1
|
Xin C, Jia P, Zhao Y, Cheng Z, Liu W, Di P, Li W, Zhu H. Antioxidant effects of Gastrodia elata polysaccharide-based hydrogels loaded with puerarin/gelatin microspheres for D-galactose-induced aging-skin wound healing. Int J Biol Macromol 2025; 296:139809. [PMID: 39805458 DOI: 10.1016/j.ijbiomac.2025.139809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds. First, chitosan (CS) was modified and Gastrodin (GAS) was grafted onto its main chain structure to obtain GAS/CS. Then GAS/CS was mixed with oxidized Gastrodia elata polysaccharides (GEP) to form a hydrogel using the principle of adsorbent reaction, and Puerarin (PUE), a natural plant ingredient, was embedded by gelatin microspheres and then loaded into the hydrogel. As a result, the composite hydrogel effectively reduced oxidative stress in tissue cells at the wound site and inhibited bacterial growth. It also reduced inflammation, promoted angiogenesis, and enhanced collagen deposition, which facilitated the repair of all aspects of the wound healing process in aging mouse skin. In short, this study explored the anti-aging effects of polysaccharides from Gastrodia elata, which might serve as both a treatment and an auxiliary for aging skin wounds. Additionally, the Gastrodia elata polysaccharide hydrogel was expected to be a promising drug carrier for skin repair.
Collapse
Affiliation(s)
- Chenran Xin
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China
| | - Pinhui Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Peng Di
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Iwahashi H, Kawashima Y, Masaki H, Taga A. Lemon Balm (Melissa officinalis L.) Leaf Extract Promotes Endo180 Production in Dermal Fibroblasts and has Antiwrinkle Effect on Human Skin. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2025; 41:e70006. [PMID: 39888701 PMCID: PMC11785151 DOI: 10.1111/phpp.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/02/2025]
Abstract
BACKGROUND The collagen receptor Endo180 participates in extracellular matrix remodeling by clearing the pericellular environment and recognizing and internalizing collagen degradation products. In photoaged skin, Endo180 expression in fibroblasts is decreased, and collagen fragments accumulate in the pericellular environment, leading to a decrease in type I collagen production and an increase in matrix metalloproteinase 1 production. This suggests that a decrease in Endo180 production may promote wrinkle formation by decreasing the dermal collagen fibril volume. Therefore, this study aimed to identify materials that promote Endo180 production in vitro and investigate whether promoting Endo180 production could prevent and improve wrinkles in vivo. METHODS Endo180 gene expression and protein production in fibroblasts were evaluated after screening 71 natural extracts. The conditioned medium of UVB-irradiated keratinocytes and Endo180 production-promoting extract were added to fibroblasts, and Endo180 and type I collagen production were evaluated. In a double-blind, randomized, placebo-controlled study, a cream formulated with an Endo180 production-promoting extract or placebo was topically administered to each side of the face of 20 healthy women twice daily for 8 weeks. RESULTS Screening results showed that 50 μg/mL of lemon balm (Melissa officinalis L.) leaf extract (MOLE) resulted in the highest levels of both Endo180 mRNA and protein at 178.1% and 127.4%, respectively. Its major component rosmarinic acid also promoted Endo180 production by 143.9% at a concentration of 20 μg/mL. MOLE at 200 μg/mL almost completely inhibited the decrease in Endo180 and type I collagen production in UVB-irradiated keratinocyte-conditioned medium. Furthermore, eye-corner wrinkles were reduced by treatment with the MOLE formulation compared to that in response to the placebo formulation. CONCLUSIONS MOLE may act as an antiwrinkle agent that inhibits the decline in collagen levels by promoting Endo180 production.
Collapse
Affiliation(s)
| | | | - Hitoshi Masaki
- Laboratory of Photoaging Research, School of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
- Research Institute for Human Health ScienceKonan UniversityHyougoJapan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of PharmacyKindai UniversityOsakaJapan
- Antiaging CenterKindai UniversityOsakaJapan
| |
Collapse
|
3
|
Parvizi MM, Hekmat M, Yousefi N, Javaheri R, Mehrzadeh A, Saki N. Clinical Trials Conducted on Herbal Remedies for the Treatment of Melasma: A Scoping Review. J Cosmet Dermatol 2025; 24:e16741. [PMID: 39710951 PMCID: PMC11837239 DOI: 10.1111/jocd.16741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Melasma, also known as chloasma, is a common skin disorder characterized by acquired hyperpigmentation. Many patients with this condition prefer using herbal remedies instead of chemical agents. This study aims to review clinical trials conducted on the effectiveness of herbal remedies in treating melasma. METHODS In this scoping review, we searched the PubMed, Scopus, Web of Science, Cochrane, SID, and Magiran databases until August 2024. We designed the search strategy using MeSH database keywords "melanosis," "herbal medicine," "plant extracts," "complementary therapies," "traditional medicine," "Persian medicine," "clinical trials," and their Entry Terms. We then reviewed and summarized the relevant articles. RESULTS We found a total of 21 clinical trials examining the effectiveness of herbal remedies in treating melasma. The literature review revealed that licorice, rhubarb, a mixture of melon seed and chickpea, sorrel, Aloe vera leaf gel, parsley, tomato, fern, olive, pine bark, and Indian gooseberry had positive effects in treating melasma. Licorice is the most extensively studied herbal remedy for melasma treatment. Some patients who used licorice, rhubarb, and parsley experienced redness and skin allergies. CONCLUSION Few studies have evaluated the effectiveness of herbal remedies in treating melasma. Further research, including clinical trials, systematic reviews, and meta-analyses, is necessary to assess the efficacy of herbal remedies and natural products, as well as their potential adverse effects.
Collapse
Affiliation(s)
- Mohammad Mahdi Parvizi
- Molecular Dermatology Research CenterShiraz University of Medical SciencesShirazIran
- Research Center for Traditional Medicine and History of MedicineShiraz University of Medical SciencesShirazIran
- Vice Chancellor of Academic AffairsSmart University of Medical SciencesTehranIran
| | - Maryam Hekmat
- Department of Dermatology, Molecular Dermatology Research CenterShiraz University of Medical SciencesShirazIran
| | - Nahid Yousefi
- Student Research Committee, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Rojan Javaheri
- Student Research Committee, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Arman Mehrzadeh
- Student Research Committee, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasrin Saki
- Department of Dermatology, Molecular Dermatology Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
4
|
Diaz MJ, Tran JT, Rose D, Wei A, Lakshmipathy D, Lipner SR. Dietary Interventions, Supplements, and Plant-Derived Compounds for Adjunct Vitiligo Management: A Review of the Literature. Nutrients 2025; 17:357. [PMID: 39861486 PMCID: PMC11767946 DOI: 10.3390/nu17020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Vitiligo is a chronic autoimmune pigmentation disorder shaped by a complex interplay of genetic predispositions and environmental triggers. While conventional therapies-phototherapy, corticosteroids, and immunosuppressants-can be effective, their benefits are often partial and temporary, with recurrence common once treatment stops. As such, there is increasing interest in exploring complementary approaches that may offer a more sustainable impact. Emerging evidence suggests that macronutrient and micronutrient-level changes could be beneficial for managing progression and, in some cases, facilitating repigmentation. Antioxidant-rich foods, such as apples, green tea, Indian gooseberry, onions, and peppers, may help mitigate oxidative stress, while inflammatory foods, such as gluten and high-phenol nuts and berries, may exacerbate the condition. Certain supplements, including high-dose vitamin D, vitamin C, vitamin E, and selenium, may enhance phototherapy outcomes. Omega-3 and other unsaturated fatty acids, in addition to prebiotics and probiotics, are under active investigation for their roles in gut health and immune regulation. Notably, plant-derived compounds, i.e., Ginkgo biloba, have demonstrated promise in promoting repigmentation and managing disease progression. However, it must be emphasized that these nutritional interventions remain exploratory, and more research is needed to establish their efficacy, safety, and optimal usage before they can be recommended as part of a standard treatment regimen.
Collapse
Affiliation(s)
- Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Jasmine T. Tran
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Drake Rose
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Aria Wei
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Lakshmipathy
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Shari R. Lipner
- Department of Dermatology, Weill Cornell Medicine, New York City, NY 10021, USA
| |
Collapse
|
5
|
Czerwińska K, Radziejewska I. Rosmarinic Acid: A Potential Therapeutic Agent in Gastrointestinal Cancer Management-A Review. Int J Mol Sci 2024; 25:11704. [PMID: 39519255 PMCID: PMC11546295 DOI: 10.3390/ijms252111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gastrointestinal cancers are still the leading cause of death worldwide. This is related, among other things, to the non-specific symptoms, especially in the initial stages, and also to the limited possibilities for treatment. Therefore, research is still being conducted to improve the detection of this type of cancer and increase the effectiveness of therapy. The potential application of natural compounds in cancer management deserves special attention. In the group of such products, there are polyphenolic compounds that reveal, e.g., anti-oxidative, anti-carcinogenic, anti-inflammatory, anti-diabetic, and neuroprotective properties. One of these polyphenols is rosmarinic acid, commonly found in plants such as the Boraginaceae and Nepetoideae subfamilies of the Lamiaceae (mint) family. A number of studies have considered the positive effects of rosmarinic acid in the treatment of many cancers, including gastrointestinal ones such as oral, stomach, pancreas, colon, and liver cancers. The main aim of this paper was to summarize the mechanisms of action of rosmarinic acid in gastrointestinal cancers.
Collapse
Affiliation(s)
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| |
Collapse
|
6
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Üstündağ Ü, Macar O, Kalefetoğlu Macar T, Yalçın E, Çavuşoğlu K. Effect of Melissa officinalis L. leaf extract on manganese-induced cyto-genotoxicity on Allium cepa L. Sci Rep 2023; 13:22110. [PMID: 38092949 PMCID: PMC10719243 DOI: 10.1038/s41598-023-49699-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Although the antioxidant properties of Melissa officinalis extract (Mox) are widely known, little work has focused on its protective capacity against heavy metal stress. The primary objective of this study was to determine the potential of Mox to mitigate manganese (II) chloride (MnCI2)-induced cyto-genotoxicity using the Allium and comet assays. Physiological, genotoxic, biochemical and anatomical parameters as well as the phenolic composition of Mox were examined in Allium cepa (L.). Application of 1000 µM MnCl2 reduced the rooting percentage, root elongation, weight gain, mitotic index and levels of chlorophyll a and chlorophyll b pigments compared to the control group. However, it increased micronuclei formation, chromosomal abnormality frequencies, tail DNA percentage, proline amount, lipid peroxidation level and meristematic damage severity. The activities of superoxide dismutase and catalase also increased. Chromosomal aberrations induced by MnCl2 were fragment, sticky chromosome, vagrant chromosome, unequal distribution of chromatin and bridge. Application of 250 mg/L Mox and 500 mg/L Mox along with MnCl2 significantly alleviated adverse effects dose dependently. The antioxidant activity bestowed by the phenolic compounds in Mox assisted the organism to combat MnCl2 toxicity. Consequently, Mox exerted remarkable protection against MnCl2 toxicity and it needs to be investigated further as a potential therapeutic option.
Collapse
Affiliation(s)
- Ünal Üstündağ
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
8
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
9
|
Hallmarks and Biomarkers of Skin Senescence: An Updated Review of Skin Senotherapeutics. Antioxidants (Basel) 2023; 12:antiox12020444. [PMID: 36830002 PMCID: PMC9952625 DOI: 10.3390/antiox12020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aging is a complex process characterized by an ongoing decline in physiological functions, leading to degenerative diseases and an increased probability of death. Cellular senescence has been typically considered as an anti-proliferative process; however, the chronic accumulation of senescent cells contributes to tissue dysfunction and aging. In this review, we discuss some of the most important hallmarks and biomarkers of cellular senescence with a special focus on skin biomarkers, reactive oxygen species (ROS), and senotherapeutic strategies to eliminate or prevent senescence. Although most of them are not exclusive to senescence, the expression of the senescence-associated beta-galactosidase (SA-β-gal) enzyme seems to be the most reliable biomarker for distinguishing senescent cells from those arrested in the cell cycle. The presence of a stable DNA damage response (DDR) and the accumulation of senescence-associated secretory phenotype (SASP) mediators and ROS are the most representative hallmarks for senescence. Senotherapeutics based on natural compounds such as quercetin, naringenin, and apigenin have shown promising results regarding SASP reduction. These compounds seem to prevent the accumulation of senescent cells, most likely through the inhibition of pro-survival signaling pathways. Although studies are still required to verify their short- and long-term effects, these therapies may be an effective strategy for skin aging.
Collapse
|
10
|
Ruksiriwanich W, Linsaenkart P, Khantham C, Muangsanguan A, Sringarm K, Jantrawut P, Prom-u-thai C, Jamjod S, Yamuangmorn S, Arjin C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Barba FJ, Sommano SR, Chutoprapat R, Boonpisuttinant K. Regulatory Effects of Thai Rice By-Product Extracts from Oryza sativa L. cv. Bue Bang 3 CMU and Bue Bang 4 CMU on Melanin Production, Nitric Oxide Secretion, and Steroid 5α-Reductase Inhibition. PLANTS (BASEL, SWITZERLAND) 2023; 12:653. [PMID: 36771737 PMCID: PMC9921347 DOI: 10.3390/plants12030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Alopecia and gray hair are common hair abnormalities affecting physical appearance and causing psychological problems. Chemical treatments partially restore hair disorders but have distressing side effects. Bioactive plant compounds constitute promising sources of potential medicinal substances instead of chemical agents, producing high side effects. In this study, we focused on the waste of local rice cultivars: Bue Bang 3 CMU (BB3CMU) and Bue Bang 4 CMU (BB4CMU) from the north of Thailand. The rice bran oil (RBO), defatted rice bran extract (DFRB), and rice husk (H) were determined for in vitro hair revitalization in melanin production, nitric oxide (NO) secretion, and steroid 5α-reductase inhibition. The results indicated that BB4CMU-RBO with high contents of iron, zinc, and free fatty acids showed a comparable induction of melanin production on melanocytes (130.18 ± 9.13% of control) to the standard drug theophylline with no significant difference (p > 0.05). This promising melanin induction could be related to activating the NO secretion pathway, with the NO secretion level at 1.43 ± 0.05 µM. In addition, BB4CMU-RBO illustrated a significant inhibitory effect on both steroid 5α-reductase genes (SRD5A) type 1 and type 2, which relates to its primary source of tocopherols. Hence, rice bran oil from the Thai rice variety BB4CMU could be applied as a promising hair revitalizing candidate, from natural resources, to help promote hair growth and re-pigmentation effects.
Collapse
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Sansanee Jamjod
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani 12130, Thailand
| |
Collapse
|
11
|
Photoprotective Efficacy of the Association of Rosmarinic Acid 0.1% with Ethylhexyl Methoxycinnamate and Avobenzone. COSMETICS 2023. [DOI: 10.3390/cosmetics10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Innovative prototype sunscreens with reduced ultraviolet (UV) filters are required to achieve safer, more effective, and more environmentally friendly formulations. Rosmarinic acid (RA) is a phenolic antioxidant and potential candidate for multifunctional sunscreens. We used RA (0.1% w/w) in combination with avobenzone (2.5% and 5.0% w/w), a UVA filter, and ethylhexyl methoxycinnamate (10.0% w/w), a UVB filter, to evaluate in vitro sun protection factor (SPF) and critical wavelength, photostability, and the in vivo SPF. RA, in vitro, improved the SPF of F2 (ethylhexyl methoxycinnamate 10.0% w/w + avobenzone 2.5% w/w + RA 0.1% w/w) and F3 (ethylhexyl methoxycinnamate 10.0% w/w + avobenzone 5.0% w/w + RA 0.1% w/w), which also presented broad-spectrum profiles; however, no expressive effects were observed for the critical wavelength (nm). By the in vivo trial, RA showed an increment in the F3 SPF value and maintained the F2 effectiveness, even when avobenzone was at 2.5%. Nonetheless, no increase in photostability was observed. Our findings suggest that incorporating natural molecules with antioxidant activities into sunscreens could decrease the proportion of conventional UV filters in the final product, with the advantage of providing other functional properties. Further investigation of higher RA concentrations, even from other sources, and other UV filter combinations could reveal important data for the development of multifunctional sunscreens.
Collapse
|
12
|
Zhao J, Xu L, Jin D, Xin Y, Tian L, Wang T, Zhao D, Wang Z, Wang J. Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer. Biomolecules 2022; 12:biom12101410. [PMID: 36291619 PMCID: PMC9599057 DOI: 10.3390/biom12101410] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer constitutes a severe threat to human health and quality of life and is one of the most significant causes of morbidity and mortality worldwide. Natural dietary products have drawn substantial attention in cancer treatment and prevention due to their availability and absence of toxicity. Rosmarinic acid (RA) is known for its excellent antioxidant properties and is safe and effective in preventing and inhibiting tumors. This review summarizes recent publications on culture techniques, extraction processes, and anti-tumor applications of RA-enriched dietary supplements. We discuss techniques to improve RA bioavailability and provide a mechanistic discussion of RA regarding tumor prevention, treatment, and adjuvant therapy. RA exhibits anticancer activity by regulating oxidative stress, chronic inflammation, cell cycle, apoptosis, and metastasis. These data suggest that daily use of RA-enriched dietary supplements can contribute to tumor prevention and treatment. RA has the potential for application in anti-tumor drug development.
Collapse
Affiliation(s)
- Jiachao Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liwei Xu
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Xin
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lin Tian
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Tan Wang
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Z.W.); (J.W.)
| | - Jing Wang
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Z.W.); (J.W.)
| |
Collapse
|
13
|
El Kantar S, Yassin A, Nehmeh B, Labaki L, Mitri S, Naser Aldine F, Hirko A, Caballero S, Monck E, Garcia-Maruniak A, Akoury E. Deciphering the therapeutical potentials of rosmarinic acid. Sci Rep 2022; 12:15489. [PMID: 36109609 PMCID: PMC9476430 DOI: 10.1038/s41598-022-19735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Lemon balm is herbal tea used for soothing stomach cramps, indigestion, and nausea. Rosmarinic acid (RA) is one of its chemical constituents known for its therapeutic potentials against cancer, inflammatory and neuronal diseases such as the treatment of neurofibromatosis or prevention from Alzheimer’s diseases (AD). Despite efforts, recovery and purification of RA in high yields has not been entirely successful. Here, we report its aqueous extraction with optimal conditions and decipher the structure by nuclear magnetic resonance (NMR) spectroscopy. Using various physical–chemical and biological assays, we highlight its anti-aggregation inhibition potentials against the formation of Tau filaments, one of the hallmarks of AD. We then examine its anti-cancer potentials through reduction of the mitochondrial reductase activity in tumor cells and investigate its electrochemical properties by cyclic voltammetry. Our data demonstrates that RA is a prominent biologically active natural product with therapeutic potentials for drug discovery in AD, cancer therapy and inflammatory diseases.
Collapse
|
14
|
Moreira B, Pereira E, Finimundy TC, Pinela J, Calhelha RC, Carocho M, Stojković D, Sokovic M, Ferreira ICFR, Caleja C, Barros L. Pineapple by-products as a source of bioactive compounds with potential for industrial food application. Food Funct 2022; 13:9959-9972. [PMID: 36056706 DOI: 10.1039/d2fo00657j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pineapple is a tropical fruit consumed fresh or processed into various food products. However, the peel and crown of this fruit are not industrially exploited, thus generating tons of by-products that represent an economic and environmental concern. In order to promote the upcycling of these by-products, this work aimed to characterize the phenolic profile of its hydroethanolic extracts obtained from pineapple peel and crown leaves and to evaluate their in vitro bioactivity. The HPLC-DAD-ESI/MS analysis allowed the identification of 25 phenolic compounds, including phenolic acids and flavonoids. The antioxidant, cytotoxic, and antimicrobial activity assays highlighted the peel extract as the most promising and, therefore, it was incorporated into a traditional Portuguese pastry cake as a functional ingredient. The nutritional parameters of the developed food were not affected by the incorporation of the extract, but it promoted the antioxidant activity during its shelf-life. Overall, pineapple peel and crown appeared as promising by-products to be exploited by the food industry, which can be achieved through a circular economy approach.
Collapse
Affiliation(s)
- Bruna Moreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Dejan Stojković
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
15
|
Uwineza PA, Urbaniak M, Bryła M, Stępień Ł, Modrzewska M, Waśkiewicz A. In Vitro Effects of Lemon Balm Extracts in Reducing the Growth and Mycotoxins Biosynthesis of Fusarium culmorum and F. proliferatum. Toxins (Basel) 2022; 14:355. [PMID: 35622601 PMCID: PMC9143328 DOI: 10.3390/toxins14050355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
The objectives of this research were to obtain the extracts of lemon balm (Melissa officinalis) using supercritical CO2 (SC-CO2) and methanol as co-solvent and evaluate the antifungal activity of those extracts against two selected strains of Fusarium species (Fusarium culmorum and Fusarium proliferatum). The extraction conditions were set at 40 and 60 °C and 250 bar. The obtained extracts were characterized in terms of antifungal activity on potato dextrose agar media (PDA). The results showed that the extraction parameters had different effects on mycelium growth and mycotoxins biosynthesis reduction. All studied lemon balm extracts (1, 2.5, 5, 7.5, and 10%) inhibited the growth of F. proliferatum and F. culmorum mycelia compared to the control. The lemon balm extracts significantly reduced ergosterol content and synthesized mycotoxins in both tested strains. These findings support the antifungal activity of lemon balm extracts against F. proliferatum and F. culmorum. However, more research on other Fusarium species is needed, as well as in vivo applications, before considering lemon balm extracts as a natural alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Monika Urbaniak
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.M.)
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.M.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
16
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
17
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
18
|
Abstract
UVB is a causative factor for severe skin damage, such as cell aging, death, and inflammation. UVB easily permeates into the epidermis layer of human skin, which is mainly composed of keratinocyte cells. In previous results, we found that purple corn silk (PCS) extract showed the potential to inhibit keratinocyte damages of UVB-treated cells. Thus, in this study, we aimed to evaluate the preventive effects of PCS extract against the inflammation of UVB-induced keratinocyte cells using the HaCaT cell line. HaCaT cells were treated with PCS extract at various concentrations for 1 h, then exposed to 25 mJ/cm2 UVB before subsequent experiments. Fragmented DNA was observed using flow cytometry. The inflammatory response was investigated through NF-κB activity by immunofluorescence staining and related protein expression by Western blotting. The results demonstrated that PCS extract decreased the sub-G1 DNA content. Interestingly, PCS extract attenuated NF-κB activity via suppressed NF-κB nuclear translocation and protein expression. Moreover, PCS extract remarkably decreased c-Jun phosphorylation and decreased proinflammatory cytokines, along with iNOS and COX-2 levels in UVB-treated cells compared to the UVB-control group. This finding exhibited that PCS extract minimized inflammation in keratinocyte cells induced by UVB radiation.
Collapse
|
19
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Huerta-Madroñal M, Caro-León J, Espinosa-Cano E, Aguilar MR, Vázquez-Lasa B. Chitosan - Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydr Polym 2021; 273:118619. [PMID: 34561015 DOI: 10.1016/j.carbpol.2021.118619] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Rosmarinic acid is an attractive candidate for skin applications because of its antioxidant, anti-inflammatory, and photoprotective functions, however, its poor bioavailability hampers its therapeutic outcome. In this context, synthesis of polymer conjugates is an alternative to enlarge its applications. This work describes the synthesis of novel water-soluble chitosan - rosmarinic acid conjugates (CSRA) that have great potential for skin applications. Chitosan was functionalized with different contents of rosmarinic acid as confirmed by ATR-FTIR, 1H NMR and UV spectroscopies. CSRA conjugates presented three-fold radical scavenger capacity compared to the free phenolic compound. Films were prepared by solvent-casting procedure and the biological activity of the lixiviates was studied in vitro. Results revealed that lixiviates reduced activation of inflamed macrophages, improved antibacterial capacity against E. coli with respect to native chitosan and free rosmarinic acid, and also attenuated UVB-induced cellular damage and reactive oxygen species production in fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Miguel Huerta-Madroñal
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain.
| | - Javier Caro-León
- Grupo de Investigación en Biopolímeros, Centro de Investigación en Alimentación y Desarrollo A.C., Sonora, Mexico.
| | - Eva Espinosa-Cano
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| | - María Rosa Aguilar
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| | - Blanca Vázquez-Lasa
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
21
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
22
|
Rizvi A, Merlin MA, Shah GM. Poly (ADP-ribose) polymerase (PARP) inhibition in cancer: Potential impact in cancer stem cells and therapeutic implications. Eur J Pharmacol 2021; 911:174546. [PMID: 34600907 DOI: 10.1016/j.ejphar.2021.174546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022]
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) are used in mono- or combination therapies for several malignancies. They are also used as maintenance therapy for some cancers after initial treatment. While the focus of this therapeutic approach is on the effect of PARP inhibition on the bulk tumour cells, in this review, we discuss their effect on the cancer stem cells. We identify key mediators and pathways in cancer stem cells whose response to PARP inhibition is not necessarily the same as the rest of the tumour cells. Since the cancer stem cells are known drivers of growth of tumours and their resistance to therapy, the clinical outcome might be drastically different than what is expected, if the effect of PARP inhibition on the cancer stem cells is not taken into account.
Collapse
Affiliation(s)
- Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, The Aligarh Muslim University, Aligarh, India; CHU de Québec Université Laval Research Center, Neuroscience Division, Québec City, QC, G1V 4G2, Canada.
| | - Marine A Merlin
- CHU de Québec Université Laval Research Center, Neuroscience Division, Québec City, QC, G1V 4G2, Canada; Cancer Research Center, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Girish M Shah
- CHU de Québec Université Laval Research Center, Neuroscience Division, Québec City, QC, G1V 4G2, Canada; Cancer Research Center, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
23
|
Antioxidant Activity of Spiranthes sinensis and Its Protective Effect against UVB-Induced Skin Fibroblast Damage. Processes (Basel) 2021. [DOI: 10.3390/pr9091564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spiranthes sinensis (S. sinensis), a species of orchid, is a well-known herb medicine used to treat disorders such as stomachache, diabetes, shingles, and certain inflammatory diseases. Presently, the antioxidant activity of S. sinensis as well as its protective effect on UVB-induced skin injury are unclear. In this study, S. sinensis was extracted with boiling water or 75% (v/v) ethanol, and then its antioxidant composition and antioxidant activity were determined. The protective effects of S. sinensis against UVB-induced damage in human skin fibroblasts (CCD-966SK) were also investigated. Our data showed that the extraction yield of boiling water was higher than that of 75% ethanol. However, compared to the aqueous extracts, the ethanol extracts not only had higher phenolic, flavonoid, and condensed tannin contents, but also exhibited higher free radical scavenging activity, higher reducing power, and higher ferrous ion-chelating capacity. When fibroblasts were pre-cultured with the water or ethanol extracts of S. sinensis (1500 μg/mL) for 24 h before applying UVB irradiation, the S. sinensis extracts restored 17% to 27% of cell viability compared to a control only irradiated with UVB. Overall, our study suggests that S. sinensis extracts can be used as effective antioxidants and have the potential to protect skin fibroblasts from UVB irradiation.
Collapse
|
24
|
Yargholi A, Shirbeigi L, Rahimi R, Mansouri P, Ayati MH. The effect of Melissa officinalis syrup on patients with mild to moderate psoriasis: a randomized, double-blind placebo-controlled clinical trial. BMC Res Notes 2021; 14:253. [PMID: 34193264 PMCID: PMC8246655 DOI: 10.1186/s13104-021-05667-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Psoriasis is an immune-mediated inflammatory skin disease. It can involve any body skin area, particularly the scalp, lower back, elbows, and knees. There are several topical and systemic therapies for the treatment. Nowadays, herbal medicines are popular treatments for dermatologic conditions. This two-arm parallel, randomized placebo-controlled clinical trial was conducted to examine the hypothesis of the efficacy of Melissa officinalis syrup on patients with mild-to-moderate Plaque psoriasis. Result Among 100 patients, 95 participants completed the trial and five of them withdrew. The mean pruritus intensity and PASI scores decreased significantly in the intervention group compared to the placebo group (P < 0.001). The DLQI score in the intervention group increased post-treatment compared to pre-treatment (P = 0.029); however, there was no significant difference between the intervention and control group at the end of the study (0.065). Trial registration: The trial was registered in the Iranian registry of clinical trials on November 9th, 2019 (https://www.irct.ir/trial/43434; registration number: IRCT20191104045326N1). Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05667-9.
Collapse
Affiliation(s)
- Alireza Yargholi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Shirbeigi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mansouri
- Department of Dermatology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ayati
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, P. O. Box: 1416643139, Tehran, Iran.
| |
Collapse
|
25
|
Sutkowska J, Hupert N, Gawron K, Strawa JW, Tomczyk M, Forlino A, Galicka A. The Stimulating Effect of Rosmarinic Acid and Extracts from Rosemary and Lemon Balm on Collagen Type I Biosynthesis in Osteogenesis Imperfecta Type I Skin Fibroblasts. Pharmaceutics 2021; 13:pharmaceutics13070938. [PMID: 34201872 PMCID: PMC8308967 DOI: 10.3390/pharmaceutics13070938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Rosemary extract (RE) and lemon balm extract (LBE) attract particular attention of pharmacists due to their high therapeutic potential. Osteogenesis imperfecta (OI) type I is a heritable disease caused by mutations in type I collagen and characterized by its reduced amount. The aim of the study was to evaluate the effect of the extracts and rosmarinic acid (RA) on collagen type I level in OI skin fibroblasts. Phytochemical analysis of RE and LBE was carried out by liquid chromatography–photodiode array detection–mass spectrometry. The expression of collagen type I at transcript and protein levels was analyzed by qPCR, ELISA, SDS-urea PAGE, and Western blot. In OI patient’s fibroblasts the exposure to the extracts (0.1–100 µg/mL) and RA (0.1–100 µM) significantly increased collagen type I and the best results were obtained with 0.1–10 µM RA and 0.1–10 µg/mL of the extracts. LBE showed a greater stimulating effect than RE, likely due to a higher RA content. Moreover, collagen type III expression and matrix metalloproteinase (MMP-1, -2, -9) activity remained unchanged or decreased. The obtained data support the clinical potential of RA-rich extracts and RA itself in modulating the quantitative defect of type I collagen in type I OI.
Collapse
Affiliation(s)
- Joanna Sutkowska
- Department of Medical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Natalia Hupert
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (N.H.); (K.G.)
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (N.H.); (K.G.)
| | - Jakub W. Strawa
- Department of Pharmacognosy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland; (J.W.S.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland; (J.W.S.); (M.T.)
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy;
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-222 Bialystok, Poland;
- Correspondence:
| |
Collapse
|
26
|
Nobile V, Schiano I, Peral A, Giardina S, Spartà E, Caturla N. Antioxidant and reduced skin-ageing effects of a polyphenol-enriched dietary supplement in response to air pollution: a randomized, double-blind, placebo-controlled study. Food Nutr Res 2021; 65:5619. [PMID: 33889065 PMCID: PMC8035891 DOI: 10.29219/fnr.v65.5619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background Air pollution exposure is one of the major threats to skin health and accelerates skin ageing mainly through oxidative stress mechanisms. Since it is difficult to minimize skin exposure to air pollutants, especially in urban areas, strategies to protect the skin are needed. Plant phenolic compounds have been found to be effective in attenuating cellular oxidative stress and inflammation induced by different air pollutants and a dietary approach based on these compounds could provide an efficient protection measure. Objective Here we investigated the efficacy of a commercially available polyphenol-enriched dietary supplement (Zeropollution®) in reducing pollution-induced oxidative stress and in improving different skin parameters related to skin ageing of Caucasian and Asian subjects exposed to air pollution. Zeropollution is composed of four standardized herbal extracts: Olea europaea leaf, Lippia citriodora, Rosmarinus officinalis, and Sophora japonica. Design A double-blind randomized, parallel group study was carried out on 100 outdoor workers living in a polluted urban European area (Milan) to assess the efficacy of the dietary supplement. The total antioxidant capacity on saliva (FRAP), the oxidative damage on skin (lipoperoxides content), skin moisturization (corneometer), transepidermal water loss (tewameter), skin radiance and colour (spectrophotometer), skin elasticity (cutometer), skin sebum content (sebumeter), and the skin roughness (image analysis) were measured. Results Both inter-group and intra-group analysis proved that the dietary supplement improved all clinical and biochemical-monitored parameters, in both Caucasian and Asian individuals. Some of the positive effects such as decreased wrinkle depth, increased elasticity and firmness, improved skin moisturization and transepidermal water loss, and reduced dark spots pigmentation were statistically significant as early as 2 weeks of product consumption. Conclusions The results of the study indicate reduced oxidative stress-induced skin damage in both Asian and Caucasian women living in a polluted urban area. Therefore, the oral intake of this four-plant based supplement could be considered a complementary nutrition strategy to avoid the negative effects of environmental pollution exposure.
Collapse
Affiliation(s)
| | | | - Ana Peral
- Complife Italia Srl, San Martino Siccomario, Pavia, Italy
| | | | | | - Nuria Caturla
- Complife Italia Srl, San Martino Siccomario, Pavia, Italy
| |
Collapse
|
27
|
Rodríguez-Luna A, Talero E, Ávila-Román J, Romero AMF, Rabasco AM, Motilva V, González-Rodríguez ML. Preparation and In Vivo Evaluation of Rosmarinic Acid-Loaded Transethosomes After Percutaneous Application on a Psoriasis Animal Model. AAPS PharmSciTech 2021; 22:103. [PMID: 33712964 DOI: 10.1208/s12249-021-01966-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The topical use of rosmarinic acid (RA) in skin inflammatory pathologies is restricted due to its poor water solubility, poor permeability, and chemical instability. In this study, RA-loaded transethosomes-in-Carbopol® formulations have been developed to evaluate its anti-inflammatory activity on imiquimod-induced psoriasis-like skin inflammation in mice. In vitro release profiles demonstrated sustained behavior due to the retentive action of gel and the entrapment of RA into the vesicles. However, the low viscosity of the combined formulation increased the drug release rate. Animal evaluation of anti-inflammatory activity demonstrated that transethosomes-in-gel containing dexamethasone (Dex-TE-Gel), as positive control, showed effect in all the pro-inflammatory parameters evaluated, evidencing that these drug-loaded nanocarriers have been effectively reached the site of action. In addition, transethosomes-in-gel containing RA (RA-TE-Gel) formulations produced a great reduction in the punch edema (P < 0.001) and in TNF-α and IL-6 (P < 0.05). However, non-significant differences were obtained for IL-1β, IL17, and MPO. Despite the protecting effect of Carbopol® and transethosomes on oxidation index and antioxidant activity of RA over the 7 days of treatment, however, a degradation process of this antioxidant to caffeic acid may be the cause of these in vivo results. We have also checked that the pH existing into the intercellular space of damaged cells (pH 6.8) may be affecting. Therefore, our results suggest that RA-TE-Gel could act as an effective RA formulation for skin delivery; further studies will help to understand the loss of activity at the cellular level.
Collapse
Affiliation(s)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ana María Fernández Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González, 2, 41012, Seville, Spain
| | - Antonio M Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González, 2, 41012, Seville, Spain
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González, 2, 41012, Seville, Spain.
| |
Collapse
|
28
|
Kuo TT, Chang HY, Chen TY, Liu BC, Chen HY, Hsiung YC, Hsia SM, Chang CJ, Huang TC. Melissa officinalis Extract Induces Apoptosis and Inhibits Migration in Human Colorectal Cancer Cells. ACS OMEGA 2020; 5:31792-31800. [PMID: 33344833 PMCID: PMC7745433 DOI: 10.1021/acsomega.0c04489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/20/2020] [Indexed: 05/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Lifestyle-related factors, such as diet, are associated with the development of CRC. Cumulating evidence indicates noticeable chemopreventive effects of phytochemicals on CRC, suggesting that drinking herbal tea potentially reduces the risk of distal colon cancer via its antiproliferative and anti-angiogenic activities. We examine the antitumor effects of nine components frequently found in herbal tea and uncover the underlying molecular mechanism. Among them, the hot water extract of Melissa officinalis (MO) exhibited the highest anticancer activity on CRC cells. We revealed that MO reduced cell proliferation, induced cell cycle arrest at the G2/M phase, triggered caspase-dependent apoptotic cell death, and inhibited cell migration ability by modulating the epithelial-mesenchymal transition in HCT116 CRC cells. To examine the metabolite composition in the MO hot water extract, we applied mass spectrometry-based analysis and identified 67 compounds. Among them, the phenolic compounds, including lignans, phenylpropanoids, and polyketides, are widely found in natural products and possess various bioactivities such as anti-inflammatory, antioxidation, and anticancer effects. The results indicate that herbal tea consumption benefits CRC prevention and management.
Collapse
Affiliation(s)
- Tzu-Ting Kuo
- Ph.D.
Program for Cancer Molecular Biology and Drug Discovery, College of
Medical Science and Technology, Taipei Medical
University and Academia Sinica, Taipei 11031, Taiwan
| | - Hsin-Yi Chang
- Graduate
Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Yuan Chen
- Department
of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Bai-Chia Liu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yi Chen
- Ph.D.
Program for Cancer Molecular Biology and Drug Discovery, College of
Medical Science and Technology, Taipei Medical
University and Academia Sinica, Taipei 11031, Taiwan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Chin Hsiung
- TMU
Core Facility Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Min Hsia
- School of
Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ju Chang
- Department
of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Tsui-Chin Huang
- Ph.D.
Program for Cancer Molecular Biology and Drug Discovery, College of
Medical Science and Technology, Taipei Medical
University and Academia Sinica, Taipei 11031, Taiwan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer
Center, Wan Fang Hospital, Taipei Medical
University, Taipei 11696, Taiwan
| |
Collapse
|
29
|
Li Y, Guo J, Zhang H, Lam CW, Luo W, Zhou H, Zhang W. Protective Effect of Thymidine on DNA Damage Induced by Hydrogen Peroxide in Human Hepatocellular Cancer Cells. ACS OMEGA 2020; 5:21796-21804. [PMID: 32905386 PMCID: PMC7469367 DOI: 10.1021/acsomega.0c02843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Intracellular ribonucleotide (RN) and deoxyribonucleotide (dRN) pool sizes are critical for the fidelity of DNA synthesis. They are likely to be severely perturbed by many factors which disrupt the integrity and stability of DNA, leading to DNA damage. Exogenously supplied nucleosides are able to increase the deoxynucleoside triphosphate pools, then reverse the DNA damage, and decrease the oncogene-induced transformation dramatically. In this study, the impact of thymidine on the hydrogen peroxide (H2O2)-induced DNA damage was investigated in HepG2 liver cancer cells. From the result of the comet assay, the tail length of cells in the thymidine 600 μM + H2O2 1.0 mM group was dramatically decreased from 42.1 ± 10.8 to 21.9 ± 2.4 μm compared to that exposed with 1.0 mM H2O2 (p < 0.05), suggesting that pretreatment of thymidine reduced the DNA damage of HepG2 cells. Although the RN and dRN contents decreased in the damage group, most of them presented increasing tendency when pretreated with thymidine, especially the key metabolites dCTP, which was mainly related with the decline in the rate of DNA synthesis. The restoration also showed a significant G0/G1 phase arrest of cell cycle progression from 44.6 ± 2.2 to 56.6 ± 0.4% after pretreated with thymidine (p < 0.05). In conclusion, our data demonstrated that the pretreatment with thymidine had a potential protective ability against oxidative damage for DNA in HepG2 cells through the perturbation of RN and dRN pools as well as cell cycle arrest, which should provide new insights into the molecular basis of preventing H2O2-induced oxidative DNA damage in mammalian cells.
Collapse
|
30
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
31
|
Ying J, Wang Q, Jiang M, Wang X, Liu W, Wang X, Zhang C, Xiang L. Hydrogen Sulfide Promotes Cell Proliferation and Melanin Synthesis in Primary Human Epidermal Melanocytes. Skin Pharmacol Physiol 2020; 33:61-68. [PMID: 32485725 DOI: 10.1159/000506818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Hydrogen sulfide (H2S) has been found to act as a physiological intercellular messenger to regulate cell survival. In this study, we evaluated whether H2S could promote cell proliferation and melanin synthesis in human epidermal melanocytes (HEMs). METHODS Primary HEMs were cocultured with sodium hydrosulfide (NaHS, the most widely used H2S donor) or endogenously overexpressed with cystathionine-γ-lyase (CSE) gene, which is the most predominant H2S-producing enzyme. Then, cell viability, intracellular melanin content, tyrosinase (TYR) activity, and expression of microphthalmia-associated transcription factor (MITF), TYR, together with TYR-related protein 1 (TRP-1) in both transcript and protein levels, were detected. RESULTS We first confirmed that NaHS (10-100 μm) increased cell viability, intracellular melanin content, and TYR activity in a dose-dependent manner. Then, we found that endogenous H2S production also promoted cell proliferation, intracellular melanin content, and TYR activity. In addition, we observed the mRNA and protein expression of MITF, TYR, and TRP-1 was significantly up-regulated after NaHS treatment and CSE gene transfection. CONCLUSIONS This study demonstrates that H2S promotes cell proliferation and melanin synthesis in HEMs, which indicates pharmacologic regulation of H2S may be potential treatment for skin disorders caused by loss of melanocytes or dysfunction of melanogenesis.
Collapse
Affiliation(s)
- Jiayi Ying
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianqian Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuxiu Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjie Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China,
| |
Collapse
|
32
|
Thumann TA, Pferschy-Wenzig EM, Aziz-Kalbhenn H, Ammar RM, Rabini S, Moissl-Eichinger C, Bauer R. Application of an in vitro digestion model to study the metabolic profile changes of an herbal extract combination by UHPLC-HRMS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153221. [PMID: 32447246 DOI: 10.1016/j.phymed.2020.153221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/04/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND STW 5 is a fixed herbal combination containing extracts from nine medicinal plants: bitter candytuft, greater celandine, garden angelica roots, lemon balm leaves, peppermint leaves, caraway fruits, licorice roots, chamomile flowers, and milk thistle fruit. STW 5 is a clinically proven treatment for functional dyspepsia and irritable bowel syndrome. PURPOSE Using a static in vitro method, we simulated oral, gastric, and small intestinal digestion and analyzed the metabolic profile changes by UHPLC-HRMS to determine the impact of oro-gastro-intestinal digestion on STW 5 constituents. STUDY DESIGN AND METHODS STW 5 was incubated according to the InfoGest consensus method. Samples of each digestive phase were analyzed by UHPLC-HRMS in ESI positive and negative modes. After data processing, background subtraction, and normalization, the peak areas of detectable compounds were compared to untreated reference samples and recovery ratios were calculated to monitor the metabolic profile of STW 5 during simulated digestion. RESULTS Although the levels of some constituents were reduced, we did not observe complete degradation of any of the constituents of STW 5 upon in vitro digestion. We did not detect any new metabolites beyond increased levels of caffeic acid and liquiritigenin due to degradation of progenitor compounds. Changes observed in intestinal bioaccessibility ratios were mainly a result of isomerization, hydrolysis, protein binding, and low water solubility. CONCLUSION The majority of STW 5 constituents are stable towards simulated in vitro digestion and can reach the colon to interact with gut microbiota if they remain unabsorbed in the upper intestinal tract.
Collapse
Affiliation(s)
- Timo A Thumann
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria
| | - Heba Aziz-Kalbhenn
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Havelstraße 5, 64295 Darmstadt, Germany
| | - Ramy M Ammar
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Havelstraße 5, 64295 Darmstadt, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, 33511 Kafrelsheikh; Egypt
| | - Sabine Rabini
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Havelstraße 5, 64295 Darmstadt, Germany
| | - Christine Moissl-Eichinger
- BioTechMed, Mozartgasse 12, 8010 Graz, Austria; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria.
| |
Collapse
|
33
|
Agulló-Chazarra L, Borrás-Linares I, Lozano-Sánchez J, Segura-Carretero A, Micol V, Herranz-López M, Barrajón-Catalán E. Sweet Cherry Byproducts Processed by Green Extraction Techniques as a Source of Bioactive Compounds with Antiaging Properties. Antioxidants (Basel) 2020; 9:antiox9050418. [PMID: 32414056 PMCID: PMC7278782 DOI: 10.3390/antiox9050418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
In the cosmetic industry, there is a continuous demand for new and innovative ingredients for product development. In the context of continual renovation, both cosmetic companies and customers are particularly interested in compounds derived from natural sources due to their multiple benefits. In this study, novel and green-extractive techniques (pressurized solvent, supercritical CO2, and subcritical water extractions) were used to obtain three new extracts from sweet cherry stems, a byproduct generated by the food industry. The extracts were characterized by high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS), and 57 compounds, mainly flavonoids but also organic and phenolic acids, fatty acids, and terpenes, were identified. After analytical characterization, a multistep screening approach, including antioxidant, enzymatic, and photoprotective cellular studies, was used to select the best extract according to its benefits of interest to the cosmetics industry. The extract obtained with supercritical CO2 presented the best characteristics, including a wide antioxidant capacity, especially against lipid peroxyl and •OH free radicals, as well as relevant photoprotective action and antiaging properties, making it a potential new ingredient for consideration in the development of new cosmetics.
Collapse
Affiliation(s)
- Luz Agulló-Chazarra
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
| | - Jesús Lozano-Sánchez
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III, 07122 Palma de Mallorca, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
- Correspondence: ; Tel.: +34-965222586
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
| |
Collapse
|
34
|
Lemon Balm Extracts Prevent Breast Cancer Progression In Vitro and In Ovo on Chorioallantoic Membrane Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6489159. [PMID: 32351599 PMCID: PMC7178502 DOI: 10.1155/2020/6489159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently diagnosed malignant pathology, representing the primary cause of cancer death in women. Natural products are an appealing strategy to limit the progression of the disease. Targeting angiogenesis in breast cancer may positively impact on poor prognosis of breast cancer. As source of natural compounds, we investigated the leaves of Melissa officinalis L. (MO), known as lemon balm, an aromatic plant that spontaneously grows in the South and Western areas of Romania, being traditionally recommended as anxiolytic, antispasmodic, or as digestive remedy. Our aim was to investigate the phytochemical profiling and the antiangiogenic and chemopreventive bioactivity of MO from Banat region, on breast cancer. Two ethanolic extracts of MO (MOE96 and MOE70) and one methanolic extract (MOM80) were subjected to polyphenol and triterpene profiling by HPLC-MS, and the antioxidant capacity was evaluated. The antiangiogenic potential was investigated using the chorioallantoic membrane assay (CAM). The MTT(3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide) assay was used to investigate the cytotoxic effects on MCF-7 and MDA-MB-231breast cancer cells, as well as on MCF-10A normal breast epithelial cells, while apoptosis was performed by DAPI staining. Rosmarinic acid (RA) and ursolic acid (UA) were revealed as dominant phytocompounds. The highest concentration in phytochemicals were found in MOM80; MOE96 was more concentrated in UA, while MOE70 extracted more RA. MOE96 inhibited cancer progression and angiogenesis in the in ovo CAM model using MDA-MB-231 cells, inhibiting breast cancer progression and angiogenesis for the MDA-MB-231 breast cancer cell line; no secondary tumoral areas were registered, indicative for a preventive effect against breast tumor cell invasiveness. The highest cell inhibitory activity was also exhibited by MOE96, in particular against the estrogen receptor positive MCF7 breast cancer cell line, with no cytotoxic effect on healthy cells. The estrogen receptor positive MCF7 cell line proved to be more sensitive to the extract antiproliferative activity than the triple negative MDA-MB-231 breast cancer cell line. Nevertheless, the chemopreventive potential of MOE96 extract is phenotype-dependent and is rather related to the apoptosis and antiangiogenic effects suggesting a multitargeted mechanism of action due to its multiple compound composition next to a concentration ratio of RA : UA in favor of UA.
Collapse
|
35
|
Rosemary Diterpenes and Flavanone Aglycones Provide Improved Genoprotection against UV-Induced DNA Damage in a Human Skin Cell Model. Antioxidants (Basel) 2020; 9:antiox9030255. [PMID: 32245070 PMCID: PMC7139908 DOI: 10.3390/antiox9030255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Overexposure to solar ultraviolet (UV) radiation is the major cause of a variety of cutaneous disorders, including sunburn, photoaging, and skin cancers. UVB radiation (290–320 nm) causes multiple forms of DNA damage, p53 induction, protein and lipid oxidation, and the generation of harmful reactive oxygen species (ROS). In recent years, botanicals containing polyphenols with antioxidant and anti-inflammatory properties as skin photoprotective agents have emerged. This study evaluated the protective effects of two formulations against UVB-induced damage in a skin cell model. One of the formulations (F2) contained a combination of citrus and olive extracts and the other one (F1) also contained a rosemary extract. The antioxidant capacity of both formulations was estimated by different in vitro methods, and the cell viability, intracellular ROS generation, mitochondrial depolarization, and DNA damage were studied in UVB-irradiated human keratinocytes. Both formulations exerted photoprotective effects on skin cells and decreased mitochondrial depolarization and DNA damage. F1 which contained iridoids, rosemary diterpenes, glycosides and aglycones of citrus flavanones, and monohydroxylated flavones exhibited higher cellular photoprotective effects and mitochondrial membrane potential restoration, as well as an enhanced capacity to decrease DNA double strand breaks and the DNA damage response. In contrast, F2, which contained mostly iridoids, citrus flavanone aglycones, and mono- and dihydroxylated flavones, exhibited a higher capacity to decrease intracellular ROS generation and radical scavenging capacity related to metal ion chelation. Both formulations showed a similar capability to decrease the number of apoptotic cells upon UVB radiation. Based on our results and those of others, we postulate that the stronger capacity of F1 to protect against UVB-induced DNA damage in human keratinocytes is related to the presence of rosemary diterpenes and citrus flavanone aglycones. Nevertheless, the presence of the dihydroxylated flavones in F2 may contribute to inhibiting the generation of metal-related free radicals. To confirm the efficacy of these formulations as potential candidates for oral/topical photoprotection, human trials are required to circumvent the limitations of the cellular model.
Collapse
|
36
|
Khan H, Reale M, Ullah H, Sureda A, Tejada S, Wang Y, Zhang ZJ, Xiao J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2020; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Pakistan..
| | - Marcella Reale
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Scalo (CH), Italy
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of Balearic Islands, Ctra. Valldemossa Km 75, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Ying Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
37
|
Abstract
PurposeIncreasingly, interest in and the uptake of herbal infusions has advanced, namely, owing to their bioactive properties and potential links to health. Given this, the purpose of the present review was to collate evidence from human trials for five popular herbal infusions.Design/methodology/approachThe systematic review comprised ten human trials (560 participants), investigating inter-relationships between herbal infusions consumption and health. Only human studies involving German chamomile (Matricaria chamomilla L. Asteraceae), ginger (Zingiber officinale Roscoe Zingiberaceae), lemon balm (Melissa officinalis L. Lamiaceae), peppermint (Mentha x spicata L. Lamiaceae)/spearmint (Mentha spicata L. Lamiaceae) and rosehip (Rosa canina L. Rosaceae) teas were included in the present paper.FindingsMost herbal infusions serve as a good source of flavonoids and other polyphenols in the human diet. Studies included in this paper indicate that herbal infusions (1-3 cups tended to be drank daily; infusion rates up to 15 min) could benefit certain aspects of health. In particular, this includes aspects of sleep quality and glycaemic control (German chamomile), osteoarthritic stiffness and hormone control (spearmint), oxidative stress (lemon balm) and primary dysmenorrhea (rosehip).Research limitations/implicationsOngoing research is needed using homogenous herbal infusion forms, brewing rates and volumes of water to further reinforce these findings. In the meantime, herbal infusions could provide a useful supplementary approach to improving certain aspects of well-being.Originality/valueThe present paper collates evidence from human trials for five popular herbal infusions.
Collapse
|
38
|
Chang SP, Huang HM, Shen SC, Lee WR, Chen YC. Nilotinib induction of melanogenesis via reactive oxygen species-dependent JNK activation in B16F0 mouse melanoma cells. Exp Dermatol 2019; 27:1388-1394. [PMID: 30290020 DOI: 10.1111/exd.13797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Nilotinib (AMN), a second-generation tyrosine kinase inhibitor, induces apoptosis in various cancer cells, and our recent study showed that AMN effectively reduced the viability of human ovarian cancer cells via mitochondrion-dependent apoptosis. The effect of AMN in the melanogenesis of melanoma cells is still unclear. In the present study, we found that the addition of AMN but not imatinib (STI) significantly increased the darkness of B16F0 melanoma cells, and the absorptive value increased with the concentration of AMN. A decrease in the viability of B16F0 cells by AMN was detected in a concentration-dependent manner, accompanied by increased DNA ladders, hypodiploid cells and cleavage of the caspase-3 protein. An in vitro tyrosinase (TYR) activity assay showed that increased TYR activity by AMN was detected in a concentration-dependent manner; however, induction of TYR activity by STI at a concentration of 40 μmol/L was observed. Increased intracellular peroxide by AMN was detected in B16F0 cells, and application of the antioxidant, N-acetylcysteine (NAC), significantly reduced AMN-induced peroxide production which also reduced the darkness of B16F0 cells. Additionally, AMN induced c-Jun N-terminal kinase (JNK) protein phosphorylation in B16F0 cells, which was inhibited by the addition of NAC. AMN-induced melanogenesis of B16F0 cells was significantly inhibited by the addition of NAC and the JNK inhibitor, SP600125 (SP). Data of Western blotting showed that increased protein levels of melanogenesis-related enzymes of tyrosinase-related protein-1 (TRP1), TRP2 and TYR were observed in AMN-treated B16F0 cells which were inhibited by the addition of NAC and SP. Evidence is provided supporting AMN effectively inducing the melanogenesis of B16F0 melanoma cells via reactive oxygen species-dependent JNK activation.
Collapse
Affiliation(s)
- Shao-Ping Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Ethanol extract of Gynura bicolor (GB) protects against UVB-induced photodamage of skin by inhibiting P53-mediated Bcl-2/BAX/Caspase-3 apoptosis pathway. Arch Dermatol Res 2019; 312:41-49. [PMID: 31538224 DOI: 10.1007/s00403-019-01977-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
To investigate the protective effect of ethanol extract of Gynura bicolor (GB) against UVB-induced photodamage of skin and the possible mechanisms. DPPH (1,1-diphenyl-2-pico radical) test was used to detect the antioxidant capacity of ethanol extract of Gynura bicolor (GB). The protective effects of GB against UVB irritation were detected both in Hacat cells and photodamage rat models. UVB irradiation could inhibit viability and induce apoptosis of Hacat cells in a dose-dependent manner. The pretreatment of Hacat cells by GB could obviously reverse the effects in a dose-dependent manner. The mRNA and protein expressions of p53, Bax, caspase-3 were increased, while anti-apoptotic protein Bcl-2 was decreased and this effect could be reversed by GB pretreatment in a dose-dependent manner. In vivo, the application of GB could alleviate the skin damage of SD rats and improve the superficial inflammation of the dermis as well as inhibit the expressions of P53 and Caspase-3 induced by UVB irradiation. Ethanol extract of Gynura bicolor could protect the photodamage of human Hacat keratinocytes and SD rats against UVB irradiation by inhibiting P53-mediated Bcl-2/ BAX/Casaspe-3 apoptosis pathway.
Collapse
|
40
|
De Franciscis P, Colacurci N, Riemma G, Conte A, Pittana E, Guida M, Schiattarella A. A Nutraceutical Approach to Menopausal Complaints. ACTA ACUST UNITED AC 2019; 55:medicina55090544. [PMID: 31466381 PMCID: PMC6780855 DOI: 10.3390/medicina55090544] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022]
Abstract
The menopausal transition, or perimenopause, is characterized by menstrual irregularities, vasomotor symptoms, sleep disturbances, mood symptoms, and urogenital tract atrophy. These changes can also affect the quality of life and one’s self-esteem. Hormone replacement therapy (HRT) is considered the best option to achieve therapeutic relief of different menopausal symptoms but is usually restricted to moderate or severe symptoms. Moreover, many women refuse HRT for a variety of reasons concerning the fear of cancer and other adverse effects. According to these considerations, new topics are emerging: Dissatisfaction with drug costs and conventional healthcare, desire for personalized medicines, and the public perception that “natural is good”. In this context, nonhormonal therapies are mostly evolving, and it is not unusual that women often request a “natural” approach for their symptoms. The aim of this study is to investigate nonhormonal therapies that have been identified to reduce the menopausal symptoms.
Collapse
Affiliation(s)
- Pasquale De Franciscis
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nicola Colacurci
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gaetano Riemma
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Conte
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Erika Pittana
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II", 80138 Naples, Italy
| | - Antonio Schiattarella
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
41
|
Nagapan TS, Lim WN, Basri DF, Ghazali AR. Oral supplementation of L-glutathione prevents ultraviolet B-induced melanogenesis and oxidative stress in BALB/c mice. Exp Anim 2019; 68:541-548. [PMID: 31243189 PMCID: PMC6842793 DOI: 10.1538/expanim.19-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary antioxidant supplements such as L-glutathione have gained considerable attention
in dermatology and cosmeceutical fields. L-glutathione possesses antiaging,
antimelanogenic, antioxidant, and anticancer properties. This study aimed to investigate
the inhibitory effects of L-glutathione on melanogenesis activity and oxidative stress in
ultraviolet B (UVB)-irradiated BALB/c mice. Eighteen female BALB/c mice were randomly
divided into 3 groups: a control group (n=6), a group without UVB irradiation and
L-glutathione administration; a UVB irradiated group (n=6), a group irradiated with a UVB
dose of 250 mJ/cm2 for 3 min; and a treatment group (n=6), a group irradiated
with UVB and treated with 100 mg/kg of L-glutathione by oral gavage. Treatment was given
for 14 days, and UVB irradiation was given on days 9, 11, and 13. Oral L-glutathione
significantly (P<0.05) reduced lipid peroxidation and elevated
superoxide dismutase activity the and glutathione level. L-glutathione also inhibited
melanin content and tyrosinase activity significantly (P<0.05) as
compared with the UVB-irradiated group. Histopathological examination also showed that
L-glutathione reduced the deposition of melanin pigment in the basal layer of the
epidermis as compared with that in UVB-irradiated mice. All in all, the present study
demonstrated that L-glutathione has the potential to be developed as a photoprotection
agent against UVB-induced oxidative stress and melanogenesis.
Collapse
Affiliation(s)
- Tava Shelan Nagapan
- Programme of Biomedical Science, Centre of Health & Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Wenna Nallance Lim
- Programme of Biomedical Science, Centre of Health & Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Dayang Fredalina Basri
- Programme of Biomedical Science, Centre of Health & Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Programme of Biomedical Science, Centre of Health & Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Kim YM, Lee EC, Lim HM, Seo YK. Rice Bran Ash Mineral Extract Increases Pigmentation through the p-ERK Pathway in Zebrafish ( Danio rerio). Int J Mol Sci 2019; 20:ijms20092172. [PMID: 31052497 PMCID: PMC6539449 DOI: 10.3390/ijms20092172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present study is to evaluate the effect of rice bran ash mineral extract (RBM) on pigmentation in zebrafish (Danio rerio). Melanin has the ability to block ultraviolet (UV) radiation and scavenge free oxygen radicals, thus protecting the skin from their harmful effects. Agents that increase melanin synthesis in melanocytes may reduce the risk of photodamage and skin cancer. The present study investigates the effect of RBM on pigmentation in zebrafish and the underlying mechanism. RBM was found to significantly increase the expression of microphthalmia-associated transcription factor (MITF), a key transcription factor involved in melanin production. RBM also suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), which negatively regulates zebrafish pigmentation. Together, these results suggest that RBM promotes melanin biosynthesis in zebrafish.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Eun-Cheol Lee
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Han-Moi Lim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| |
Collapse
|
43
|
Antioxidant and Photoprotective Activity of Apigenin and its Potassium Salt Derivative in Human Keratinocytes and Absorption in Caco-2 Cell Monolayers. Int J Mol Sci 2019; 20:ijms20092148. [PMID: 31052292 PMCID: PMC6539602 DOI: 10.3390/ijms20092148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023] Open
Abstract
Ultraviolet (UV) radiation, especially types A (UVA) and B (UVB), is one of the main causes of skin disorders, including photoaging and skin cancer. Ultraviolent radiation causes oxidative stress, inflammation, p53 induction, DNA damage, mutagenesis, and oxidation of various molecules such as lipids and proteins. In recent decades, the use of polyphenols as molecules with an antioxidant and anti-inflammatory capacity has increased. However, some of these compounds are poorly soluble, and information regarding their absorption and bioavailability is scarce. The main objective of this study was to compare the intestinal absorption and biological activity of apigenin and its more soluble potassium salt (apigenin-K) in terms of antioxidant and photoprotective capacity. Photoprotective effects against UVA and UVB radiation were studied in human keratinocytes, and antioxidant capacity was determined by different methods, including trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Finally, the intestinal absorption of both apigenins was determined using an in vitro Caco-2 cell model. Apigenin showed a slightly higher antioxidant capacity in antioxidant activity assays when compared with apigenin-K. However, no significant differences were obtained for their photoprotective capacities against UVA or UVB. Results indicated that both apigenins protected cell viability in approximately 50% at 5 J/m2 of UVA and 90% at 500 J/m2 of UVB radiation. Regarding intestinal absorption, both apigenins showed similar apparent permeabilities (Papp), 1.81 × 10-5 cm/s and 1.78 × 10-5 cm/s, respectively. Taken together, these results suggest that both apigenins may be interesting candidates for the development of oral (nutraceutical) and topical photoprotective ingredients against UVA and UVB-induced skin damage, but the increased water solubility of apigenin-K makes it the best candidate for further development.
Collapse
|
44
|
Chong Z, Matsuo H, Onoue S, Yamamoto H, Ito H, Katakura Y. Identification of polyphenols that repair the ultraviolet-B-induced DNA damage via SIRT1-dependent XPC/XPA activation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
45
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
46
|
Xuan SH, Lee KS, Jeong HJ, Park YM, Ha JH, Park SN. Cosmeceutical activities of ethanol extract and its ethyl acetate fraction from coffee silverskin. Biomater Res 2019; 23:2. [PMID: 30675376 PMCID: PMC6332556 DOI: 10.1186/s40824-018-0151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Coffee silverskin is a thin film that covers the raw coffee bean. In general, coffee silverskin, which detaches during the coffee roasting process, is disposed as firelighters or dispatched to landfills and can cause serious environmental pollution. The aim of this study was to investigate the feasibility of using coffee silverskin as a functional material in cosmetics by evaluating its bioactive ingredients, antioxidative activity, cytoprotective effect, matrix metalloproteinase-1 (MMP-1)-inhibiting effect, and anti-melanogenesis effect. Results To this end, a 50% ethanol (EtOH) extract and its ethyl acetate (EtOAc) fraction were prepared from coffee silverskin; caffeine was found to be the major compound in the extract. Both the 50% EtOH extract and its EtOAc fraction exhibited antioxidant activities. However, the EtOAc fraction showed a greater radical-scavenging activity and reducing power than that shown by the 50% EtOH extract. Furthermore, the EtOAc fraction increased cell viability in a UVB-irradiated human keratinocyte injury model and significantly suppressed UVB-induced MMP-1 expression and α-melanocyte-stimulating hormone (α-MSH)-stimulated melanin production in HaCaT keratinocytes and B16F1 melanocytes, respectively. Interestingly, caffeine, the major component of the EtOAc fraction, did not show an inhibitory effect. Thus, the antioxidant capacity of the coffee silverskin extract may be attributable to some compounds that exhibit a high antioxidant capacity even at low concentrations or the total antioxidant capacity of various constituent phenolic compounds. Conclusion Our findings indicate that coffee silverskin has the potential for application as a natural functional material in multifunctional cosmetics.
Collapse
Affiliation(s)
- Song Hua Xuan
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Keon Soo Lee
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Hyo Jin Jeong
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Young Min Park
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Ji Hoon Ha
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| |
Collapse
|
47
|
Kang S, Lim Y, Kim YJ, Jung ES, Suh DH, Lee CH, Park E, Hong J, Velliquette RA, Kwon O, Kim JY. Multivitamin and Mineral Supplementation Containing Phytonutrients Scavenges Reactive Oxygen Species in Healthy Subjects: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients 2019; 11:E101. [PMID: 30621298 PMCID: PMC6356358 DOI: 10.3390/nu11010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023] Open
Abstract
Phytonutrients and vitamin and mineral supplementation have been reported to provide increased antioxidant capacity in humans; however, there is still controversy. In the current clinical trial, we examined the antioxidant and DNA protection capacity of a plant-based, multi-vitamin/mineral, and phytonutrient (PMP) supplementation in healthy adults who were habitually low in the consumption of fruits and vegetables. This study was an eight-week, double-blind, randomized, parallel-arm, and placebo-controlled trial. PMP supplementation for eight weeks reduced reactive oxygen species (ROS) and prevented DNA damage without altering endogenous antioxidant system. Plasma vitamins and phytonutrients were significantly correlated with ROS scavenging and DNA damage. In addition, gene expression analysis in PBMC showed subtle changes in superoxide metabolic processes. In this study, we showed that supplementation with a PMP significantly improved ROS scavenging activity and prevented DNA damage. However, additional research is still needed to further identify mechanisms of actions and the role of circulating phytonutrient metabolites.
Collapse
Affiliation(s)
- Seunghee Kang
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - You Jin Kim
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Eunmi Park
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Korea.
| | - Jina Hong
- Access Business Group International, LLC, 5600 Beach Blvd., Buena Park, CA 90621, USA.
| | - Rodney A Velliquette
- Access Business Group International, LLC, 5600 Beach Blvd., Buena Park, CA 90621, USA.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea.
| |
Collapse
|
48
|
Hyun YJ, Piao MJ, Kang KA, Ryu YS, Zhen AX, Cho SJ, Kang HK, Koh YS, Ahn MJ, Kim TH, Hyun JW. 3,4-Dicaffeoylquinic acid protects human keratinocytes against environmental oxidative damage. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Agro-Industrial By-Products and Their Bioactive Compounds—An Ally against Oxidative Stress and Skin Aging. COSMETICS 2018. [DOI: 10.3390/cosmetics5040058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increased consumer awareness towards hazards related with sun exposure has given a boost in the cosmetics industry and particularly the sun care market. Human skin is continually being threatened by the UV irradiation present in sunlight and acute UV exposure leads to skin photoaging. Cosmetic and/or dermatological applications include several bioactive compounds that contribute to the regulation of epidermal homeostasis by providing protection against solar radiation and improving the antioxidant activity of epidermis. Plant extracts are sources of active ingredients with intense therapeutic properties, and the topical application or oral intake of these compounds could ameliorate skin condition. Nowadays, there is a growing demand for the application of the bioactive agents contained in agro-industrial byproducts in sun care products, since many of them have shown promising properties as skin photoprotectants. However, well-conducted clinical studies are required to prove their safety and efficacy before they could be regularly used. Environmentally friendly extraction and sustainable techniques are therefore under examination for recovering such compounds from agro-industrial byproducts and converting them into innovative high-value natural ingredients used in cosmetic formulations.
Collapse
|
50
|
Selective synthesis of 7- O -substituted luteolin derivatives and their melanonenesis and proliferation inhibitory activity in B16 melanoma cells. Bioorg Med Chem Lett 2018; 28:2518-2522. [DOI: 10.1016/j.bmcl.2018.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 11/20/2022]
|