1
|
Jabłońska B, Jabłoński P, Gęga J. Kinetics and Thermodynamics of Pb(II), Zn(II), and Cd(II) Adsorption from Aqueous Solutions onto Activated Biochar Obtained from Tobacco Waste. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2324. [PMID: 40429062 PMCID: PMC12113365 DOI: 10.3390/ma18102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Waste tobacco stems from the tobacco industry were used to obtain activated carbon by thermal conversion and chemical activation with KOH. The aim was to investigate its adsorption ability towards Zn(II), Cd(II), and Pb(II) from aqueous solutions. Fundamental physical and chemical properties were investigated, and the point of zero charge pH was detected. The results showed that the obtained activated carbon was characterized by a high specific surface area, pore volume, and negative surface charge, which could make it an efficient metal adsorbent. In the next step, the optimal adsorption conditions were determined using Central Composite Design. Finally, the adsorption kinetics and thermodynamics were studied. The adsorption rate is very high for Pb(II) and Cd(II), whereas it is noticeably lower for Zn(II). The negative value of Gibbs free energy change (∆G) confirmed that the adsorption process of the tested metal ions is feasible and proceeds spontaneously. The thermodynamics indicate that the adsorption of zinc and lead on the tested carbon is an exothermic process, and for cadmium, this process is endothermic.
Collapse
Affiliation(s)
- Beata Jabłońska
- Department of Environmental Engineering and Biotechnology, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka St. 60a, 42-200 Częstochowa, Poland
| | - Paweł Jabłoński
- Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland;
| | - Jerzy Gęga
- Department of Materials Science and Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland;
| |
Collapse
|
2
|
Zha X, Chen S, Huang Y. Preparation of a coarse flocculant from concentrated organic matter: Regulation by hydrothermal pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124388. [PMID: 39908614 DOI: 10.1016/j.jenvman.2025.124388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/06/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The process of preparing a flocculant using concentrated organic matter has demonstrated effective results in enriching organic matter in municipal wastewater. The basic preparation process involves a combination of hydrothermal treatment and chemical modification. To enhance the enrichment effect of organic matter, the optimal hydrothermal conditions and their influence on the characteristics of liquid products and coarse flocculant were investigated. The results indicated that liquid products obtained at 140 °C for 30 min yielded a high concentration of active groups and exhibited a significantly higher molecular weight, making them suitable as precursors for the coarse flocculant. When the dosage of the coarse flocculant was set at 10 mg/L, the turbidity removal rate of the kaolin suspension reached 93 %. In the treatment of municipal domestic sewage, a COD removal rate of approximately 62 % was achieved at a dosage of 10 mg/L. Within the experimental range, a decrease in hydrothermal time and temperature favored the production of more reactive groups from the dissolved polymeric substances (DPS), thereby enhancing the charge density of the coarse flocculant. The intrinsic viscosity of the coarse flocculant was influenced by both the number of reactive groups and the molecular weight of DPS. Specifically, obtaining a molecular weight distribution of 8-9.5 kDa favored the production of a coarse flocculant with high characteristic viscosities.
Collapse
Affiliation(s)
- Xiao Zha
- Department of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Shuojun Chen
- Department of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Yong Huang
- Department of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
3
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
4
|
Madkhali MMM, Ghubayra R, Alaghaz ANMA, Hassan AF, Braish AG. Fabrication of thiosemicarbazide-modified biochar/carrageenan composite beads based on Eichhornia crassipes for effective removal of Pb (II) from aqueous medium. Int J Biol Macromol 2024; 281:136451. [PMID: 39396593 DOI: 10.1016/j.ijbiomac.2024.136451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Several biomasses have been applied as environmentally friendly substitutes to produce biochar, which can be utilized to remediate effluents that contain inorganic chemicals. This study applied water hyacinth (Eichhornia crassipes) as a foundation source for the assembly of thiosemicarbazide-modified biochar (BC), which then was modified with potassium carrageenan (KC). Thiosemicarbazide-modified biochar (BC), potassium carrageenan (KC), and thiosemicarbazide-modified biochar/carrageenan composite beads (BKC) were described by several physicochemical methods. The adsorption of Pb (II) onto the three solid adsorbents was investigated under various experimental conditions. The BKC composite beads revealed a surface area of 687.43 m2/g and a mesoporous structure. The best adsorption conditions were found to be 25 min as an equilibrium time, 1.2 g/L of adsorbent dose, and a solution pH of 5 at a temperature of 15 °C. The pseudo-second-order, Elovich kinetic models, Langmuir, and Temkin isotherms were well familiar to the experimental data, inferring that the progression was physical monolayer adsorption onto the homogenous surface. The highest capacity of Pb (II) adsorption onto BKC was 460.45 mg/g at 15 °C. Thermodynamic measurements proved that adsorption was a spontaneous process and endothermic in the case of BC and BKC while exothermic for KC. Furthermore, BKC showed high reusability conditions.
Collapse
Affiliation(s)
- Marwah M M Madkhali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Reem Ghubayra
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Abdel-Nasser M A Alaghaz
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.
| | - Asaad F Hassan
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| | - Amany G Braish
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Patro A, Dwivedi S, Thakur A, Sahoo PK, Biswas JK. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024; 27:110812. [PMID: 39310752 PMCID: PMC11416529 DOI: 10.1016/j.isci.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
This review highlights the application of biochar (BC) for attaining different SDGs (SDG 6: clean water and sanitation, SDG 7: affordable and clean energy, SDG 13: climate action, and SDG 15: life on land). These goals coincide with the various existing environmental problems including wastewater treatment, soil amendment, greenhouse gas remediation, and bioenergy generation. So, the review encompasses the various mechanisms involved in the BC-assisted treatment and reclamation of water, pollutant immobilization and enhancing soil properties, reduction of greenhouse gas emission during the wastewater treatment process and soil amendment mechanisms, bioenergy generation through various electrode material, biodiesel production, and many more. The review also explains the various drawbacks and limitations of BC application to the available environmental issues. Conclusively, it was apprehended that BC is an appropriate material for several environmental applications. More research interventions are further required to analyze the applicability of different BC materials for attaining other available SDGs.
Collapse
Affiliation(s)
- Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Anjali Thakur
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
6
|
Lee EJ, Lee JW. Synergistic effect of adsorption and photolysis on methylene blue removal by magnetic biochar derived from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 407:131124. [PMID: 39025370 DOI: 10.1016/j.biortech.2024.131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
In this study, magnetic biochar was synthesized by doping Fe3O4 onto the biochar surface followed by analysis of its properties. The efficiency of methylene blue (MB) removal through the combined processes of adsorption and photolysis was assessed. The presence of Fe3O4 on the biochar surface was confirmed using Raman spectroscopy and X-ray photoelectron spectroscopy. The magnetic biochar, after MB adsorption, showed a magnetism of 39.50 emu/g leading to a 97.07 % recovery rate. The specific surface area of biochar was higher (380.68 m2/g) than that of magnetic biochar (234.46 m2/g), and the maximum adsorption capacity of MB was higher in the biochar (0.03 mg/g) than that in magnetic biochar (0.02 mg/g) under the optimal conditions for MB adsorption. The MB adsorption experiments using biochar or magnetic biochar were optimally conducted under 10-20 mg/L MB concentration, 1 g biochar dosage, pH 12, 200 rpm rotation speed, 25 °C temperature, and 30 min duration. Under dark conditions, biochar had a higher MB removal rate, at 83.91 %, compared to magnetic biochar, at 78.30 %. Under visible light (λ > 425 nm), magnetic biochar effectively removed MB within 10 min, highlighting the synergistic effect of adsorption and photolysis. MB is physically and chemically adsorbed by the monolayer on the surface of EB and EMB according to adsorption behavior.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Department of Wood Science and Engineering, Chonnam National University, Gwangju, Korea
| | - Jae-Won Lee
- Department of Wood Science and Engineering, Chonnam National University, Gwangju, Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Korea.
| |
Collapse
|
7
|
Vasseghian Y, Nadagouda MM, Aminabhavi TM. Biochar-enhanced bioremediation of eutrophic waters impacted by algal blooms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122044. [PMID: 39096732 DOI: 10.1016/j.jenvman.2024.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
The permanent problem of formation of algal blooms in water polluted with nitrogen and phosphorus is one of the formidable environmental problems. Biochar has the potential to solve the issues related to eutrophication due to its special structure and ability to absorb the nutrients. Biochar's exceptional nutrient absorption capacity allows it to absorb excess nutrients, causing the algae to use fewer nutrients. This review deals with effective performance of biochar in reducing the effects caused by algal blooms and improving the environmental conditions. Besides, an analysis of the issues involved addresses the origins and consequences of nitrogen and phosphorus pollution, and the formation of algal blooms is also reviewed. It then delves deeply into biochar, explaining its properties, production methods, and their uses in environmental contexts. The review emphasizes that biochar can be effective in dealing with many challenges associated with environments affected by algal blooms, specifically focusing on the positive effects of biochar and algae to examine their roles in controlling algae growth. Finally, the review emphasizes new achievements and innovative ideas to foster sustainable aquatic ecosystems. The discussions emphasize the central role of biochar in managing nutrient-rich waters and algal blooms.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan.
| | - Megha M Nadagouda
- University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45221, USA
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, 02841, Republic of Korea; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
8
|
Murtaza G, Ahmed Z, Usman M, Iqbal R, Zulfiqar F, Tariq A, Ditta A. Physicochemical properties and performance of non-woody derived biochars for the sustainable removal of aquatic pollutants: A systematic review. CHEMOSPHERE 2024; 359:142368. [PMID: 38763397 DOI: 10.1016/j.chemosphere.2024.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China; College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
9
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Efficient Immobilization of heavy metals using newly synthesized magnetic nanoparticles and some bacteria in a multi-metal contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39602-39624. [PMID: 38822962 DOI: 10.1007/s11356-024-33808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici MM, Zhou H. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307412. [PMID: 38251820 DOI: 10.1002/adma.202307412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The contemporary production of carbon materials heavily relies on fossil fuels, contributing significantly to the greenhouse effect. Biomass is a carbon-neutral resource whose organic carbon is formed from atmospheric CO2. Employing biomass as a precursor for synthetic carbon materials can fix atmospheric CO2 into solid materials, achieving negative carbon emissions. Hydrothermal carbonization (HTC) presents an attractive method for converting biomass into carbon materials, by which biomass can be transformed into materials with favorable properties in a distinct hydrothermal environment, and these carbon materials have made extensive progress in many fields. However, the HTC of biomass is a complex and interdisciplinary problem, involving simultaneously the physical properties of the underlying biomass and sub/supercritical water, the chemical mechanisms of hydrothermal synthesis, diverse applications of resulting carbon materials, and the sustainability of the entire technological routes. This review starts with the analysis of biomass composition and distinctive characteristics of the hydrothermal environment. Then, the factors influencing the HTC of biomass, the reaction mechanism, and the properties of resulting carbon materials are discussed in depth, especially the different formation mechanisms of primary and secondary hydrochars. Furthermore, the application and sustainability of biomass-derived carbon materials are summarized, and some insights into future directions are provided.
Collapse
Affiliation(s)
- Shijie Yu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiangkai He
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Mengyin Xie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongqing Xu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xuan Bie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Qinghai Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yanguo Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Marta Sevilla
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo, 33011, Spain
| | | | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
11
|
Delgado Y, Tapia N, Muñoz-Morales M, Ramirez Á, Llanos J, Vargas I, Fernández-Morales FJ. Effect of hydrochar-doping on the performance of carbon felt as anodic electrode in microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33338-2. [PMID: 38653895 DOI: 10.1007/s11356-024-33338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
In this study, the feasibility of using hydrochars as anodic doping materials in microbial fuel cells (MFCs) was investigated. The feedstock used for hydrochar synthesis was metal-polluted plant biomass from an abandoned mining site. The hydrochar obtained was activated by pyrolysis at 500 °C in N2 atmosphere. Under steady state conditions, the current exerted by the MFCs, as well as the cyclic voltammetry and polarization curves, showed that the activated hydrochar-doped anodes exhibited the best performance in terms of power and current density generation, 0.055 mW/cm2 and 0.15 mA/cm2, respectively. These values were approximately 30% higher than those achieved with non-doped or doped with non-activated hydrochar anodes which can be explained by the highly graphitic carbonaceous structures obtained during the hydrochar activation that reduced the internal resistance of the system. These results suggest that the activated hydrochar materials could significantly enhance the electrochemical performance of bioelectrochemical systems. Moreover, this integration will not only enhance the energy generated by MFCs, but also valorize metal polluted plant biomass within the frame of the circular economy.
Collapse
Affiliation(s)
- Yelitza Delgado
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Natalia Tapia
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Martín Muñoz-Morales
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Álvaro Ramirez
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Javier Llanos
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Ignacio Vargas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Francisco Jesús Fernández-Morales
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain.
| |
Collapse
|
12
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
13
|
Qu Z, Wang W, He Y. Prediction of Uranium Adsorption Capacity in Radioactive Wastewater Treatment with Biochar. TOXICS 2024; 12:118. [PMID: 38393213 PMCID: PMC10893139 DOI: 10.3390/toxics12020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Recently, Japan's discharge of wastewater from the Fukushima nuclear disaster into the ocean has attracted widespread attention. To effectively address the challenge of separating uranium, the focus is on finding a healthy and environmentally friendly way to adsorb uranium using biochar. In this paper, a BP neural network is combined with each of the four meta-heuristic algorithms, namely Particle Swarm Optimization (PSO), Differential Evolution (DE), Cheetah Optimization (CO) and Fick's Law Algorithm (FLA), to construct four prediction models for the uranium adsorption capacity in the treatment of radioactive wastewater with biochar: PSO-BP, DE-BP, CO-BP, FLA-BP. The coefficient of certainty (R2), error rate and CEC test set are used to judge the accuracy of the model based on the BP neural network. The results show that the Fick's Law Algorithm (FLA) has a better search ability and convergence speed than the other algorithms. The importance of the input parameters is quantitatively assessed and ranked using XGBoost in order to analyze which parameters have a greater impact on the predictions of the model, which indicates that the parameters with the greatest impact are the initial concentration of uranium (C0, mg/L) and the mass percentage of total carbon (C, %). To sum up, four prediction models can be applied to study the adsorption of uranium by biochar materials during actual experiments, and the advantage of Fick's Law Algorithm (FLA) is more obvious. The method of model prediction can significantly reduce the radiation risk caused by uranium to human health during the actual experiment and provide some reference for the efficient treatment of uranium wastewater by biochar.
Collapse
Affiliation(s)
| | - Wei Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; (Z.Q.)
| | | |
Collapse
|
14
|
Zou Z, Qin Y, Zhang T, Tan K. Enhancing road performance of lead-contaminated soil through biochar-cement solidification: An experimental study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119315. [PMID: 37844401 DOI: 10.1016/j.jenvman.2023.119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
The effectiveness of cement-based solidification for remediating heavy metal-contaminated soil diminishes at high levels of contamination. To overcome this limitation, the potential of a biochar-cement composite curing agent to enhance the properties of Pb 2+ contaminated soil was investigated in this study. The permeability, unconfined compressive strength (UCS), and leaching characteristics of the biochar-cement composite material were assessed under varying biochar contents. The results revealed that the addition of 1-5 wt% biochar in cement significantly improved the UCS of the solidified soil. However, excessive biochar contents had a detrimental effect on the strength of samples. Additionally, the incorporation of 3.0% biochar reduced the hydraulic conductivity and porosity to 7.75 × 10-9 cm/s and 43.12%, respectively. Moreover, the biochar-cement composite material exhibited remarkable efficiency in treating highly concentrated Pb2+ contaminated soil, with leaching concentration decreasing significantly with increasing biochar content, falling below the Chinese hazardous waste identification standard. Overall, the utilization of a biochar-cement composite curing agent in the solidification of heavy metal-contaminated soil could be considered a promising subgrade filler technique.
Collapse
Affiliation(s)
- Zhenjie Zou
- College of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, China
| | - Yinghong Qin
- College of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, China
| | - Tongsheng Zhang
- School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Kanghao Tan
- College of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, China; School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.
| |
Collapse
|
15
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
16
|
Jayakumar M, Hamda AS, Abo LD, Daba BJ, Venkatesa Prabhu S, Rangaraju M, Jabesa A, Periyasamy S, Suresh S, Baskar G. Comprehensive review on lignocellulosic biomass derived biochar production, characterization, utilization and applications. CHEMOSPHERE 2023; 345:140515. [PMID: 37871877 DOI: 10.1016/j.chemosphere.2023.140515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Biochar is an ample source of organic carbon prepared by the thermal breakdown of biomass. Lignocellulosic biomass is a promising precursor for biochar production, and has several applications in various industries. In addition, biochar can be applied for environmental revitalization by reducing the negative impacts through intrinsic mechanisms. In addition to its environmentally friendly nature, biochar has several recyclable and inexpensive benefits. Nourishing and detoxification of the environment can be undertaken using biochar by different investigators on account of its excellent contaminant removal capacity. Studies have shown that biochar can be improved by activation to remove toxic pollutants. In general, biochar is produced by closed-loop systems; however, decentralized methods have been proven to be more efficient for increasing resource efficiency in view of circular bio-economy and lignocellulosic waste management. In the last decade, several studies have been conducted to reveal the unexplored potential and to understand the knowledge gaps in different biochar-based applications. However, there is still a crucial need for research to acquire sufficient data regarding biochar modification and management, the utilization of lignocellulosic biomass, and achieving a sustainable paradigm. The present review has been articulated to provide a summary of information on different aspects of biochar, such as production, characterization, modification for improvisation, issues, and remediation have been addressed.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia.
| | - Abas Siraj Hamda
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Lata Deso Abo
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Bulcha Jifara Daba
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Sundramurthy Venkatesa Prabhu
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - Magesh Rangaraju
- Department of Chemical Engineering, Wachemo University, Hossana, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; School of Engineering, Lebanese American University, Byblos, 1102, 2801, Lebanon.
| |
Collapse
|
17
|
Kumar K, Kumar R, Kaushal S, Thakur N, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. CHEMOSPHERE 2023; 345:140419. [PMID: 37848104 DOI: 10.1016/j.chemosphere.2023.140419] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India.
| | - Ravi Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
18
|
Lin SL, Zhang H, Chen WH, Song M, Kwon EE. Low-temperature biochar production from torrefaction for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2023; 387:129588. [PMID: 37558107 DOI: 10.1016/j.biortech.2023.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Biochar, a carbon-rich and por ous material derived from waste biomass resources, has demonstrated tremendous potential in wastewater treatment. Torrefaction technology offers a favorable low-temperature biochar production method, and torrefied biochar can be used not only as a solid biofuel but also as a pollutant adsorbent. This review compares torrefaction technology with other thermochemical processes and discusses recent advancements in torrefaction techniques. Additionally, the applications of torrefied biochar in wastewater treatment (dyes, oil spills, heavy metals, and emerging pollutants) are comprehensively explored. Many studies have shown that high productivity, high survival of oxygen-containing functional groups, low temperature, and low energy consumption of dried biochar production make it attractive as an adsorbent for wastewater treatment. Moreover, used biochar's treatment, reuse, and safe disposal are introduced, providing valuable insights and contributions to developing sustainable environmental remediation strategies by biochar.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hongjie Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Mengjie Song
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
19
|
Chormare R, Moradeeya PG, Sahoo TP, Seenuvasan M, Baskar G, Saravaia HT, Kumar MA. Conversion of solid wastes and natural biomass for deciphering the valorization of biochar in pollution abatement: A review on the thermo-chemical processes. CHEMOSPHERE 2023; 339:139760. [PMID: 37567272 DOI: 10.1016/j.chemosphere.2023.139760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
This overview addresses the formation of solid trash and the various forms of waste from a variety of industries, which environmentalists have embraced. The paper investigates the negative effects on the environment caused by unsustainable management of municipal solid trash as well as the opportunities presented by the formal system. This examination looks at the origins of solid waste as well as the typical treatment methods. Pyrolysis methods, feedstock pyrolysis, and lignocellulosic biomass pyrolysis were highlighted. Explain in detail the various thermochemical processes that take place during the pyrolysis of biomass. Due to its carbon content, low cost, accessibility, ubiquitousness, renewable nature, and environmental friendliness, biomass waste is a unique biochar precursor. This study looks at the different types of biomass waste that are available for treating wastewater. This study discussed a wide variety of reactors. Adsorption is the standard method that is used the most frequently to remove hazardous organic, dye, and inorganic pollutants from wastewater. These pollutants cause damage to the environment and water supplies, thus it is important to remove them. Adsorption is both simple and inexpensive to utilize. Temperature-dependent conversions explain the kinetic theories of biomaterial biochemical degradation. This article presents a review that explains how pyrolytic breakdown char materials can be used to reduce pollution and improve environmental management.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Tarini Prasad Sahoo
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641 032, Tamil Nadu, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600 119, Tamil Nadu, India
| | - Hitesh T Saravaia
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| | - Madhava Anil Kumar
- Centre for Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
20
|
Liu W, Zhang X, Ren H, Hu X, Yang X, Liu H. Co-production of spirosiloxane and biochar adsorbent from wheat straw by a low-cost and environment-friendly method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117851. [PMID: 37019023 DOI: 10.1016/j.jenvman.2023.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
To enhance the value of wheat straw derivatives, wheat straw ash (WSA) was used as a reactant for the first time to synthesize spirocyclic alkoxysilane, an important organosilicon raw material, using an energy-saving and environmentally friendly non-carbon thermal reduction method. After spirocyclic alkoxysilane extraction, the biochar in the wheat straw ash prepared an adsorbent for Cu2+. The maximum copper ion adsorption capacity (Qm) of silica-depleted wheat straw ash (SDWSA) was 31.431nullmg/g, far exceeding those of WSA and similar biomass adsorbents. The effects of the pH, adsorbent dose, and contact time on the adsorption behaviour of the SDWSA for Cu2+ adsorption were systematically investigated. The adsorption mechanism of Cu2+ by the SDWSA was investigated using the Langmuir, Freundlich, pseudo-first-order kinetic, pseudo-second-order kinetic, and Weber and Morris models by combining the preliminary experimental data and characterization results. The adsorption isotherm and Langmuir equation matched perfectly. The Weber and Morris model can describe the mass-transfer mechanism of Cu2+ adsorption by SDWSA. Both film and intraparticle diffusion are rapid control steps. Compared to WSA, SDWSA has a larger specific surface area and a higher content of oxygen-containing functional groups. A large specific surface area provides more adsorption sites. Oxygen-containing functional groups react with Cu2+ through electrostatic interactions, surface complexation, and ion exchange, which are the possible adsorption mechanisms for SDWSA. These methods improve the added value of wheat straw derivatives and promote wheat straw ash recovery and centralized treatment. This makes it possible to use the thermal energy of wheat straw and facilitates the treatment of exhaust gases and carbon capture.
Collapse
Affiliation(s)
- Wenlong Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xingwen Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| | - Hongyu Ren
- School of Resources and Environment, Northeast Agricultural University, No. 600, Changjiang Street, Harbin, 150030, China.
| | - Xingcheng Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xinyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Hui Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| |
Collapse
|
21
|
Sun Y, Leng R, Ma X, Zhang J, Han B, Zhao G, Ai Y, Hu B, Ji Z, Wang X. Economical amidoxime-functionalized non-porous β-cyclodextrin polymer for selective detection and extraction of uranium. CHEMICAL ENGINEERING JOURNAL 2023; 459:141687. [DOI: doi.org/10.1016/j.cej.2023.141687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
22
|
Zhong W, Bai W, Li G. Reduction of Hexavalent Chromium from Soil of the Relocated Factory Area with Rice Straw Hydrothermal Carbon Modified by Nano Zero-Valent Iron (nZVI). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3089. [PMID: 36833784 PMCID: PMC9967011 DOI: 10.3390/ijerph20043089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In order to reduce the content of Cr(VI) in the soil of the relocated chromium salt factory, the rice straw-derived hydrothermal carbon was prepared by hydrothermal method and loaded with nano zero-valent iron generated by liquid phase reduction, which effectively alleviated the self-aggregation problem of nano zero-valent iron (nZVI) in the treatment of Cr(VI) and improved the Cr(VI) reduction rate without changing the soil structure. The reduction effect of Cr(VI) in soil by key influencing factors such as carbon-iron ratio, initial pH value, and initial temperature was investigated. The results showed that nZVI modified hydro-thermal carbon composite (named RC-nZVI) had a good reduction effect on Cr(VI). Scanning electron microscope (SEM) and energy spectrum analysis showed that nZVI was evenly distributed on the surface of hydrothermal carbon, which effectively reduced the agglomeration of iron. Under the conditions of C/Fe = 1:2, 60 °C, with pH of 2, the average Cr(VI) content in soil decreased from 182.9 mg kg-1 to 21.6 mg kg-1. Adsorption kinetics of Cr(VI) by RC-nZVI fit well with the pseudo-second-order model, and the kinetic velocity constant revealed that Cr(VI) reduction rate decreased with increasing initial Cr(VI) concentration. Cr(VI) reduction by RC-nZVI was mainly dominated by chemical adsorption.
Collapse
Affiliation(s)
| | - Weiyang Bai
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | | |
Collapse
|
23
|
Zou Z, Yang L, Liu Y, Zhang Y, Cao D, Du Z, Jin J. Removal and recovery of uranium (VI) from aqueous solutions by residual sludge and its biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19907-19917. [PMID: 36242670 DOI: 10.1007/s11356-022-23514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The removal and recovery of uranium (VI) from water solutions are critical for energy and environmental security. In this study, hydrochar at 100, 150, and 190 °C (HC100, HC150, and HC190) and pyrochar at 250 °C (BC250) were prepared from residual sludge (RS). The uranium (VI) adsorption behavior, recovery, and heavy metal risk of RS and its biochars were assessed. The sorption distribution coefficient of RS was higher than those of its biochars within the tested concentration range. The maximum adsorption capacity of uranium (VI) by HC190 was 121.26 mg/g at acidic pH (pH 4.5), which was higher than those of other tested biochars, previously reported unmodified biochars, and activated carbon. The zeta potential, FTIR, and XPS results implied that the adsorption of uranium (VI) by RS and its biochars was regulated by electrostatic attraction and the complexation with oxygen- and phosphorus-containing functional groups. Besides, partial reduction of uranium (VI) into uranium (IV) happened during the process of adsorption. More than 86% of the adsorbed uranium (VI) was recovered by 0.01 M hydrochloric acid and 100% by 0.01 M sodium carbonate. The leaching amount of heavy metals was greatly reduced after the sludge was converted to biochar, indicating that hydrothermal carbonization and pyrolysis can promote the stabilization of heavy metals. This work demonstrates that RS and its biochars can be implemented as low-cost, environment-friendly, and high-efficient materials for the purification of uranium (VI)-containing solutions by means of adsorption and desorption.
Collapse
Affiliation(s)
- Ziwei Zou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Lu Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yue Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Ziwen Du
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
24
|
Dhanya V, Rajesh N. A cradle to cradle approach towards remediation of uranium from water using carbonized arecanut husk fiber. RSC Adv 2023; 13:4394-4406. [PMID: 36744280 PMCID: PMC9890654 DOI: 10.1039/d2ra08333g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Sustainable materials for remediation of pollutants from water is the need of the hour. In this study two carbonaceous adsorbents prepared through hydrothermal carbonisation and pyrolysis from arecanut husk fiber, an agricultural waste material were used for the adsorption of uranium from water. Batch adsorption data as interpreted using the Langmuir model showed adsorption capacities of 250 mg g-1 and 200 mg g-1 respectively at pH 6 for the hydrochar (AHFC) and the pyrochar (AHFT) exceeding that reported for most of the unmodified biochars. The adsorption followed pseudo-second order kinetics and was exothermic in nature. The high selectivity and excellent removal efficiencies on application to environmental ground water samples and good regeneration capacity make these sorbents promising eco-friendly materials for uranium remediation from water.
Collapse
Affiliation(s)
- V Dhanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| |
Collapse
|
25
|
Manikandan SK, Pallavi P, Shetty K, Bhattacharjee D, Giannakoudakis DA, Katsoyiannis IA, Nair V. Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020719. [PMID: 36677777 PMCID: PMC9862088 DOI: 10.3390/molecules28020719] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The bioremediation of heavy metal ions and pesticides is both cost-effective and environmentally friendly. Microbial remediation is considered superior to conventional abiotic remediation processes, due to its cost-effectiveness, decrement of biological and chemical sludge, selectivity toward specific metal ions, and high removal efficiency in dilute effluents. Immobilization technology using biochar as a carrier is one important approach for advancing microbial remediation. This article provides an overview of biochar-based materials, including their design and production strategies, physicochemical properties, and applications as adsorbents and support for microorganisms. Microorganisms that can cope with the various heavy metal ions and/or pesticides that enter the environment are also outlined in this review. Pesticide and heavy metal bioremediation can be influenced by microbial activity, pollutant bioavailability, and environmental factors, such as pH and temperature. Furthermore, by elucidating the interaction mechanisms, this paper summarizes the microbe-mediated remediation of heavy metals and pesticides. In this review, we also compile and discuss those works focusing on the study of various bioremediation strategies utilizing biochar and microorganisms and how the immobilized bacteria on biochar contribute to the improvement of bioremediation strategies. There is also a summary of the sources and harmful effects of pesticides and heavy metals. Finally, based on the research described above, this study outlines the future scope of this field.
Collapse
Affiliation(s)
- Soumya K. Manikandan
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Pratyasha Pallavi
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Krishan Shetty
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | | | - Dimitrios A. Giannakoudakis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.A.G.); (V.N.)
| | - Ioannis A. Katsoyiannis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
- Correspondence: (D.A.G.); (V.N.)
| |
Collapse
|
26
|
High Efficiency Uranium(VI) Removal from Wastewater by Strong Alkaline Ion Exchange Fiber: Effect and Characteristic. Polymers (Basel) 2023; 15:polym15020279. [PMID: 36679159 PMCID: PMC9863957 DOI: 10.3390/polym15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
In this study, we analyzed the removal efficiency of uranium(U(VI)) in wastewater at relatively low concentrations using strong alkaline ion exchange fiber (SAIEF). Static tests showed that the strong alkali fibers can purify U(VI) containing wastewater in a concentration range of 20-100 mg L-1 with an optimal pH of 10.5 and contact time of 15-30 min. Adsorption and desorption cycling tests indicated that, adsorbed uranium is easily desorbed by 0.1 mol L-1 HCl, and the fiber still maintained the original adsorption efficiency after eight cycles. According to dynamic penetration test results, the SAIEF saturation adsorption capacity was 423.9 mg g-1, and the effluent concentration of uranium through two series columns was less than 0.05 mg L-1, reaching the national standard for non-receiving water (GB23727-2009) SEM-EDS and FTIR analysis revealed that the functional group of SAIEF is CH2N+(CH3)3Cl-. Addotionally, the major forms of fiber exchange adsorption are (UO2)2CO3(OH)3-, UO2(CO)34- and UO2(OH)3-. The results indicate that the SAIEF is an excellent material for uranium removal.
Collapse
|
27
|
Khan Z, Fan X, Khan MN, Khan MA, Zhang K, Fu Y, Shen H. The toxicity of heavy metals and plant signaling facilitated by biochar application: Implications for stress mitigation and crop production. CHEMOSPHERE 2022; 308:136466. [PMID: 36122746 DOI: 10.1016/j.chemosphere.2022.136466] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) accumulation in soil poses a severe threat worldwide for soil, plants, and humans. The accumulation of HMs in soil and uptake by plants leads to disrupt physiological and biochemical metabolisms. As a potential and sustainable soil amendment, biochar has attained huge attention to reduce HMs toxicity in soil and improve plant growth influenced by HMs stress. Despite an array of research studies, there is a lack of knowledge on how biochar interacts with HMs, moderate plant defence system, induce HMs stress signals pathways and promote plant growth. At first, the review highlights the possible effects of HMs on soil and plant and their consequences on plant signaling network. Secondly, the biochar's impact on soil physiochemical properties and the sorption of HMs on biochar surface through direct and indirect mechanisms are reviewed. Finally, the review shows the key roles of biochar in soil improvement to enhance plant growth and signaling response to HMs by enhancing the activities of antioxidants and reducing chlorophyll injury, reactive oxygen species (ROS) accumulation, and cell membrane degradation under HMs stress. However, future studies are needed to evaluate the role of biochar in diverse climatic conditions as well as the long-term effects of biochar on HMs persistency in soil and crop productivity. This review will provide new avenues for future studies to address and quantify the advancement in biochar's role in alleviating plant's HMs stress on a sustainable basis.
Collapse
Affiliation(s)
- Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xianting Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Mohammad Nauman Khan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Kangkang Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youqiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, China; Guangdong Key Laboratory of New Technology in Rice Breeding, China; Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
28
|
Liu Y, Wang Y, Xia H, Wang Q, Chen X, Lv J, Li Y, Zhao J, Liu Y, Yuan D. Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Gheorghe-Bulmau C, Volceanov A, Stanciulescu I, Ionescu G, Marculescu C, Radoiu M. Production and properties assessment of biochars from rapeseed and poplar waste biomass for environmental applications in Romania. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1683-1696. [PMID: 34414519 DOI: 10.1007/s10653-021-01061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Biochar obtained by pyrolysis is receiving great research interest as it is perceived to be a renewable resource available for agronomic and environmental applications. Since biochar is a highly heterogeneous material with chemical composition that varies widely depending on feedstock and pyrolysis conditions, this study compares the characteristics of biochar produced by pyrolysis at six temperature levels ranging between 300 and 800 °C of two types of biomass, i.e. rapeseed straw (RS)-agriculture waste and poplar tree shavings (PP)-forest waste from furniture making. Twelve biochars were generated via pyrolysis under low oxygen conditions of the selected biomasses in an electrically heated batch reactor. To determine how pyrolysis temperature affects the properties of biochars and consequently their possible utilization, physical, chemical, thermal, porosity and EDX analysis were measured for all biochars and for the corresponding feedstocks. SEM images of the biochar revealed that an increase in temperature led to a higher number of pores for PP biochar compared to RS biochar, and that PP biochar pores tended to shrink with temperature. The elemental composition and the pH of biochars were also compared. Based on the experimental results a utilization matrix was designed as to offer indications concerning possible applications of RS and PP biochars in substitution to fossil derived products for soil remediation (e.g., agriculture fertilizers) and in environmental applications (e.g., removal of pollutants).
Collapse
Affiliation(s)
- Cora Gheorghe-Bulmau
- Faculty of Power Engineering, University POLITEHNICA of Bucharest, Bucharest, Romania.
| | - Adrian Volceanov
- Faculty of Applied Chemistry and Material Sciences, University POLITEHNICA of Bucharest, Bucharest, Romania
| | - Iustina Stanciulescu
- Faculty of Power Engineering, University POLITEHNICA of Bucharest, Bucharest, Romania
| | - Gabriela Ionescu
- Faculty of Power Engineering, University POLITEHNICA of Bucharest, Bucharest, Romania
| | - Cosmin Marculescu
- Faculty of Power Engineering, University POLITEHNICA of Bucharest, Bucharest, Romania
| | | |
Collapse
|
30
|
Liao J, He X, Zhang Y, Zhu W, Zhang L, He Z. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153145. [PMID: 35038520 DOI: 10.1016/j.scitotenv.2022.153145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.
Collapse
Affiliation(s)
- Jun Liao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoshan He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Zhibing He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China.
| |
Collapse
|
31
|
Sun Y, Zhang Z, Heng J, Gao C, Jin Q, Chen Z, Guo Z. Co-transport of U(VI) and colloidal biochar in quartz sand heterogeneous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151606. [PMID: 34774950 DOI: 10.1016/j.scitotenv.2021.151606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Biochar has attracted much attention for remediating the sites contaminated with heavy metals and radionuclides due to its low cost and high adsorption affinity. However, little is known about how colloidal biochar influences U(VI) transport in the environment. In this study, column experiments were conducted to investigate the individual and co-transport of U(VI) and biochar colloids (BC) in quartz sand heterogeneous media. Results showed that the transport of U(VI) in the individual transport system was pH-dependent and insensitive to ionic strength, whereas the individual BC transport was more sensitive to the changes in ionic strength compared to those in pH, indicating that electrostatic interaction plays a major role during BC transport but chemical interaction dominates U(VI) transport. In the presence of BC, the transport of U(VI) was significantly facilitated because of U(VI) adsorption on BC. The existence of low concentration of U(VI) (2.5 × 10-6 M), however, did not affect the breakthrough curves (BTCs) of BC, except for the co-transport at relatively high ionic strength (100 mM) where BC transport was impeded due to the decrease of colloid suspension stability. Colloid size exclusion effect was evidenced by the evolution of particle size and zeta potential of the effluents. The transport of BC in both the individual and co-transport systems could be described by a two-site kinetic attachment/detachment model. This work implies that a risk assessment of BC facilitated heavy metal transport should be carefully considered when biochar is applied to the remediation of heavy metal contaminated sites.
Collapse
Affiliation(s)
- Yufeng Sun
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Zhen Zhang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Jiaxi Heng
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Chao Gao
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Qiang Jin
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China; The Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China.
| | - Zongyuan Chen
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China; The Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China
| | - Zhijun Guo
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China; The Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China.
| |
Collapse
|
32
|
Padhye LP, Bandala ER, Wijesiri B, Goonetilleke A, Bolan N. Hydrochar: A Promising Step Towards Achieving a Circular Economy and Sustainable Development Goals. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.867228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The United Nations 17 Sustainable Development Goals (SDGs) are a universal call to action to end poverty, protect the environment, and improve the lives and prospects of everyone on this planet. However, progress on SDGs is currently lagging behind its 2030 target. The availability of water of adequate quality and quantity is considered as one of the most significant challenges in reaching that target. The concept of the ‘Circular Economy’ has been termed as a potential solution to fasten the rate of progress in achieving SDGs. One of the promising engineering solutions with applications in water treatment and promoting the concept of the circular economy is hydrochar. Compared to biochar, hydrochar research is still in its infancy in terms of optimization of production processes, custom design for specific applications, and knowledge of its water treatment potential. In this context, this paper critically reviews the role of hydrochar in contributing to achieving the SDGs and promoting a circular economy through water treatment and incorporating a waste-to-value approach. Additionally, key knowledge gaps in the production and utilization of engineered hydrochar are identified, and possible strategies are suggested to further enhance its water remediation potential and circular economy in the context of better natural resource management using hydrochar. Research on converting different waste biomass to valuable hydrochar based products need further development and optimization of parameters to fulfil its potential. Critical knowledge gaps also exist in the area of utilizing hydrochar for large-scale drinking water treatment to address SDG-6.
Collapse
|
33
|
Azeem M, Shaheen SM, Ali A, Jeyasundar PGSA, Latif A, Abdelrahman H, Li R, Almazroui M, Niazi NK, Sarmah AK, Li G, Rinklebe J, Zhu YG, Zhang Z. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128131. [PMID: 34973578 DOI: 10.1016/j.jhazmat.2021.128131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Conversion of hazardous waste materials to value-added products is of great interest from both agro-environmental and economic points of view. Bone char (BC) has been used for the removal of potentially toxic elements (PTEs) from contaminated water, however, its potential BC for the immobilization of PTEs in contaminated water and soil compared to bone (BBC)- and plant (PBC)-derived biochars has not been reviewed yet. This review presents an elaboration for the potentials of BC for the remediation of PTEs-contaminated water and soil in comparison with PBC and BBC. This work critically reviews the preparation and characterization of BC, BBC, and PBC and their PTEs removal efficiency from water and soils. The mechanisms of PTE removal by BC, BBC, and PBC are also discussed in relation to their physicochemical characteristics. The review demonstrates the key opportunities for using bone waste as feedstock for producing BC and BBC as promising low-cost and effective materials for the remediation of PTEs-contaminated water and soils and also elucidates the possible combinations of BC and BBC aiming to effectively immobilize PTEs in water and soils.
Collapse
Affiliation(s)
- Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China; Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab 46300, Pakistan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Parimala G S A Jeyasundar
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abdul Latif
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mansour Almazroui
- Center of Excellence for Climate Change Research (CECCR), Department of Meteorology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Zenqqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
34
|
Chin JF, Heng ZW, Teoh HC, Chong WC, Pang YL. Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater - Modification, application and mechanism. CHEMOSPHERE 2022; 291:133035. [PMID: 34848231 DOI: 10.1016/j.chemosphere.2021.133035] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination in water bodies is currently in an area of greater concern due to the adverse effects on human health. Despite the good adsorption performance of biochar, various modifications have been performed on the pristine biochar to further enhance its adsorption capability, at the same time overcome the difficulty of particles separation and mitigate the secondary pollution issues. In this review, the feasibility of chitosan-modified magnetic biochar for heavy metal removal from aqueous solution is evaluated by critically analysing existing research. The effective strategies that applied to introduce chitosan and magnetic substances into the biochar matrix are systematically reviewed. The physicochemical changes of the modified-biochar composite are expounded in terms of surface morphology, pore properties, specific surface area, surface functional groups and electromagnetism. The detailed information regarding the adsorption performances of various modified biochar towards different heavy metals and their respective underlying mechanisms are studied in-depth. The current review also analyses the kinetic and isotherm models that dominated the adsorption process and summarizes the common models that fitted well to most of the experimental adsorption data. Moreover, the operating parameters that affect the adsorption process which include solution pH, temperature, initial metal concentration, adsorbent dosage, contact time and the effect of interfering ions are explored. This review also outlines the stability of modified biochar and their regeneration rate after cycles of heavy metal removal process. Lastly, constructive suggestions on the future trends and directions are provided for better research and development of chitosan-modified magnetic biochar.
Collapse
Affiliation(s)
- Jia Fu Chin
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Zeng Wei Heng
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Hui Chieh Teoh
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Woon Chan Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.
| | - Yean Ling Pang
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
35
|
Yang F, Jiang Y, Dai M, Hou X, Peng C. Active biochar-supported iron oxides for Cr(VI) removal from groundwater: Kinetics, stability and the key role of FeO in electron-transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127542. [PMID: 34740162 DOI: 10.1016/j.jhazmat.2021.127542] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr), especially in forms of hexavalent chromium (Cr(VI)) remains a serious threat to public health and environmental safety for its high toxicity. Herein, two types of iron-modification methods adopting co-pyrolysis and surface-deposition respectively were carried out to prepare active Fe-biochar composites (FeBC) for Cr(VI) removal in the simulated groundwater environment. The systematic characterization demonstrated that larger BET surface area and diversified iron oxides of FeBC-1 obtained from the co-pyrolysis method contributed to higher adsorption and reduction activity towards Cr(VI) degradation in comparison with FeBC-2 produced from surface-deposition method. Further, FeO was evidenced to be a main active component for transforming Cr(VI) to lower-toxicity Cr(III) uniting XRD and XPS analysis. Also, the designed batch experiments aiming at deeper clarifying FeBC-1 revealed that the pseudo-second-order kinetic and intra-particle diffusion model could well describe the Cr(VI) sorption behaviors, suggesting that a single-layer, chemical adsorption process as well as internal particle diffusion both controlled the removal process of Cr(VI) using FeBC-1. Finally, the stability experiments stated that FeBC-1 was basically stable at acidic and neutral conditions. Thus, it was found that co-pyrolysis of FeBC-1 is a potential technology for Cr(VI) remediation.
Collapse
Affiliation(s)
- Fei Yang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yating Jiang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Min Dai
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Xiaoting Hou
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Changsheng Peng
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| |
Collapse
|
36
|
Liao J, Ding L, Zhang Y, Zhu W. Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127190. [PMID: 34844340 DOI: 10.1016/j.jhazmat.2021.127190] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, three kinds of biochars (PMBC-H2O, PMBC-PP and PMBC-HP) with excellent adsorption performance were obtained by carbonizing pig manure pre-treated with different agents. These biochars had the ordered mesoporous structures and possessed abundant active functional groups on their surface. The adsorption behaviors of the biochars towards UVI under various conditions were evaluated by batch experiment. The results showed that KMnO4 and H2O2 could enormously improve the adsorption performance of PMBC to UVI. After KMnO4 and H2O2 pretreatment, the maximum adsorption capacities of PMBC-PP (979.3 mg/g) and PMBC-HP (661.7 mg/g) were about 2.6 and 1.8 times higher than that of PMBC-H2O (369.9 mg/g), respectively, which was much higher than previously reported biochar-based materials. Obviously, KMnO4 pretreatment leaded to a higher enhancement than that of H2O2. The removal mechanism of UVI on PMBC-PP was discussed in-depth. The interaction between UVI species and PMBC-PP was mainly ascribed to the abundant active sites on the surface of PMBC-PP. In a word, conversion of pig manure pre-treated with KMnO4 into biochar not only demonstrates that PMBC-PP has great potential in the treatment of actual uranium-containing wastewater, but also provides a method for the rational utilization of pig manure to reduce the pollution.
Collapse
Affiliation(s)
- Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Ling Ding
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
37
|
Yang L, Jin J, Wang Y, An W, Zhao Y, Cui C, Han L, Wang X. The removal of uranium (VI) from aqueous solution by the anaerobically digested sewage sludge with hydrothermal pretreatment. CHEMOSPHERE 2022; 288:132644. [PMID: 34688715 DOI: 10.1016/j.chemosphere.2021.132644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) with hydrothermal (HT) pretreatment (sequential HT-AD treatment) is a novel technology for sludge management. HT-AD sludge is rich in functional groups and its applications as pollutant sorbents might be a win-win strategy. This study investigated the removal of uranium (VI) from water using HT-AD sludge as affected by solution pH, temperature, and ion strength. The reusability and heavy metal risk of HT-AD sludge were also assessed. The batch sorption experiments demonstrated that even at an acidic initial pH of 3.2, the maximum adsorption of HT-AD sludge for uranium (VI) reached 117.13 mg/g, higher than that of most carbon-based materials. The inner-sphere and out-sphere complexation between uranium (VI) and the HT-AD sludge dominated the adsorption when pH was in the range of 2-6 and 6-11, respectively. The FTIR and XPS analysis indicated that the primary mechanisms of uranium (VI) adsorption by the HT-AD sludge were the surface complexation and the electric attraction between uranium (VI) and the functional groups (e.g. -COO-) on HT-AD sludge. The removal rate of uranium (VI) by HT-AD sludge only decreased by ∼7% after 3 consecutive adsorption cycles. Leaching experiment showed that less than 5% of the total heavy metal were released from HT-AD sludge. Our research proved that HT-AD sludge can be used as an efficient uranium (VI) adsorbent with good reusability and environmental safety.
Collapse
Affiliation(s)
- Lu Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yichu Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Weiqi An
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yunao Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Chao Cui
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
38
|
Santana MS, Alves RP, Santana LS, Gonçalves MA, Guerreiro MC. Structural, inorganic, and adsorptive properties of hydrochars obtained by hydrothermal carbonization of coffee waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114021. [PMID: 34717105 DOI: 10.1016/j.jenvman.2021.114021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The hydrothermal carbonization process is a suitable process for the conversion of potentially harmful lignocellulosic waste into hydrochars. Defective coffee beans were the precursor raw material for hydrochar synthesis. Reactions were performed in a high-pressure reactor at 150, 200, and 250 °C, in autogenous pressure, for 40 min. Hydrochars were recovered by filtration and characterized by energy dispersive X-ray fluorescence spectroscopy, UV-Vis spectrophotometry, attenuated total reflection Fourier-transform infrared spectroscopy, differential thermal analysis, and scanning electron microscopy. Methylene blue adsorption tests were performed and analyzed by Langmuir and Freundlich adsorption isotherms. Adsorption mechanisms were investigated by computational calculations at DFT level. Results suggest that hydrochars from defective coffee beans can be applied as technological resources in the agronomic and environmental fields due to their inorganic composition, mainly to high magnesium content, the structural characteristics of porosity, biodegradation control, soil carbon-fixation and adsorption capacity. Important adsorption processes are caused by the development of oxygenated functional groups on the hydrochar surface.
Collapse
Affiliation(s)
- Mozarte Santos Santana
- Department of Chemistry, Federal University of Lavras, Aquenta Sol Avenue, Lavras, PO box: 3037, CEP 37200-900, Brazil.
| | - Rafael Pereira Alves
- Department of Chemistry, Federal University of Lavras, Aquenta Sol Avenue, Lavras, PO box: 3037, CEP 37200-900, Brazil
| | - Lucas Santos Santana
- Department of Agricultural Engineering, Federal University of Lavras, Aquenta Sol Avenue, Lavras, PO box: 3037, CEP 37200-900, Brazil
| | - Mateus Aquino Gonçalves
- Department of Chemistry, Federal University of Lavras, Aquenta Sol Avenue, Lavras, PO box: 3037, CEP 37200-900, Brazil
| | - Mário César Guerreiro
- Department of Chemistry, Federal University of Lavras, Aquenta Sol Avenue, Lavras, PO box: 3037, CEP 37200-900, Brazil
| |
Collapse
|
39
|
Giri DD, Alhazmi A, Mohammad A, Haque S, Srivastava N, Thakur VK, Gupta VK, Pal DB. Lead removal from synthetic wastewater by biosorbents prepared from seeds of Artocarpus Heterophyllus and Syzygium Cumini. CHEMOSPHERE 2022; 287:132016. [PMID: 34523437 DOI: 10.1016/j.chemosphere.2021.132016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The present investigation deals with removal of lead (Pb+2) ions from waste water using biosorbent prepared from seeds of Artocarpus heterophyllus (SBAh) and Syzygium cumini (SBSc). Biosorbents surface has been characterized through FT-IR spectroscopy to probe the presence of functional groups. Response surface methodology enabled optimized conditions (Pb+2 concentration 2 μg/mL, pH 5.8 and bioadsorbent dose 60 mg) resulted in Pb+2 removal ~96% for SBAh and ~93% for SBSc at agitation speed 300 rpm. The adsorption capacity has been found to be 4.93 mg/g for SBAh and 3.95 mg/g for SBSc after 70 min. At optimal experimental conditions, kinetics of biosorption was explained well by inter-particle diffusion model for SBAh (R2 = 0.99) whereas Elovich model best fitted for SBSc (R2 = 0.98). Further, both the biosorbents followed Temkin adsorption isotherm model.
Collapse
Affiliation(s)
- Deen Dayal Giri
- Department of Botany, Maharaj Singh College, Saharanpur, Uttar Pradesh, 247001, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Neha Srivastava
- Department of Chemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
40
|
Li Y, Shao M, Huang M, Sang W, Zheng S, Jiang N, Gao Y. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier. CHEMOSPHERE 2022; 286:131470. [PMID: 34311401 DOI: 10.1016/j.chemosphere.2021.131470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
Heavy metals in the soil are major global environmental problems. Waste cotton was used to synthesize a novel β-CD/hydrothermal biochar (KCB), which is a low-cost and environment-friendly adsorbent for heavy metal soil remediation. KCB were used as reactive materials of electrokinetic-permeable reactive barrier (EK-PRB) to explore the removal characteristics of heavy metals. FTIR and XPS analysis revealed that KCB contained large numbers of surface functional groups. Adsorption of KCB for Pb2+ and Cd2+ reached 50.44 mg g-1 and 33.77 mg g-1, respectively. Metal ions in contaminated soil were removed by reactive barrier through electromigration, electrodialysis and electrophoresis, the removal efficiency of Pb2+ and Cd2+ in soil reached 92.87% and 86.19%. This finding proves that KCB/EK-PRB can be used as a cheap and green process to effectively remediate soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Yulin Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Mengyu Shao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China; Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Shanghai, 201620, China.
| | - Wenjing Sang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yanan Gao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
41
|
Akl ZF, Zaki EG, ElSaeed SM. Green Hydrogel-Biochar Composite for Enhanced Adsorption of Uranium. ACS OMEGA 2021; 6:34193-34205. [PMID: 34963906 PMCID: PMC8697026 DOI: 10.1021/acsomega.1c01559] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/30/2021] [Indexed: 05/15/2023]
Abstract
Uranium is the backbone of the nuclear fuel used for energy production but is still a hazardous environmental contaminant; thus, its removal and recovery are important for energy security and environmental protection. So far, the development of biocompatible, efficient, economical, and reusable adsorbents for uranium is still a challenge. In this work, a new orange peel biochar-based hydrogel composite was prepared by graft polymerization using guar gum and acrylamide. The composite's structural, morphological, and thermal characteristics were investigated via Fourier transform infrared (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) methods. The composite's water absorption properties were investigated in different media. The performance of the prepared composite in adsorbing uranium (VI) ions from aqueous media was systematically investigated under varying conditions including solution's acidity and temperature, composite dose, contact time, and starting amount of uranium. The adsorption efficiency increased with solution pH from 2 to 5.5 and composite dose from 15 to 50 mg. The adsorption kinetics, isotherms, and thermodynamics parameters were analyzed to get insights into the process's feasibility and viability. The equilibrium data were better described through a pseudo-second-order mechanism and a Langmuir isotherm model, indicating a homogeneous composite surface with the maximum uranium (VI) adsorption capacity of 263.2 mg/g. The calculated thermodynamic parameters suggested that a spontaneous and endothermic process prevailed. Interference studies showed high selectivity toward uranium (VI) against other competing cations. Desorption and recyclability studies indicated the good recycling performance of the prepared composite. The adsorption mechanism was discussed in view of the kinetics and thermodynamics data. Based on the results, the prepared hydrogel composite can be applied as a promising, cost-effective, eco-friendly, and efficient material for uranium (VI) decontamination.
Collapse
Affiliation(s)
- Zeinab F. Akl
- Egyptian
Atomic Energy Authority (EAEA), P.O.
Box 11762 Cairo, Egypt
| | - Elsayed G. Zaki
- Egyptian
Petroleum Research Institute (EPRI), P.O. Box 11727 Cairo, Egypt
| | - Shimaa M. ElSaeed
- Egyptian
Petroleum Research Institute (EPRI), P.O. Box 11727 Cairo, Egypt
- National
Committee of Women in Science (ASRT), 11334 Cairo, Egypt
| |
Collapse
|
42
|
Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HMN. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113762. [PMID: 34543967 DOI: 10.1016/j.jenvman.2021.113762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Biochar is a well-known carbon material with diversified functionalities and excellent physicochemical characteristics with high wastewater treatment potential. This review aims to summarize recent advancements in the development of biochar and biochar-based nanohybrid materials as a potential tool for the removal of harmful organic compounds such as synthetic dyes/effluents. The formation of biochar using pyrolysis of renewable feedstocks and their applications in various industries are explained hereafter. The characteristics and construction of biochar-based hybrid materials are explained in detail. Diversity of feedstocks, including municipal wastes, industrial byproducts, agricultural, and forestry residues, endows different biochar types with a wide structural variety. The production of cost-effective biochar drives the interest in manipulating biochars and induces desire functionality using nanoscale reinforcements. Various types of biochars, such as magnetic biochar, layered nanomaterial coated biochar, nanometallic oxide composites, chemically and physically functionalized biochar, have been produced. With the aid of nanomaterial, hybrid biochar exhibits a high potential to remove toxic contaminants. Depending upon biochar type, dyes/effluents can be removed via different mechanisms, including the Fenton process, photocatalytic degradation, π-π interaction, electrostatic interaction, and physical adsorption. In conclusion, desired physicochemical features, and tunable surface properties of biochar present high potential material in removing organic dyes and other effluents. The blended biochar with different materials/nanomaterials endows broader development and multi-functional opportunities for treating dyes/effluents.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
43
|
Potential Use of Biochar in Pit Latrines as a Faecal Sludge Management Strategy to Reduce Water Resource Contaminations: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Faecal sludge management (FSM) in most developing countries is still insufficient. Sanitation challenges within the sub-Saharan region have led to recurring epidemics of water- and sanitation-related diseases. The use of pit latrines has been recognised as an option for on-site sanitation purposes. However, there is also concern that pit latrine leachates may cause harm to human and ecological health. Integrated approaches for improved access to water and sanitation through proper faecal sludge management are needed to address these issues. Biochar a carbon-rich adsorbent produced from any organic biomass when integrated with soil can potentially reduce contamination. The incorporation of biochar in FSM studies has numerous benefits in the control of prospective contaminants (i.e., heavy metals and inorganic and organic pollutants). This review paper evaluated the potential use of biochar in FSM. It was shown from the reviewed articles that biochar is a viable option for faecal sludge management because of its ability to bind contaminants. Challenges and possible sustainable ways to incorporate biochar in pit latrine sludge management were also illustrated. Biochar use as a low-cost adsorbent in wastewater contaminant mitigation can improve the quality of water resources. Biochar-amended sludge can also be repurposed as a useful economical by-product.
Collapse
|
44
|
Characterization of Bio-Adsorbents Produced by Hydrothermal Carbonization of Corn Stover: Application on the Adsorption of Acetic Acid from Aqueous Solutions. ENERGIES 2021. [DOI: 10.3390/en14238154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the influence of temperature on textural, morphological, and crystalline characterization of bio-adsorbents produced by hydrothermal carbonization (HTC) of corn stover was systematically investigated. HTC was conducted at 175, 200, 225, and 250 °C, 240 min, heating rate of 2.0 °C/min, and biomass-to-H2O proportion of 1:10, using a reactor of 18.927 L. The textural, morphological, crystalline, and elemental characterization of hydro-chars was analyzed by TG/DTG/DTA, SEM, EDX, XRD, BET, and elemental analysis. With increasing process temperature, the carbon content increased and that of oxygen and hydrogen diminished, as indicated by elemental analysis (C, N, H, and S). TG/DTG analysis showed that higher temperatures favor the thermal stability of hydro-chars. The hydro-char obtained at 250 °C presented the highest thermal stability. SEM images of hydro-chars obtained at 175 and 200 °C indicated a rigid and well-organized fiber structure, demonstrating that temperature had almost no effect on the biomass structure. On the other hand, SEM images of hydro-chars obtained at 225 and 250 °C indicated that hydro-char structure consists of agglomerated micro-spheres and heterogeneous structures with nonuniform geometry (fragmentation), indicating that cellulose and hemi-cellulose were decomposed. EDX analysis showed that carbon content of hydro-chars increases and that of oxygen diminish, as process temperature increases. The diffractograms (XRD) identified the occurrence of peaks of higher intensity of graphite (C) as the temperature increased, as well as a decrease of peaks intensity for crystalline cellulose, demonstrating that higher temperatures favor the formation of crystalline-phase graphite (C). The BET analysis showed 4.35 m2/g surface area, pore volume of 0.0186 cm3/g, and average pore width of 17.08 μm. The solid phase product (bio-adsorbent) obtained by hydrothermal processing of corn stover at 250 °C, 240 min, and biomass/H2O proportion of 1:10, was activated chemically with 2.0 M NaOH and 2.0 M HCl solutions to investigate the adsorption of CH3COOH. The influence of initial acetic acid concentrations (1.0, 2.0, 3.0, and 4.0 mg/mL) was investigated. The kinetics of adsorption were investigated at different times (30, 60, 120, 240, 480, and 960 s). The adsorption isotherms showed that chemically activated hydro-chars were able to recover acetic acid from aqueous solutions. In addition, activation of hydro-char with NaOH was more effective than that with HCl.
Collapse
|
45
|
Li J, Chen L, Wang J. Solidification of radioactive wastes by cement-based materials. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Liu R, Wang H, Han L, Hu B, Qiu M. Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@Biochar composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55176-55185. [PMID: 34129168 DOI: 10.1007/s11356-021-14835-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 05/18/2023]
Abstract
The novel biochar supported by starch and nanoscale iron sulfide (SFeS@Biochar) composites were successfully prepared through coupling of biochar derived from peanut shell with nanoscale ferrous sulfide and starch under nitrogen atmosphere. It had the advantages of biochar, starch, and nanoscale ferrous sulfide. Therefore, it could overcome some shortcomings. The nanoscale ferrous sulfide particles and starch were thought to be loaded successfully on the surface of the biochar by SEM, EDS, BET, XRD, FT-IR, and XPS techniques. High uptake capacity of U(VI) by SFeS@Biochar could be attributed to reactive reaction of FeS nanoparticles and adsorptive of a lot of functional groups. The proposed reaction mechanisms of the U(VI) uptake by SFeS@Biochar were electrostatic attraction, surface complexation, precipitation, and reductive reaction. It also might be an improved environmentally friendly material for U(VI) removal.
Collapse
Affiliation(s)
- Renrong Liu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Hai Wang
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Li Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
47
|
H2O2 modified-hydrochar derived from paper waste sludge for enriched surface functional groups and promoted adsorption to ammonium. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Liang L, Xi F, Tan W, Meng X, Hu B, Wang X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. BIOCHAR 2021; 3:255-281. [DOI: doi.org/10.1007/s42773-021-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 06/25/2023]
Abstract
AbstractBiochar (BC) has exhibited a great potential to remove water contaminants due to its wide availability of raw materials, high surface area, developed pore structure, and low cost. However, the application of BC for water remediation has many limitations. Driven by the intense desire of overcoming unfavorable factors, a growing number of researchers have carried out to produce BC-based composite materials, which not only improved the physicochemical properties of BC, but also obtained a new composite material which combined the advantages of BC and other materials. This article reviewed previous researches on BC and BC-based composite materials, and discussed in terms of the preparation methods, the physicochemical properties, the performance of contaminant removal, and underlying adsorption mechanisms. Then the recent research progress in the removal of inorganic and organic contaminants by BC and BC-based materials was also systematically reviewed. Although BC-based composite materials have shown high performance in inorganic or organic pollutants removal, the potential risks (such as stability and biological toxicity) still need to be noticed and further study. At the end of this review, future prospects for the synthesis and application of BC and BC-based materials were proposed. This review will help the new researchers systematically understand the research progress of BC and BC-based composite materials in environmental remediation.
Collapse
|
49
|
El-Nemr MA, Ismail IM, Abdelmonem NM, El Nemr A, Ragab S. Amination of biochar surface from watermelon peel for toxic chromium removal enhancement. Chin J Chem Eng 2021; 36:199-222. [DOI: 10.1016/j.cjche.2020.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Gado M, Rashad M, Kassab W, Badran M. Highly Developed Surface Area Thiosemicarbazide Biochar Derived from Aloe Vera for Efficient Adsorption of Uranium. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221030139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|