1
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025; 42:566-622. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 42, 566-622.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
James-Okoro PP, Lewis JE, Gribble FM, Reimann F. The role of GIPR in food intake control. Front Endocrinol (Lausanne) 2025; 16:1532076. [PMID: 40166681 PMCID: PMC11955450 DOI: 10.3389/fendo.2025.1532076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is one of two incretin hormones playing key roles in the control of food intake, nutrient assimilation, insulin secretion and whole-body metabolism. Recent pharmacological advances and clinical trials show that unimolecular co-agonists that target the receptors for the incretins - GIP and glucagon-like peptide 1 (GLP-1) - offer more effective treatment strategies for obesity and type 2 diabetes mellitus (T2D) compared with GLP-1 receptor (GLP1R) agonists alone, suggesting previously underappreciated roles of GIP in regulating food intake and body weight. The mechanisms by which GIP regulates energy balance remain controversial as both agonism and antagonism of the GIP receptor (GIPR) produce weight loss and improve metabolic outcomes in preclinical models. Recent studies have shown that GIPR signalling in the central nervous system (CNS), especially in regions of the brain that regulate energy balance, is essential for its action on appetite regulation. This finding has sparked interest in understanding the mechanisms by which GIP engages brain circuits to reduce food intake and body weight. In this review, we present key knowledge around the actions of GIP on food intake regulation and the potential mechanisms by which GIPR and GIPR/GLP1R agonists may regulate energy balance.
Collapse
Affiliation(s)
| | | | - Fiona Mary Gribble
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Liu X, Liu X, Hu Y, Wang X, Yang X, Yan B, Zhou Y, Zhou L, Fan G, Yang J. Secretagogin Is Highly Expressed in Enteroendocrine K Cells and Plays a Critical Role in Nutrient-Induced GIP Secretion. J Endocr Soc 2025; 9:bvaf022. [PMID: 40012909 PMCID: PMC11859952 DOI: 10.1210/jendso/bvaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Indexed: 02/28/2025] Open
Abstract
Context Incretin hormones, primarily composed of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are secreted by enteroendocrine cells (EECs) and play crucial roles in maintaining blood glucose homeostasis. Notably, GIP accounts for two-thirds of the entire incretin effect. However, the secretion and function of GIP are impaired in individuals with type 2 diabetes mellitus (T2DM), and the regulatory mechanisms governing GIP secretion remain unclear. Objective Our study aims to explore the role of an EEC-enriched protein, Secretagogin (SCGN), in the regulation of GIP secretion. Methods We collected duodenal tissues from both humans and mice to observe the colocalization of SCGN and GIP in EECs. Additionally, we utilized human cohorts and gene-edited mouse models to investigate the effect of SCGN on GIP secretion. Our study included 128 subjects, comprising 64 individuals diagnosed with newly onset diabetes and 64 age- and sex-matched nondiabetic healthy controls. At the animal level, we employed leptin receptor-deficient (db/db) mice and Scgn knockout mice for our investigations. Results Our findings indicate that SCGN is abundantly expressed in GIP-producing K cells within the intestinal epithelium of both humans and mice. We observed a positive correlation between SCGN and GIP levels in postprandial states among patients with T2DM, db/db mice, and their healthy controls. Notably, Scgn knockout mice exhibited decreased GIP and insulin secretion. However, SCGN deficiency did not affect K-cell number, GIP mRNA expression, or intestinal morphology. Conclusion Collectively, these findings demonstrate that SCGN is a key regulator of nutrient-induced GIP secretion.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Endocrinology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Nanshan People's Hospital, Shenzhen 518052, Guangdong, China
| | - Xuan Liu
- Department of Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- Department of Endocrinology, The Central Hospital of Shaoyang City, Shaoyang 422000, Hunan, China
| | - Yuanyuan Hu
- Department of Endocrinology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Nanshan People's Hospital, Shenzhen 518052, Guangdong, China
| | - Xin Wang
- Department of Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xin Yang
- Department of Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Bin Yan
- Department of Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yiting Zhou
- Department of Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lingzhi Zhou
- Department of Pediatrics, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Nanshan People's Hospital, Shenzhen 518052, Guangdong, China
| | - Gang Fan
- Department of Urology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Nanshan People's Hospital, Shenzhen 518052, Guangdong, China
| | - Jing Yang
- Department of Endocrinology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Nanshan People's Hospital, Shenzhen 518052, Guangdong, China
- Department of Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
4
|
Grandl G, Novikoff A, Liu X, Müller TD. Recent achievements and future directions of anti-obesity medications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101100. [PMID: 39582489 PMCID: PMC11585837 DOI: 10.1016/j.lanepe.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
Pharmacological management of obesity long suffered from a reputation of a 'Mission Impossible,' with inefficient weight loss and/or unacceptable tolerability. However, the tide has turned with recent progress in biochemical engineering and the development of long-acting agonists at the receptor for glucagon-like peptide-1 (GLP-1), and with unimolecular peptides that simultaneously possess activity at the receptors for GLP-1, the glucose-dependent insulinotropic polypeptide (GIP) and glucagon. Some of these novel therapeutics not only improve body weight and glycemic control in individuals with obesity and type 2 diabetes with hitherto unmet efficacy and tolerable safety, but also exhibit potential therapeutic value in diverse areas such as neurodegenerative diseases, fatty liver disease, dyslipidemia, atherosclerosis, and cardiovascular diseases. In this review, we highlight recent advances in incretin-based therapies and discuss their pharmacological potential within and beyond the treatment of obesity and diabetes, as well as their limitations in use, side effects, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
5
|
Zhang M, Zhu L, Zhang H, Wang X, Wu G. Pea protein hydrolysate stimulates GLP-1 secretion in NCI-H716 cells via simultaneously activating the sensing receptors CaSR and PepT1. Food Funct 2024; 15:10316-10322. [PMID: 39302035 DOI: 10.1039/d4fo01290a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) plays a crucial role in regulating glucose homeostasis by stimulating insulin secretion and suppressing glucagon release. Our previous study observed that pea protein hydrolysate (PPH) exhibited the function of triggering GLP-1 secretion. However, the underlying mechanisms have not been revealed. Herein, the mechanisms of PPH-stimulated GLP-1 secretion were investigated in NCI-H716 cells. The PPH-induced GLP-1 secretion was reduced (p < 0.05) after adding the sensing receptor antagonists NPS-2143 and 4-AMBA, indicating that activation of both calcium-sensing receptor (CaSR) and peptide-transporter 1 (PepT1) was involved in PPH-triggered GLP-1 release. Moreover, the intracellular Ca2+ level increased by 2.01 times during the PPH-induced GLP-1 secretion. Similarly, the cAMP content also increased by 1.43 times after stimulation by PPH. The RT-qPCR results showed that PPH increased the gene expression of prohormone convertase 1/3 (PCSK-1) by 2.79-fold, which effectively promoted the conversion of proglucagon (GCG) to GLP-1. The specific pathway of PPH-induced GLP-1 secretion may involve both CaSR and PepT1 activation-induced Ca2+ influx and cAMP generation, which effectively enhanced the enzyme activity of prohormone convertase 1/3 (PCSK-1) and ultimately promoted GLP-1 secretion.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
6
|
Radziszewska M, Ostrowska L, Smarkusz-Zarzecka J. The Impact of Gastrointestinal Hormones on Human Adipose Tissue Function. Nutrients 2024; 16:3245. [PMID: 39408213 PMCID: PMC11479152 DOI: 10.3390/nu16193245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Obesity is a global issue, the development of which depends on many interacting factors. Among these, hormones secreted in the gastrointestinal tract play an important role. The aim of this review was to assess the impact of these hormones on the functions of adipose tissue. METHODS The analysis was based on the latest research concerning both adipose tissue and gastrointestinal hormones. RESULTS It was found that these hormones can significantly affect adipose tissue, both directly and indirectly. Some hormones, when secreted in excess, can stimulate adipose tissue formation processes, while others can inhibit them. The impact of hormones depends on the location and type of adipose tissue as well as the physiological state of the body. It should also be noted that no hormone acts in isolation but in close cooperation with other factors. CONCLUSIONS The relationship between gastrointestinal hormones and adipose tissue, and their role in obesity, is a complex and evolving field of study. Further research is necessary, particularly into the interactions between hormones and other factors, as well as their mutual interactions.
Collapse
Affiliation(s)
- Marcelina Radziszewska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, ul. Mieszka I 4B, 15-054 Bialystok, Poland; (L.O.); (J.S.-Z.)
| | | | | |
Collapse
|
7
|
Zilstorff DB, Richter MM, Hannibal J, Jørgensen HL, Sennels HP, Wewer Albrechtsen NJ. Secretion of glucagon, GLP-1 and GIP may be affected by circadian rhythm in healthy males. BMC Endocr Disord 2024; 24:38. [PMID: 38481208 PMCID: PMC10938734 DOI: 10.1186/s12902-024-01566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Glucagon is secreted from pancreatic alpha cells in response to low blood glucose and increases hepatic glucose production. Furthermore, glucagon enhances hepatic protein and lipid metabolism during a mixed meal. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from gut endocrine cells during meals and control glucose homeostasis by potentiating insulin secretion and inhibiting food intake. Both glucose homeostasis and food intake have been reported to be affected by circadian rhythms and vice versa. In this study, we investigated whether the secretion of glucagon, GLP-1 and GIP was affected by circadian rhythms. METHODS A total of 24 healthy men with regular sleep schedules were examined for 24 h at the hospital ward with 15 h of wakefulness and 9 h of sleep. Food intake was standardized, and blood samples were obtained every third hour. Plasma concentrations of glucagon, GLP-1 and GIP were measured, and data were analyzed by rhythmometric statistical methods. Available data on plasma glucose and plasma C-peptide were also included. RESULTS Plasma concentrations of glucagon, GLP-1, GIP, C-peptide and glucose fluctuated with a diurnal 24-h rhythm, with the highest levels during the day and the lowest levels during the night: glucagon (p < 0.0001, peak time 18:26 h), GLP-1 (p < 0.0001, peak time 17:28 h), GIP (p < 0.0001, peak time 18:01 h), C-peptide (p < 0.0001, peak time 17.59 h), and glucose (p < 0.0001, peak time 23:26 h). As expected, we found significant correlations between plasma concentrations of C-peptide and GLP-1 and GIP but did not find correlations between glucose concentrations and concentrations of glucagon, GLP-1 and GIP. CONCLUSIONS Our results demonstrate that under meal conditions that are similar to that of many free-living individuals, plasma concentrations of glucagon, GLP-1 and GIP were observed to be higher during daytime and evening than overnight. These findings underpin disturbed circadian rhythm as a potential risk factor for diabetes and obesity. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06166368. Registered 12 December 2023.
Collapse
Affiliation(s)
- Dorte B Zilstorff
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik L Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
| | - Henriette P Sennels
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark.
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Morettini M, Palumbo MC, Bottiglione A, Danieli A, Del Giudice S, Burattini L, Tura A. Glucagon-like peptide-1 and interleukin-6 interaction in response to physical exercise: An in-silico model in the framework of immunometabolism. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108018. [PMID: 38262127 DOI: 10.1016/j.cmpb.2024.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Glucagon-like peptide 1 (GLP-1) is classically identified as an incretin hormone, secreted in response to nutrient ingestion and able to enhance glucose-stimulated insulin secretion. However, other stimuli, such as physical exercise, may enhance GLP-1 plasma levels, and this exercise-induced GLP-1 secretion is mediated by interleukin-6 (IL-6), a cytokine secreted by contracting skeletal muscle. The aim of the study is to propose a mathematical model of IL-6-induced GLP-1 secretion and kinetics in response to physical exercise of moderate intensity. METHODS The model includes the GLP-1 subsystem (with two pools: gut and plasma) and the IL-6 subsystem (again with two pools: skeletal muscle and plasma); it provides a parameter of possible clinical relevance representing the sensitivity of GLP-1 to IL-6 (k0). The model was validated on mean IL-6 and GLP-1 data derived from the scientific literature and on a total of 100 virtual subjects. RESULTS Model validation provided mean residuals between 0.0051 and 0.5493 pg⋅mL-1 for IL-6 (in view of concentration values ranging from 0.8405 to 3.9718 pg⋅mL-1) and between 0.0133 and 4.1540 pmol⋅L-1 for GLP-1 (in view of concentration values ranging from 0.9387 to 17.9714 pmol⋅L-1); a positive significant linear correlation (r = 0.85, p<0.001) was found between k0 and the ratio between areas under GLP-1 and IL-6 curve, over the virtual subjects. CONCLUSIONS The model accurately captures IL-6-induced GLP-1 kinetics in response to physical exercise.
Collapse
Affiliation(s)
- Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Maria Concetta Palumbo
- Institute for Applied Computing (IAC) "Mauro Picone", National Research Council of Italy, via dei Taurini 19, Rome, 00185, Italy.
| | - Alessandro Bottiglione
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Andrea Danieli
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Simone Del Giudice
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Andrea Tura
- CNR Institute of Neuroscience, Corso Stati Uniti 4, Padova, 35127, Italy.
| |
Collapse
|
9
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
10
|
Sodum N, Mattila O, Sharma R, Kamakura R, Lehto VP, Walkowiak J, Herzig KH, Raza GS. Nutrient Combinations Sensed by L-Cell Receptors Potentiate GLP-1 Secretion. Int J Mol Sci 2024; 25:1087. [PMID: 38256160 PMCID: PMC10816371 DOI: 10.3390/ijms25021087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity is a risk factor for cardiometabolic diseases. Nutrients stimulate GLP-1 release; however, GLP-1 has a short half-life (<2 min), and only <10-15% reaches the systemic circulation. Human L-cells are localized in the distal ileum and colon, while most nutrients are absorbed in the proximal intestine. We hypothesized that combinations of amino acids and fatty acids potentiate GLP-1 release via different L-cell receptors. GLP-1 secretion was studied in the mouse enteroendocrine STC-1 cells. Cells were pre-incubated with buffer for 1 h and treated with nutrients: alpha-linolenic acid (αLA), phenylalanine (Phe), tryptophan (Trp), and their combinations αLA+Phe and αLA+Trp with dipeptidyl peptidase-4 (DPP4) inhibitor. After 1 h GLP-1 in supernatants was measured and cell lysates taken for qPCR. αLA (12.5 µM) significantly stimulated GLP-1 secretion compared with the control. Phe (6.25-25 mM) and Trp (2.5-10 mM) showed a clear dose response for GLP-1 secretion. The combination of αLA (6.25 µM) and either Phe (12.5 mM) or Trp (5 mM) significantly increased GLP-1 secretion compared with αLA, Phe, or Trp individually. The combination of αLA and Trp upregulated GPR120 expression and potentiated GLP-1 secretion. These nutrient combinations could be used in sustained-delivery formulations to the colon to prolong GLP-1 release for diminishing appetite and preventing obesity.
Collapse
Affiliation(s)
- Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Orvokki Mattila
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Remi Kamakura
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Vesa-Pekka Lehto
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| |
Collapse
|
11
|
Bonfante ILP, Duft RG, Mateus KCDS, Trombeta JCDS, Chacon‐Mikahil MPT, Velloso LA, Cavaglieri CR. Combined training and hormones/enzymes with insulinotropic actions in individuals with overweight and type 2 diabetes mellitus: A randomized controlled trial. Eur J Sport Sci 2024; 24:97-106. [PMID: 39661009 PMCID: PMC11235776 DOI: 10.1002/ejsc.12057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/12/2024]
Abstract
The incretins (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]), along with amylin/islet amyloid polypeptide (IAPP) and insulin-degrading enzyme (IDE), are hormones/enzymes that have been pharmacological targets, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, due to their insulinotropic actions. Physical training is recommended as a treatment for type 2 diabetes mellitus (T2DM); however, its effects on the concentrations of these hormones/enzymes are not well known. Thus, the present study aimed to evaluate the effects of combined training (CT) on the concentrations of hormones/enzymes with insulinotropic actions in individuals with T2DM and overweight. Individuals of both sexes with T2DM (age 51.73 ± 4.19 years; body mass index [BMI] 29.46 ± 3.39 kg/m2) were randomly distributed in the control group (CG, n = 17) and the combined training group (CTG, n = 17). The CT consisted of strength followed by erobic training, 3 times/week, for 16 weeks. Functional variables, body composition, and serum biochemical analyses (clinical markers, GLP-1, GIP, DPP-4, amylin/IAPP, and IDE) were evaluated. The CTG showed a decrease in GLP-1 (pre: 32.8 ± 12.1, post: 28.4 ± 13.5, and p = 0.04) in the group/time analysis. In the evaluation of the Δ% of variation, CTG presented a decrease for GLP-1 (-9.3%; p = 0.03) and amylin/IAPP (-13.4%; p < 0.01), in addition to an increase for DPP-4 (6.2%; p = 0.04) enzyme. CT decreases the baseline levels of important hormones with insulinotropic actions in individuals with T2DM and overweight. The improvement in overall metabolism provided by CT must be the main reason for these effects. These results broaden the understanding of the effects and relationships between CT and glucose metabolism.
Collapse
Affiliation(s)
- Ivan Luiz Padilha Bonfante
- Laboratory of Exercise PhysiologyFaculty of Physical EducationUniversity of CampinasCampinasBrazil
- Federal Institute of EducationScience and Technology of São PauloHortolândia CampusHortolândiaBrazil
| | - Renata Garbellini Duft
- Laboratory of Exercise PhysiologyFaculty of Physical EducationUniversity of CampinasCampinasBrazil
| | | | | | | | - Licio Augusto Velloso
- Laboratory of Cell SignalingDepartment of Internal MedicineUniversity of CampinasCampinas, São PauloBrazil
- Obesity and Comorbidities Research CenterUniversity of CampinasCampinas, São PauloBrazil
| | | |
Collapse
|
12
|
Stenlid R, Cerenius SY, Wen Q, Aydin BK, Manell H, Chowdhury A, Kristinsson H, Ciba I, Gjessing ES, Mörwald K, Gomahr J, Heu V, Weghuber D, Forslund A, Bergsten P. Adolescents with obesity treated with exenatide maintain endogenous GLP-1, reduce DPP-4, and improve glycemic control. Front Endocrinol (Lausanne) 2023; 14:1293093. [PMID: 38027106 PMCID: PMC10646558 DOI: 10.3389/fendo.2023.1293093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background GLP-1 receptor agonists (GLP-1RA) are increasingly used to treat adolescent obesity. However, the effect on endogenous GLP-1 secretory patterns following treatment in adolescents is unknown. The GLP-1RA exenatide was shown to significantly lower BMI and 2-hour glucose in adolescents with obesity, in the placebo-controlled, randomized controlled trial Combat-JUDO. The aim of this study was to evaluate effects of weekly injections of 2 mg exenatide extended release on secretory patterns of endogenous hormones during OGTT. Subjects and Measurements This study was a pre-planned sub-study of the Combat-JUDO trial, set at the Pediatric clinic at Uppsala University Hospital, Sweden and Paracelsus Medical University, Austria. 44 adolescents with obesity were included and randomized 1:1 to treatment:placebo. 19 patients in the treatment group and 18 in the placebo group completed the trial. Before and after treatment, GLP-1, glucose, insulin, glucagon and glicentin levels were measured during OGTT; DPP-4 and proinsulin were measured at fasting. A per-protocol approach was used in the analyses. Results Exenatide treatment did not affect GLP-1 levels during OGTT. Treatment significantly lowered DPP-4, proinsulin and the proinsulin-to-insulin ratio at fasting, increased glicentin levels but did not affect insulin, C-peptide or glucagon levels during OGTT. Conclusion Weekly s.c. injections with 2 mg of exenatide maintains endogenous total GLP-1 levels and lowers circulating DPP-4 levels. This adds an argument in favor of using exenatide in the treatment of pediatric obesity. Clinical trial registration clinicaltrials.gov, identifier NCT02794402.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Sara Y. Cerenius
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Quan Wen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Banu Küçükemre Aydin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Iris Ciba
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Erik S. Gjessing
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katharina Mörwald
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Julian Gomahr
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Verena Heu
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| |
Collapse
|
13
|
Nouri-Vaskeh M, Khalili N, Khalaji A, Behnam P, Alizadeh L, Ebrahimi S, Gilani N, Mohammadi M, Madinehzadeh SA, Zarei M. Circulating glucagon-like peptide-1 level in patients with liver cirrhosis. Arch Physiol Biochem 2023; 129:373-378. [PMID: 33043692 DOI: 10.1080/13813455.2020.1828479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1), a gut-derived incretin hormone, plays a pivotal role in glucose-induced insulin secretion. Currently, the role of incretin hormones in the pathogenesis of cirrhosis is not clearly defined. This study aimed to investigate circulating levels of GLP-1 in liver cirrhosis and its association with the severity of liver disease. METHODS A total of 80 participants including 39 patients with a definite diagnosis of liver cirrhosis and 41 healthy controls recruited in this cross-sectional study. Circulating levels of GLP-1 were determined using the ELISA method. The severity of liver cirrhosis was assessed according to the Child-Pugh, MELD (i), MELD-Na, MELD New, and UK end-stage liver disease score (UKELD) criteria. RESULTS The mean age of patients and healthy subjects was 42.51 ± 12.80 and 42.07 ± 10.92 years, respectively (p value = .869). The mean MELD (i), MELD-Na, MELD New, UKELD, and Child-Pugh scores were 14.36 ± 4.26, 15.26 ± 4.81, 14.74 ± 4.66, 52.33 ± 3.82, and 7.28 ± 1.50, respectively. In this study, circulating levels of GLP-1 were statistically lower in cirrhotic patients compared with healthy controls (95.26 ± 17.15 vs 111.84 ± 38.14 pg/mL; p value = .017). CONCLUSION Larger prospective studies are needed to explore the incretin effect in cirrhosis patients compared with healthy individuals.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouya Behnam
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Ebrahimi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Mohammadi
- Department of Biological Science, University of Calgary, Calgary, Canada
- Center for Bioengineering Research and Education, University of Calgary, Calgary, Canada
| | | | - Mohammad Zarei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Watkins JD, Carter S, Atkinson G, Koumanov F, Betts JA, Holst JJ, Gonzalez JT. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 2023; 140:155375. [PMID: 36502882 DOI: 10.1016/j.metabol.2022.155375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this systematic review was to synthesise the study findings on whether GLP-1 secretion in response to a meal tolerance test is affected by the presence of type 2 diabetes (T2D). The influence of putative moderators such as age, sex, meal type, meal form, and assay type were also explored. METHODS A literature search identified 32 relevant studies. The sample mean and SD for fasting GLP-1TOTAL and GLP-1TOTAL iAUC were extracted and used to calculate between-group standardised mean differences (SMD), which were meta-analysed using a random-effects model to derive pooled estimates of Hedges' g and 95 % prediction intervals (PI). RESULTS Pooled across 18 studies, the overall SMD in GLP-1TOTAL iAUC between individuals with T2D (n = 270, 1047 ± 930 pmol·L-1·min) and individuals without T2D (n = 402, 1204 ± 937 pmol·L-1·min) was very small, not statistically significant and heterogenous across studies (g = -0.15, p = 0.43, PI: -1.53, 1.23). Subgroup analyses demonstrated an effect of assay type whereby Hedges' g for GLP-1 iAUC was greater in individuals with, versus those without T2D when using ELISA or Mesoscale (g = 0.67 [moderate], p = 0.009), but not when using RIA (g = -0.30 [small], p = 0.10). Pooled across 30 studies, the SMD in fasting GLP-1TOTAL between individuals with T2D (n = 580, 16.2 ± 6.9 pmol·L-1) versus individuals without T2D (n = 1363, 12.4 ± 5.7 pmol·L-1) was small and heterogenous between studies (g = 0.24, p = 0.21, PI: -1.55, 2.02). CONCLUSIONS Differences in fasting GLP-1TOTAL and GLP-1TOTAL iAUC between individuals with, versus those without T2D were generally small and inconsistent between studies. Factors influencing study heterogeneity such as small sample sizes and poor matching of groups may help to explain the wide prediction intervals observed. Considerations to improve comparisons of GLP-1 secretion in T2D and potential mediating factors more important than T2D diagnosis per se are outlined. PROSPERO ID CRD42020195612.
Collapse
Affiliation(s)
- J D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| | - S Carter
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - G Atkinson
- Liverpool John Moores University, Liverpool, UK
| | - F Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J J Holst
- Biomedical Sciences, Endocrinology Research Section, University of Copenhagen, Denmark
| | - J T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| |
Collapse
|
15
|
ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the incretin polypeptide GIP. Sci Rep 2022; 12:15922. [PMID: 36151371 PMCID: PMC9508192 DOI: 10.1038/s41598-022-20343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is the most common childhood neurodevelopmental disorder. Single nucleotide polymorphisms (SNPs) in the Adhesion G Protein-Coupled Receptor L3 (ADGRL3) gene are associated with increased susceptibility to developing ADHD worldwide. However, the effect of ADGRL3 non-synonymous SNPs (nsSNPs) on the ADGRL3 protein function is vastly unknown. Using several bioinformatics tools to evaluate the impact of mutations, we found that nsSNPs rs35106420, rs61747658, and rs734644, previously reported to be associated and in linkage with ADHD in disparate populations from the world over, are predicted as pathogenic variants. Docking analysis of rs35106420, harbored in the ADGLR3-hormone receptor domain (HRM, a common extracellular domain of the secretin-like GPCRs family), showed that HRM interacts with the Glucose-dependent insulinotropic polypeptide (GIP), part of the incretin hormones family. GIP has been linked to the pathogenesis of diabetes mellitus, and our analyses suggest a potential link to ADHD. Overall, the comprehensive application of bioinformatics tools showed that functional mutations in the ADGLR3 gene disrupt the standard and wild ADGRL3 structure, most likely affecting its metabolic regulation. Further in vitro experiments are granted to evaluate these in silico predictions of the ADGRL3-GIP interaction and dissect the complexity underlying the development of ADHD.
Collapse
|
16
|
Differences in gastrointestinal hormones and appetite ratings among obesity classes. Appetite 2022; 171:105940. [DOI: 10.1016/j.appet.2022.105940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/03/2023]
|
17
|
Yu JH, Park SY, Lee DY, Kim NH, Seo JA. GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions. Kidney Res Clin Pract 2022; 41:136-149. [PMID: 35391537 PMCID: PMC8995488 DOI: 10.23876/j.krcp.22.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
With the emergence of various classes of blood glucose-lowering agents, choosing the appropriate drug for each patient is emphasized in diabetes management. Among incretin-based drugs, glucagon-like peptide 1 (GLP-1) receptor agonists are a promising therapeutic option for patients with diabetic kidney disease (DKD). Several cardiovascular outcome trials have demonstrated that GLP-1 receptor agonists have beneficial effects on cardiorenal outcomes beyond their blood glucose-lowering effects in patients with type 2 diabetes mellitus (T2DM). The renal protective effects of GLP-1 receptor agonists likely result from their direct actions on the kidney, in addition to their indirect actions that improve conventional risk factors for DKD, such as reducing blood glucose levels, blood pressure, and body weight. Inhibition of oxidative stress and inflammation and induction of natriuresis are major renoprotective mechanisms of GLP-1 analogues. Early evidence from the development of dual and triple combination agents suggests that GLP-1 receptor agonists will probably become popular treatment options for patients with T2DM.
Collapse
Affiliation(s)
- Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
- Correspondence: Ji A Seo, Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Republic of Korea. E-mail:
| |
Collapse
|
18
|
Pelle MC, Provenzano M, Zaffina I, Pujia R, Giofrè F, Lucà S, Andreucci M, Sciacqua A, Arturi F. Role of a Dual Glucose-Dependent Insulinotropic Peptide (GIP)/Glucagon-like Peptide-1 Receptor Agonist (Twincretin) in Glycemic Control: From Pathophysiology to Treatment. Life (Basel) 2021; 12:29. [PMID: 35054422 PMCID: PMC8779403 DOI: 10.3390/life12010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two gut hormones, defined incretins, responsible for the amplification of insulin secretion after oral glucose intake. Unlike GLP-1, GIP has little acute effect on insulin secretion and no effect on food intake; instead it seems that the GIP may be an obesity-promoting hormone. In patients with type2 diabetes mellitus (T2DM) some studies found a downregulation of GIP receptors on pancreatic β cells caused by hyperglycemic state, but the glucagonotropic effect persisted. Agonists of the receptor for the GLP-1 have proven successful for the treatment of diabetes, since they reduce the risk for cardiovascular and renal events, but the possible application of GIP as therapy for T2DM is discussed. Moreover, the latest evidence showed a synergetic effect when GIP was combined with GLP-1 in monomolecular co-agonists. In fact, compared with the separate infusion of each hormone, the combination increased both insulin response and glucagonostatic response. In accordance with theseconsiderations, a dual GIP/GLP-1receptor agonist, i.e., Tirzepatide, known as a "twincretin" had been developed. In the pre-clinical trials, as well as Phase 1-3 clinical trials, Tirzepatideshowedpotent glucose lowering and weight loss effects within an acceptable safety.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Michele Provenzano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (M.A.)
| | - Isabella Zaffina
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Roberta Pujia
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Federica Giofrè
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Stefania Lucà
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Michele Andreucci
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (M.A.)
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| |
Collapse
|
19
|
Vestergaard ET, Zubanovic NB, Rittig N, Møller N, Kuhre RE, Holst JJ, Rehfeld JF, Thomsen HH. Acute ketosis inhibits appetite and decreases plasma concentrations of acyl ghrelin in healthy young men. Diabetes Obes Metab 2021; 23:1834-1842. [PMID: 33852195 DOI: 10.1111/dom.14402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
AIM To investigate the acute effect of ketone ester (KE) ingestion on appetite and plasma concentrations of acyl ghrelin (AG), unacylated ghrelin (UAG) and glucagon-like peptide-1 (GLP-1) secretion, and to compare responses with those elicited by isocaloric glucose (GLU) administration. METHODS We examined 10 healthy young men on three separate occasions using a placebo (PBO)-controlled crossover design. A KE versus taste-matched isovolumetric and isocaloric 50% GLU and taste-matched isovolumetric PBO vehicle was orally administered. Our main outcome measures were plasma concentrations of AG, UAG, glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 along with appetite sensation scores assessed by visual analogue scale. RESULTS KE ingestion resulted in an average peak beta-hydroxybutyrate concentration of 5.5 mM. AG and UAG were lowered by approximately 25% following both KE and GLU intake compared with PBO. In the case of AG, the differences were -52.1 (-79.4, -24.8) for KE and -48.4 (-75.4, -21.5) pg/mL for GLU intake (P < .01). Concentrations of AG remained lower with KE but returned to baseline and were comparable with PBO levels after GLU intake. GLP-1, GIP, gastrin and cholecystokinin were not affected by KE ingestion. CONCLUSION Our results suggest that the suppressive effects on appetite sensation scores associated with hyperketonaemia are more probable to be mediated through reduced ghrelin concentrations than by increased activity of cholecystokinin, gastrin, GIP or GLP-1.
Collapse
Affiliation(s)
- Esben Thyssen Vestergaard
- Department of Paediatrics, Regional Hospital Randers, Randers, Denmark
- Steno Diabetes Center Aarhus (SDCA), Aarhus, Denmark
| | - Natasa Brkovic Zubanovic
- Department of Internal Medicine, Clinic for Diabetes and Endocrinology, Viborg Regional Hospital, Viborg, Denmark
- Department and Laboratory of Internal Medicine and Endocrinology, MEA, Aarhus University Hospital, Aarhus, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus (SDCA), Aarhus, Denmark
- Department and Laboratory of Internal Medicine and Endocrinology, MEA, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department and Laboratory of Internal Medicine and Endocrinology, MEA, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Ehrenreich Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry (KB3011), Rigshospitalet, Copenhagen, Denmark
| | - Henrik Holm Thomsen
- Department of Internal Medicine, Clinic for Diabetes and Endocrinology, Viborg Regional Hospital, Viborg, Denmark
| |
Collapse
|
20
|
McGlone ER, Malallah K, Cuenco J, Wewer Albrechtsen NJ, Holst JJ, Vincent RP, Ling C, Khan OA, Verma S, Ahmed AR, Walters JRF, Khoo B, Bloom SR, Tan TMM. Differential effects of bile acids on the postprandial secretion of gut hormones: a randomized crossover study. Am J Physiol Endocrinol Metab 2021; 320:E671-E679. [PMID: 33459181 DOI: 10.1152/ajpendo.00580.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bile acids (BA) regulate postprandial metabolism directly and indirectly by affecting the secretion of gut hormones like glucagon-like peptide-1 (GLP-1). The postprandial effects of BA on the secretion of other metabolically active hormones are not well understood. The objective of this study was to investigate the effects of oral ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on postprandial secretion of GLP-1, oxyntomodulin (OXM), peptide YY (PYY), glucose-dependent insulinotropic peptide (GIP), glucagon, and ghrelin. Twelve healthy volunteers underwent a mixed meal test 60 min after ingestion of UDCA (12-16 mg/kg), CDCA (13-16 mg/kg), or no BA in a randomized crossover study. Glucose, insulin, GLP-1, OXM, PYY, GIP, glucagon, ghrelin, and fibroblast growth factor 19 were measured prior to BA administration at -60 and 0 min (just prior to mixed meal) and 15, 30, 60, 120, 180, and 240 min after the meal. UDCA and CDCA provoked differential gut hormone responses; UDCA did not have any significant effects, but CDCA provoked significant increases in GLP-1 and OXM and a profound reduction in GIP. CDCA increased fasting GLP-1 and OXM secretion in parallel with an increase in insulin. On the other hand, CDCA reduced postprandial secretion of GIP, with an associated reduction in postprandial insulin secretion. Exogenous CDCA can exert multiple salutary effects on the secretion of gut hormones; if these effects are confirmed in obesity and type 2 diabetes, CDCA may be a potential therapy for these conditions.NEW & NOTEWORTHY Oral CDCA and UDCA have different effects on gut and pancreatic hormone secretion. A single dose of CDCA increased fasting secretion of the hormones GLP-1 and OXM with an accompanying increase in insulin secretion. CDCA also reduced postprandial GIP secretion, which was associated with reduced insulin. In contrast, UDCA did not change gut hormone secretion fasting or postprandially. Oral CDCA could be beneficial to patients with obesity and diabetes.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Khalefah Malallah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Joyceline Cuenco
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Royce P Vincent
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Charlotte Ling
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Omar A Khan
- Department of Surgery, St. George's University Hospitals NHS Trust, London, United Kingdom
| | - Surabhi Verma
- Leadiant Biosciences, Amberley House, Windsor, Berkshire, United Kingdom
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julian R F Walters
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Bernard Khoo
- Endocrinology, UCL Division of Medicine, Royal Free Hospital, London, United Kingdom
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tricia M M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Meek CL, Lewis HB, Burling K, Reimann F, Gribble F. Expected values for gastrointestinal and pancreatic hormone concentrations in healthy volunteers in the fasting and postprandial state. Ann Clin Biochem 2021; 58:108-116. [PMID: 33175577 PMCID: PMC7961662 DOI: 10.1177/0004563220975658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gastrointestinal hormones regulate intestinal transit, control digestion, influence appetite and promote satiety. Altered production or action of gut hormones, including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and peptide YY (PYY), may contribute to the biological basis of obesity and altered glucose homeostasis. However, challenges in analytical methodology and lack of clarity on expected values for healthy individuals have limited progress in this field. The aim of this study was to describe expected concentrations of gastrointestinal and pancreatic hormones in healthy volunteers following a standardized meal test (SMT) or 75 g oral glucose tolerance test (OGTT). METHODS A total of 28 healthy volunteers (12 men, 16 women; mean age 31.3 years; mean body mass index 24.9 kg/m2) were recruited to attend a hospital clinic on two occasions. Volunteers had blood sampling in the fasting state and were given, in randomized order, an oral glucose tolerance test (OGTT) and standardized mixed liquid meal test with venepuncture at timed intervals for 4 h after ingestion. Analytical methods for gut and pancreatic hormones were assessed and optimized. Concentrations of gut and pancreatic hormones were measured and used to compile ranges of expected values. RESULTS Ranges of expected values were created for glucose, insulin, glucagon, GLP-1, GIP, PYY and free fatty acids in response to a standardized mixed liquid meal or OGTT. Intact proinsulin and C-peptide levels were also measured following the OGTT. CONCLUSIONS These ranges of expected values can now be used to compare gut hormone concentrations between healthy individuals and patient groups.
Collapse
Affiliation(s)
- Claire L Meek
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| | - Hannah B Lewis
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| | - Keith Burling
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
- Core Biochemical Assay Laboratory, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| | - Fiona Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Clinical Biochemistry, Cambridge University Hospitals, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
23
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
24
|
Fang X, Du Z, Duan C, Zhan S, Wang T, Zhu M, Shi J, Meng J, Zhang X, Yang M, Zuo Y. Beinaglutide shows significantly beneficial effects in diabetes/obesity-induced nonalcoholic steatohepatitis in ob/ob mouse model. Life Sci 2021; 270:118966. [PMID: 33482185 DOI: 10.1016/j.lfs.2020.118966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
AIMS Beinaglutide has been approved for glucose lowering in type 2 diabetes mellitus (T2DM) in China. In addition to glycemic control, significant weight loss is observed from real world data. This study is designed to investigate the pharmacological and pharmacokinetic profiles of beinaglutide in different models. METHODS The pharmacological efficacy of beinaglutide was evaluated in C57BL/6 and ob/ob mice after single administration. Pharmacokinetic profiles in mice were investigated after single or multiple administration. Sub-chronic pharmacological efficacy was investigated in ob/ob mice for two weeks treatment and diet-induced ob/ob mice model of nonalcoholic steatohepatitis (NASH) for four weeks treatment. KEY FINDINGS Beinaglutide could dose-dependently reduce the glucose levels and improve insulin secretion in glucose tolerance tests, inhibit food intake and gastric emptying after single administration. At higher doses, beinaglutide could inhibit food intake over 4 h, which results in weight loss in ob/ob mice after about two weeks treatment. No tachyphylaxis is observed for beinaglutide in food intake with repeated administration. In NASH model, beinaglutide could reduce liver weight and hepatic steatosis and improve insulin sensitivity. Signiant changes of gene levels were observed in fatty acid β-oxidation (Ppara, Acadl, Acox1), mitochondrial function (Mfn1, Mfn2), antioxidation (Sod2), Sirt1, and et al. SIGNIFICANCE: Our results characterize the pharmacological and pharmacokinetic profiles of beinaglutide in mice and supported that chronic use of beinaglutde could lead to weight loss and reduce hepatic steatosis, which suggest beinaglutide may be effective therapy for the treatment of obesity and NASH.
Collapse
Affiliation(s)
- Xiankang Fang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China.
| | - Zhiqiang Du
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Chunling Duan
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Shanshan Zhan
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Tian Wang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Mengyu Zhu
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Jiajie Shi
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Juan Meng
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Xianhua Zhang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Maiyun Yang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Yajun Zuo
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| |
Collapse
|
25
|
Kuhre RE, Deacon CF, Holst JJ, Petersen N. What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell? Front Endocrinol (Lausanne) 2021; 12:694284. [PMID: 34168620 PMCID: PMC8218725 DOI: 10.3389/fendo.2021.694284] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ;
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
26
|
Martins C, Dutton GR, Hunter GR, Gower BA. Revisiting the Compensatory Theory as an explanatory model for relapse in obesity management. Am J Clin Nutr 2020; 112:1170-1179. [PMID: 32936896 PMCID: PMC7657332 DOI: 10.1093/ajcn/nqaa243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Weight regain remains the main challenge in obesity management, and its etiology remains elusive. The aim of the present review was to revise the available evidence regarding the "Compensatory Theory," which is an explanatory model of relapse in obesity treatment, and to propose alternative mechanisms that can contribute to weight regain. It has been proposed, and generally accepted as true, that when a person loses weight the body fights back, with physiological adaptations on both sides of the energy balance equation that try to bring body weight back to its original state: this is the Compensatory Theory. This theory proposes that the increased orexigenic drive to eat and the reduced energy expenditure that follow weight loss are the main drivers of relapse. However, evidence showing a link between these physiological adaptations to weight loss and weight regain is lacking. Here, we propose that the physiological adaptations to weight loss, both at the level of the homeostatic appetite control system and energy expenditure, are in fact a normalization to a lower body weight and not drivers of weight regain. In light of this we explore other potential mechanisms, both physiological and behavioral, that can contribute to the high incidence of relapse in obesity management. More research is needed to clearly ascertain whether the changes in energy expenditure and homeostatic appetite markers seen in reduced-obese individuals are a compensatory mechanism that drives relapse or a normalization towards a lower body weight, and to explore alternative hypotheses that explain relapse in obesity management.
Collapse
Affiliation(s)
| | - Gareth R Dutton
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
27
|
Liu F, Gong L, Qin W, Cui C, Chen L, Zhang M. Glucagon-Like Peptide 1 Attenuates Lipotoxicity-Induced Islet Dysfunction in ApoE -/- Mice. Diabetes Metab Syndr Obes 2020; 13:2701-2709. [PMID: 32801816 PMCID: PMC7395686 DOI: 10.2147/dmso.s262479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022] Open
Abstract
AIM Glucagon-like peptide-1 (GLP1) is known to decrease glucagon release and may be beneficial for the reduction of elevated blood glucose. However, its role and mechanism of action in diabetes remain elusive. This study aimed to examine the function of GLP1 and analyze the mechanism of effect that GLP1exerts on inducible nitric oxide synthase (iNOS) in diabetic mice. METHODS A diabetes model was established in ApoE-/- mice fed a high-fat diet and treated with GLP1 and/or lentivirus-expressing PARP1. PARP1, iNOS, and inflammatory factors in islets were detected by Western blot and ELISA. Islet α cells and β cells and CD8+ T lymphocytes were detected by immunostaining. Islet-cell apoptosis was detected by TUNEL. RESULTS GLP1 inhibited the expression of PARP1 and iNOS in islets, alleviated decrease in β cells, and suppressed cell apoptosis induced by the high-fat diet. Moreover, GLP1 recovered the decline in insulin sensitivity and glucose tolerance in ApoE-/- mice fed the high-fat diet, and the effects of GLP1 were related to the inhibition of COX2 and NFκB expression. CONCLUSION GLP1 significantly alleviated the decrease in β-cell numbers, suppressed β-cell apoptosis induced by the high-fat diet, inhibited the expression of iNOS, and alleviated inflammatory islet injury via inhibiting the COX2-NFκB pathway.
Collapse
Affiliation(s)
- Fuqiang Liu
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, People’s Republic of China
| | - Lei Gong
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, People’s Republic of China
| | - Weidong Qin
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, JinanShandong250012, People’s Republic of China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, People’s Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, People’s Republic of China
| | - Mingxiang Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, JinanShandong250012, People’s Republic of China
| |
Collapse
|
28
|
DeBenedictis JN, Nymo S, Ollestad KH, Boyesen GA, Rehfeld JF, Holst JJ, Truby H, Kulseng B, Martins C. Changes in the Homeostatic Appetite System After Weight Loss Reflect a Normalization Toward a Lower Body Weight. J Clin Endocrinol Metab 2020; 105:5821263. [PMID: 32301981 PMCID: PMC7250208 DOI: 10.1210/clinem/dgaa202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To compare appetite markers in reduced-obese individuals with a nonobese control group. METHODS A total of 34 adults with obesity who lost 17% body weight at week 13 and maintained this weight loss (WL) at 1 year were compared with 33 nonobese controls matched for body composition. Basal and postprandial subjective appetite ratings and appetite-related hormone concentrations (ghrelin, total peptide YY, peptide YY3-36, total and active glucagon-like peptide 1, and cholecystokinin) were measured in all participants and repeated at week 13 and 1 year in the weight-reduced group. RESULTS WL led to a reduction in prospective food consumption and an increase in feelings of hunger, fullness, and ghrelin secretion (basal and postprandial), but these new ratings were no different from those seen in controls. Postprandial concentrations of active glucagon-like peptide 1, total peptide YY, and cholecystokinin were lower in individuals with obesity at all time points compared with controls. CONCLUSION The increased drive to eat (both subjective feelings of hunger and ghrelin concentrations) seen in reduced-obese individuals, both after acute and sustained WL, reflects a normalization toward a lower body weight. Overall, WL does not have a sustained negative impact on satiety peptide secretion, despite a blunted secretion in individuals with obesity compared with nonobese controls.
Collapse
Affiliation(s)
- Julia Nicole DeBenedictis
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Norway
| | - Karoline Haagensli Ollestad
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Guro Akersveen Boyesen
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation, Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen Truby
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bard Kulseng
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Correspondence and Reprint Requests: Catia Martins, Department of Clinical and Molecular Medicine, NTNU, Forsyningssenteret, Prinsesse Kristinas gate 5, 7030 Trondheim, Norway. E-mail:
| |
Collapse
|
29
|
Nauck MA, Holle H, Kahle M, Tytko A, Deacon CF, Holst JJ, Meier JJ. No evidence of tachyphylaxis for insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) in subjects with type 2 diabetes, their first-degree relatives, or in healthy subjects. Peptides 2020; 125:170176. [PMID: 31669136 DOI: 10.1016/j.peptides.2019.170176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND, AIMS In patients with type 2 diabetes, the lost insulinotropic effect of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is more apparent after continuous versus bolus administration. To test whether the difference might be explained by rapid tachyphylaxis in response to elevated concentrations of GIP, and whether patients with type 2 diabetes and their relatives are more susceptible to tachyphylaxis than healthy subjects. PATIENTS AND METHODS In a two-way crossover design, insulinotropic responses to repeated bolus injection (50 pmol/kg body weight at 30 and 120 min) and continuous infusion of GIP (2 pmol.kg-1.min-1 from 30 to 180 min) under hyperglycaemic clamp conditions (8.5 mmol/l) was compared in age- gender- and weight-matched patients with type 2 diabetes, first degree relatives of such patients, and healthy subjects. RESULTS Insulin secretory responses to the first and second GIP bolus were not significantly different in any of the subject groups. Subjects with type 2 diabetes had a significant relative impairment versus healthy subjects with continuous (C-peptide, -13.2 %, p < 0.05), but not with repeated bolus administration of GIP (+11.1 %, n.s.). First-degree relatives tended to hyper-secrete insulin with bolus or continuous administrations of GIP. CONCLUSIONS Rapid tachyphylaxis in response to continuous exposure to slightly supraphysiological concentrations of GIP does not explain the reduced insulinotropic response to GIP infusions in patients with type 2 diabetes or their first-degree relatives.
Collapse
Affiliation(s)
- M A Nauck
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany; Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| | - H Holle
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - M Kahle
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany; Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - A Tytko
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - C F Deacon
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - J J Meier
- Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
30
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1120] [Impact Index Per Article: 186.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
31
|
Rathish D, Agampodi S, Jayasumana C. In vivo, ex vivo and in vitro evidence for atropine-mediated attenuation of glucagon-like peptide-1 secretion: findings from a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29597-29605. [PMID: 31446595 DOI: 10.1007/s11356-019-06227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is involved in postprandial glucose homeostasis. Secretion of which involves a cholinergic pathway. Anticholinergic agent like atropine could act as a competitive antagonist of acetylcholine at muscarinic receptors. This review explores studies that assess the role of atropine in GLP-1 secretion. We selected published original articles from PubMed, Science Direct, The Cochrane Library, Trip, Google and the reference lists of the selected articles. Reporting was done according to the PRISMA statement. Relevant standard and previously published tools were used to assess the risk of bias of the selected articles. Twelve articles out of 185 search results fulfilled the review criteria. Eight were in vivo studies (six animal and two human studies), three were ex vivo studies and one was an in vitro study. Animal studies had rats, mice, pigs and monkeys as the subjects. Human studies involved healthy men and women. Majority of the studies reported an atropine-mediated attenuation of GLP-1 secretion and postprandial secretion of GLP-1 was mainly affected. However, atropine failed to significantly affect GLP-1 secretion when dipeptidyl peptidase-4 (DPP-4) enzyme was inhibited.
Collapse
Affiliation(s)
- Devarajan Rathish
- Department of Pharmacology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka.
| | - Suneth Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Channa Jayasumana
- Department of Pharmacology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| |
Collapse
|
32
|
Vestergaard ET, Hjelholt AJ, Kuhre RE, Møller N, Larraufie P, Gribble FM, Reimann F, Jessen N, Holst JJ, Jørgensen JOL. Acipimox Acutely Increases GLP-1 Concentrations in Overweight Subjects and Hypopituitary Patients. J Clin Endocrinol Metab 2019; 104:2581-2592. [PMID: 30726969 PMCID: PMC7212086 DOI: 10.1210/jc.2018-02503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/01/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) is an incretin hormone used therapeutically in type 2 diabetes and obesity. The interplay between ambient free fatty acids (FFAs) and GLP-1 remains unclear. Acipimox suppresses adipose tissue lipolysis via activation of the PUMA-G (also known as HCA2 and GPR109a) receptor. OBJECTIVE To investigate whether lowering of serum FFA level with acipimox affects GLP-1 secretion. DESIGN Two randomized crossover studies were performed in human subjects. Rat intestine was perfused intra-arterially and intraluminally, and l-cells were incubated with acipimox. PARTICIPANTS The participants were healthy overweight subjects and hypopituitary adult patients. INTERVENTIONS The overweight participants received acipimox 250 mg 60 minutes before an oral glucose test. The hypopituitary patients received acipimox 250 mg 12, 9, and 2 hours before and during the metabolic study day, when they were studied in the basal state and during a hyperinsulinemic euglycemic clamp. RESULTS Acipimox suppressed FFA but did not affect insulin in the clinical trials. In overweight subjects, the GLP-1 increase after the oral glucose tolerance test (area under the curve) was more than doubled [4119 ± 607 pmol/L × min (Acipimox) vs 1973 ± 375 pmol/L × min (control), P = 0.004]. In hypopituitary patients, acipimox improved insulin sensitivity (4.7 ± 0.8 mg glucose/kg/min (Acipimox) vs 3.1 ± 0.5 mg glucose/kg/min (control), P = 0.005], and GLP-1 concentrations increased ~40%. An inverse correlation between FFA and GLP-1 concentrations existed in both trials. In rat intestine, acipimox did not affect GLP-1 secretion, and l-cells did not consistently express the putative receptor for acipimox. CONCLUSIONS Acipimox treatment increases systemic GLP-1 levels in both obese subjects and hypopituitary patients. Our in vitro data indicate that the underlying mechanisms are indirect.
Collapse
Affiliation(s)
- Esben Thyssen Vestergaard
- Medical Research Laboratories Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Pediatrics, Randers Regional Hospital, 8930 Randers
| | - Astrid Johanneson Hjelholt
- Medical Research Laboratories Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Diabetes and Endocrinology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Rune E. Kuhre
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Møller
- Medical Research Laboratories Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Diabetes and Endocrinology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Pierre Larraufie
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, UK
| | - Fiona M. Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, UK
| | - Niels Jessen
- Medical Research Laboratories Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, 8000 Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Otto Lunde Jørgensen
- Medical Research Laboratories Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Department of Diabetes and Endocrinology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
33
|
Nymo S, Coutinho SR, Rehfeld JF, Truby H, Kulseng B, Martins C. Physiological Predictors of Weight Regain at 1-Year Follow-Up in Weight-Reduced Adults with Obesity. Obesity (Silver Spring) 2019; 27:925-931. [PMID: 31004405 PMCID: PMC6593985 DOI: 10.1002/oby.22476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study aimed to assess whether changes in resting metabolic rate (RMR), exercise-induced energy expenditure (EIEE), and appetite following weight loss (WL) are associated with weight regain at 1 year. METHODS Thirty-six adults with obesity underwent 8 weeks of a very-low-energy diet, followed by 4 weeks of refeeding and a 1-year maintenance program. RMR, EIEE, appetite ratings, and active ghrelin, peptide YY, glucagon-like peptide-1, cholecystokinin, and insulin concentrations were measured at baseline, week 13, and 1 year. RESULTS A 17% WL (-20 ± 5 kg [mean ± SD]; range: -11.7 to -32.2 kg; P < 0.001) was achieved at week 13. After 1 year, weight regain was 2.5 ± 9.0 kg (not significant), ranging from -18.2 to 22.5 kg. Both fat mass and fat-free mass were reduced at week 13 (-17.9 ± 4.8 and -2.9 ± 2.7 kg, respectively; P < 0.001), while only loss of fat mass was sustained at 1 year. WL was associated with reduced RMR, EIEE, and fasting/postprandial insulin (all P < 0.001), as well as increased fasting hunger (P < 0.01) and fasting/postprandial active ghrelin (P < 0.001). There were no significant correlations between changes in RMR, EIEE, or appetite with WL and weight regain at 1 year. CONCLUSIONS No clear evidence emerged that changes in RMR, EIEE, or appetite following WL can predict weight regain at 1 year, but larger studies are needed to confirm these results.
Collapse
Affiliation(s)
- Siren Nymo
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Clinic of SurgeryNord‐Trøndelag Hospital Trust, Namsos HospitalNamsosNorway
| | - Silvia R. Coutinho
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Helen Truby
- Department of Nutrition, Dietetics & FoodMonash UniversityMelbourneVictoriaAustralia
| | - Bård Kulseng
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Centre for Obesity and Innovation (ObeCe), Clinic of SurgerySt. Olav University HospitalTrondheimNorway
| | - Catia Martins
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Centre for Obesity and Innovation (ObeCe), Clinic of SurgerySt. Olav University HospitalTrondheimNorway
| |
Collapse
|
34
|
Hasegawa T, Komagata M, Hamasaki A, Harada N, Seino Y, Inagaki N. Solid-phase extraction treatment is required for measurement of active glucagon-like peptide-1 by enzyme-linked immunosorbent assay kit affected by heterophilic antibodies. J Diabetes Investig 2019; 10:302-308. [PMID: 29993194 PMCID: PMC6400240 DOI: 10.1111/jdi.12896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/13/2018] [Accepted: 07/01/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION It is reported that interfering substances in the blood might influence the value for measurement of active glucagon-like peptide-1 (GLP-1) in human plasma. Solid phase extraction (SPE) pretreatment is recommended to reduce their influence, but it requires a lot of cost and time. However, there is little investigation about causative inhibitory substances and about methods that can replace solid phase extraction. In the present study, we aimed to seek the candidate of the substances that might interfere with an active GLP-1 enzyme-linked immunosorbent assay (ELISA). MATERIALS AND METHODS Two kinds of active GLP-1 ELISA kits using different antibodies, plural extraction carriers and elution solutions were used to evaluate the SPE method. Active GLP-1 concentration was compared with or without SPE, and with or without a heterophilic blocking tube. RESULTS Active GLP-1 values were often higher without SPE compared with those with SPE pretreatment. This difference was eliminated by pretreatment with a heterophilic blocking tube or ELISA kits that did not use a mouse monoclonal antibody, and was independent of SPE. CONCLUSIONS Substances absorbed to a heterophilic blocking tube carrier might interfere with an active GLP-1 immunoassay. Solid-phase extraction treatment is required for measurement of active GLP-1 by an ELISA kit affected by heterophilic antibodies.
Collapse
Affiliation(s)
| | | | - Akihiro Hamasaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
- Center for Diabetes and EndocrinologyTazuke Kofukai Medical Research Institute Kitano HospitalOsakaJapan
| | - Norio Harada
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yutaka Seino
- Kansai Electric Power Medical Research InstituteOsakaJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
35
|
Functional Magnetic Resonance Imaging (fMRI) of Neural Responses to Visual and Auditory Food Stimuli Pre and Post Roux-en-Y Gastric Bypass (RYGB) and Sleeve Gastrectomy (SG). Neuroscience 2019; 409:290-298. [PMID: 30769095 DOI: 10.1016/j.neuroscience.2019.01.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Of current obesity treatments, bariatric surgery induces the most weight loss. Given the marked increase in the number of bariatric surgeries performed, elucidating the mechanisms of action is a key research goal. We compared whole brain activation in response to high-energy dense (HED) vs. low-energy dense (LED) visual and auditory food cues before and approximately 4 months after Roux-en-Y Gastric Bypass (RYGB) (n = 16) and Sleeve Gastrectomy (SG) (n = 9). We included two control groups: a low-calorie diet weight loss group (WL) (n = 14) and a non-treatment group (NT) (n = 16). Relative to the control groups, the surgery groups showed increased dorsolateral prefrontal cortex (dlPFC) and decreased parahippocampal/fusiform gyrus (PHG/fusiform) activation in response to HED vs. LED, suggesting greater cognitive dietary inhibition and decreased rewarding effects and attention related to HED foods. dlPFC activation was significantly more increased in RYGB vs. SG. We also found that postprandial increases in GLP-1 concentrations (pre to postsurgery) correlated with postsurgical decreases in RYGB brain activity in the inferior temporal gyrus and the right middle occipital gyrus in addition to increases in the right medial prefrontal gyrus/paracingulate for HED > LED stimuli, suggesting involvement of these attention and inhibitory regions in satiety signaling postsurgery.
Collapse
|
36
|
Pre-meal and postprandial lipaemia in subjects with the metabolic syndrome: effects of timing and protein quality (randomised crossover trial). Br J Nutr 2019; 121:312-321. [PMID: 30599817 DOI: 10.1017/s0007114518003264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-fasting TAG - postprandial lipaemia (PPL) - are to a higher degree associated with cardiovascular risk compared with fasting TAG. Dietary protein, especially whey proteins (WP), may lower PPL. We hypothesised that a WP pre-meal (17·6 g protein) consumed 15 v. 30 min before a fat-rich meal reduces the PPL response in subjects with the metabolic syndrome (MetS) and that a WP pre-meal has more potent effects than casein and gluten pre-meals. A total of sixteen subjects with the MetS completed an acute, randomised, crossover trial. WP pre-meals were consumed 15 and 30 min, and casein and gluten 15 min before a fat-rich meal. Blood samples were drawn 360 min postprandially to determine metabolite and hormone responses, S-paracetamol (for assessment of gastric emptying) and amino acids. Insulin and glucagon responses were affected by both timing and protein type (for all P <0·01), with significantly higher concentrations for WP given at -15 min than WP at -30 min and higher responses compared with gluten for the first 30 min after pre-meal consumption (for all P <0·05). The PPL responses changed neither by timing nor by protein type. Glucose-dependent insulinotropic peptide but not glucagon-like peptide 1 responses differed between the three protein types. S-paracetamol concentration was higher for WP (-30 min) than for WP (-15 min) 15 min after the main meal (P = 0·028), and higher for casein and gluten than for WP at time point 30 min (for all P <0·05). In conclusion, the PPL response was not changed by ingestion of a 17·6 g protein pre-meal, whereas both timing and protein quality affected hormone secretion (insulin and glucagon).
Collapse
|
37
|
Rathish D, Senavirathna I, Jayasumana C, Agampodi S, Siribaddana S. A low GLP-1 response among patients treated for acute organophosphate and carbamate poisoning: a comparative cross-sectional study from an agrarian region of Sri Lanka. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2864-2872. [PMID: 30499084 DOI: 10.1007/s11356-018-3818-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Higher incidence of diabetes along with increased use of pesticides is seen in Southeast Asia. Recent hypothesis postulated a link between acetylcholinesterase inhibitor insecticides and type 2 diabetes through the GLP-1 pathway. This study compares the GLP-1 response between groups with low and high red blood cell acetylcholinesterase (RBC-AChE) activity. A comparative cross-sectional study was conducted amongst patients who were within 3 months after an acute organophosphate or carbamate poisoning (acute group) and amongst vegetable farmers with low (chronic group) and high (control group) RBC-AChE activity. Acute (366 mU/μM Hb) and chronic (361 mU/μM Hb) groups had significantly lower RBC-AChE activity in comparison to the control (471 mU/μM Hb) group (P < 0.0001). Only the acute group, which has had atropine therapy, showed a significantly lower 120 min value in comparison to the control group (P = 0.0028). Also, the acute group had significantly low late (P = 0.0287) and total (P = 0.0358) responses of GLP-1 in comparison to the control group. The findings of the study allude towards attenuation of GLP-1 response amongst patients after acute organophosphate and carbamate poisoning. The possibility of an atropine-mediated attenuation of GLP-1 response was discussed.
Collapse
Affiliation(s)
- Devarajan Rathish
- Department of Pharmacology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka.
| | - Indika Senavirathna
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Channa Jayasumana
- Department of Pharmacology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Suneth Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Sisira Siribaddana
- Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| |
Collapse
|
38
|
24-h severe energy restriction impairs postprandial glycaemic control in young, lean males. Br J Nutr 2018; 120:1107-1116. [DOI: 10.1017/s0007114518002568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractIntermittent energy restriction (IER) involves short periods of severe energy restriction interspersed with periods of adequate energy intake, and can induce weight loss. Insulin sensitivity is impaired by short-term, complete energy restriction, but the effects of IER are not well known. In randomised order, fourteen lean men (age: 25 (sd 4) years; BMI: 24 (sd 2) kg/m2; body fat: 17 (4) %) consumed 24-h diets providing 100 % (10 441 (sd 812) kJ; energy balance (EB)) or 25 % (2622 (sd 204) kJ; energy restriction (ER)) of estimated energy requirements, followed by an oral glucose tolerance test (OGTT; 75 g of glucose drink) after fasting overnight. Plasma/serum glucose, insulin, NEFA, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) and fibroblast growth factor 21 (FGF21) were assessed before and after (0 h) each 24-h dietary intervention, and throughout the 2-h OGTT. Homoeostatic model assessment of insulin resistance (HOMA2-IR) assessed the fasted response and incremental AUC (iAUC) or total AUC (tAUC) were calculated during the OGTT. At 0 h, HOMA2-IR was 23 % lower after ER compared with EB (P<0·05). During the OGTT, serum glucose iAUC (P<0·001), serum insulin iAUC (P<0·05) and plasma NEFA tAUC (P<0·01) were greater during ER, but GLP-1 (P=0·161), GIP (P=0·473) and FGF21 (P=0·497) tAUC were similar between trials. These results demonstrate that severe energy restriction acutely impairs postprandial glycaemic control in lean men, despite reducing HOMA2-IR. Chronic intervention studies are required to elucidate the long-term effects of IER on indices of insulin sensitivity, particularly in the absence of weight loss.
Collapse
|
39
|
Farngren J, Persson M, Ahrén B. Effects on the glucagon response to hypoglycaemia during DPP-4 inhibition in elderly subjects with type 2 diabetes: A randomized, placebo-controlled study. Diabetes Obes Metab 2018; 20:1911-1920. [PMID: 29645341 DOI: 10.1111/dom.13316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
Abstract
AIMS Maintainance of glucagon response to hypoglycaemia is important as a safeguard against hypoglycaemia during glucose-lowering therapy in type 2 diabetes. During recent years, DPP-4 (dipeptidyl peptidase-4) inhibition has become more commonly used in elderly patients. However, whether DPP-4 inhibition affects the glucagon response to hypoglycaemia in the elderly is not known and was the aim of this study. METHODS In a single-centre, double-blind, randomized, placebo-controlled crossover study, 28 subjects with metformin-treated type 2 diabetes (17 male, 11 female; mean age, 74 years [range 65-86]; mean HbA1c, 51.5 mmol/mol [6.9%]) received sitagliptin (100 mg once daily) as add-on therapy or placebo for 4 weeks with a 4-week washout period in between. After each treatment period, the subjects underwent a standard breakfast test, followed by a 2-step hyperinsulinaemic hypoglycaemic clamp (target 3.5 and 3.0 mmol/L), followed by lunch. RESULTS Glucagon levels after breakfast and lunch, and the glucagon response at 3.5 mmol/L, were lower after sitagliptin than after placebo. However, the glucagon response to hypoglycaemia at 3.1 mmol/L did not differ significantly between the two. Similarly, the noradrenaline, adrenaline and cortisol responses were lower with sitagliptin than with placebo at 3.5 mmol/L, but not at 3.1 mmol/L glucose. Responses in pancreatic polypeptide did not differ between the two. CONCLUSIONS Elderly subjects with metformin-treated type 2 diabetes have lower glucagon levels at 3.5 mmol/L glucose, but maintain the glucagon response to hypoglycaemia at 3.1 mmol/L during DPP-4 inhibition, which safeguards against hypoglycaemia and may contribute to decreasing the risk of hypoglycaemia by DPP-4 inhibition in this age group.
Collapse
Affiliation(s)
- Johan Farngren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
41
|
Investigation of the long-term sustainability of changes in appetite after weight loss. Int J Obes (Lond) 2018; 42:1489-1499. [PMID: 29930313 PMCID: PMC6113192 DOI: 10.1038/s41366-018-0119-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
Abstract
Background/Objective Diet-induced weight loss (WL) leads to a compensatory increase in appetite and changes in the plasma concentration of appetite-regulating hormones are likely to play a role. Whether these changes are transient or sustained remains unclear. This study aimed to assess if changes in subjective and objective appetite markers observed with WL are sustained after 1 year (1Y). Subjects/Methods In total 100 (45 males) individuals with obesity (BMI: 37 ± 4 kg/m2, age: 43 ± 10 years) underwent 8 weeks (wks) of a very-low energy diet (VLED), followed by 4 wks refeeding, and a 1Y maintenance program. Fasting/postprandial subjective ratings of hunger, fullness, desire to eat, and prospective food consumption (PFC) were assessed, and plasma concentration of active ghrelin (AG), total peptide YY (PYY), active glucagon-like peptide 1, cholecystokinin (CCK), and insulin measured, at baseline, week 13 (Wk13) and 1Y. Results At Wk13, 16% WL (−18 ± 1 kg, P < 0.001) was associated with a significant increase in fasting and postprandial hunger ratings (P < 0.01 and P < 0.05, respectively), and postprandial fullness (P < 0.01) combined with a reduction in PFC (P < 0.001). These were accompanied by a significant rise in basal and postprandial AG concentrations (P < 0.001, for both), a reduction in postprandial CCK (P < 0.01) and in basal and postprandial insulin (P < 0.001). At 1Y follow-up, with sustained WL (15%; −16 ± 1 kg, P < 0.001), fasting hunger and postprandial fullness ratings remained increased (P < 0.05 for both), and postprandial PFC reduced (P < 0.001). Basal and postprandial AG remained elevated and insulin reduced (P < 0.001, for all), while postprandial CCK was increased (P < 0.01) and PYY decreased (P < 0.001). Conclusion With a 15% sustained WL at 1Y, the drive to eat in the fasting state is increased, but this may be balanced out by raised postprandial feelings of fullness. To assist with WL maintenance, new strategies are required to manage increased hunger and drive to eat.
Collapse
|
42
|
Bjørnshave A, Holst JJ, Hermansen K. A pre-meal of whey proteins induces differential effects on glucose and lipid metabolism in subjects with the metabolic syndrome: a randomised cross-over trial. Eur J Nutr 2018; 58:755-764. [PMID: 29626232 DOI: 10.1007/s00394-018-1684-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/03/2018] [Indexed: 01/11/2023]
Abstract
PURPOSE Postprandial lipaemia (PPL), an independent risk factor for cardiovascular disease, is affected by composition and timing of meals. We evaluated if whey proteins (WP) consumed as a pre-meal before a fat-rich meal reduce postprandial triglyceride (TG) and apolipoprotein B-48 (ApoB-48) responses in subjects with the metabolic syndrome (MeS). METHODS An acute, randomised, cross-over trial was conducted. 20 subjects with MeS consumed a pre-meal of 0, 10 or 20 g WP 15 min prior to a fat-rich meal. The responses of TG and ApoB-48 were assessed. We also analysed postprandial responses of free fatty acids (FFA), glucose, insulin, glucagon, glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) and paracetamol (reflecting gastric emptying rates). RESULTS WP pre-meal did not alter the TG or ApoB-48 responses. In contrast, the insulin response was more pronounced after a pre-meal of 20 g WP than with 10 g WP (P = 0.0005) and placebo (P < 0.0001). Likewise, the postprandial glucagon response was greater with a pre-meal of 20 g WP than with 10 g WP (P < 0.0001) and 0 g WP (P < 0.0001). A pre-meal with 20 g of WP generated lower glucose (P = 0.0148) and S-paracetamol responses (P = 0.0003) and a higher GLP-1 response (P = 0.0086) than placebo. However, the pre-meal did not influence responses of GIP, FFA or appetite assessed by a Visual Analog Scale. CONCLUSIONS Consumption of a WP pre-meal prior to a fat-rich meal did not affect TG and chylomicron responses. In contrast, the WP pre-meal stimulates insulin and glucagon secretion and reduces blood glucose as expected, and delays gastric emptying. Consequently, our study points to a differential impact of a WP pre-meal on lipid and glucose metabolism to a fat-rich meal in subjects with MeS.
Collapse
Affiliation(s)
- Ann Bjørnshave
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark. .,Danish Diabetes Academy, Sdr. Boulevard 29, 5000, Odense C, Denmark.
| | - Jens Juul Holst
- NNF Centre for Basic Metabolic Research and The Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, København N, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark
| |
Collapse
|
43
|
Parreiras-E-Silva LT, de Araújo IM, Elias J, Nogueira-Barbosa MH, Suen VMM, Marchini JS, Bonella J, Nahas AK, Salmon CEG, de Paula FJA. Short bowel syndrome: influence of nutritional therapy and incretin GLP1 on bone marrow adipose tissue. Ann N Y Acad Sci 2018; 1415:47-56. [PMID: 29509291 DOI: 10.1111/nyas.13657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
Energy deprivation leads to a decrease in white adipose tissue and bone mineral density (BMD), while simultaneously inducing the expansion of marrow adipose tissue (MAT). In short bowel syndrome (SBS), parenteral nutrition mitigates the deterioration of nutritional status, including decreases in MAT. Osteoporosis is, however, a frequent complication of SBS. The objective of our study here was to evaluate the association of fat deposit sites (subcutaneous and visceral adipose tissues: intrahepatic lipid (IHL) and MAT) and the incretin glucagon-like peptide 1 (GLP1) with BMD in individuals with SBS. MAT was negatively correlated with lumbar spine BMD in normal individuals, but not in those in the SBS group, who otherwise showed a positive correlation between MAT and GLP1. In addition, in individuals with SBS, IHL was negatively associated with lumbar spine BMD and positively associated with C-terminal telopeptide of type 1 collagen (a serum biomarker of bone turnover). Caloric maintenance in individuals with SBS, therefore, seems to positively affect the relationship between MAT and BMD, which may be modulated, at least in part, by GLP1.
Collapse
Affiliation(s)
- Luciana T Parreiras-E-Silva
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Iana M de Araújo
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Jorge Elias
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Vivian M M Suen
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Julio S Marchini
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Jéssica Bonella
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Andressa K Nahas
- Department of Epidemiology, Faculty of Public Health, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos E G Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Arts of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
44
|
Pre-Meal Effect of Whey Proteins on Metabolic Parameters in Subjects with and without Type 2 Diabetes: A Randomized, Crossover Trial. Nutrients 2018; 10:nu10020122. [PMID: 29370144 PMCID: PMC5852698 DOI: 10.3390/nu10020122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetic dyslipidemia with elevated postprandial triglyceride (TG) responses is characteristic in type 2 diabetes (T2D). Diet and meal timing can modify postprandial lipemia (PPL). The impact of a pre-meal of whey proteins (WP) on lipid metabolism is unidentified. We determined whether a WP pre-meal prior to a fat-rich meal influences TG and apolipoprotein B-48 (ApoB-48) responses differentially in patients with and without T2D. Two matched groups of 12 subjects with and without T2D accomplished an acute, randomized, cross-over trial. A pre-meal of WP (20 g) or water (control) was consumed 15 min before a fat-rich meal (supplemented with 20 g WP in case of water pre-meal). Postprandial responses were examined during a 360-min period. A WP pre-meal significantly increased postprandial concentrations of insulin (P < 0.0001), glucagon (P < 0.0001) and glucose-dependent insulinotropic peptide (GIP) (P < 0.0001) in subjects with and without T2D. We detected no effects of the WP pre-meal on TG, ApoB-48, or non-esterified fatty acids (NEFA) responses to the fat-rich meal in either group. Paracetamol absorption i.e. gastric emptying was delayed by the WP pre-meal (P = 0.039). In conclusion, the WP pre-meal induced similar hormone and lipid responses in subjects with and without T2D. Thus, the WP pre-meal enhanced insulin, glucagon and GIP responses but did not influence lipid or glucose responses. In addition, we demonstrated that a WP pre-meal reduced gastric emptying in both groups.
Collapse
|
45
|
Hvistendahl M, Brandt CF, Tribler S, Naimi RM, Hartmann B, Holst JJ, Rehfeld JF, Hornum M, Andersen JR, Henriksen BM, Brøbech Mortensen P, Jeppesen PB. Effect of Liraglutide Treatment on Jejunostomy Output in Patients With Short Bowel Syndrome: An Open-Label Pilot Study. JPEN J Parenter Enteral Nutr 2017; 42:112-121. [PMID: 27875281 DOI: 10.1177/0148607116672265] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND An impaired hormonal "ileo-colonic brake" may contribute to rapid gastric emptying, gastric hypersecretion, high ostomy losses, and the need for parenteral support in end-jejunostomy short bowel syndrome (SBS) patients with intestinal failure (IF). Liraglutide, a glucagon-like peptide 1 receptor agonist, may reduce gastric hypersecretion and dampen gastric emptying, thereby improving conditions for intestinal absorption. MATERIALS AND METHODS In an 8-week, open-label pilot study, liraglutide was given subcutaneously once daily to 8 end-jejunostomy patients, aged 63.4 ± 10.9 years (mean ± SD) and with small bowel lengths of 110 ± 66 cm. The 72-hour metabolic balance studies were performed before and at the end of treatment. Food intake was unrestricted. Oral fluid intake and parenteral support volume were kept constant. The primary end point was change in the ostomy wet weight output. RESULTS Liraglutide reduced ostomy wet weight output by 474 ± 563 g/d from 3249 ± 1352 to 2775 ± 1187 g/d (P = .049, Student t test). Intestinal wet weight absorption tended to increase by 464 ± 557 g/d (P = .05), as did urine production by 765 ± 759 g/d (P = .02). Intestinal energy absorption improved by 902 ± 882 kJ/d (P = .02). CONCLUSION Liraglutide reduced ostomy wet weight output in end-jejunostomy patients with SBS-IF and increased their intestinal wet weight and energy absorption. If larger, randomized, placebo-controlled studies confirm these effects, it adds to the hypothesis that many ileo-colonic brake hormones in conjunction may be involved in the process of intestinal adaptation. By identification of key hormones and addressing their potential synergistic effects, better treatments may be provided to patients with SBS-IF. This trial was registered at clinicaltrialsregister.eu as 2013-005499-16.
Collapse
Affiliation(s)
- Mark Hvistendahl
- Department of Medical Gastroenterology CA-2121, Rigshospitalet, Copenhagen, Denmark
| | | | - Siri Tribler
- Department of Medical Gastroenterology CA-2121, Rigshospitalet, Copenhagen, Denmark
| | - Rahim Mohammad Naimi
- Department of Medical Gastroenterology CA-2121, Rigshospitalet, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, Copenhagen, Denmark
| | | | - Mads Hornum
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
| | - Jens Rikardt Andersen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
46
|
Windeløv JA, Wewer Albrechtsen NJ, Kuhre RE, Jepsen SL, Hornburg D, Pedersen J, Jensen EP, Galsgaard KD, Winther-Sørensen M, Ørgaard A, Deacon CF, Mann M, Kissow H, Hartmann B, Holst JJ. Why is it so difficult to measure glucagon-like peptide-1 in a mouse? Diabetologia 2017; 60:2066-2075. [PMID: 28669086 DOI: 10.1007/s00125-017-4347-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS In humans, glucagon-like peptide-1 (GLP-1) is rapidly degraded by dipeptidyl peptidase-4 to a relatively stable metabolite, GLP-1(9-36)NH2, which allows measurement of GLP-1 secretion. However, little is known about the kinetics of the GLP-1 metabolite in mice. We hypothesised that the GLP-1 metabolite is rapidly degraded in this species by neutral endopeptidase(s) (NEP[s]). METHODS We administered glucose, mixed meal or water orally to 256 mice, and took blood samples before and 2, 6, 10, 20, 30, 60 or 90 min after stimulation. To study the metabolism of the GLP-1 metabolite, i.v. GLP-1(9-36)NH2 (800 fmol) or saline (154 mmol/l NaCl) was administered to 160 mice, some of which had a prior injection of a selective NEP 24.11 ± inhibitor (candoxatril, 5 mg/kg) or saline. Blood was collected before and 1, 2, 4 and 12 min after GLP-1/saline injection. Plasma GLP-1 levels were analysed using a customised single-site C-terminal ELISA, two different two-site ELISAs and MS. RESULTS GLP-1 secretion profiles after oral glucose administration differed markedly when assayed by C-terminal ELISA compared with sandwich ELISAs, with the former showing a far higher peak value and AUC. In mice injected with GLP-1(9-36)NH2, immunoreactive GLP-1 plasma levels peaked at approximately 75 pmol/l at 1 min when measured with sandwich ELISAs, returning to baseline (~20 pmol/l) after 12 min, but remained elevated using the C-terminal ELISA (~90 pmol/l at 12 min). NEP 24.11 inhibition by candoxatril significantly attenuated GLP-1(9-36)NH2 degradation in vivo and in vitro. MS identified GLP-1 fragments consistent with NEP 24.11 degradation. CONCLUSIONS/INTERPRETATION In mice, the GLP-1 metabolite is eliminated within a few minutes owing to endoproteolytic cleavage by NEP 24.11. Therefore, accurate measurement of GLP-1 secretion in mice requires assays for NEP 24.11 metabolites. Conventional sandwich ELISAs are inadequate because of endoproteolytic cleavage of the dipeptidyl peptidase-4-generated metabolite.
Collapse
Affiliation(s)
- Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ørgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Wu T, Rayner CK, Watson LE, Jones KL, Horowitz M, Little TJ. Comparative effects of intraduodenal fat and glucose on the gut-incretin axis in healthy males. Peptides 2017; 95:124-127. [PMID: 28800948 DOI: 10.1016/j.peptides.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The interaction of nutrients with the small intestine stimulates the secretion of numerous enteroendocrine hormones that regulate postprandial metabolism. However, differences in gastrointestinal hormonal responses between the macronutrients are incompletely understood. In the present study, we compared blood glucose and plasma hormone concentrations in response to standardised intraduodenal (ID) fat and glucose infusions in healthy humans. METHODS In a parallel study design, 16 healthy males who received an intraduodenal fat infusion were compared with 12 healthy males who received intraduodenal glucose, both at a rate of 2kcal/min over 120min. Venous blood was sampled at frequent intervals for measurements of blood glucose, and plasma total and active glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon. RESULTS Plasma concentrations of the incretin hormones (both total and active GLP-1 and GIP) and glucagon were higher, and plasma insulin and blood glucose concentrations lower, during intraduodenal fat, when compared with intraduodenal glucose, infusion (treatment by time interaction: P<0.001 for each). CONCLUSIONS Compared with glucose, intraduodenal fat elicits substantially greater GLP-1, GIP and glucagon secretion, with minimal effects on blood glucose or plasma insulin in healthy humans. These observations are consistent with the concept that fat is a more potent stimulus of the 'gut-incretin' axis than carbohydrate.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia.
| | - Christopher K Rayner
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Linda E Watson
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tanya J Little
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
48
|
Development of a UHPLC-MS/MS (SRM) method for the quantitation of endogenous glucagon and dosed GLP-1 from human plasma. Bioanalysis 2017; 9:733-751. [PMID: 28488894 DOI: 10.4155/bio-2017-0021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM The performance of glucagon and GLP-1 immunoassays is often poor, but few sensitive LC-MS/MS methods exist as alternatives. EXPERIMENTAL A multiplexed LC-MS/MS method using a 2D extraction technique was developed. RESULTS The method was established for the quantitation of endogenous glucagon (LLOQ: 15 pg/ml) and dosed GLP-1 (LLOQ: 25 pg/ml) in human plasma, and is the first such method avoiding immunoenrichment. Specificity of endogenous glucagon quantitation was assured using a novel approach with a supercharging mobile phase additive to access a sensitive qualifier SRM. Endogenous glucagon concentrations were within the expected range, and showed good reproducibility after extended sample storage. A cross-validation against established immunoassays using physiological study samples demonstrated some similarities between methods. CONCLUSION The LC-MS/MS method offers a viable alternative to immunoassays for quantitation of endogenous glucagon, dosed glucagon and/or dosed GLP-1.
Collapse
|
49
|
Glintborg D, Mumm H, Holst JJ, Andersen M. Effect of oral contraceptives and/or metformin on GLP-1 secretion and reactive hypoglycaemia in polycystic ovary syndrome. Endocr Connect 2017; 6:267-277. [PMID: 28432082 PMCID: PMC5457494 DOI: 10.1530/ec-17-0034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023]
Abstract
CONTEXT Insulin resistance in polycystic ovary syndrome (PCOS) may increase the risk of reactive hypoglycaemia (RH) and decrease glucagon-like peptide-1 (GLP-1) secretion. The possible effects of treatment with oral contraceptives (OCP) and/or metformin on GLP-1 secretion and risk of RH in PCOS is undetermined. SETTING Outpatient clinic. PATIENTS AND INTERVENTIONS Randomized, controlled clinical trial. Ninety women with PCOS were randomized to 12-month treatment with OCP (150 mg desogestrel + 30 mg ethinylestradiol), metformin (2 g/day) or metformin + OCP. Five-hour oral glucose tolerance tests (5-h OGTT) measuring fasting and area under the curve (AUC) for GLP-1, glucose, insulin and C-peptide were performed before and after the intervention period. Sixty-five women completed the study and 34 weight-matched healthy women were included as controls. MAIN OUTCOME MEASURES Changes in GLP-1, glucose, insulin and C-peptide during 5-h OGTT. RESULTS Fasting GLP-1 levels increased during metformin + OCP vs OCP treatment, whereas AUC GLP-1 levels were unchanged during medical treatment. The prevalence of reactive hypoglycemia increased from 9/65 to 14/65 after intervention (P < 0.01) and was more common after treatment with metformin + OCP (increase from 3/23 to 6/23, P = 0.01). Reactive hypoglycaemia was associated with higher insulin and C-peptide levels during 5-h OGTT, but was unassociated with BMI and AUC GLP-1. GLP-1 levels were comparable in PCOS vs controls. AUC GLP-1 levels were significantly lower in obese vs lean patients and were inversely associated with BMI. CONCLUSIONS AUC GLP-1 levels were unchanged during treatment. Increased risk of hypoglycemia during metformin + OCP could be associated with increased insulin secretion.
Collapse
Affiliation(s)
- Dorte Glintborg
- Department of Endocrinology and MetabolismOdense University Hospital, Odense C, Denmark
| | - Hanne Mumm
- Department of Endocrinology and MetabolismOdense University Hospital, Odense C, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic ResearchThe Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Andersen
- Department of Endocrinology and MetabolismOdense University Hospital, Odense C, Denmark
| |
Collapse
|
50
|
Wang Z, Hou L, Huang L, Guo J, Zhou X. Exenatide improves liver mitochondrial dysfunction and insulin resistance by reducing oxidative stress in high fat diet-induced obese mice. Biochem Biophys Res Commun 2017; 486:116-123. [PMID: 28274877 DOI: 10.1016/j.bbrc.2017.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/04/2017] [Indexed: 12/18/2022]
Abstract
Oxidative stress is associated with obesity and may be accompanied by liver insulin resistance and mitochondrial dysfunction. Decreased mitochondrial respiratory chain enzymatic activities and decreased insulin metabolic signaling may promote these maladaptive changes. In this context, exenatide has been reported to reduce hepatic lipid deposition, improve insulin sensitivity and improve mitochondrial dysfunction. We hypothesized that exenatide would attenuate mitochondrial dysfunction by reducing hepatic lipid deposition, blunting oxidant stress and promoting insulin metabolic signaling in a high fat diet-induced model of obesity and insulin resistance. Sixteen-week-old male C57BL/6 diet-induced obese (DIO) mices and age-matched standard diet (STD) mices were treated with exenatide (10 μg/kg twice a day) for 28 days. Compared with untreated STD mice, untreated DIO mice exhibited deposited excessive lipid in liver and produced the oxidative stress in conjunction with insulin resistance, abnormal hepatic cells and mitochondrial histoarchitecture, mitochondrial dysfunction and reduced organism metabolism. Exenatide reduced hepatic steatosis, decreased oxidative stress, and improved insulin resistance in DIO mice, in concert with improvements in the insulin metabolic signaling, mitochondrial respiratory chain enzymatic activation, adenine nucleotide production, organism metabolism and weight gain. Results support the hypothesis that exenatide reduces hepatic cells and mitochondrial structural anomaly and improves insulin resistance in concert with improvements in insulin sensitivity and mitochondrial function activation, concomitantly with reductions in oxidative stress.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Lin Hou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Lanhui Huang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Jun Guo
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Xinli Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China.
| |
Collapse
|