1
|
Lai Y, Zhang W, Chen Y, Weng J, Zeng Y, Wang S, Niu X, Yi M, Li H, Deng X, Zhang X, Jia D, Jin W, Yang F. Advanced healing potential of simple natural hydrogel loaded with sildenafil in combating infectious wounds. Int J Pharm X 2025; 9:100328. [PMID: 40225287 PMCID: PMC11992542 DOI: 10.1016/j.ijpx.2025.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Infected wounds are common clinical injuries that often complicated by inflammation and oxidative stress due to bacterial invasion. These wounds typically suffer from impaired vascularization, which delays healing and increases the risk of complications such as sepsis and chronic wounds. Therefore, developing an effective treatment for infected wounds is highly necessary. Egg white can promote cell regeneration and repair, while chitosan is effective in resisting bacterial invasion. Sildenafil is believed to have the potential to promote angiogenesis. Based on these properties, we have prepared a new type of hydrogel using egg white and chitosan as the framework, loaded with sildenafil (CEHS). The hydrogel combines the benefits of its components, exhibiting good biocompatibility and promoting the proliferation and migration of NIH 3T3 (3T3) cells and human umbilical vein endothelial cells (HUVEC), as well as the angiogenesis in HUVEC. It also exhibits significant antioxidant, anti-inflammatory, and antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Additionally, in a mouse model of infected wounds, the CEHS effectively promoted wound healing through its excellent antioxidant and anti-inflammatory properties, antibacterial activity, and pro-angiogenic effects. In summary, this simple-to-prepare, multifunctional natural hydrogel shows great promise for the treatment of infected wounds.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Wa Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yizhang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jialu Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuhan Zeng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shunfu Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaoying Niu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Meilin Yi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haobing Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xuchen Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiuhua Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Danyun Jia
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Wenzhang Jin
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Fajing Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
2
|
Liu H, He L. Intelligent hydrogel-based dressings for treatment of chronic diabetic wounds. World J Diabetes 2025; 16:104937. [DOI: 10.4239/wjd.v16.i5.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 04/25/2025] Open
Abstract
Diabetic wounds represent a significant challenge in the medical field, significantly impacting patient quality of life and imposing a heavy burden on healthcare systems. Intelligent hydrogel dressings have attracted significant attention in diabetic wound treatment due to their unique properties. This review systematically explores the three main categories of intelligent hydrogels (natural, synthetic, and composite), dissecting their composition, structure, and the mechanisms that enable their intelligent responses. The crucial roles of these dressings in maintaining a moist wound environment, efficiently absorbing exudate, and precisely delivering drugs are expounded. Moreover, their application advantages in combating bacteria and infections, regulating inflammation and immunity, promoting angiogenesis and tissue regeneration, as well as enabling real-time monitoring and personalized treatment, are explored in depth. Additionally, we discuss future research directions and the prospects for personalized precision medicine in diabetic wound care, aiming to inspire innovation and provide a comprehensive theoretical basis for the development of next-generation intelligent dressings.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100000, China
| | - Li He
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100000, China
| |
Collapse
|
3
|
Pouso MR, Melo BL, Gonçalves JJ, Louro RO, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable and implantable hydrogels for localized delivery of drugs and nanomaterials for cancer chemotherapy: A review. Int J Pharm 2025:125640. [PMID: 40287071 DOI: 10.1016/j.ijpharm.2025.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Multiple chemotherapeutic strategies have been developed to tackle the complexity of cancer. Still, the outcome of chemotherapeutic regimens remains impaired by the drugs' weak solubility, unspecific biodistribution and poor tumor accumulation after systemic administration. Such constraints triggered the development of nanomaterials to encapsulate and deliver anticancer drugs. In fact, the loading of drugs into nanoparticles can overcome most of the solubility concerns. However, the ability of systemically administered drug-loaded nanomaterials to reach the tumor site has been vastly overestimated, limiting their clinical translation. The drugs' and drug-loaded nanomaterials' systemic administration issues have propelled the development of hydrogels capable of performing their direct/local delivery into the tumor site. The use of these macroscale systems to mediate a tumor-confined delivery of the drugs/drugs-loaded nanomaterials grants an improved therapeutic efficacy and, simultaneously, a reduction of the side effects. The manufacture of these hydrogels requires the careful selection and tailoring of specific polymers/materials as well as the choice of appropriate physical and/or chemical crosslinking interactions. Depending on their administration route and assembling process, these matrices can be classified as injectable in situ forming hydrogels, injectable shear-thinning/self-healing hydrogels, and implantable hydrogels, each type bringing a plethora of advantages for the intended biomedical application. This review provides the reader with an insight into the application of injectable and implantable hydrogels for performing the tumor-confined delivery of drugs and drug-loaded nanomaterials.
Collapse
Affiliation(s)
- Manuel R Pouso
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Joaquim J Gonçalves
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - António G Mendonça
- RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal; University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
4
|
Yew PYM, Lin Q, Owh C, Chee PL, Loh XJ. Current research and future potential of thermogels for sustained drug delivery. Expert Opin Drug Deliv 2025:1-18. [PMID: 40156586 DOI: 10.1080/17425247.2025.2486350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Drug administration is ubiquitous in the healthcare field, and it is crucial to optimize drug delivery methods to improve drug efficacy, reduce systemic toxicity, and enhance patient compliance Thermogels have shown immense potential in drug delivery due to their injectability, biocompatibility, and ability to provide localized and sustained drug release. AREA COVERED This paper discusses the unique properties of thermogel in relation to drug kinetics and their suitability as a carrier. Different considerations and applications of thermogel drug delivery systems (DDS) were highlighted and their challenges to enter the market discussed. A comprehensive literature search was conducted using major databases such as PubMed, Scopus, and Web of Science. The search employed relevant keywords to identify studies on thermogel DDS. Clinicaltrials.gov was also utilized to determine the current state of clinical studies. EXPERT OPINION Nonetheless, thermogel holds great promise for the future in DDS with research achieving greater heights in terms of complexity and clinical pursuits. Their flexibility in fabrication and modularity manner makes it a great material to tailor to different drug delivery applications and to be integrated into various biomedical disciplinaries.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
5
|
Zhou H, Yuan M, Zhang T. A Bibliometric Analysis and Systematic Review of Research Advances in In Situ Gel Drug Delivery Systems from 2003 to 2023. Pharmaceutics 2025; 17:451. [PMID: 40284446 PMCID: PMC12030373 DOI: 10.3390/pharmaceutics17040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Objective: We aimed analyze research trends in in situ gel drug delivery systems. Methods: Studies from 2003 to 2023 were systematically obtained from the Web of Science database and analyzed using VOSviewer software to evaluate publication trends, citation patterns, and collaborative networks. Results: A total of 990 articles were reviewed. There has been a significant increase in publications since 2019, with the highest number of publications occurring in 2023. China was the leading country in terms of publication output. Cairo University and King Abdulaziz University were identified as the top contributing institutions. Key researchers included Zhao, Xia, Hosny, and Kim. The research primarily focused on developing new formulations, optimizing materials (e.g., biocompatible and biodegradable materials), and exploring clinical applications such as nasal-brain delivery for Alzheimer's treatment. Conclusions: In situ gel systems have gained widespread use in clinical practice due to their ability to provide prolonged drug release and enhance patient compliance. This area remains crucial for future research, particularly in formulation design and administration methods.
Collapse
Affiliation(s)
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, Medical School of Guangxi University, Nanning 530004, China; (H.Z.); (T.Z.)
| | | |
Collapse
|
6
|
Kopač T, Ambrožič R. Tailored alginate and chitosan hydrogels: Structural control and functional applications via copper-based electrodeposition. Int J Biol Macromol 2025; 308:142476. [PMID: 40139607 DOI: 10.1016/j.ijbiomac.2025.142476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
This study explores the development and characterization of copper-based hydrogels synthesized using an electrodeposition method. Alginate and chitosan were used as natural polymers, each with distinct structural and functional characteristics. The electrodeposition conditions, such as current density and deposition time, were systematically varied to investigate their effects on hydrogel morphology, cross-link density and mesh size. The results showed that alginate-based hydrogels form more extensive networks with copper ions through interactions with carboxylate groups, resulting in a higher cross-link density, whereas chitosan-based hydrogels form a more open structure. The addition of polyvinyl alcohol (PVA) was found to modulate the mechanical properties and increase the network's flexibility, expanding the potential applications of these hydrogels. Effective diffusion studies of model molecules highlighted the significant influence of mesh size and cross-link density on permeability, demonstrating the hydrogels' suitability for applications requiring precise control over molecular transport. A DoE (Design of Experiments) approach further enabled the systematic optimization of these parameters, ensuring reproducibility and scalability in achieving the desired hydrogel properties for industrial and biomedical applications.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Rok Ambrožič
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Mohandas M, Rangasamy J. Multifunctional liposomal gel in regenerative medicine. J Liposome Res 2025:1-13. [PMID: 40105376 DOI: 10.1080/08982104.2025.2480786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
The synergistic approach of liposome integrated with gel matrix could reshape the current frameworks of drug delivery technology. The liposome-based approaches are limited by inadequate stability and rapid leakage of drug molecules. Undesired and immediate drug release from gel increases the local concentration of drug and causes toxicity. So, the stabilization of liposomes within a gel matrix can be an effective option to provide an ingenious solution to the conventional limitation on short half-life, instability, toxicity, uncontrolled drug release and poor retention of drug molecules on the target site. The capability to incorporate antibacterial as well as anti-oxidant drugs, antimicrobial peptides, ligands, growth hormones, antigens, and imaging agents had contributed to the establishment of multifunctional liposomal gel system has significant advantage in regenerative medicine area. This review will focus the advantage of multifunctional liposomal gels in context of infectious wound healing, skin rejuvenation, musculoskeletal repair and trauma management, spinal cord injury treatment, tumor specific chemotherapy as well as immunotherapy and vaccination. The versatility in executing the multiple functions will be a valuable solution for advancing the therapeutic outcomes in regenerative medicine.
Collapse
Affiliation(s)
- Meghna Mohandas
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
8
|
Suba Sri M, Usha R. An insightful overview on osteogenic potential of nano hydroxyapatite for bone regeneration. Cell Tissue Bank 2025; 26:13. [PMID: 40038123 DOI: 10.1007/s10561-025-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The orthopaedic surgeries were greatly aided by bone grafting with the use of nanomaterials which provide new strategies for bone regeneration, despite the significant drawbacks of traditional treatments. Hydroxyapatite is one of the bioactive ceramics that has gained substantial research attention due to its biocompatibility, bioactivity and osteointegration ability for the manufacturing of nano bone grafts. The organized complex and porous structures of the human bone tissue is a nanocomposite which consists of both organic and inorganic matrix including hydroxyapatite naturally. Conventional hydroxyapatite was known to provide good adhesion and proliferation of host cells but very low mechanical strength. Hence biomaterial made of hydroxyapatite with various polymers and cross linking agents were used to enhance the mechanical strength of the material. Out of 293 articles obtained from the literature search, only 90 articles met the inclusion criteria about bone regeneration using nano hydroxyapatite materials. The present review addresses the potential capping agents with plant extracts for the synthesis of hydroxyapatite nanomaterials with multi-functional applications include drug delivery for targeting the desired therapeutic effect for bone regeneration with osteoprotective ability and tumour therapy.
Collapse
Affiliation(s)
- M Suba Sri
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - R Usha
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
9
|
Cao Y, Liu C, Ye W, Zhao T, Fu F. Functional Hydrogel Interfaces for Cartilage and Bone Regeneration. Adv Healthc Mater 2025; 14:e2403079. [PMID: 39791312 DOI: 10.1002/adhm.202403079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.g., biological activity, controllable biodegradability, mechanical strength, excellent cell/tissue adhesion, and controllable release properties) for their clinical applications in complex bone repair processes. In this review, we will highlight recent advances in developing functional interface hydrogels. We then discuss the barriers to producing of functional hydrogel materials without sacrificing their inherent properties, and potential applications in cartilage and bone repair are discussed. Multifunctional hydrogel interface materials can serve as a fundamental building block for bone tissue engineering.
Collapse
Affiliation(s)
- Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Ye
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianrui Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
10
|
Du H, Wang Z, Long S, Li Y, Yang D. The advancement of nanosystems for drug delivery in the prevention and treatment of dental caries. Front Cell Infect Microbiol 2025; 15:1546816. [PMID: 40007606 PMCID: PMC11850577 DOI: 10.3389/fcimb.2025.1546816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The dental caries remains a globally prevalent disease. Although its incidence has decrease due to enhancements in sanitation policies and public health measures, the treatment and prevention of dental caries still pose significant challenges. Within the oral cavity, traditional drug delivery systems suffer from limitation such as inadequate tissue penetration, short duration of action at target site, and low specificity, which minimally affect the prevention and treatment of dental caries. Consequently, nanosystem for drug delivery, offering enhanced drug stability, solubility, and bio-availability while reducing side effects, garnering attention increasing attention in the fight against dental caries. Therefore, this review examines the role of nanosystems for drug delivery in combating dental caries by inhibiting bacteria survival, biofilm formation, demineralization, and promoting remineralization, and exploring their potential to become the mainstream means of prevention and treatment of dental caries in future.
Collapse
Affiliation(s)
- Han Du
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Zheng Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Shenglan Long
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Yiding Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Mubarak N, Waqar MA, Khan AM, Asif Z, Alvi AS, Virk AA, Amir S. A comprehensive insight of innovations and recent advancements in nanocarriers for nose-to-brain drug targeting. Des Monomers Polym 2025; 28:7-29. [PMID: 39935823 PMCID: PMC11812116 DOI: 10.1080/15685551.2025.2464132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Central Nervous System (CNS) disorders are the leading cause of illness and affect the everyday lives of people all around the globe and are predicted to increase tremendously in the upcoming decades. Traditional methods of delivering drugs to the CNS face considerable limitations. Nose-to-brain targeting offers a promising alternative that bypasses the blood-brain barrier (BBB), enabling targeted drug administration to the central nervous system (CNS). Nanotechnology has brought forward innovative solutions to the challenges of drug delivery in CNS disorders. Nanocarriers such as liposomes, nanoparticles, nanoemulsions and dendrimers can enhance drug stability, bioavailability, and targeted delivery to the brain. These nanocarriers are designed to overcome physiological barriers and provide controlled and sustained drug release directly to the CNS. Nanocarrier technology has made significant strides in recent years, enabling more effective and targeted delivery of drugs to the brain. With recent advancements, intranasal delivery coupled with nanocarriers seems to be a promising combination that can provide better clinical profiles, pharmacokinetics, and pharmacodynamics for neurodegenerative disorders. This study focuses on exploring the nose-to-brain drug delivery system, emphasizing the use of various nanocarriers designed for this purpose. Additionally, the study encompasses recent advancements in nanocarrier technology tailored specifically to improve the efficiency of drug administration through the nasal route to the brain.
Collapse
Affiliation(s)
- Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Zainab Asif
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aima Subia Alvi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aqsa Arshad Virk
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Sakeena Amir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
12
|
Thonpho A, Baimark Y, Tanisood S, Srihanam P. Effects of Guar Gum and Sodium Benzoate on the Properties and Hydrophilicity of Silk Fibroin Hydrogels. Polymers (Basel) 2025; 17:425. [PMID: 39940626 PMCID: PMC11820424 DOI: 10.3390/polym17030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Silk fibroin (SF)-based hydrogels were prepared by the simple evaporation method. The outcomes of SF-based hydrogels were assessed for consideration in terms of practical and convenient use. Guar gum (GG) and sodium benzoate (SB) are blending reagents to the SF solution and are poured into the petri dish to make the hydrogels. After leaving the mixture solution for three days to solidify, all SF-based hydrogels were peeled off and characterized. The SF-blend guar gum (SF-GG) and SF-GG-blend sodium benzoate (SF-GG-SB) could be constructed, but in different textures and levels of transparency. The SB affected the solid texture and resulted in a higher water contact angle (WCA) value of the prepared SF hydrogel than of the SF-GG. The results from Fourier transform infrared spectroscopy (FTIR) indicated all the main functional groups of substances that were contained in the blending hydrogels. Moreover, some interactions between the functional groups were also detected. A thermogravimetric analyzer (TGA) was used to determine the hydrogel decomposition as a function of temperature. The DTG thermograms, which exhibit the maximum decomposition temperature, revealed that the interaction forces between blending substances and SF, as well as their structure, are the reason for the thermal stability of the SF-based hydrogels. SF-GG-SB hydrogels have higher tensile strength than the SF-GG hydrogels. In conclusion, the appearance, texture, hydrophilicity, thermal stability, and tensile strength of the SF-based hydrogels were affected by the types and concentrations of the blending substances. This suggests that the SF-based hydrogel properties could be designed and adjusted to attain desirable textures for fitting target applications.
Collapse
Affiliation(s)
| | | | | | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Centre of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (A.T.); (Y.B.); (S.T.)
| |
Collapse
|
13
|
Gaikwad D, Patil D, Chougale R, Sutar S. Development and characterization of bael fruit gum-pectin hydrogel for enhanced antimicrobial activity. Int J Biol Macromol 2025; 291:139082. [PMID: 39716706 DOI: 10.1016/j.ijbiomac.2024.139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Natural polymers are crucial for developing sustainable biomedical solutions, as their bioactivity, biocompatibility, and biodegradability make them superior alternatives to synthetic materials. The objective of the study is to develop and characterize a chemically modified bael fruit gum (BFG) and pectin hydrogel to enhance antimicrobial activity. Due to BFG's anionic nature, it was chemically modified to introduce cationic groups, facilitating cross-linking with pectin. Physicochemical characterization of BFG and pectin was conducted using FTIR and DSC, which confirmed functional groups and thermal stability, respectively. Hydrogel optimization was achieved through Central Composite Design (CCD). Rheological evaluations indicated shear-thinning behavior with a viscosity reduction under high shear stress, reflecting thixotropic properties. The hydrogel exhibited satisfactory erosion and swelling within 24 h, suggesting controlled release. Zeta potential measurements confirmed the hydrogel's stability, attributed to its negative surface charge. SEM revealed a porous structure, aiding in drug encapsulation and release. Antimicrobial testing showed synergistic antimicrobial effects with inhibition zones of 1.4 cm and 1.5 cm against Staphylococcus aureus and Escherichia coli, respectively. Stability studies demonstrated robustness over time. Overall, this study highlights the potential of natural polymer-based hydrogels as sustainable alternatives to synthetic polymers in pharmaceutical and biomedical fields, offering safer, environmentally friendly solutions.
Collapse
Affiliation(s)
- Dinanath Gaikwad
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India.
| | - Dhanashri Patil
- Department of Pharmaceutical Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| | - Rutuja Chougale
- Department of Pharmaceutical Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| | - Shubhangi Sutar
- Department of Quality Assurance, Ashokrao Mane College of Pharmacy, Peth-Vadgaon, Maharashtra State 416112, India
| |
Collapse
|
14
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
15
|
Zakrzewska A, Kosik-Kozioł A, Zargarian SS, Zanoni M, Gualandi C, Lanzi M, Pierini F. Lemon Juice-Infused PVA Nanofibers for the Development of Sustainable Antioxidant and Antibacterial Electrospun Hydrogel Biomaterials. Biomacromolecules 2025; 26:654-669. [PMID: 39743322 DOI: 10.1021/acs.biomac.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cross-linking bonds adjacent polymer chains into a three-dimensional network. Cross-linked poly(vinyl alcohol) (PVA) turns into a hydrogel, insoluble structure exhibiting outstanding sorption properties. As an electrospinnable polymer, PVA enables the creation of nanofibrous hydrogels resembling biological tissues, thus ideal for nature-inspired platforms. PVA properties are easily adjustable through additives and an appropriate cross-linking method. Drawing inspiration from environmentally safe approaches, this work developed a new "green" method of low-temperature PVA cross-linking. Nanofibers were electrospun from a precursor solution of PVA dissolved in fresh lemon juice, stabilized by heating at 60 °C for 7 days, and thoroughly characterized. The obtained nanoplatform demonstrated long-term stability and enhanced mechanical properties. Its biocompatibility was confirmed, and its antibacterial and health-promoting effects were attributed to lemon juice-rich in vitamin C, a potent antioxidant with anti-inflammatory properties. The developed system has future potential for use in the biomedical engineering field as a dressing accelerating wound healing.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Michele Zanoni
- Department of Chemistry "Giacomo Ciamician″, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician″, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Zang J, Yin Z, Ouyang H, Liu Y, Liu Z, Yin Z. Advances in the preparation, applications, challenges, and future trends of polysaccharide-based gels as food-grade delivery systems for probiotics: A review. Compr Rev Food Sci Food Saf 2025; 24:e70111. [PMID: 39865632 DOI: 10.1111/1541-4337.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/28/2025]
Abstract
Probiotics are highly regarded for their multiple functions, such as regulating gut health, enhancing the immune system, and preventing chronic diseases. However, their stability in harsh environments and targeted release remain significant challenges. Therefore, exploring effective protection and delivery strategies to ensure targeted release of probiotics is critically important. Polysaccharides, known for their non-toxicity, excellent biocompatibility, and superior biodegradability, show broad prospects in probiotic delivery by forming physical barriers to protect the probiotics. Particularly, polysaccharide-based gels (PBGs), with their unique "spider-web" like structure, capture and ensure the targeted release of probiotics, significantly enhancing their efficacy. This review discusses common polysaccharides used in PBG preparation, their classification and synthesis in food applications, and the advantages of PBGs as probiotic delivery systems. Despite their potential, challenges such as inconsistent gel properties and the need for improved stability remain. Future research should focus on developing novel PBG materials with higher biodegradability and mechanical strength, optimizing the physicochemical properties and cross-linking methods, as well as designing multilayered structures for more precise release control. Additionally, exploring the co-delivery of probiotics with prebiotics, active ingredients, or multi-strain systems could further enhance the efficacy of probiotic delivery.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zelin Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Huidan Ouyang
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
- Vocational Teachers College, Jiangxi Agricultural University, Nanchang, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
17
|
Menon AV, Putnam-Neeb AA, Brown CE, Crain CJ, Breur GJ, Narayanan SK, Wilker JJ, Liu JC. Biocompatibility of mussel-inspired water-soluble tissue adhesives. J Biomed Mater Res A 2024; 112:2243-2256. [PMID: 38988200 DOI: 10.1002/jbm.a.37775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Wound closure in surgeries is traditionally achieved using invasive methods such as sutures and staples. Adhesion-based wound closure methods such as tissue adhesives, sealants, and hemostats are slowly replacing these methods due to their ease of application. Although several chemistries have been developed and used commercially for wound closure, there is still a need for better tissue adhesives from the point of view of toxicity, wet-adhesion strength, and long-term bonding. Catechol chemistry has shown great promise in developing wet-set adhesives that meet these criteria. Herein, we have studied the biocompatibility of a catechol-based copolymer adhesive, poly([dopamine methacrylamide]-co-[methyl methacrylate]-co-[poly(ethylene glycol) methyl ether methacrylate]) or poly(catechol-MMA-OEG), which is soluble in water. The adhesive was injected subcutaneously in a mouse model on its own and in combination with a sodium periodate crosslinker. After 72 h, 4 weeks, and 12 weeks, the mice were euthanized and subjected to histopathological analysis. Both adhesives were present and still palpable at the end of 12 weeks. The moderate inflammation observed for the poly(catechol-MMA-OEG) cohort at 72 h had reduced to mild inflammation at the end of 12 weeks. However, the moderate inflammatory response observed for the poly(catechol-MMA-OEG) + crosslinker cohort at 72 h had not subsided at 12 weeks.
Collapse
Affiliation(s)
- Aishwarya V Menon
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Amelia A Putnam-Neeb
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Caitlin E Brown
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Christa J Crain
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana, USA
| | - Gert J Breur
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana, USA
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Sanjeev K Narayanan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana, USA
| | - Jonathan J Wilker
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024; 13:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
19
|
Paoletti L, Ferrigno G, Zoratto N, Secci D, Di Meo C, Matricardi P. Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers. Gels 2024; 10:773. [PMID: 39727531 DOI: 10.3390/gels10120773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024] Open
Abstract
The need for new biomaterials to meet the needs of advanced healthcare therapies is constantly increasing. Polysaccharide-based matrices are considered extremely promising because of their biocompatibility and soft structure; however, their use is limited by their poor mechanical properties. In this light, a strategy for the reinforcement of dextran-based hydrogels and interpenetrated polymer networks (semi-IPNs and IPNs) is proposed, which will introduce multifunctional crosslinkers that can modify the network crosslinking density. Hydrogels were prepared via dextran methacrylation (DexMa), followed by UV photocrosslinking in the presence of diacrylate (NPGDA), triacrylate (TMPTA), and tetraacrylate (PETA) crosslinkers at different concentrations. The effect of these molecules was also tested on DexMa-gellan semi-IPN (DexMa/Ge) and, later, on IPN (DexMa/CaGe), obtained after solvent exchange with CaCl2 in HEPES and the resulting Ge gelation. Mechanical properties were investigated via rheological and dynamic mechanical analyses to assess the rigidity, resistance, and strength of the systems. Our findings support the use of crosslinkers with different functionality to modulate the properties of polysaccharide-based scaffolds, making them suitable for various biomedical applications. While no significative difference is observed on enriched semi-IPN, a clear improvement is visible on DexMa and DexMa/CaGe systems when TMPTA and NPGDA crosslinker are introduced at higher concentrations, respectively.
Collapse
Affiliation(s)
- Luca Paoletti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Gianluca Ferrigno
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Nicole Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Mukherjee C, Ghosh A, M T, Ravishankar K, Das AK, Selvaraj M, Chaudhuri S, Sarkar J. Self-Healable Hydrogels from Vegetable Oil: Preparation, Mechanism, and Applications. Biomacromolecules 2024; 25:7323-7333. [PMID: 39438451 DOI: 10.1021/acs.biomac.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hydrogels are indispensable for a variety of applications. Conventional biomaterial-based hydrogels, typically made from proteins or polysaccharides, often suffer from high costs, poor mechanical properties, and limited chemical functionality for modification. In this work, we present a novel hydrogel developed from modified castor oil, which is a renewable and cost-effective resource. Castor oil-based oligomer (CG) was synthesized using glycidyl methacrylate and triethylamine via ring-opening polymerization. The oligomer formed a gel only with Cu2+ ions among the various systematically studied metal ions. Comprehensive density functional theory calculations, atoms in molecules analysis, and steady and dynamic shear rheology were conducted to investigate the metal-binding sites and metal-oligomer interactions as well as the self-healing and viscoelastic properties of the oil-based hydrogels. The hydrogel exhibited 94% self-healing efficiency and performed as a recyclable rhodamine B dye adsorbent (73-90%). This innovative approach offers a novel, cost-effective, and sustainable alternative to traditional hydrogels, paving the way for advanced applications.
Collapse
Affiliation(s)
- Chandrapaul Mukherjee
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Tamilarasi M
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Kartik Ravishankar
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Mariappan Selvaraj
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saikat Chaudhuri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Organic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Jit Sarkar
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Zhang H, Zhong X, Wen J, Xi J, Feng Z, Liu Z, Ye L. Hydrogel coating containing heparin and cyclodextrin/paclitaxel inclusion complex for retrievable vena cava filter towards high biocompatibility and easy removal. Int J Biol Macromol 2024; 277:134509. [PMID: 39111508 DOI: 10.1016/j.ijbiomac.2024.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Aiming to improve the retrieval rate of retrievable vena cava filters (RVCF) and extend its dwelling time in vivo, a novel hydrogel coating loaded with 10 mg/mL heparin and 30 mg/mL cyclodextrin/paclitaxel (PTX) inclusion complex (IC) was prepared. The drug-release behavior in the phosphate buffer solution demonstrated both heparin and PTX could be sustainably released over approximately two weeks. Furthermore, it was shown that the hydrogel-coated RVCF (HRVCF) with 10 mg/mL heparin and 30 mg/mL PTX IC effectively extended the blood clotting time to above the detection limit and inhibited EA.hy926 and CCC-SMC-1 cells' proliferation in vitro compared to the commercially available bare RVCF. Both the HRVCF and the bare RVCF were implanted into the vena cava of sheep and retrieved at at 2nd and 4th week after implantation, revealing that the HRVCF had a significantly higher retrieval rate of 67 % than the bare RVCF (0 %) at 4th week. Comprehensive analyses, including histological, immunohistological, and immunofluorescent assessments of the explanted veins demonstrated the HRVCF exhibited anti-hyperplasia and anticoagulation properties in vivo, attributable to the hydrogel coating, thereby improving the retrieval rate in sheep. Consequently, the as-prepared HRVCF shows promising potential for clinical application to enhance the retrieval rates of RVCFs.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xuanshu Zhong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Wen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
23
|
Taslim F, Ashraf MU, Farooq M, Mahmood A, Sarfraz RM, Ijaz H, Shahid N, Gad HA. Development of pH-responsive Hydrogel from Copolymers of Artemisia vulgaris Seed Mucilage, Mucin, and poly(methacrylate) for Controlled Delivery of Acyclovir Sodium. Macromol Rapid Commun 2024:e2400421. [PMID: 39340476 DOI: 10.1002/marc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Indexed: 09/30/2024]
Abstract
To cope with the constraints of conventional drug delivery systems, site-specific drug delivery systems are the major focus of researchers. The present research developed water-swellable, pH-responsive methacrylic acid-based hydrogel scaffolds of Artemisia vulgaris seed mucilage with mucin and loaded with acyclovir sodium as a model drug. The developed hydrogel discs are evaluated for diverse parameters. Drug loading efficiency in all formulations ranges from 63% to 75%. The hydrogels exhibited pH-dependent swelling, displaying optimum swelling in a phosphate buffer (pH 7.4), and insignificant swelling in an acidic buffer (pH 1.2), in addition, they responded well to electrolyte concentrations. The sol-gel fraction is estimated ranging from 60 to 95%. Dissolution studies unveiled sustained drug release for 24 h in a phosphate buffer of pH 7.4, exhibiting zero-order release kinetics. Moreover, FTIR spectra confirmed the drug-excipient compatibility. SEM photomicrographs revealed a rough and porous surface of hydrogel discs with several pores and channels. The PXRD diffractograms exposed the amorphous nature of the polymeric blends. The findings of acute toxicity studies proved the developed hydrogel network is biocompatible. Therefore, these outcomes connote the newly created network as a smart delivery system, able to dispatch acyclovir sodium into the intestinal segment for a prolonged period.
Collapse
Affiliation(s)
- Fouzia Taslim
- Faculty of Pharmacy, the University of Lahore, Lahore, 54600, Pakistan
| | | | - Muhammad Farooq
- Faculty of Pharmacy, the University of Lahore, Lahore, 54600, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Chakwal, Chakwal, 48800, Pakistan
| | | | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Nariman Shahid
- Faculty of Pharmacy, the University of Lahore, Lahore, 54600, Pakistan
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
| |
Collapse
|
24
|
Piotrowska U, Orzechowska K. Advances in Chitosan-Based Smart Hydrogels for Colorectal Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1260. [PMID: 39458901 PMCID: PMC11510048 DOI: 10.3390/ph17101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Despite advancements in early detection and treatment in developed countries, colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths worldwide. Conventional chemotherapy, a key option for CRC treatment, has several drawbacks, including poor selectivity and the development of multiple drug resistance, which often lead to severe side effects. In recent years, the use of polysaccharides as drug delivery systems (DDSs) to enhance drug efficacy has gained significant attention. Among these polysaccharides, chitosan (CS), a linear, mucoadhesive polymer, has shown promise in cancer treatment. This review summarizes current research on the potential applications of CS-based hydrogels as DDSs for CRC treatment, with a particular focus on smart hydrogels. These smart CS-based hydrogel systems are categorized into two main types: stimuli-responsive injectable hydrogels that undergo sol-gel transitions in situ, and single-, dual-, and multi-stimuli-responsive CS-based hydrogels capable of releasing drugs in response to various triggers. The review also discusses the structural characteristics of CS, the methods for preparing CS-based hydrogels, and recent scientific advances in smart CS-based hydrogels for CRC treatment.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | | |
Collapse
|
25
|
Abbasi M, Heath B, McGinness L. Advances in metformin-delivery systems for diabetes and obesity management. Diabetes Obes Metab 2024; 26:3513-3529. [PMID: 38984380 DOI: 10.1111/dom.15759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Metformin is a medication that is commonly prescribed to manage type 2 diabetes. It has been used for more than 60 years and is highly effective in lowering blood glucose levels. Recent studies indicate that metformin may have additional medical benefits beyond treating diabetes, revealing its potential therapeutic uses. Oral medication is commonly used to administer metformin because of its convenience and cost-effectiveness. However, there are challenges in optimizing its effectiveness. Gastrointestinal side effects and limitations in bioavailability have led to the underutilization of metformin. Innovative drug-delivery systems such as fast-dissolving tablets, micro/nanoparticle formulations, hydrogel and microneedles have been explored to optimize metformin therapy. These strategies enhance metformin dosage, targeting, bioavailability and stability, and provide personalized treatment options for improved glucose homeostasis, antiobesity and metabolic health benefits. Developing new delivery systems for metformin shows potential for improving therapeutic outcomes, broadening its applications beyond diabetes management and addressing unmet medical needs in various clinical settings. However, it is important to improve drug-delivery systems, addressing issues such as complexity, cost, biocompatibility, stability during storage and transportation, loading capacity, required technologies and biomaterials, targeting precision and regulatory approval. Addressing these limitations is crucial for effective, safe and accessible drug delivery in clinical practice. In this review, recent advances in the development and application of metformin-delivery systems for diabetes and obesity are discussed.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| | - Braeden Heath
- Department of Biomedical Sciences, College of Sciences and Mathematics, Auburn University, Auburn, Alabama, USA
| | - Lauren McGinness
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
26
|
Wu H, Wang J, Fan W, Zhong Q, Xue R, Li S, Song Z, Tao Y. Eye of the future: Unlocking the potential utilization of hydrogels in intraocular lenses. Bioeng Transl Med 2024; 9:e10664. [PMID: 39553434 PMCID: PMC11561835 DOI: 10.1002/btm2.10664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 11/19/2024] Open
Abstract
Hydrogels are distinguished by their exceptional ability to absorb and retain large volumes of water within their complex three-dimensional polymer networks, which is advantageous for the development of intraocular lenses (IOLs). Their innate hydrophilicity offers an optimal substrate for the fabrication of IOLs that simulate the natural lens' accommodation, thereby reducing irritation and facilitating healing after surgery. The swelling and water retention characteristics of hydrogels contribute to their notable biocompatibility and versatile mechanical properties. However, the clinical application of hydrogels faces challenges, including managing potential adverse postimplantation effects. Rigorous research is essential to ascertain the safety and effectiveness of hydrogels. This review systematically examines the prospects and constraints of hydrogels as innovative materials for IOLs. Our comprehensive analysis examines their inherent properties, various classification strategies, cross-linking processes, and sensitivity to external stimuli. Additionally, we thoroughly evaluate their interactions with ocular tissues, underscoring the potential for hydrogels to be refined into seamless and biologically integrated visual aids. We also discuss the anticipated technological progress and clinical uses of hydrogels in IOL manufacturing. With ongoing technological advancements, the promise of hydrogels is poised to evolve from concept to clinical reality, marking a significant leap forward in ophthalmology characterized by improved patient comfort, enhanced functionality, and reliable safety.
Collapse
Affiliation(s)
- Hao Wu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Jiale Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Wenhui Fan
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Qi Zhong
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Rongyue Xue
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Siyu Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
- Zhengzhou University School of MedicineZhengzhouChina
| |
Collapse
|
27
|
Khatoon M, Ali A, Hussain MA, Haseeb MT, Sher M, Alsaidan OA, Muhammad G, Hussain SZ, Hussain I, Bukhari SNA. A superporous and pH-sensitive hydrogel from Salvia hispanica (chia) seeds: stimuli responsiveness, on-off switching, and pharmaceutical applications. RSC Adv 2024; 14:27764-27776. [PMID: 39224645 PMCID: PMC11367392 DOI: 10.1039/d4ra04770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The use of plant seed-based hydrogels to design drug delivery systems (DDSs) has increased due to their swellable, pH-responsive, biocompatible, biodegradable, and non-toxic nature. Herein, the chia seeds hydrogel (CSH) was extracted through an aqueous extraction method to explore its pH and salt-responsive swelling behavior and sustained release potential. The CSH was characterized using Fourier transform infrared (FT-IR) and solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (solid/state CP-MAS 13C/NMR) spectra. Thermal analysis indicated that the CSH is a thermally stable material and decomposes in two steps. The scanning electron microscope (SEM) images of CSH witnessed the existence of microscopic channeling and a superporous nature with average pore sizes of 18 ± 11 μm (transverse cross-sections) and 23 ± 15 μm (longitudinal cross-sections). The CSH is a haemocompatible material. The CSH revealed pH and saline-responsive swelling in powder and compressed form (tablet) in the following order; distilled water (DW) > pH 7.4 > pH 6.8 > pH 1.2. Moreover, the swelling of CSH followed second-order kinetics. The swelling of CSH powder and tablets was decreased with increasing salt concentration. The pH, solvent, and saline responsive on/off switching (swelling/deswelling) results of the CSH and tablets disclosed its stimuli-responsive nature. The CSH prolonged the release of valsartan for 5 h at pH 7.4, whereas, negligible release (19.3%) was noted at pH 1.2. The valsartan release followed first-order kinetics and the non-Fickian diffusion. In conclusion, the CSH is a stimuli-responsive smart material with great potential to develop pH-sensitive and targeted DDSs.
Collapse
Affiliation(s)
- Maria Khatoon
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Arshad Ali
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan +923468614959
| | | | - Muhammad Sher
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Omar A Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore Lahore 54000 Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka Aljouf 72388 Saudi Arabia
| |
Collapse
|
28
|
Dou W, Zeng X, Zhu S, Zhu Y, Liu H, Li S. Mussel-Inspired Injectable Adhesive Hydrogels for Biomedical Applications. Int J Mol Sci 2024; 25:9100. [PMID: 39201785 PMCID: PMC11354882 DOI: 10.3390/ijms25169100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The impressive adhesive capacity of marine mussels has inspired various fascinating designs in biomedical fields. Mussel-inspired injectable adhesive hydrogels, as a type of promising mussel-inspired material, have attracted much attention due to their minimally invasive property and desirable functions provided by mussel-inspired components. In recent decades, various mussel-inspired injectable adhesive hydrogels have been designed and widely applied in numerous biomedical fields. The rational incorporation of mussel-inspired catechol groups endows the injectable hydrogels with the potential to exhibit many properties, including tissue adhesiveness and self-healing, antimicrobial, and antioxidant capabilities, broadening the applications of injectable hydrogels in biomedical fields. In this review, we first give a brief introduction to the adhesion mechanism of mussels and the characteristics of injectable hydrogels. Further, the typical design strategies of mussel-inspired injectable adhesive hydrogels are summarized. The methodologies for integrating catechol groups into polymers and the crosslinking methods of mussel-inspired hydrogels are discussed in this section. In addition, we systematically overview recent mussel-inspired injectable adhesive hydrogels for biomedical applications, with a focus on how the unique properties of these hydrogels benefit their applications in these fields. The challenges and perspectives of mussel-inspired injectable hydrogels are discussed in the last section. This review may provide new inspiration for the design of novel bioinspired injectable hydrogels and facilitate their application in various biomedical fields.
Collapse
Affiliation(s)
- Wenguang Dou
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Shuzhuang Zhu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ye Zhu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
| | - Sidi Li
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
29
|
Wang Z, Mahmood N, Budhathoki-Uprety J, Brown AC, King MW, Gluck JM. Preparation and Characterization of Hydrogels Fabricated From Chitosan and Poly(vinyl alcohol) for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2024; 7:5519-5529. [PMID: 39037196 DOI: 10.1021/acsabm.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In this study, we report on the preparation, characterization, and cytocompatibility of hydrogels for biomedical applications made from two different molecular weights of chitosan (CS) blended with poly(vinyl alcohol) (PVA) and chemically cross-linked with tetraethyl orthosilicate (TEOS) followed by freeze-drying. A series of CS-PVA hydrogels were synthesized with different amounts of chitosan (1%, 2%, and 3% by weight). The structure of these CS-PVA hydrogels was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The hydrogel samples were also characterized for tensile strength, contact angle, swelling behavior, and degradation at physiological body temperature. Their physicochemical properties, biocompatibility, and cell viability when cultured with human dermal fibroblasts were assessed using alamarBlue and live/dead assays and compared to optimize their functionality. SEM analysis showed that the concentration and molecular weight of the chitosan component affected the pore size. Furthermore, the contact angle decreased with increasing chitosan content, indicating that chitosan increased its hydrophilic properties. The in vitro degradation study revealed a nonlinear time-dependent relationship between chitosan concentration or molecular weight, and the rate of degradation was affected by the pore size of the hydrogel. All of the CS-PVA hydrogels exhibited good cell proliferation, particularly with the high molecular weight chitosan samples.
Collapse
Affiliation(s)
- Ziyu Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nasif Mahmood
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Januka Budhathoki-Uprety
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, North Carolina 27695, United States
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
- College of Textiles, Donghua University, Songjiang, Shanghai 201620, China
| | - Jessica M Gluck
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
30
|
Liu H, Liu Y, Tian Z, Li J, Li M, Zhao Z. Coordinating Macrophage Targeting and Antioxidation by Injectable Nanocomposite Hydrogel for Enhanced Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37656-37668. [PMID: 38987704 DOI: 10.1021/acsami.4c06840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Rheumatoid arthritis (RA), an immune-mediated inflammatory disease, is characterized by a large number of infiltrated immune cells and abnormally elevated reactive oxygen species (ROS) in the joint. Various proinflammatory factors secreted by macrophages and the elevated ROS by inflammatory cells are deeply intertwined and together contribute to joint damage. Targeted and sustained anti-inflammation and antioxidation strategies are needed for RA treatment. To alleviate the oxidative stress and target the source of inflammatory cytokines, we developed a thermosensitive injectable hydrogel, Dex-DSLip/Cro@Gel, to coordinate the targeted anti-inflammatory and antioxidation effects. Within the injectable gel, dexamethasone (Dex)-loaded liposomes (Dex-DSLip), modified with dextran sulfate (DS), target macrophages via interaction with scavenger receptor A (SR-A). Simultaneously, crocin I (Cro) is loaded in the gel with a high loading capacity. The porous structure of Dex-DSLip/Cro@Gel successfully prolongs the retention time of both drugs and sustains the release of Dex and Cro. After intra-articular injection of Dex-DSLip/Cro@Gel in RA rats, the expression of inflammatory factors in the ankle joints was significantly reduced. Joint erythema and bone erosion were markedly alleviated. Through the synergistic effects of Dex and Cro, Dex-DSLip/Cro@Gel demonstrates targeted anti-inflammatory and antioxidation effects as well as mitigated bone erosion and long-term therapeutic effects for RA. This thermosensitive injectable nanocomposite hydrogel synergizes anti-inflammatory and antioxidation effects and targets the microenvironment in the joint, offering a new approach for RA treatment.
Collapse
Affiliation(s)
- Houqin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yingke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhipeng Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
31
|
Farasati
Far B, Safaei M, Nahavandi R, Gholami A, Naimi-Jamal MR, Tamang S, Ahn JE, Ramezani Farani M, Huh YS. Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS OMEGA 2024; 9:29139-29158. [PMID: 39005800 PMCID: PMC11238230 DOI: 10.1021/acsomega.3c10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.
Collapse
Affiliation(s)
- Bahareh Farasati
Far
- Department
of Chemistry, Iran University of Science
and Technology, Tehran 13114-16846, Iran
| | - Maryam Safaei
- Department
of Pharmacology, Faculty of Pharmacy, Eastern
Mediterranean University, via Mersin 10, Famagusta, TR. North Cyprus 99628, Turkey
| | - Reza Nahavandi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Amir Gholami
- Faculty
of Medicine, Kurdistan University of Medical
Science, Sanandaj 6618634683, Iran
| | | | - Sujina Tamang
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Jung Eun Ahn
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Marzieh Ramezani Farani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
32
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
33
|
Serro AP, Silva DC, Fernandes AI. Hydrogel-Based Novel Biomaterials: Achievements and Prospects. Gels 2024; 10:436. [PMID: 39057459 PMCID: PMC11275420 DOI: 10.3390/gels10070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, hydrogels have garnered significant attention, thanks to their extensive biomedical and pharmaceutical applications [...].
Collapse
Affiliation(s)
- Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Diana Cristina Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Isabel Fernandes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, 2829-511 Caparica, Portugal
| |
Collapse
|
34
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Akmal MH, Kalashgrani MY, Mousavi SM, Rahmanian V, Sharma N, Gholami A, Althomali RH, Rahman MM, Chiang WH. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J Mater Chem B 2024; 12:5039-5060. [PMID: 38716622 DOI: 10.1039/d4tb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene quantum dot (GQD) integration into hydrogel matrices has become a viable approach for improving drug delivery and bioimaging in cancer treatment in recent years. Due to their distinct physicochemical characteristics, graphene quantum dots (GQDs) have attracted interest as adaptable nanomaterials for use in biomedicine. When incorporated into hydrogel frameworks, these nanomaterials exhibit enhanced stability, biocompatibility, and responsiveness to external stimuli. The synergistic pairing of hydrogels with GQDs has created new opportunities to tackle the problems related to drug delivery and bioimaging in cancer treatment. Bioimaging plays a pivotal role in the early detection and monitoring of cancer. GQD-based hydrogels, with their excellent photoluminescence properties, offer a superior platform for high-resolution imaging. The tunable fluorescence characteristics of GQDs enable real-time visualization of biological processes, facilitating the precise diagnosis and monitoring of cancer progression. Moreover, the drug delivery landscape has been significantly transformed by GQD-based hydrogels. Because hydrogels are porous, therapeutic compounds may be placed into them and released in a controlled environment. The large surface area and distinct interactions of graphene quantum dots (GQDs) with medicinal molecules boost loading capacity and release dynamics, ultimately improving therapeutic efficacy. Moreover, GQD-based hydrogels' stimulus-responsiveness allows for on-demand medication release, which minimizes adverse effects and improves therapeutic outcomes. The ability of GQD-based hydrogels to specifically target certain cancer cells makes them notable. Functionalizing GQDs with targeting ligands minimizes off-target effects and delivers therapeutic payloads to cancer cells selectively. Combined with imaging capabilities, this tailored drug delivery creates a theranostic platform for customized cancer treatment. In this study, the most recent advancements in the synergistic use of GQD-based hydrogels are reviewed, with particular attention to the potential revolution these materials might bring to the area of cancer theranostics.
Collapse
Affiliation(s)
- Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
36
|
Serro AP, Vivero-Lopez M, Silva DC. Editorial for the Special Issue Titled "Design of Polymeric Hydrogels Biomaterials". Gels 2024; 10:344. [PMID: 38786261 PMCID: PMC11121017 DOI: 10.3390/gels10050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrogels have attracted great interest in the biomedical applications field in recent years [...].
Collapse
Affiliation(s)
- Ana Paula Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Maria Vivero-Lopez
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Diana C. Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| |
Collapse
|
37
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
38
|
Liu S, Feng Y, Tan Y, Chen J, Yang T, Wang X, Li L, Wang F, Liang H, Zhong JL, Qi C, Lei X. Photosensitizer-loaded hydrogels: A new antibacterial dressing. Wound Repair Regen 2024; 32:301-313. [PMID: 38308577 DOI: 10.1111/wrr.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 02/05/2024]
Abstract
Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.
Collapse
Affiliation(s)
- Shunying Liu
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Yanhai Feng
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, China
| | - Yang Tan
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Jinyi Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Tao Yang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Xiaoyu Wang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Fangjie Wang
- The First Research Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Huaping Liang
- The First Research Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Julia-Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| |
Collapse
|
39
|
Liu B, Chen K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024; 10:262. [PMID: 38667681 PMCID: PMC11048949 DOI: 10.3390/gels10040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, with their distinctive three-dimensional networks of hydrophilic polymers, drive innovations across various biomedical applications. The ability of hydrogels to absorb and retain significant volumes of water, coupled with their structural integrity and responsiveness to environmental stimuli, renders them ideal for drug delivery, tissue engineering, and wound healing. This review delves into the classification of hydrogels based on cross-linking methods, providing insights into their synthesis, properties, and applications. We further discuss the recent advancements in hydrogel-based drug delivery systems, including oral, injectable, topical, and ocular approaches, highlighting their significance in enhancing therapeutic outcomes. Additionally, we address the challenges faced in the clinical translation of hydrogels and propose future directions for leveraging their potential in personalized medicine and regenerative healthcare solutions.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
40
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
41
|
Raut S, Azheruddin M, Kumar R, Singh S, Giram PS, Datta D. Lecithin Organogel: A Promising Carrier for the Treatment of Skin Diseases. ACS OMEGA 2024; 9:9865-9885. [PMID: 38463343 PMCID: PMC10918684 DOI: 10.1021/acsomega.3c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Skin is the largest organ of the human body, as it protects the body from the external environment. Nowadays, skin diseases and skin problems are more common, and millions of people are affected daily. Skin diseases are due to numerous infectious pathogens or inflammatory conditions. The increasing demand for theoretical research and practical applications has led to the rising prominence of gel as a semisolid material. To this end, organogels has been widely explored due to their unique composition, which includes organic solvents and mineral or vegetable oils, among others. Organogels can be described as semisolid systems wherein an organic liquid phase is confined within a three-dimensional framework consisting of self-assembled, cross-linked, or entangled gelator fibers. These gels have the ability to undergo significant expansion and retain substantial amounts of the liquid phase, reaching up to 99% swelling capacity. Furthermore, they respond to a range of physical and chemical stimuli, including temperature, light, pH, and mechanical deformation. Notably, due to their distinctive properties, they have aroused significant interest in a variety of practical applications. Organogels favor the significant encapsulation and enhanced permeation of hydrophobic molecules when compared with hydrogels. Accordingly, organogels are characterized into lecithin organogels, pluronic lecithin organogels, sorbitan monostearate-based organogels, and eudragit organogels, among others, based on the nature of their network and the solvent system. Lecithin organogels contain lecithin (natural and safe as a living cell component) as an organogelator. It acts as a good penetration enhancer. In this review, first we have summarized the fundamental concepts related to the elemental structure of organogels, including their various forms, distinctive features, methods of manufacture, and diverse applications. Nonetheless, this review also sheds light on the delivery of therapeutic molecules entrapped in the lecithin organogel system into deep tissue for the management of skin diseases and provides a synopsis of their clinical applications.
Collapse
Affiliation(s)
- Sushil Raut
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Mohammed Azheruddin
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Rajeev Kumar
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Shivani Singh
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Prabhanjan S. Giram
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
42
|
Raeisi A, Farjadian F. Commercial hydrogel product for drug delivery based on route of administration. Front Chem 2024; 12:1336717. [PMID: 38476651 PMCID: PMC10927762 DOI: 10.3389/fchem.2024.1336717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Hydrogels are hydrophilic, three-dimensional, cross-linked polymers that absorb significant amounts of biological fluids or water. Hydrogels possess several favorable properties, including flexibility, stimulus-responsiveness, versatility, and structural composition. They can be categorized according to their sources, synthesis route, response to stimulus, and application. Controlling the cross-link density matrix and the hydrogels' attraction to water while they're swelling makes it easy to change their porous structure, which makes them ideal for drug delivery. Hydrogel in drug delivery can be achieved by various routes involving injectable, oral, buccal, vaginal, ocular, and transdermal administration routes. The hydrogel market is expected to grow from its 2019 valuation of USD 22.1 billion to USD 31.4 billion by 2027. Commercial hydrogels are helpful for various drug delivery applications, such as transdermal patches with controlled release characteristics, stimuli-responsive hydrogels for oral administration, and localized delivery via parenteral means. Here, we are mainly focused on the commercial hydrogel products used for drug delivery based on the described route of administration.
Collapse
Affiliation(s)
- Amin Raeisi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Altınay E, Köse FZ, Ateş SC, Kızılbey K. Ibuprofen-Loaded Silver Nanoparticle-Doped PVA Gels: Green Synthesis, In Vitro Cytotoxicity, and Antibacterial Analyses. Gels 2024; 10:143. [PMID: 38391473 PMCID: PMC10887808 DOI: 10.3390/gels10020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
In contrast to conventional drug delivery systems, controlled drug release systems employ distinct methodologies. These systems facilitate the release of active substances in predetermined quantities and for specified durations. Polymer hydrogels have gained prominence in controlled drug delivery because of their unique swelling-shrinkage behavior and ability to regulate drug release. In this investigation, films with a hydrogel structure were crafted using polyvinyl alcohol, a biocompatible polymer, and silver nanoparticles. Following characterization, ibuprofen was loaded into the hydrogels to evaluate their drug release capacity. The particle sizes of silver nanoparticles synthesized using a green approach were determined. This study comprehensively examined the structural properties, morphological features, mechanical strength, and cumulative release patterns of the prepared films. In vitro cytotoxicity analysis was employed to assess the cell viability of drug-loaded hydrogel films, and their antibacterial effects were examined. The results indicated that hydrogel films containing 5% and 10% polyvinyl alcohol released 89% and 97% of the loaded drug, respectively, by day 14. The release kinetics fits the Korsmeyer-Peppas model. This study, which describes nanoparticle-enhanced polyvinyl alcohol hydrogel systems prepared through a cost-effective and environmentally friendly approach, is anticipated to contribute to the existing literature and serve as a foundational study for future research.
Collapse
Affiliation(s)
- Ezgi Altınay
- Institute of Science and Engineering, İstanbul Yeni Yüzyıl University, İstanbul 34010, Türkiye
| | - Fatma Zehra Köse
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İstanbul Yeni Yüzyıl University, İstanbul 34010, Türkiye
| | - Sezen Canım Ateş
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İstanbul Yeni Yüzyıl University, İstanbul 34010, Türkiye
| | - Kadriye Kızılbey
- Department of Natural Sciences, Faculty of Engineering and Natural Sciences, Acıbadem University, İstanbul 34752, Türkiye
| |
Collapse
|
44
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
45
|
Pawariya V, De S, Dutta J. Chitosan-based Schiff bases: Promising materials for biomedical and industrial applications. Carbohydr Polym 2024; 323:121395. [PMID: 37940288 DOI: 10.1016/j.carbpol.2023.121395] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
There is plenty of scope for modifying chitosan, an only polycationic natural polysaccharide, owing to its reactive functional groups, namely hydroxyl and amino groups. Although innumerable numbers of chitosan derivatives have been synthesized by modifying these groups and reported elsewhere, in this review article, an attempt has been exclusively made to demonstrate the syntheses of various chitosan-based Schiff bases (CSBs) simply by allowing the reactions of reactive amino groups of chitosan with different aldehydes/ketones of interest. Due to their very peculiar and unique characteristics, such as biodegradability, biocompatibility, metal-binding capability, etc., they are found to be very useful for diversified applications. Thus, we have also attempted to showcase their very specific biomedical fields, including tissue engineering, drug delivery, and wound healing, to name a few. In addition, we have also discussed the utilization of CSBs for industrial applications such as wastewater treatment, catalysis, corrosion inhibition, sensors, etc.
Collapse
Affiliation(s)
- Varun Pawariya
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Silchar, Assam 788010, India
| | - Joydeep Dutta
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India.
| |
Collapse
|
46
|
Hu S, Liang Y, Chen J, Gao X, Zheng Y, Wang L, Jiang J, Zeng M, Luo M. Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases. J Tissue Eng 2024; 15:20417314241265897. [PMID: 39092451 PMCID: PMC11292707 DOI: 10.1177/20417314241265897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients' quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.
Collapse
Affiliation(s)
- Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| |
Collapse
|
47
|
Shams Es-haghi S, Weiss RA. Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis. Gels 2023; 10:29. [PMID: 38247751 PMCID: PMC10815074 DOI: 10.3390/gels10010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
This paper describes a simple method to synthesize tough hydrogels from a highly cross-linked neutral network. It was found that applying alkaline hydrolysis to a highly cross-linked hydrogel synthesized from acrylamide (AAm) can increase its swelling ratio dramatically. Double-network (DN) hydrogels synthesized from polymerization of loosely cross-linked AAm networks inside a highly cross-linked AAm gel were not tough. However, repeating the same recipes with a second polymerization step to synthesize a DN hydrogel from a hydrolyzed highly cross-linked AAm gel resulted in tough hydrogels. Those gels exhibited finite tensile behavior similar to that of conventional DN hydrogels. Moreover, craze-like patterns were observed during tensile loading of a DN hydrogel synthesized from a hydrolyzed highly cross-linked first network and a loosely cross-linked second network. The patterns remained in the gel even after strain hardening at high stretch ratios. The craze-like pattern formation was suppressed by increasing the concentration of cross-linking monomer in the second polymerization step. Crack propagation in DN hydrogels synthesized using hydrolysis was also studied by applying a tensile load on notched specimens.
Collapse
Affiliation(s)
- S. Shams Es-haghi
- Advanced Structures and Composites Center, The University of Maine, 35 Flagstaff Road, Orono, ME 04469-5793, USA
- Department of Chemical and Biomedical Engineering, The University of Maine, 5737 Jenness Hall, Orono, ME 04469-5737, USA
- Department of Mechanical Engineering, The University of Maine, 75 Long Road, Orono, ME 04469-5744, USA
| | - R. A. Weiss
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 25 King Hill Rd Unit 3136, Storrs, CT 06268-1702, USA
| |
Collapse
|
48
|
Ho B, Phan CM, Garg P, Shokrollahi P, Jones L. A Rapid Screening Platform for Simultaneous Evaluation of Biodegradation and Therapeutic Release of an Ocular Hydrogel. Pharmaceutics 2023; 15:2625. [PMID: 38004603 PMCID: PMC10675325 DOI: 10.3390/pharmaceutics15112625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study attempts to address the challenge of accurately measuring the degradation of biodegradable hydrogels, which are frequently employed in drug delivery for controlled and sustained release. The traditional method utilizes a mass-loss approach, which is cumbersome and time consuming. The aim of this study was to develop an innovative screening platform using a millifluidic device coupled with automated image analysis to measure the degradation of Gelatin methacrylate (GelMA) and the subsequent release of an entrapped wetting agent, polyvinyl alcohol (PVA). Gel samples were placed within circular wells on a custom millifluidic chip and stained with a red dye for enhanced visualization. A camera module captured time-lapse images of the gels throughout their degradation. An image-analysis algorithm was used to translate the image data into degradation rates. Simultaneously, the eluate from the chip was collected to quantify the amount of GelMA degraded and PVA released at various time points. The visual method was validated by comparing it with the mass-loss approach (R = 0.91), as well as the amount of GelMA eluted (R = 0.97). The degradation of the GelMA gels was also facilitated with matrix metalloproteinases 9. Notably, as the gels degraded, there was an increase in the amount of PVA released. Overall, these results support the use of the screening platform to assess hydrogel degradation and the subsequent release of entrapped therapeutic compounds.
Collapse
Affiliation(s)
- Brandon Ho
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Piyush Garg
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
| | - Parvin Shokrollahi
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| |
Collapse
|
49
|
Naeem A, Yu C, Wang X, Peng M, Liu Y, Liu Y. Hydroxyethyl Cellulose-Based Hydrogels as Controlled Release Carriers for Amorphous Solid Dispersion of Bioactive Components of Radix Paeonia Alba. Molecules 2023; 28:7320. [PMID: 37959739 PMCID: PMC10648136 DOI: 10.3390/molecules28217320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Radix Paeoniae Alba (RPA) has been used extensively in Chinese traditional medicine to treat gastrointestinal disorders, immune-modulating diseases, cancers, and numerous other conditions. A few of its active components include paeoniflorin, albiflorin, lactiflorin, and catechin. However, their therapeutic effectiveness is compromised by poor pharmacokinetic profiles, low oral bioavailability, short half-lives, and poor aqueous solubility. In this study, hydroxyethyl cellulose-grafted-2-acrylamido-2-methylpropane sulfonic acid (HEC-g-AMPS) hydrogels were successfully prepared for the controlled release of Radix Paeonia Alba-solid dispersion (RPA-SD). A total of 43 compounds were identified in RPA-SD using UHPLC-Q-TOF-MS analysis. The hydrogel network formation was confirmed by FTIR, TGA, DSC, XRD, and SEM. Hydrogels' swelling and drug release were slightly higher at pH 1.2 (43.31% swelling, 81.70% drug release) than at pH 7.4 (27.73% swelling, 72.46% drug release) after 48 h. The gel fraction, drug release time and mechanical strength of the hydrogels increased with increased polymer and monomer concentration. Furthermore, the hydrogels were porous (84.15% porosity) and biodegradable (8.9% weight loss per week). Moreover, the synthesized hydrogels exhibited excellent antimicrobial and antioxidative properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Mingyan Peng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yi Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
50
|
Fujita S, Takeda H, Noda J, Wakamori H, Kono H. Chitosan Hydrogels Crosslinked with Oxidized Sucrose for Antimicrobial Applications. Gels 2023; 9:786. [PMID: 37888359 PMCID: PMC10606239 DOI: 10.3390/gels9100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Oxidized sucrose (OS) reacts with amino-group-containing polysaccharides, including chitosan, without catalyst, resulting in hydrogels entirely composed of carbohydrates. The presence of imine bonds with low structural stabilities and unreacted aldehydes in the structures of these hydrogels hinder their application as biomaterials. Therefore, herein, the chitosan hydrogels (CTSGs) obtained after the crosslinking of chitosan with OS were reduced using sodium borohydride to convert imine bonds to secondary amines and aldehydes to alcohols. The structures of CTSGs were comprehensively characterized using Fourier transform infrared and 13C nuclear magnetic resonance spectroscopies, and the results implied that the degree of crosslinking (CR) depended on the OS feed amount used during CTSG preparation. The properties of CTSGs were significantly dependent on CR; with an increase in CR, the thermal stabilities and dynamic moduli of CTSGs increased, whereas their swelling properties decreased. CTSGs exhibited antimicrobial properties against the gram-negative bacterium Escherichia coli, and their performances were also dependent on CR. The results indicated the potentials of CTSGs completely based on carbohydrates as antimicrobial hydrogels for various medical and pharmaceutical applications. We believe that this study will contribute to the development of hydrogels for application in the food, medical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Sayaka Fujita
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| | - Hijiri Takeda
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| | - Junki Noda
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| | - Haruki Wakamori
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
- Hokkaido Soda Co., Ltd., Numanohata 134-122, Tomakomai 059-1364, Hokkaido, Japan
| | - Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| |
Collapse
|