potentially reduce the impact of mtDNA mutations.
Collapse
Affiliation(s)
- Iman Al Khatib
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Villanueva-Paz M, Povea-Cabello S, Villalón-García I, Suárez-Rivero JM, Álvarez-Córdoba M, de la Mata M, Talaverón-Rey M, Jackson S, Sánchez-Alcázar JA. Pathophysiological characterization of MERRF patient-specific induced neurons generated by direct reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:861-881. [PMID: 30797798 DOI: 10.1016/j.bbamcr.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Mitochondrial diseases are a group of rare heterogeneous genetic disorders caused by total or partial mitochondrial dysfunction. They can be caused by mutations in nuclear or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most common mitochondrial disorders caused by point mutations in mtDNA. It is mainly caused by the m.8344A > G mutation in the tRNALys (UUR) gene of mtDNA (MT-TK gene). This mutation affects the translation of mtDNA encoded proteins; therefore, the assembly of the electron transport chain (ETC) complexes is disrupted, leading to a reduced mitochondrial respiratory function. However, the molecular pathogenesis of MERRF syndrome remains poorly understood due to the lack of appropriate cell models, particularly in those cell types most affected in the disease such as neurons. Patient-specific induced neurons (iNs) are originated from dermal fibroblasts derived from different individuals carrying the particular mutation causing the disease. Therefore, patient-specific iNs can be used as an excellent cell model to elucidate the mechanisms underlying MERRF syndrome. Here we present for the first time the generation of iNs from MERRF dermal fibroblasts by direct reprograming, as well as a series of pathophysiological characterizations which can be used for testing the impact of a specific mtDNA mutation on neurons and screening for drugs that can correct the phenotype.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Sandra Jackson
- Department of Neurology, Uniklinikum C. G. Carus, Dresden, Germany
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
35
|
Chang JC, Chang HS, Wu YC, Cheng WL, Lin TT, Chang HJ, Kuo SJ, Chen ST, Liu CS. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:30. [PMID: 30674338 PMCID: PMC6343292 DOI: 10.1186/s13046-019-1028-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
Abstract
Background The transfer of whole mitochondria that occurs during cell contact has been found to support cancer progression. However, the regulatory role of mitochondria alone is difficult to elucidate due to the complex microenvironment. Currently, mitochondrial transplantation is an available approach for restoring mitochondrial function in mitochondrial diseases but remains unclear in breast cancer. Herein, effects of mitochondrial transplantation via different approaches in breast cancer were investigated. Methods Whole mitochondria (approximately 10.5 μg/ml) were transported into MCF-7 breast cancer cells via passive uptake or Pep-1-mediated delivery. Fresh mitochondria isolated from homeoplasmic 143B osteosarcoma cybrids containing mitochondrial DNA (mtDNA) derived from health individuals (Mito) or mtDNA with the A8344G mutation (Mito8344) were conjugated with cell-penetrating peptide Pep-1 (P-Mito) or not conjugated prior to cell co-culture. Before isolation, mitochondria were stained with MitoTracker dye as the tracking label. After 3 days of treatment, cell viability, proliferation, oxidative stress, drug sensitivity to Doxorubicin/Paclitaxel and mitochondrial function were assessed. Results Compared with P-Mito, a small portion of Mito adhered to the cell membrane, and this was accompanied by a slightly lower fluorescent signal by foreign mitochondria in MCF-7 cells. Both transplantations induced cell apoptosis by increasing the nuclear translocation of apoptosis-inducing factor; inhibited cell growth and decreased oxidative stress in MCF-7 cells; and increased the cellular susceptibility of both the MCF-7 and MDA-MB-231 cell lines to Doxorubicin and Paclitaxel. Mitochondrial transplantation also consistently decreased Drp-1, which resulted in an enhancement of the tubular mitochondrial network, but a distinct machinery through the increase of parkin and mitochondrial fusion proteins was observed in the Mito and P-Mito groups, respectively. Furthermore, although there were no differences in energy metabolism after transplantation of normal mitochondria, metabolism was switched to the energetic and glycolytic phenotypes when the mitochondria were replaced with dysfunctional mitochondria, namely, Mito8344 and P-Mito8344, due to dramatically induced glycolysis and reduced mitochondrial respiration, respectively. Consequently, transplant-induced growth inhibition was abolished, and cell growth in the Mito8344 group was even higher than that in the control group. Conclusion This study reveals the antitumour potential of mitochondrial transplantation in breast cancer via distinct regulation of mitochondrial function. Electronic supplementary material The online version of this article (10.1186/s13046-019-1028-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Huei-Shin Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Yao-Chung Wu
- Division of General Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, 50094, Taiwan.,Department of Medicine, College of Medicine, China Medical University, Taichung, 40447, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Hui-Ju Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Shou-Jen Kuo
- Division of General Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, 50094, Taiwan.,Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Shou-Tung Chen
- Division of General Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, 50094, Taiwan. .,Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, 50094, Taiwan. .,Endoscopy & Oncoplastic Breast Surgery Center, Changhua Christian Hospital, Changhua, Taiwan.
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan. .,Department of Neurology, Changhua Christian Hospital, Changhua, 50094, Taiwan. .,Department of Chinese Medicine, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, 40447, Taiwan.
| |
Collapse
|
36
|
Abstract
Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
37
|
Abstract
This paper proposes the use of a chip-based microfluidic device to extract functional and chemical free mitochondria. A simple microfluidic device was designed and fabricated. An osteosarcoma cybrid cell line was employed to demonstrate the efficiency of the proposed microfluidic device. The membrane proteins (mitochondrial complex I-V and Tom20) and morphology of the extracted mitochondria were examined by Western blot and transmission electron microscopy (TEM), respectively. The purity and mitochondrial membrane potential of the extracted mitochondria were individually measured by 10-N-alkyl acridine orange and tetramethylrhodamine ethyl ester staining via flow cytometry. Experimental results revealed that expressed pattern of complex I–V in device-extracted mitochondria was close to that of mitochondria in total cell lysis and device extraction significantly prevented chemical modification of complex IV protein via a conventional kit, although device extract similar amounts of mitochondria to the conventional kit revealed by Tom20 expression. Furthermore, purity of device-extracted mitochondria was above 93.7% and mitochondria still retained normal activity after device extraction proven by expression of mitochondrial membrane potential as well as the entire mitochondrial morphology. These results confirmed that the proposed microfluidic device could obtain functional mitochondria without structural damage.
Collapse
|
38
|
Fabbri A, Travaglione S, Maroccia Z, Guidotti M, Pierri CL, Primiano G, Servidei S, Loizzo S, Fiorentini C. The Bacterial Protein CNF1 as a Potential Therapeutic Strategy against Mitochondrial Diseases: A Pilot Study. Int J Mol Sci 2018; 19:E1825. [PMID: 29933571 PMCID: PMC6073533 DOI: 10.3390/ijms19071825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1), which acts on the Rho GTPases that are key regulators of the actin cytoskeleton, is emerging as a potential therapeutic tool against certain neurological diseases characterized by cellular energy homeostasis impairment. In this brief communication, we show explorative results on the toxin’s effect on fibroblasts derived from a patient affected by myoclonic epilepsy with ragged-red fibers (MERRF) that carries a mutation in the m.8344A>G gene of mitochondrial DNA. We found that, in the patient’s cells, besides rescuing the wild-type-like mitochondrial morphology, CNF1 administration is able to trigger a significant increase in cellular content of ATP and of the mitochondrial outer membrane marker Tom20. These results were accompanied by a profound F-actin reorganization in MERRF fibroblasts, which is a typical CNF1-induced effect on cell cytoskeleton. These results point at a possible role of the actin organization in preventing or limiting the cell damage due to mitochondrial impairment and at CNF1 treatment as a possible novel strategy against mitochondrial diseases still without cure.
Collapse
Affiliation(s)
- Alessia Fabbri
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Sara Travaglione
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Zaira Maroccia
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Marco Guidotti
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona, 4, 70124 Bari, Italy.
| | - Guido Primiano
- Unità di Neurofisiopatologia, Area Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy.
| | - Serenella Servidei
- Unità di Neurofisiopatologia, Area Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy.
| | - Stefano Loizzo
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Carla Fiorentini
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
39
|
Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 2017; 7:17450. [PMID: 29234096 PMCID: PMC5727261 DOI: 10.1038/s41598-017-17813-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Tissue ischemia adversely affects the function of mitochondria, which results in impairment of oxidative phosphorylation and compromised recovery of the affected organ. The impact of ischemia on mitochondrial function has been extensively studied in the heart because of the morbidity and mortality associated with injury to this organ. As conventional methods to preserve cardiac cell viability and contractile function following ischemia are limited in their efficacy, we developed a unique approach to protect the heart by transplanting respiration-competent mitochondria to the injured region. Our previous animal experiments showed that transplantation of isolated mitochondria to ischemic heart tissue leads to decreases in cell death, increases in energy production, and improvements in contractile function. We also discovered that exogenously-derived mitochondria injected or perfused into ischemic hearts were rapidly internalised by cardiac cells. Here, we used three-dimensional super-resolution microscopy and transmission electron microscopy to determine the intracellular fate of endocytosed exogenous mitochondria in human iPS-derived cardiomyocytes and primary cardiac fibroblasts. We found isolated mitochondria are incorporated into cardiac cells within minutes and then transported to endosomes and lysosomes. The majority of exogenous mitochondria escape from these compartments and fuse with the endogenous mitochondrial network, while some of these organelles are degraded through hydrolysis.
Collapse
|
40
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
41
|
Chang JC, Hoel F, Liu KH, Wei YH, Cheng FC, Kuo SJ, Tronstad KJ, Liu CS. Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci Rep 2017; 7:10710. [PMID: 28878349 PMCID: PMC5587702 DOI: 10.1038/s41598-017-10870-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
The cell penetrating peptide, Pep-1, has been shown to facilitate cellular uptake of foreign mitochondria but further research is required to evaluate the use of Pep-1-mediated mitochondrial delivery (PMD) in treating mitochondrial defects. Presently, we sought to determine whether mitochondrial transplantation rescue mitochondrial function in a cybrid cell model of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) disease. Following PMD, recipient cells had internalized donor mitochondria after 1 h, and expressed higher levels of normal mitochondrial DNA, particularly at the end of the treatment and 11 days later. After 4 days, mitochondrial respiratory function had recovered and biogenesis was evident in the Pep-1 and PMD groups, compared to the untreated MELAS group. However, only PMD was able to reverse the fusion-to-fission ratio of mitochondrial morphology, and mitochondria shaping proteins resembled the normal pattern seen in the control group. Cell survival following hydrogen peroxide-induced oxidative stress was also improved in the PMD group. Finally, we observed that PMD partially normalized cytokine expression, including that of interleukin (IL)-7, granulocyte macrophage–colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF), in the MELAS cells. Presently, our data further confirm the protective effects of PMD as well in MELAS disease.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ko-Hung Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Changhua, Taiwan
| | - Shou-Jen Kuo
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | | | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan. .,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
42
|
Mahrouf-Yorgov M, Augeul L, Da Silva CC, Jourdan M, Rigolet M, Manin S, Ferrera R, Ovize M, Henry A, Guguin A, Meningaud JP, Dubois-Randé JL, Motterlini R, Foresti R, Rodriguez AM. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ 2017; 24:1224-1238. [PMID: 28524859 PMCID: PMC5520168 DOI: 10.1038/cdd.2017.51] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) protect tissues against cell death induced by ischemia/reperfusion insults. This therapeutic effect seems to be controlled by physiological cues released by the local microenvironment following injury. Recent lines of evidence indicate that MSC can communicate with their microenvironment through bidirectional exchanges of mitochondria. In particular, in vitro and in vivo studies report that MSCs rescue injured cells through delivery of their own mitochondria. However, the role of mitochondria conveyed from somatic cells to MSC remains unknown. By using a co-culture system consisting of MSC and distressed somatic cells such as cardiomyocytes or endothelial cells, we showed that mitochondria from suffering cells acted as danger-signaling organelles that triggered the anti-apoptotic function of MSC. We demonstrated that foreign somatic-derived mitochondria were engulfed and degraded by MSC, leading to induction of the cytoprotective enzyme heme oxygenase-1 (HO-1) and stimulation of mitochondrial biogenesis. As a result, the capacity of MSC to donate their mitochondria to injured cells to combat oxidative stress injury was enhanced. We found that similar mechanisms - activation of autophagy, HO-1 and mitochondrial biogenesis - occurred after exposure of MSC to exogenous mitochondria isolated from somatic cells, strengthening the idea that somatic mitochondria alert MSC of a danger situation and subsequently promote an adaptive reparative response. In addition, the cascade of events triggered by the transfer of somatic mitochondria into MSC was recapitulated in a model of myocardial infarction in vivo. Specifically, MSC engrafted into infarcted hearts of mice reduced damage, upregulated HO-1 and increased mitochondrial biogenesis, while inhibition of mitophagy or HO-1 failed to protect against cardiac apoptosis. In conclusion, our study reveals a new facet about the role of mitochondria released from dying cells as a key environmental cue that controls the cytoprotective function of MSC and opens novel avenues to improve the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Meriem Mahrouf-Yorgov
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Lionel Augeul
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Claire Crola Da Silva
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Maud Jourdan
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Muriel Rigolet
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM U955 Team 10, Créteil, Paris, France
| | - Sylvie Manin
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - René Ferrera
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Michel Ovize
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France.,Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles, Cardiovasculaires and Centre d'Investigation Clinique, Lyon, France
| | - Adeline Henry
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM U955, Plateforme de Cytométrie en flux, Créteil, Paris, France
| | - Aurélie Guguin
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM U955, Plateforme de Cytométrie en flux, Créteil, Paris, France
| | - Jean-Paul Meningaud
- Service de Chirurgie Plastique et Maxillo-Faciale, AP-HP, Hôpital Henri Mondor-A. Chenevier, Créteil, Paris, France
| | - Jean-Luc Dubois-Randé
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,Fédération de Cardiologie, AP-HP, Hôpital Henri Mondor-A. Chenevier, Créteil, Paris, France
| | - Roberto Motterlini
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Roberta Foresti
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| | - Anne-Marie Rodriguez
- Université Paris-Est, UMR-S955, UPEC, Créteil, Paris, France.,INSERM, Unité 955 Team 12, Créteil, Paris, France
| |
Collapse
|
43
|
Mitochondrial Transfer from Wharton's Jelly Mesenchymal Stem Cell to MERRF Cybrid Reduces Oxidative Stress and Improves Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5691215. [PMID: 28607632 PMCID: PMC5457778 DOI: 10.1155/2017/5691215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 01/12/2023]
Abstract
Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial disease affecting neuromuscular functions. Mt.8344A>G mutation in mitochondrial DNA (mtDNA) is the most common cause of MERRF syndrome and has been linked to an increase in reactive oxygen species (ROS) level and oxidative stress, as well as impaired mitochondrial bioenergetics. Here, we tested whether WJMSC has therapeutic potential for the treatment of MERRF syndrome through the transfer of mitochondria. The MERRF cybrid cells exhibited a high mt.8344A>G mutation ratio, enhanced ROS level and oxidative damage, impaired mitochondrial bioenergetics, defected mitochondria-dependent viability, exhibited an imbalance of mitochondrial dynamics, and are susceptible to apoptotic stress. Coculture experiments revealed that mitochondria were intercellularly conducted from the WJMSC to the MERRF cybrid. Furthermore, WJMSC transferred mitochondria exclusively to cells with defective mitochondria but not to cells with normal mitochondria. MERRF cybrid following WJMSC coculture (MF+WJ) demonstrated improvement of mt.8344A>G mutation ratio, ROS level, oxidative damage, mitochondrial bioenergetics, mitochondria-dependent viability, balance of mitochondrial dynamics, and resistance against apoptotic stress. WJMSC-derived mitochondrial transfer and its therapeutic effect were noted to be blocked by F-actin depolymerizing agent cytochalasin B. Collectively, the WJMSC ability to rescue cells with defective mitochondrial function through donating healthy mitochondria may lead to new insights into the development of more efficient strategies to treat diseases related to mitochondrial dysfunction.
Collapse
|
44
|
Kuo CC, Su HL, Chang TL, Chiang CY, Sheu ML, Cheng FC, Chen CJ, Sheehan J, Pan HC. Prevention of Axonal Degeneration by Perineurium Injection of Mitochondria in a Sciatic Nerve Crush Injury Model. Neurosurgery 2017; 80:475-488. [PMID: 28362972 DOI: 10.1093/neuros/nyw090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 11/23/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Axon degeneration leads to cytoskeletal disassembly, metabolism imbalance, and mitochondrial dysfunction during neurodegeneration or nerve injury. OBJECTIVE In this study, we assess the possibility of mitigating axon degeneration by local injection of mitochondria in a crushed sciatic nerve. METHODS Sciatic nerve explants cocultured with mitochondria were assessed for the optimal dosage in local injection and nerve regeneration potential. The left sciatic nerve was crushed in Sprague-Dawley rats and then local injection of mitochondria into the distal end of the injured nerve was conducted for further assessment. RESULTS Mitochondrial coculture attenuated cytoskeletal loss and oxidative stress in isolated nerve explants. In Vivo analyses also showed that mitochondrial transplantation improved animal neurobehaviors, electrophysiology of nerve conduction, and muscle activities. Mitochondria injection significantly attenuated the oxidative stress and increased the expression of neurotrophic factors both in injured nerves and denervated muscles, as well as restored muscular integrity, and increased the pool of muscular progenitor cells and total muscle weight. CONCLUSION Mitochondria injection can protect injured nerves from axonal degeneration both in Vitro and in Vivo. This improvement was accompanied with the expression of neurotrophic factors as well as the reduction of oxidative stress, which may account for the functional recovery of both injured nerves and denervated muscles.
Collapse
Affiliation(s)
- Chi-Chung Kuo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, China
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, China
- School of Medicine, Tzu Chi University, Hualien, Taiwan, China
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, China
| | - Tzu-Lin Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, China
| | - Chien-Yi Chiang
- Institute of Biomedical Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, China
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, China
| | - Fu-Chou Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, China
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, China
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan, China
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, China
| |
Collapse
|
45
|
Lin HP, Zheng DJ, Li YP, Wang N, Chen SJ, Fu YC, Xu WC, Wei CJ. Incorporation of VSV-G produces fusogenic plasma membrane vesicles capable of efficient transfer of bioactive macromolecules and mitochondria. Biomed Microdevices 2016; 18:41. [PMID: 27165101 DOI: 10.1007/s10544-016-0066-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this study was to determine if plasma membrane vesicles (PMVs) could be exploited for efficient transfer of macro-biomolecules and mitochondria. PMVs were derived from mechanical extrusion, and made fusogenic (fPMVs) by incorporating the glycoprotein G of vesicular stomatitis virus (VSV-G). Confocal microscopy examination revealed that cytoplasmic proteins and mitochondria were enclosed in PMVs as evidenced by tracing with cytoplasmically localized and mitochondria-targeted EGFP, respectively. However, no fluorescence signal was detected in PMVs from cells whose nucleus was labeled with an EGFP-tagged histone H2B. Consistently, qRT-PCR measurement showed that mRNA, miRNA and mitochondrial DNA decreased slightly; while nuclear DNA was not measureable. Further, Western blot analysis revealed that cytoplasmic and membrane-bound proteins fell inconspicuously while nuclear proteins were barely detecsle. In addition, fPMVs carrying cytoplamic DsRed proteins transduced about ~40 % of recipient cells. The transfer of protein was further confirmed by using the inducible Cre/loxP system. Mitochondria transfer was found in about 20 % recipient cells after incubation with fPMVs for 5 h. To verify the functionalities of transferred mitochondria, mitochodria-deficient HeLa cells (Rho0) were generated and cultivated with fPMVs. Cell enumeration demonstrated that adding fPMVs into culture media stimulated Rho0 cell growth by 100 % as compared to the control. Lastly, MitoTracker and JC-1 staining showed that transferred mitochondria maintained normal shape and membrane potential in Rho0 cells. This study established a time-saving and efficient approach to delivering proteins and mitochondria by using fPMVs, which would be helpful for finding a cure to mitochondria-associated diseases. Graphical abstract Schematic of the delivery of macro-biomolecules and organelles by fPMVs. VSV-G-expressing cells were extruded through a 3 μm polycarbonate membrane filter to generate fusogenic plasma membrane vesicles (fPMVs), which contain bioactive molecules and organelles but not the nucleus. fPMVs can be endocytosed by target cells, while the cargo is released due to low-pH induced membrane fusion. These nucleus-free fPMVs are efficient at delivery of cytoplasmic proteins and mitochondria, leading to recovery of mitochondrial biogenesis and proliferative ability in mitochondria-deficient cells.
Collapse
Affiliation(s)
- Hao-Peng Lin
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - De-Jin Zheng
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Yun-Pan Li
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Na Wang
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Shao-Jun Chen
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Yu-Cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wen-Can Xu
- Department of Endocrinology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Chi-Ju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
46
|
Chang JC, Wu SL, Liu KH, Chen YH, Chuang CS, Cheng FC, Su HL, Wei YH, Kuo SJ, Liu CS. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res 2016; 170:40-56.e3. [PMID: 26730494 DOI: 10.1016/j.trsl.2015.12.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ko-Hung Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Hui Chen
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chieh-Sen Chuang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Fu-Chou Cheng
- Department of Medical Research, Stem Cell Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Shou-Jen Kuo
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan; Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
47
|
Huang PJ, Kuo CC, Lee HC, Shen CI, Cheng FC, Wu SF, Chang JC, Pan HC, Lin SZ, Liu CS, Su HL. Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains. Cell Transplant 2015; 25:913-27. [PMID: 26555763 DOI: 10.3727/096368915x689785] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transferring exogenous mitochondria has therapeutic effects on damaged heart, liver, and lung tissues. Whether this protective effect requires the symbiosis of exogenous mitochondria in host cells remains unknown. Here xenogenic mitochondria derived from a hamster cell line were applied to ischemic rat brains and rat primary cortical neurons. Isolated hamster mitochondria, either through local intracerebral or systemic intra-arterial injection, significantly restored the motor performance of brain-ischemic rats. The brain infarct area and neuronal cell death were both attenuated by the exogenous mitochondria. Although internalized mitochondria could be observed in neurons and astrocytes, the low efficacy of mitochondrial internalization could not completely account for the high rate of rescue of the treated neural cells. We further illustrated that disrupting electron transport or ATPase synthase in mitochondria significantly attenuated the protective effect, suggesting that intact respiratory activity is essential for the mitochondrial potency on neural protection. These results emphasize that nonsymbiotic extracellular mitochondria can provide an effective cell defense against acute injurious ischemic stress in the central nervous system.
Collapse
Affiliation(s)
- Po-Jui Huang
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin HY, Liou CW, Chen SD, Hsu TY, Chuang JH, Wang PW, Huang ST, Tiao MM, Chen JB, Lin TK, Chuang YC. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 2015; 22:31-44. [PMID: 25746175 DOI: 10.1016/j.mito.2015.02.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 02/01/2023]
Abstract
Adult mesenchymal stem cell (MSC)-conducted mitochondrial transfer has been recently shown to rescue cellular bioenergetics and prevent cell death caused by mitochondrial dysfunction. Wharton's jelly-derived MSCs (WJMSCs) harvested from postpartum umbilical cords are an accessible and abundant source of stem cells. This study aimed to determine the capability of WJMSCs to transfer their own mitochondria and rescue impaired oxidative phosphorylation (OXPHOS) and bioenergetics caused by mitochondrial DNA defects. To do this, WJMSCs were co-cultured with mitochondrial DNA (mtDNA)-depleted ρ(0) cells and the recapture of mitochondrial function was evaluated. WJMSCs were shown to be capable of transferring their own mitochondria into ρ(0) cells and underwent interorganellar mixture within these cells. Permissive culture media (BrdU-containing and pyruvate- and uridine-free) sieved out a survival cell population from the co-cultured WJMSCs (BrdU-sensitive) and ρ(0) cells (pyruvate/uridine-free). The survival cells had mtDNA identical to that of WJMSCs, whereas they expressed cellular markers identical to that of ρ(0) cells. Importantly, these ρ(0)-plus -WJMSC-mtDNA (ρ(+W)) cells recovered the expression of mtDNA-encoded proteins and exhibited functional oxygen consumption and respiratory control, as well as the activity of electron transport chain (ETC) complexes I, II, III and IV. In addition, ETC complex V-inhibitor-sensitive ATP production and metabolic shifting were also recovered. Furthermore, cellular behaviors including attachment-free proliferation, aerobic viability and OXPHOS-reliant cellular motility were also regained after mitochondrial transfer by WJMSCs. The therapeutic effect of WJMSCs-derived mitochondrial transfer was able to stably sustain for at least 45 passages. In conclusion, this study suggests that WJMSCs may serve as a potential therapeutic strategy for diseases linked to mitochondrial dysfunction through the donation of healthy mitochondria to cells with genetic mitochondrial defects.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Jiin-Haur Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pei-Wen Wang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Sheng-Teng Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jin-Bor Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Yao-Chung Chuang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
49
|
Abstract
Progressive myoclonic epilepsies are a group of disorders characterised by a relentlessly progressive disease course until death; treatment-resistant epilepsy is just a part of the phenotype. This umbrella term encompasses many diverse conditions, ranging from Lafora body disease to Gaucher's disease. These diseases as a group are important because of a generally poor response to antiepileptic medication, an overall poor prognosis and inheritance risks to siblings or offspring (where there is a proven genetic cause). A correct diagnosis also helps patients and their families to accept and understand the nature of their disease, even if incurable. Here, we discuss the phenotypes of these disorders and summarise the relevant specific investigations to identify the underlying cause.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - William Stewart
- Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - John Greene
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| |
Collapse
|
50
|
Pepe S, Mentzer RM, Gottlieb RA. Cell-permeable protein therapy for complex I dysfunction. J Bioenerg Biomembr 2014; 46:337-45. [PMID: 25005682 DOI: 10.1007/s10863-014-9559-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
Complex I deficiency is difficult to treat because of the size and complexity of the multi-subunit enzyme complex. Mutations or deletions in the mitochondrial genome are not amenable to gene therapy. However, animal studies have shown that yeast-derived internal NADH quinone oxidoreductase (Ndi1) can be delivered as a cell-permeable recombinant protein (Tat-Ndi1) that can functionally replace complex I damaged by ischemia/reperfusion. Current and future treatment of disorders affecting complex I are discussed, including the use of Tat-Ndi1.
Collapse
Affiliation(s)
- Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | | | | |
Collapse
|