1
|
Zhang Y, Sigaeva A, Elías-Llumbet A, Fan S, Woudstra W, de Boer R, Escobar E, Reyes-San-Martin C, Kisabacak R, Oosterhuis D, Gorter AR, Coenen B, Perona Martinez FP, van den Bogaart G, Olinga P, Schirhagl R. Free radical detection in precision-cut mouse liver slices with diamond-based quantum sensing. Proc Natl Acad Sci U S A 2024; 121:e2317921121. [PMID: 39401360 PMCID: PMC11513939 DOI: 10.1073/pnas.2317921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Free radical generation plays a key role in many biological processes including cell communication, maturation, and aging. In addition, free radical generation is usually elevated in cells under stress as is the case for many different pathological conditions. In liver tissue, cells produce radicals when exposed to toxic substances but also, for instance, in cancer, alcoholic liver disease and liver cirrhosis. However, free radicals are small, short-lived, and occur in low abundance making them challenging to detect and especially to time resolve, leading to a lack of nanoscale information. Recently, our group has demonstrated that diamond-based quantum sensing offers a solution to measure free radical generation in single living cells. The method is based on defects in diamonds, the so-called nitrogen-vacancy centers, which change their optical properties based on their magnetic surrounding. As a result, this technique reveals magnetic resonance signals by optical means offering high sensitivity. However, compared to cells, there are several challenges that we resolved here: Tissues are more fragile, have a higher background fluorescence, have less particle uptake, and do not adhere to microscopy slides. Here, we overcame those challenges and adapted the method to perform measurements in living tissues. More specifically, we used precision-cut liver slices and were able to detect free radical generation during a stress response to ethanol, as well as the reduction in the radical load after adding an antioxidant.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alina Sigaeva
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Arturo Elías-Llumbet
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia Santiago1027, Chile
| | - Siyu Fan
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Willem Woudstra
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Elkin Escobar
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Molecular Genetics Group, Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exacts Sciences, University of Antioquia, Medellin1226, Colombia
| | - Claudia Reyes-San-Martin
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Robin Kisabacak
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Dorenda Oosterhuis
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alan R. Gorter
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Britt Coenen
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Felipe P. Perona Martinez
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Peter Olinga
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| |
Collapse
|
2
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. The ameliorative effect of turmeric (Curcuma longa Linn) extract and its major constituent, curcumin, and its analogs on ethanol toxicity. Phytother Res 2024; 38:2165-2181. [PMID: 38396341 DOI: 10.1002/ptr.8165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/09/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-β/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Maghool F, Emami MH, Alipour R, Mohammadzadeh S, Sereshki N, Dehkordi SAE, Fahim A, Tayarani-Najaran Z, Sheikh A, Kesharwani P, Sahebkar A. Rescue effect of curcumin against copper toxicity. J Trace Elem Med Biol 2023; 78:127153. [PMID: 36989586 DOI: 10.1016/j.jtemb.2023.127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Turmeric has long been used not only as an indispensable part of Asian cuisine but as a medicinal herb for dressing wounds, bites, burns, treating eye infections and acne. Curcuminoids are the active substances and their synthetic derivatives (i.e. diacetylcurcumin (DAC) and metal-curcumin complexes) possess an incredibly wide range of medicinal properties that encompass chelation capacity for multiple heavy metals, antioxidant activity, anti-inflammatory properties, cytotoxicity against cancerous cells, antiviral and antibacterial effects, antihypertensive and insulin sensitizing role, and regulatory role on apoptosis. The aforementioned properties have put curcumin on spotlight as a potential treatment for ailments such as, hepatic diseases, neurodegenerative diseases, metabolic syndrome, dyslipidemia, cardiovascular disease, auto-immune diseases, malignancies and conditions associated with metal overload. Copper is essential for major biological functions, however, an excess causes chronic ailments including neurodegenerative disorders. The fascinating approach of curcumin could alleviate such effect by forming a complex. Thus, this review aims to present available data on the effect of copper-curcumin interaction in various in vitro, ex-vivo in vivo, and clinical studies.
Collapse
Affiliation(s)
- Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Sereshki
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Emerging roles of Sirtuins in alleviating alcoholic liver Disease: A comprehensive review. Int Immunopharmacol 2022; 108:108712. [PMID: 35397391 DOI: 10.1016/j.intimp.2022.108712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Sirtuins (SIRTs), a NAD+ family of dependent deacetylases, are involved in the regulation of various human diseases. Recently, accumulating evidence has uncovered number of substrates and crucial roles of SIRTs in the pathogenesis of alcoholic liver disease (ALD). However, systematic reports are still lacking, so this review provides a comprehensive profile of the crucial physiological functions of SIRTs and its role in attenuating ALD, including alcoholic liver steatosis, steatohepatitis, and fibrosis. SIRTs play beneficial roles in energy/lipid metabolism, oxidative stress, inflammatory response, mitochondrial homeostasis, autophagy and necroptosis of ALD via regulating multiple signaling transduction pathways such as AMPK, LKB1, SREBP1, Lipin1, PGC-1α, PPARα/γ, FoxO1/3a, Nrf2/p62, mTOR, TFEB, RIPK1/3, HMGB1, NFATc4, NF-κB, TLR4, NLRP3, P2X7R, MAPK, TGF1β/Smads and Wnt/β-catenin. In addition, the mechanism and clinical application of natural/ synthetic SIRTs agonists in ALD are summarized, which provide a new idea for the treatment of ALD and basic foundation for further studies into target drugs.
Collapse
|
5
|
Zhang HA, Kitts DD. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem 2021; 476:3785-3814. [PMID: 34106380 PMCID: PMC8187459 DOI: 10.1007/s11010-021-04201-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023]
Abstract
Turmeric, the rhizome of Curcuma longa plant belonging to the ginger family Zingiberaceae, has a history in Ayurvedic and traditional Chinese medicine for treatment of chronic diseases, including metabolic and cardiovascular diseases (CVD). This parallels a prevalence of age- and lifestyle-related diseases, especially CVD and type 2 diabetes (T2D), and associated mortality which has occurred in recent decades. While the chemical composition of turmeric is complex, curcuminoids and essential oils are known as two major groups that display bioactive properties. Curcumin, the most predominant curcuminoid, can modulate several cell signaling pathways involved in the etiology and pathogenesis of CVD, T2D, and related morbidities. Lesser bioactivities have been reported from other curcuminoids and essential oils. This review examines the chemical compositions of turmeric, and related bioactive constituents. A focus was placed on the cellular and molecular mechanisms that underlie the protective effects of turmeric and turmeric-derived compounds against diabetes and CVD, compiled from the findings obtained with cell-based and animal models. Evidence from clinical trials is also presented to identify potential preventative and therapeutic efficacies. Clinical studies with longer intervention durations and specific endpoints for assessing health outcomes are warranted in order to fully evaluate the long-term protective efficacy of turmeric.
Collapse
Affiliation(s)
- Huiying Amelie Zhang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - David D. Kitts
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Salehi E, Mashayekh M, Taheri F, Gholami M, Motaghinejad M, Safari S, Sepehr A. Curcumin Can be Acts as Effective agent for Prevent or Treatment of Alcohol-induced Toxicity in Hepatocytes: An Illustrated Mechanistic Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:418-436. [PMID: 34400970 PMCID: PMC8170768 DOI: 10.22037/ijpr.2020.112852.13985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that alcohol abuse can cause serious liver damage and cirrhosis. The main pathway for these types of hepatocellular cell neurodegeneration is mitochondrial dysfunction, which causes lipid peroxidation and dysfunction of the glutathione ring and the defect of antioxidant enzymes in alcoholic hepatic cells. Alcohol can also initiate malicious inflammatory pathways and trigger the initiation and activation of intestinal and extrinsic apoptosis pathways in hepatocellular tissues that lead to cirrhosis. Previous studies have shown that curcumin may inhibit lipid peroxidation, glutathione dysfunction and restore antioxidant enzymes. Curcumin also modulates inflammation and the production of alcohol-induced biomarkers. Curcumin has been shown to play a critical role in the survival of alcoholic hepatocellular tissue. It has been shown that curcumin can induce and trigger mitochondrial biogenesis and, by this mechanism, prevent the occurrence of both intrinsic and extrinsic apoptosis pathways in liver cells that have been impaired by alcohol. According to this mechanism, curcumin may protect hepatocellular tissue from alcohol-induced cell degeneration and may therefore survive alcoholic hepatocellular tissue. . Based on these mechanisms, the protective functions of curcumin against alcohol-induced cell degeneration due to oxidative stress, inflammation, and apoptosis events in hepatocellular tissue have been recorded. Hence, in this research, we have attempted to evaluate and analyze the main contribution mechanism of curcumin cell defense properties against alcohol-induced hepatocellular damage, according to previous experimental and clinical studies, and in this way we report findings from major studies.
Collapse
Affiliation(s)
- Elham Salehi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Mohammad Mashayekh
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Fereshteh Taheri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Afrah Sepehr
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Rangel-Castañeda IA, Carranza-Rosales P, Guzmán-Delgado NE, Hernández-Hernández JM, González-Pozos S, Pérez-Rangel A, Castillo-Romero A. Curcumin Attenuates the Pathogenicity of Entamoeba histolytica by Regulating the Expression of Virulence Factors in an Ex-Vivo Model Infection. Pathogens 2019; 8:pathogens8030127. [PMID: 31443160 PMCID: PMC6789811 DOI: 10.3390/pathogens8030127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Infection with the enteric protozoan Entamoeba histolytica is still a serious public health problem, especially in developing countries. Amoebic liver abscess (ALA) is the most common extraintestinal manifestation of the amoebiasis, and it can lead to serious and potentially life-threatening complications in some people. ALA can be cured by metronidazole (MTZ); however, because it has poor activity against luminal trophozoites, 40–60% of treated patients get repeated episodes of invasive disease and require repeated treatments that can induce resistance to MTZ, this may emerge as an important public health problem. Anti-virulence strategies that impair the virulence of pathogens are one of the novel approaches to solving the problem. In this study, we found that low doses of curcumin (10 and 50 μM) attenuate the virulence of E. histolytica without affecting trophozoites growth or triggering liver injury. Curcumin (CUR) decreases the expression of genes associated with E. histolytica virulence (gal/galnac lectin, ehcp1, ehcp5, and amoebapore), and is correlated with significantly lower amoebic invasion. In addition, oxidative stress is critically involved in the etiopathology of amoebic liver abscess; our results show no changes in mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT) after E. histolytica infection, with or without CUR. This study provides clear evidence that curcumin could be an anti-virulence agent against E. histolytica, and makes it an attractive potential starting point for effective treatments that reduce downstream amoebic liver abscess.
Collapse
Affiliation(s)
- Itzia Azucena Rangel-Castañeda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Mexico
| | | | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico.
| |
Collapse
|
8
|
Mohebbati R, Anaeigoudari A, Khazdair MR. The effects of Curcuma longa and curcumin on reproductive systems. Endocr Regul 2019; 51:220-228. [PMID: 29232190 DOI: 10.1515/enr-2017-0024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Curcuma longa (C. longa) was used in some countries such as China and India for various medicinal purposes. Curcumin, the active component of C. longa, is commonly used as a coloring agent in foods, drugs, and cosmetics. C. longa and curcumin have been known to act as antioxidant, anti-inflammatory, anti-mutagen, and anti-carcinogenic agents. Th e attempt of the present review was to give an effort on a detailed literature survey concentrated on the protective effects of C. longa and curcumin on the reproductive organs activity. METHODS The databases such as, PubMed, Web of Science, Google Scholar, Scopus, and Iran- Medex, were considered. The search terms were "testis" or "ovary" and "Curcuma longa", "curcumin", "antioxidant effect", "anti-inflammatory effect" and "anti-cancer effect". RESULTS C. longa and curcumin inhibited the production of the tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) and increased the caspases (3, 8 and 9) activities in HL-60 prostate cancer. Furthermore, C. longa and curcumin suppressed the vascular endothelial growth factor (VEGF), phosphorylated signal transducers and activators of the transcription 3 (STAT) and matrix metalloproteinase-9 (MMP-9) in ovarian cancer cell line. CONCLUSION C. longa and curcumin might decrease the risk of cancer and other malignant diseases in the reproductive system. C. longa and curcumin have a protective effect on the reproductive organs activity such as, anti-inflammatory, anti-apoptotic, and antioxidant effects in normal cells but showed pro-apoptotic effects in the malignant cells. Therefore, different effects of C. longa and curcumin are dependent on the doses and the type of cells used in various models studied.
Collapse
|
9
|
Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G. Some Biological Properties of Curcumin: A Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100613] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Curcumin (diferuloyl methane), a small-molecular weight compound isolated from the roots of Curcuma longa L. (family Zingiberaceae), has been used traditionally for centuries in Asia for medicinal, culinary and other purposes. A large number of in vitro and in vivo studies in both animals and man have indicated that curcumin has strong antioxidant, anti-carcinogenic, anti-inflammatory, anti-angiogenic, antispasmodic, antimicrobial, anti-parasitic and other activities. The mechanisms of some of these actions have recently been intensively investigated. Curcumin inhibits the promotion/ progression stage of carcinogenesis by induction of apoptosis and the arrest of cancer cells in the S, G2/M cell cycle phase. The compound inhibits the activity of growth factor receptors. The anti-inflammatory properties of curcumin are mediated through their effects on cytokines, lipid mediators, eicosanoids and proteolytic enzymes. Curcumin scavenges the superoxide radical, hydrogen peroxide and nitric oxide, and inhibits lipid peroxidation. These actions may be the basis for many of its pharmacological and therapeutic properties. Curcumin is a nutraceutical of low toxicity, which has been used successfully in a number of medical conditions that include cataracts, cystic fibrosis, and prostate and colon cancers.
Collapse
Affiliation(s)
- Badreldin H. Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Husnia Marrif
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | | | - Amel O. Bakheit
- College of Veterinary Medicine and Animal Production, SUST, Sudan
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
10
|
Saidi M, Aouacheri O, Saka S. Protective Effect of Curcuma Against Chromium Hepatotoxicity in Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.3166/phyto-2019-0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was carried out to investigate the antioxidant effects of curcuma against chromium-induced alterations in hepatic indices and dysfunctions in the antioxidant system. Forty male Wistar rats were randomly divided into four groups and were treated for 30 consecutive days. The control group (0-0) received per os mineral water and normal diet. The second group (0-Cur) received mineral water and an experimental diet containing 2% of curcuma powder, whereas the third group (Cr-0) was orally fed (per os) with 15 mg/kg body weight/day of potassium dichromate and normal diet. The last group (Cr-Cur) received per os 15 mg/kg of potassium dichromate and a diet with 2% of curcuma. The treatment by chromium was found to elicit a perturbation in biochemical parameters producing a significant increase in glycemia, triglycerides, cholesterol, ALP, ALT, AST, and LDH levels. On the contrary, a significant reduction was observed in the oxidative stress-related parameters (GSH, GPx, CAT, and GST). Moreover, we noticed that liver sections of rats intoxicated with chromium showed a disrupted architecture. However, the administration of curcuma revealed an intense reduction in the oxidative stress induced by chromium, ameliorating the levels of the majority of the previous parameters. The data of this study revealed the potent antioxidant effects of curcuma in reducing oxidative stress damage induced by the hexavalent chromium.
Collapse
|
11
|
Jamwal R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:367-374. [PMID: 30006023 DOI: 10.1016/j.joim.2018.07.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Curcumin is a widely studied natural compound which has shown tremendous in vitro therapeutic potential. Despite that, the clinical efficacy of the native curcumin is weak due to its low bioavailability and high metabolism in the gastrointestinal tract. During the last decade, researchers have come up with different formulations with a focus on improving the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with the varying range of enhanced bioavailability. The purpose of this review is to collate the published clinical studies of curcumin products with improved bioavailability over conventional (unformulated) curcumin. Based on the literature search, 11 curcumin formulations with available human bioavailability and pharmacokinetics data were included in this review. Further, the data on clinical study design, analytical method, pharmacokinetic parameters and other relevant details of each formulation were extracted. Based on a review of these studies, it is evident that better bioavailability of formulated curcumin products is mostly attributed to improved solubility, stability, and possibly low first-pass metabolism. The review hopes to provide a quick reference guide for anyone looking information on these bioavailable curcumin formulations. Based on the published reports, NovaSol® (185), CurcuWin® (136) and LongVida® (100) exhibited over 100-fold higher bioavailability relative to reference unformulated curcumin. Suggested mechanisms accounting for improved bioavailability of the formulations and details on the bioanalysis methods are also discussed.
Collapse
Affiliation(s)
- Rohitash Jamwal
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
12
|
Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front Microbiol 2017; 8:2276. [PMID: 29250041 PMCID: PMC5714879 DOI: 10.3389/fmicb.2017.02276] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Stenotrophomonas maltophilia is a commensal and an emerging pathogen earlier noted in broad-spectrum life threatening infections among the vulnerable, but more recently as a pathogen in immunocompetent individuals. The bacteria are consistently being implicated in necrotizing otitis, cutaneous infections including soft tissue infection and keratitis, endocarditis, meningitis, acute respiratory tract infection (RTI), bacteraemia (with/without hematological malignancies), tropical pyomyositis, cystic fibrosis, septic arthritis, among others. S. maltophilia is also an environmental bacteria occurring in water, rhizospheres, as part of the animals' microflora, in foods, and several other microbiota. This review highlights clinical reports on S. maltophilia both as an opportunistic and as true pathogen. Also, biofilm formation as well as quorum sensing, extracellular enzymes, flagella, pili/fimbriae, small colony variant, other virulence or virulence-associated factors, the antibiotic resistance factors, and their implications are considered. Low outer membrane permeability, natural MDR efflux systems, and/or resistance genes, resistance mechanisms like the production of two inducible chromosomally encoded β-lactamases, and lack of carefully compiled patient history are factors that pose great challenges to the S. maltophilia control arsenals. The fluoroquinolone, some tetracycline derivatives and trimethoprim-sulphamethaxole (TMP-SMX) were reported as effective antibiotics with good therapeutic outcome. However, TMP-SMX resistance and allergies to sulfa together with high toxicity of fluoroquinolone are notable setbacks. S. maltophilia's production and sustenance of biofilm by quorum sensing enhance their virulence, resistance to antibiotics and gene transfer, making quorum quenching an imperative step in Stenotrophomonas control. Incorporating several other proven approaches like bioengineered bacteriophage therapy, Epigallocatechin-3-gallate (EGCG), essential oil, nanoemulsions, and use of cationic compounds are promising alternatives which can be incorporated in Stenotrophomonas control arsenal.
Collapse
Affiliation(s)
- Anthony A Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.,Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
13
|
Ganesan K, Jayachandran M, Xu B. A critical review on hepatoprotective effects of bioactive food components. Crit Rev Food Sci Nutr 2017; 58:1165-1229. [DOI: 10.1080/10408398.2016.1244154] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kumar Ganesan
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| | - Muthukumaran Jayachandran
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
14
|
Al-Amoudi WM. Protective effects of fennel oil extract against sodium valproate-induced hepatorenal damage in albino rats. Saudi J Biol Sci 2017; 24:915-924. [PMID: 28490965 PMCID: PMC5415150 DOI: 10.1016/j.sjbs.2016.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/16/2016] [Accepted: 10/23/2016] [Indexed: 12/22/2022] Open
Abstract
Foeniculum vulgare (Apiaceae) is commonly known as fennel. This herb is well-known worldwide and traditionally used as curative herbal therapy for the treatment of epileptic disease, seizurescarminative, digestive, lactogogue, diuretic, treating respiratory and gastrointestinal disorders. The aim of present study is to investigate the possible effect of fennel oil against the toxicity of Sodium-Valproic (SVP) in albino rats. In order to assess the protection of fennel oil on SVP induced hepato- and nephro-toxicity, male albino rats were treated with 1 ml/kg b.w fennel oil 3 days/week for 6 weeks. The biochemical analyses of hepatic enzymes were evaluated by estimating blood biomarkers of liver and renal damage along with histological examination. The results obtained from this work showed that treating animals with SVP lead to many histopathological alterations in the liver and kidney tissues. The effect appeared in the liver tissue include leukocyte infiltrations, cytoplasmic vacuolization of the hepatocytes, fatty degeneration and congestion of blood vessels. This commonly used chemical (SVP) caused some unwanted effects on the kidney cortex which histologically observed as degeneration in renal tubules, atrophy of the glomeruli and edema. Biochemical results also revealed an abnormal increase in the enzyme level of AST, SAT, ALP, bilirubin, creatinine and urea-nitrogen, with a noticed decrease in total protein content. However, the results of treated rats with SVP plus fennel oil showed some positive histopathological changes in both the liver and kidney tissues. These results have confirmed that fennel oil has positive effects on the histological structure of the liver and kidney and the biochemical levels of AST, ALT, ALP, bilirubin, total proteins, creatinine and urea. It is concluded that fennel oil has various pharmacological properties including antioxidant, anti-cancer activity, anti-inflammatory. These valuable effects might be due to the presence of aromatic compounds trans-anethole. This useful properties of fennel plant could be due to its antioxidant activity that prevents the toxicity of SVP.
Collapse
|
15
|
Chen Z, Sun D, Bi X, Zeng X, Luo W, Cai D, Zeng Q, Xu A. Pharmacokinetic based study on "lagged stimulation" of Curcumae Longae Rhizoma - Piper nigrum couplet in their main active components' metabolism using UPLC-MS-MS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 27:15-22. [PMID: 28314475 DOI: 10.1016/j.phymed.2017.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Curcumae Longae Rhizoma is one of the commonly used traditional Chinese medicines, which has multiple biological activities such as relieving stagnation and stasis, pain alleviation, curing amenorrhea and wounds. However, its main active component-curcumin has poor absorption and very fast metabolism in body. To solve this problem, Piper nigrum was introduced for its ability to strengthen bioavailability of other compounds. PURPOSE In most cases of TCM couplets, all ingredients were prepared and taken simultaneously, which in our opinion did not take full advantage of their interactions. Therefore, order of administration should be adjusted according to pharmacokinetic parameters of the ingredients, which the ones act as supplement can first be taken, and main therapeutic components followed when the former reached its peak. METHOD the extract of Piper nigrum (containing at least 95% piperine) was taken by rats 6h before taking Curcumae Longae Rhizoma extract (containing at least 95% curcumin). Then, a UPLC-MS-MS method was developed to determine their content in plasma simultaneously. Determination was carried out by on a C18 column within 5min by isocratic elution using 0.2% formic acid and acetonitrile (50:50, v/v). Tandem mass detection was conducted by selective reaction monitoring (SRM) via electrospray ionization (ESI) source in positive mode. Samples were pre-treated by liquid-liquid extraction (LLE), and verapamil was used as internal standard (IS). RESULTS For both curcumin and piperine, the proposed method had good linearity (r2=0.999) within the concentration range of 1-1000ng/ml, with good recovery, precision and stability. The lower limit of quantification (LLOQ) was 1ng/ml. As pharmacokinetic data indicated, Maximum concentration (Cmax) of curcumin increased significantly to 394.06; the time reach maximum concentration (Tmax) and elimination half-life (T1/2) were 0.5 and 0.67h, respectively; CONCLUSION: The results provide a good strategy for the investigation of TCM formula especially the couplets, as well as a fast, selective and sensitive UPLC-MS-MS method determining active components in-vivo. Furthermore, the finding of "lagged stimulation" suggested that the use of complex formula should take pharmacokinetics into much more careful consideration.
Collapse
Affiliation(s)
- Zhao Chen
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China
| | - Dongmei Sun
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China.
| | - Xiaoli Bi
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China
| | - Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China
| | - Wenhui Luo
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China
| | - Dake Cai
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China
| | - Qiaohuang Zeng
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China
| | - Aili Xu
- Guangdong Province Engineering Technology Research Institute of T.C.M., 60 Hengfu rd., Guangzhou, 510095, China; Affiliated Guangdong second TCM hospital, Guangzhou University of Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd., Guangzhou, 510095, China
| |
Collapse
|
16
|
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2017; 7:205-233. [PMID: 28417091 PMCID: PMC5388087 DOI: 10.1016/j.jtcme.2016.05.005] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years, several drugs have been developed deriving from traditional products and current drug research is actively investigating the possible therapeutic roles of many Ayruvedic and Traditional Indian medicinal therapies. Among those being investigated is Turmeric. Its most important active ingredient is curcuminoids. Curcuminoids are phenolic compounds commonly used as a spice, pigment and additive also utilized as a therapeutic agent used in several foods. Comprehensive research over the last century has revealed several important functions of curcuminoids. Various preclinical cell culture and animals studies suggest that curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-acidogenic, radioprotective and arthritis. Different clinical trials also suggest a potential therapeutic role for curcuminoids in numerous chronic diseases such as colon cancer, lung cancer, breast cancer, inflammatory bowel diseases. The aim of this review is to summarize the chemistry, analog, metal complex, formulations of curcuminoids and their biological activities.
Collapse
Affiliation(s)
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreerag Gopi
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Kolenchery, Cochin, India
| |
Collapse
|
17
|
Jiménez-Arellanes MA, Gutiérrez-Rebolledo GA, Meckes-Fischer M, León-Díaz R. Medical plant extracts and natural compounds with a hepatoprotective effect against damage caused by antitubercular drugs: A review. ASIAN PAC J TROP MED 2016; 9:1141-1149. [DOI: 10.1016/j.apjtm.2016.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022] Open
|
18
|
Al-Rasheed NM, Fadda LM, Ali HM, Abdel Baky NA, El-Orabi NF, Al-Rasheed NM, Yacoub HI. New mechanism in the modulation of carbon tetrachloride hepatotoxicity in rats using different natural antioxidants. Toxicol Mech Methods 2016; 26:243-50. [DOI: 10.3109/15376516.2016.1159769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Fernando CD, Soysa P. Evaluation of Hepatoprotective activity of Eriocaulon quinquangulare in vitro using porcine liver slices against ethanol induced liver toxicity and free radical scavenging capacity. Altern Ther Health Med 2016; 16:74. [PMID: 26912176 PMCID: PMC4765161 DOI: 10.1186/s12906-016-1044-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/12/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Production of reactive oxygen species is a common cause in alcohol induced liver diseases. Decoction prepared from the whole plant of Eriocaulon quinquingulare is prescribed to treat liver disorders. The aim of this study was to investigate the hepatoprotective activity and antioxidant capacity of the water extract of E. quinquangulare in vitro. METHOD The aqueous extract of the whole plant of E. quinquangulare (AEQ) was investigated for its phytochemical constituents, antioxidant and membrane stabilization properties in-vitro. The antioxidant activities of AEQ were investigated using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical, nitric oxide scavenging and ferric reducing antioxidant power (FRAP) assays. Membrane stabilizing effect of the extract was determined by hypotonic solution induced human erythrocyte hemolytic assay (HEHA). Further, hepatoprotective activity against ethanol induced hepatotoxicity was carried out using porcine liver slices. RESULTS The total phenolics and flavonoids were 10.3 ± 1.6 w/w % gallic acid equivalents and 45.6 ± 3.8 w/w % (-)-epigallocatechin gallate equivalents respectively. The values of EC50 for DPPH, hydroxyl radical and nitric oxide scavenging assays were 37.2 ± 1.7 μg/ml, 170.5 ± 6.6 μg/ml and 31.8 ± 2.2 μg/ml respectively. The reducing capability of AEQ was 6.9 ± 0.2 w/w % L-ascorbic acid equivalents in the FRAP assay. For hypotonic solution induced HEHA, the IC50 was 1.79 ± 0.04 mg/ml. A significant decrease (p < 0.05) was observed in ALT, AST and LDH release from the liver slices treated with AEQ compared to the ethanol treated liver slices. A significant reduction in lipid peroxidation (p < 0.05) was also observed in liver slices treated with the plant extract compared to that of the ethanol treated liver slices. CONCLUSIONS The results suggest AEQ possess hepatoprotective activity against ethanol induced liver toxicity of porcine liver slices which can be attributed to antioxidant properties and membrane stabilizing effects caused by the plant material.
Collapse
|
20
|
Estimation of Bioactive Compound, Maslinic Acid by HPTLC, and Evaluation of Hepatoprotective Activity on Fruit Pulp of Ziziphus jujuba Mill. Cultivars in India. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4758734. [PMID: 26904143 PMCID: PMC4745332 DOI: 10.1155/2016/4758734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/03/2016] [Indexed: 11/24/2022]
Abstract
Fruits of Ziziphus jujuba Mill. (family: Rhamnaceae), known as Indian jujube or “Ber,” are of potential nutritional and medicinal value. The objectives of the present study were to estimate bioactive compound maslinic acid by HPTLC method and to evaluate in vitro antioxidant and hepatoprotective activity of eight cultivars of Indian jujube. Maslinic acid and the fruit pulp of various cultivars of Indian jujube, namely, Gola, Sannur, Umaran, Mehrun, and Chhuhara, exhibited significantly high antioxidant and hepatoprotective activity. HPTLC-densitometric method was developed for quantification of maslinic acid from fruits of Indian jujube cultivars. The trend of occurrence of maslinic acid in fruits pulp extracts was as follows: Gola > Sannur > Umaran > Mehrun > Chhuhara > Wild > Kadaka > Apple. A significant correlation was shown by maslinic acid content and prevention of oxidative stress induced by CCl4 in liver slice culture cell treated with extract. Maslinic acid along with its other phytoconstituents like phenols, flavonoids, and ascorbic acid may act as a possible therapeutic agent for preventing hepatotoxicity caused by oxidative stress generated due to the prooxidants like CCl4. This is the first report of fruit pulp extracts of Z. jujube cultivars in India and maslinic acid preventing CCl4 induced damage in liver slice culture cell of mice.
Collapse
|
21
|
Mendonça LM, Machado CDS, Teixeira CCC, Freitas LAPD, Bianchi MLP, Antunes LMG. Comparative study of curcumin and curcumin formulated in a solid dispersion: Evaluation of their antigenotoxic effects. Genet Mol Biol 2015; 38:490-8. [PMID: 26537603 PMCID: PMC4763312 DOI: 10.1590/s1415-475738420150046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/28/2015] [Indexed: 01/20/2023] Open
Abstract
Curcumin (CMN) is the principal active component derived from the rhizome of
Curcuma longa (Curcuma longa L.). It is a
liposoluble polyphenolic compound that possesses great therapeutic potential. Its
clinical application is, however, limited by the low concentrations detected
following oral administration. One key strategy for improving the solubility and
bioavailability of poorly water-soluble drugs is solid dispersion, though it is not
known whether this technique might influence the pharmacological effects of CMN.
Thus, in this study, we aimed to evaluate the antioxidant and antigenotoxic effects
of CMN formulated in a solid dispersion (CMN SD) compared to unmodified CMN delivered
to Wistar rats. Cisplatin (cDDP) was used as the damage-inducing agent in these
evaluations. The comet assay results showed that CMN SD was not able to reduce the
formation of cDDP-DNA crosslinks, but it decreased the formation of micronuclei
induced by cDDP and attenuated cDDP-induced oxidative stress. Furthermore, at a dose
of 50 mg/kg b.w. both CMN SD and unmodified CMN increased the expression of
Tp53 mRNA. Our results showed that CMN SD did not alter the
antigenotoxic effects observed for unmodified CMN and showed effects similar to those
of unmodified CMN for all of the parameters evaluated. In conclusion, CMN SD
maintained the protective effects of unmodified CMN with the advantage of being
chemically water soluble, with maximization of absorption in the gastrointestinal
tract. Thus, the optimization of the physical and chemical properties of CMN SD may
increase the potential for the therapeutic use of curcumin.
Collapse
Affiliation(s)
- Leonardo Meneghin Mendonça
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla da Silva Machado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane Cardoso Correia Teixeira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Alexandre Pedro de Freitas
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Lourdes Pires Bianchi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Hassan HA, El-Gharib NE. Obesity and Clinical Riskiness Relationship: Therapeutic Management by Dietary Antioxidant Supplementation—a Review. Appl Biochem Biotechnol 2015; 176:647-69. [DOI: 10.1007/s12010-015-1602-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 03/31/2015] [Indexed: 01/03/2023]
|
23
|
Wani TA, Shah AG, Wani SM, Wani IA, Masoodi FA, Nissar N, Shagoo MA. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility. Crit Rev Food Sci Nutr 2015; 56:2431-2454. [DOI: 10.1080/10408398.2013.845814] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Fernando CD, Soysa P. Total phenolic, flavonoid contents, in-vitro antioxidant activities and hepatoprotective effect of aqueous leaf extract of Atalantia ceylanica. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:395. [PMID: 25311044 PMCID: PMC4210483 DOI: 10.1186/1472-6882-14-395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/06/2014] [Indexed: 11/24/2022]
Abstract
Background Decoction prepared from leaves of Atalantia ceylanica is used in traditional medicine in Sri Lanka for the treatment of various liver ailments since ancient times. Lyophilized powder of the water extract of A. ceylanica leaves was investigated for its phytochemical constituents, antioxidant and hepatoprotective activity in-vitro. Methods The total phenolic and flavonoid contents were determined using Folin Ciocalteu method and aluminium chloride colorimetric assay respectively. The antioxidant activities of the decoction were investigated using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical, nitric oxide scavenging assays and ferric ion reducing power assay. Hepatotoxicity was induced on porcine liver slices with ethanol to study hepatoprotective activity. Porcine liver slices were incubated at 37°C with different concentrations of the water extract of A. ceylanica in the presence of ethanol for 2 hours. The hepatoprotective effects were quantified by the leakage of alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) to the medium. Thiobarbituric acid reactive substances (TBARS) assay was performed to examine the anti-lipid peroxidation activity caused by the plant extract. Results The mean ± SD (n =9) for the levels of total phenolics and flavonoids were 4.87 ± 0.89 w/w% of gallic acid equivalents and 16.48 ± 0.63 w/w% of (-)-Epigallocatechin gallate equivalents respectively. The decoction demonstrated high antioxidant activity. The mean ± SD values of EC50 were 131.2 ± 36.1, 48.4 ± 12.1, 263.5 ± 28.3 and 87.70 ± 6.06 μg/ml for DPPH, hydroxyl radical, nitric oxide scavenging assays and ferric ion reducing power assay respectively. A significant decrease (p <0.05) was observed in ALT, AST and LDH release from porcine liver slices treated with A. ceylanica extract at a concentration of 2 mg/ml in the presence of ethanol (5 M) compared to that of ethanol (5 M) treated slices. Furthermore, a reduction in lipid peroxidation was also observed in liver slices treated with the leaf extract of A. ceylanica (2 mg/ml) compared to that of ethanol induced liver toxicity (p <0.05). Conclusions The results suggest that aqueous extract of A. ceylanica exerts hepatoprotective activity against ethanol induced liver toxicity of porcine liver slices which can be attributed to the antioxidant properties possessed by the plant material. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-395) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Tóth ME, Vígh L, Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014; 19:299-309. [PMID: 24122554 PMCID: PMC3982023 DOI: 10.1007/s12192-013-0472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function. The cytotoxic action may include an increased level of oxidative stress. Heat shock protein molecular chaperones are ubiquitously expressed evolutionarily conserved proteins which serve as critical regulators of cellular homeostasis. Heat shock proteins can be induced by various forms of stresses such as elevated temperature, alcohol treatment, or ischemia, and they are also upregulated in certain pathological conditions. As heat shock and ethanol stress provoke similar responses, it is likely that heat shock protein activation also has a role in the protection of membranes and other cellular components during alcohol stress.
Collapse
Affiliation(s)
- Melinda E. Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|
26
|
|
27
|
Wu X, Kania-Korwel I, Chen H, Stamou M, Dammanahalli KJ, Duffel M, Lein PJ, Lehmler HJ. Metabolism of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica 2013; 43:933-47. [PMID: 23581876 DOI: 10.3109/00498254.2013.785626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized. 2. The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups. 3. In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected. 4. Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs.
Collapse
Affiliation(s)
- Xianai Wu
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa , Iowa City, IA , USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mistry S, Dutt KR, Jena J. Protective effect of Sida cordata leaf extract against CCl4 induced acute liver toxicity in rats. ASIAN PAC J TROP MED 2013; 6:280-4. [DOI: 10.1016/s1995-7645(13)60057-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 10/26/2022] Open
|
29
|
Karim S, Liaskou E, Hadley S, Youster J, Faint J, Adams DH, Lalor PF. An in vitro model of human acute ethanol exposure that incorporates CXCR3- and CXCR4-dependent recruitment of immune cells. Toxicol Sci 2013; 132:131-41. [PMID: 23300006 DOI: 10.1093/toxsci/kfs337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alcoholic liver disease (ALD) is one of the commonest causes of cirrhosis and liver failure in the developed world. Hepatic inflammation is the critical stage in progression of both ALD and non-ALD, but it remains difficult to study the underlying mechanisms in a human system, and current animal models do not fully recapitulate human liver disease. We developed a human tissue-based system to study lymphocyte recruitment in response to ethanol challenge. Precision-cut liver slices (PCLS) from human livers were incubated in culture, and hepatic function was determined by albumin production, 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide assay, glucose uptake responses, and morphometric assessment. Responses of tissue and lymphocytes to ethanol exposure were determined by PCR, flow cytometry, histology, and lymphocyte infiltration assays. Human PCLS demonstrated appropriate upregulation of CYP2E1, ADH1α, and ADH3 in response to ethanol treatment. Ethanol also induced expression of endothelial VCAM-1 and ICAM-1, production of sICAM-1 and CXCL8, and the chemokine receptors CXCR3 and CXCR4 on CD4 and CD8 lymphocytes. CXCR3- and CXCR4-dependent migration of lymphocytes into the tissue increased significantly in response to treatment with ethanol. We have demonstrated that ethanol increases chemokine receptor expression and lymphocyte recruitment into human liver tissue, suggesting that it may operate directly to promote hepatitis in ALD. The physiological and pathophysiological responses of the PCLS to ethanol in vitro highlight the potential of this assay for dissecting the molecular mechanisms underlying human liver inflammation and as a screening tool for novel therapeutics.
Collapse
Affiliation(s)
- Sumera Karim
- Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Sefi M, Amara IB, Troudi A, Soudani N, Hakim A, Zeghal KM, Boudawara T, Zeghal N. Effect of selenium on methimazole-induced liver damage and oxidative stress in adult rats and their offspring. Toxicol Ind Health 2012; 30:653-69. [DOI: 10.1177/0748233712462445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the protective effect of selenium (Se) on methimazole (MMI; an antithyroid drug)-induced hepatotoxicity in adult rats and their progeny. Female Wistar rats were randomly divided into four groups of six rats in each group: group I served as controls that received standard diet; group II received MMI in drinking water as 250 mg L−1 and standard diet; group III received both MMI (250 mg L−1, orally) and Se (0.5 mg kg−1 of diet); group IV received Se (0.5 mg kg−1 of diet) as sodium selenite. Treatments were started from the 14th day of pregnancy until day 14 after delivery. Exposure of rats to MMI promoted oxidative stress with an increase in liver malondialdehyde levels, advanced oxidation protein products and protein carbonyl contents and a decrease in the levels of glutathione, nonprotein thiols and vitamin C. A decrease in the activities of liver glutathione peroxidase, superoxide dismutase, catalase and lactate dehydrogenase and in the levels of plasma total protein and albumin was also observed. Plasma transaminase activities and total, direct and indirect bilirubin levels increased. Coadministration of Se through diet improved all biochemical parameters. The histopathological changes confirmed the biochemical results. Therefore, our investigation revealed that Se, a trace element with antioxidant properties, was effective in preventing MMI-induced liver damage.
Collapse
Affiliation(s)
- Mediha Sefi
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Ibtissem Ben Amara
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Afef Troudi
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Nejla Soudani
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| | - Ahmed Hakim
- Faculty of Medicine, Laboratory of Pharmacology, Sfax University, Tunisia
| | | | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, Sfax University, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Sfax Faculty of Science, University of Sfax, Tunisia
| |
Collapse
|
31
|
Prevention of vancomycin induced nephrotoxicity: a review of preclinical data. Eur J Clin Pharmacol 2012; 69:747-54. [DOI: 10.1007/s00228-012-1406-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/04/2012] [Indexed: 12/28/2022]
|
32
|
Effects of Supplementation with Curcuminoids on Dyslipidemia in Obese Patients: A Randomized Crossover Trial. Phytother Res 2012; 27:374-9. [DOI: 10.1002/ptr.4715] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/28/2012] [Accepted: 04/02/2012] [Indexed: 01/08/2023]
|
33
|
Messarah M, Amamra W, Boumendjel A, Barkat L, Bouasla I, Abdennour C, Boulakoud MS, Feki AE. Ameliorating effects of curcumin and vitamin E on diazinon-induced oxidative damage in rat liver and erythrocytes. Toxicol Ind Health 2012; 29:77-88. [PMID: 22609857 DOI: 10.1177/0748233712446726] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the protective effects of vitamin E and/or curcumin against diazinon (DZN) (an organophosphorus insecticide)-induced toxicity of blood, liver and erythrocyte markers of male Wistar rats. The exposure of rats to DZN for 21 days provoked significant changes in red blood cell counts and hemoglobin. Results showed that lipid peroxidation increased significantly in DZN-treated rats, as evidenced by high liver and erythrocyte thiobarbituric acid reactive substance levels. Alteration of the antioxidant system in DZN-treated rats was confirmed by the significant decrease in the activity of catalase, glutathione peroxidase and glutathione-S-transferase, accompanied by a decline in reduced glutathione content in both tissues. On the other hand, a significant increase in the activities of plasma aspartate transaminase, alanine transaminase, lactate dehydrogenase and alkaline phosphatase was observed in the rats treated with DZN. However, the administration of vitamin E and curcumin has ameliorated the previous markers. In conclusion, our results indicate that the natural antioxidants like vitamin E and curcumin can effectively lower the erythrocytes and hepatic injuries induced by DZN as monitored by lipid peroxides, antioxidant enzyme activities and sensitive serum enzyme levels.
Collapse
Affiliation(s)
- Mahfoud Messarah
- Biochemistry and Environmental Toxicology Laboratory, Badji Mokhtar University, Annaba, Algeria.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ahmida MH. Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats. ACTA ACUST UNITED AC 2012; 64:149-53. [DOI: 10.1016/j.etp.2010.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/18/2010] [Accepted: 07/23/2010] [Indexed: 11/30/2022]
|
35
|
Khan S, Vala JA, Nabi SU, Gupta G, Kumar D, Telang AG, Malik JK. Protective effect of curcumin against arsenic-induced apoptosis in murine splenocytes in vitro. J Immunotoxicol 2011; 9:148-59. [PMID: 22182246 DOI: 10.3109/1547691x.2011.637530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a potent environmental pollutant and immunotoxic agent. Curcumin is a natural anti-oxidant used to treat a broad variety of diseases. Here, the effects were investigated of curcumin on sodium arsenite-induced apoptosis in murine splenocytes in vitro. Cells were exposed to sodium arsenite (NaAsO₂, 5 µM) with and without curcumin (5 and 10 µg/ml) and incubated at 37°C for 12 h. NaAsO₂ caused a decrease in cell viability and induction of apoptosis. These outcomes were concurrent with increases in the numbers of cells with reactive oxygen species generation, loss of mitochondrial transmembrane potential, an increase in the frequency of cells with sub-G₁ DNA content, and DNA fragmentation. Co-administration of curcumin with the NaAsO₂ caused significant recoveries in cell viability values and mitigation of the induced apoptosis-related molecular changes. A significant protection against apoptosis parameters in murine splenocytes simultaneously treated with NaAsO₂ and curcumin suggested a protective efficacy of curcumin. From the results it is concluded that the immuno-modulation exerted by curcumin might be attributed to its multifaceted effects including its anti-oxidative and anti-apoptotic properties. These findings have implications not only for the under-standing of the toxicity of arsenic to murine splenocytes in vitro but are also potentially important for developing preventive and/or corrective strategies against/during chronic arsenicosis.
Collapse
Affiliation(s)
- Saleem Khan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | | | | | | | | | | | | |
Collapse
|
36
|
Shivashankara AR, Azmidah A, Haniadka R, Rai MP, Arora R, Baliga MS. Dietary agents in the prevention of alcohol-induced hepatotoxicty: preclinical observations. Food Funct 2011; 3:101-9. [PMID: 22119904 DOI: 10.1039/c1fo10170f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Long term alcohol consumption is one of the important causes for liver failure and death. To complicate the existing problem there are no dependable hepatoprotective drugs and a large number of patients prefer using complementary and alternative medicines for treating and managing hepatic complications. Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed "Let food be thy medicine and medicine be thy food." Exploring the association between diet and health continues even today. Preclinical studies carried out in the recent past have shown that the commonly used dietary agents like Allium sativum (garlic), Camellia sinensis (tea), Curcuma longa (turmeric), Emblica officinalis (Indian gooseberry), Ferula asafoetida (asafoetida), Garcinia cambogia (Malabar tamarind), Glycine max (soyabean), Murraya koenigii (curry leaves), Piper betle (beetle leaf), Prunus armeniaca (apricot), Ocimum gratissimum (wild basil), Theobroma cacao (cocoa), Trigonella foenum-graecum (fenugreek) and Vitis vinifera (grapes) protect against ethanol-induced hepatotoxicity. Mechanistic studies have shown that the beneficial effects of these phytochemicals in preventing the ethanol-induced hepatotoxicity are mediated by the antioxidant, free radical scavenging, anti-inflammatory and anti-fibrotic effects. The present review for the first time collates the hepatoprotective effects of these agents and also emphasizes on aspects that need future research to establish their utility in humans.
Collapse
|
37
|
Arnal N, Tacconi de Alaniz MJ, Marra CA. Natural polyphenols may ameliorate damage induced by copper overload. Food Chem Toxicol 2011; 50:415-22. [PMID: 22036966 DOI: 10.1016/j.fct.2011.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
The effect of the simultaneous exposure to transition metals and natural antioxidants frequently present in food is a question that needs further investigation. We aimed to explore the possible use of the natural polyphenols caffeic acid (CA), resveratrol (RES) and curcumin (CUR) to prevent damages induced by copper-overload on cellular molecules in HepG2 and A-549 human cells in culture. Exposure to 100μM/24h copper (Cu) caused extensive pro-oxidative damage evidenced by increased TBARS, protein carbonyls and nitrite productions in both cell types. Damage was aggravated by simultaneous incubation with 100μM of CA or RES, and it was also reflected in a decrease on cellular viability explored by trypan blue dye exclusion test and LDH leakage. Co-incubation with CUR produced opposite effects demonstrating a protective action which restored the level of biomarkers and cellular viability almost to control values. Thus, while CA and RES might aggravate the oxidative/nitrative damage of Cu, CUR should be considered as a putative protective agent. These results could stimulate further research on the possible use of natural polyphenols as neutralizing substances against the transition metal over-exposure in specific populations such as professional agrochemical sprayers and women using Cu-intrauterine devices.
Collapse
Affiliation(s)
- Nathalie Arnal
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120 (1900) La Plata, Argentina
| | | | | |
Collapse
|
38
|
Ghosh N, Ghosh R, Mandal V, Mandal SC. Recent advances in herbal medicine for treatment of liver diseases. PHARMACEUTICAL BIOLOGY 2011; 49:970-988. [PMID: 21595500 DOI: 10.3109/13880209.2011.558515] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Liver disease is a serious ailment and the scenario is worsened by the lack of precise therapeutic regimens. Currently available therapies for liver ailments are not apposite and systemic toxicity inhibits their long term use. Medicinal plants have been traditionally used for treating liver diseases since centuries as the toxicity factor appears to be on the lower side. OBJECTIVE Several phytochemials have been identified which have significant hepatoprotective activity with minimal systemic adverse effects which could limit their long term use. The scenario calls for extensive investigations which can lead to development of lead molecules for hepatoprotective molecules of future. This review deals with the biological activity, mode of action and toxicity and forthcoming application of some of these leads. METHODS These generally have strong antioxidative potential and cause induction of antioxidant enzymes like superoxide dismutase, reduced glutathione and catalase. Additional mechanisms of hepatoprotection include stimulation of heme oxygenase-1 activity, inhibition of nitric oxide production, hepatocyte apoptosis and nuclear factor-κB activation. RESULTS AND CONCLUSION Out of the several leads obtained from plant sources as potential hepatoprotective agents, silymarin, andrographolide, neoandrographolide, curcumin, picroside, kutkoside, phyllanthin, hypophyllanthin, and glycyrrhizin have been established as potent hepatoprotective agents. The hepatoprotective potential of several herbal medicines has been clinically evaluated. Significant efficacy has been seen with silymarin, glycyrrhizin and Liv-52 in treatment of hepatitis, alcoholic liver disease and liver cirrhosis.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Dr. BC Roy College of Pharmacy and Allied Health Sciences, Durgapur, India.
| | | | | | | |
Collapse
|
39
|
van Midwoud PM, Merema MT, Verweij N, Groothuis GMM, Verpoorte E. Hydrogel embedding of precision-cut liver slices in a microfluidic device improves drug metabolic activity. Biotechnol Bioeng 2011; 108:1404-12. [PMID: 21274846 DOI: 10.1002/bit.23053] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/15/2010] [Accepted: 01/03/2011] [Indexed: 01/15/2023]
Abstract
A microfluidic-based biochip made of poly-(dimethylsiloxane) was recently reported for the first time by us for the incubation of precision-cut liver slices (PCLS). In this system, PCLS are continuously exposed to flow, to keep the incubation environment stable over time. Slice behavior in the biochip was compared with that of slices incubated in well plates, and verified for 24 h. The goal of the present study was to extend this incubation time. The viability and metabolic activity of precision-cut rat liver slices cultured in our novel microflow system was examined for 72 h. Slices were incubated for 1, 24, 48, and 72 h, and tested for viability (enzyme leakage (lactate dehydrogenase)) and metabolic activity (7-hydroxycoumarin (phase II) and 7-ethoxycoumarin (phase I and II)). Results show that liver slices retained a higher viability in the biochip when embedded in a hydrogel (Matrigel) over 72 h. This embedding prevented the slices from attaching to the upper polycarbonate surface in the microchamber, which occurred during prolonged (>24 h) incubation in the absence of hydrogel. Phase II metabolism was completely retained in hydrogel-embedded slices when medium supplemented with dexamethasone, insulin, and calf serum was used. However, phase I metabolism was significantly decreased with respect to the initial values in gel-embedded slices with medium supplements. Slices were still able to produce phase I metabolites after 72 h, but at only about ∼10% of the initial value. The same decrease in metabolic rate was observed in slices incubated in well plates, indicating that this decrease is due to the slices and medium rather than the incubation system. In conclusion, the biochip model was significantly improved by embedding slices in Matrigel and using proper medium supplements. This is important for in vitro testing of drug metabolism, drug-drug interactions, and (chronic) toxicity.
Collapse
Affiliation(s)
- Paul M van Midwoud
- Pharmaceutical Analysis, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Sankar P, Telang AG, Manimaran A. Curcumin protects against cypermethrin-induced genotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:289-291. [PMID: 21787662 DOI: 10.1016/j.etap.2010.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/12/2010] [Accepted: 07/23/2010] [Indexed: 05/31/2023]
Abstract
Cypermethrin is a synthetic pyrethroid insecticide used worldwide in agriculture, home pest control, protection of foodstuff and disease vector control. The aim of the present study was to investigate the protective effect of curcumin on cypermethrin-induced genotoxicity in rats. Administration of cypermethrin (25mg/kg, p.o.) for 28 days resulted in significant increase in the frequency of micronuclei formation in bone marrow cells and DNA damage in blood cells. Curcumin (100mg/kg, p.o.) administration caused significant reduction in micronuclei formation and, marked reduction in DNA damage. The present study revealed that presence of curcumin could diminish cypermethrin-induced genotoxicity in rats.
Collapse
Affiliation(s)
- Palanisamy Sankar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | | | | |
Collapse
|
41
|
Bao W, Li K, Rong S, Yao P, Hao L, Ying C, Zhang X, Nussler A, Liu L. Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:549-553. [PMID: 20080166 DOI: 10.1016/j.jep.2010.01.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 12/28/2009] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumin is the main bioactive constituent derived from the rhizome of turmeric (Curcuma longa Linn.), which has been used traditionally as hepatoprotective agents in ayurvedic and traditional Chinese medicine for centuries. AIM OF THE STUDY The present study was carried out to demonstrate the potential protective effect of curcumin pretreatment against ethanol-induced hepatocytes oxidative damage, with emphasis on heme oxygenase-1 (HO-1) induction. MATERIALS AND METHODS Rat primary hepatocytes were isolated and treated with ethanol (100mM) and diverse doses of curcumin (0-50 microM), which was pretreated at various time points (0-5h) before ethanol administration. Hepatic enzyme releases in the culture medium and redox status including HO-1 enzyme activity were detected. RESULTS Ethanol exposure resulted in a sustained malondialdehyde (MDA) elevation, glutathione (GSH) depletion and evident release of cellular lactate dehydrogenase (LDH) and aspartate aminotransferase (AST), which was significantly ameliorated by curcumin pretreatment. In addition, dose- and time-dependent induction of HO-1 was involved in such hepatoprotective effects by curcumin. CONCLUSIONS Curcumin exerts hepatoprotective properties against ethanol involving HO-1 induction, which provide new insights into the pharmacological targets of curcumin in the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Wei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shishu, Maheshwari M. Comparative bioavailability of curcumin, turmeric and Biocurcumax™ in traditional vehicles using non-everted rat intestinal sac model. J Funct Foods 2010. [DOI: 10.1016/j.jff.2010.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Mukherjee PK, Sahoo AK, Narayanan N, Kumar NS, Ponnusankar S. Lead finding from medicinal plants with hepatoprotective potentials. Expert Opin Drug Discov 2009; 4:545-76. [DOI: 10.1517/17460440902911433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Illouz S, Alexandre E, Pattenden C, Mark L, Bachellier P, Webb M, Berry D, Dennison A, Richert L. Differential effects of curcumin on cryopreserved versus fresh primary human hepatocytes. Phytother Res 2009; 22:1688-91. [PMID: 18697189 DOI: 10.1002/ptr.2545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Curcumin (CUR) is a major component of a dietary spice derived from the roots of Curcuma longa. It has strong antioxidant activities and hepatoprotective properties. Primary human hepatocytes are clinically used in transplantation or in bioartificial liver devices for the treatment of patients with liver failure. Fresh and cryopreserved hepatocytes are also used in vitro for the study of drugs in pharmacotoxicology. We aimed to assess whether CUR could improve human liver cell viability and prevent oxidative damage responsible for large cell loss during cell preparation. Our study showed beneficial effects of CUR (25 microM) on freshly isolated human hepatocytes, increasing significantly metabolic activity of viable attached cells when seeded with CUR for 24 h. However CUR added during the cell isolation process did not have any significant impact on cell isolation outcomes or on cryopreservation outcomes. Conversely, CUR added during the thawing of frozen cells had a negative effect on the cell attachment capacity of hepatocytes that were cryopreserved in the presence or absence of CUR. In conclusion, although having positive effects on viability and challenge of oxidative stress on cultured human hepatocytes, CUR had no beneficial effect on cell isolation or cryopreservation outcomes.
Collapse
Affiliation(s)
- Severine Illouz
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim MS, Lee W, Kim YC, Park JK. Microvalve-assisted patterning platform for measuring cellular dynamics based on 3D cell culture. Biotechnol Bioeng 2008; 101:1005-13. [DOI: 10.1002/bit.21962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
El-Demerdash FM, Yousef MI, Radwan FME. Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food Chem Toxicol 2008; 47:249-54. [PMID: 19049818 DOI: 10.1016/j.fct.2008.11.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/27/2008] [Accepted: 11/11/2008] [Indexed: 12/15/2022]
Abstract
The present study was conducted to investigate the antioxidative effect of curcumin against sodium arsenite-induced oxidative damage in rat. Animals were divided into four groups, the first group was used as control. Groups 2, 3 and 4 were orally treated with curcumin (15 mg/kg BW), sodium arsenite (Sa, 5 mg/kg BW) and sodium arsenite plus curcumin, respectively. Rats were orally administered their respective doses daily for 30 days. Results showed that Sa increased thiobarbituric acid-reactive substances (TBARS) in plasma, liver, kidney, lung, testes and brain. While, the activities of glutathione S-transferase, superoxide dismutase and catalase and the content of sulfhydryl groups (SH-groups) were significantly decreased in plasma and tissues compared to control. Treatment with curcumin alone reduced the levels of TBARS, while induced the activities of the antioxidant enzymes, and the levels of SH-groups. The presence of curcumin with Sa reduced the induction in the levels of TBARS and induced the decrease in the activities of antioxidant enzymes and the levels of SH-groups. Results indicated that treatment with Sa decreased body weight and increased liver weight compared to control. The presence of curcumin with Sa alleviated its toxic effects. It can be concluded that curcumin has beneficial influences and could be able to antagonize Sa toxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Alexandria 21526, Egypt
| | | | | |
Collapse
|
47
|
Chotimarkorn C, Ushio H. The effect of trans-ferulic acid and gamma-oryzanol on ethanol-induced liver injury in C57BL mouse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:951-958. [PMID: 18424018 DOI: 10.1016/j.phymed.2008.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/13/2008] [Accepted: 02/29/2008] [Indexed: 05/26/2023]
Abstract
The effects of the oral administration of trans-ferulic acid and gamma-oryzanol (mixture of steryl ferulates) with ethanol (5.0 g per kg) for 30 days to c57BL mice on ethanol-induced liver injury were investigated. Preventions of ethanol-induced liver injury by trans-ferulic acid and gamma-oryzanol were reflected by markedly decreased serum activities of plasma aspartate aminotransferase, alanine aminotransferase and significant decreases in hepatic lipid hydroperoxide and TBARS levels. Furthermore, the trans-ferulic acid- and gamma-oryzanol-treated mice recovered ethanol-induced decrease in hepatic glutathione level together with enhancing superoxide dismutase activity. These results demonstrate that both trans-ferulic acid and gamma-oryzanol exert a protective action on liver injury induced by chronic ethanol ingestion.
Collapse
Affiliation(s)
- Chatchawan Chotimarkorn
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | |
Collapse
|
48
|
Negi AS, Kumar J, Luqman S, Shanker K, Gupta M, Khanuja S. Recent advances in plant hepatoprotectives: A chemical and biological profile of some important leads. Med Res Rev 2008; 28:746-72. [DOI: 10.1002/med.20115] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Ghoneim AI. Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:47-60. [PMID: 18716759 DOI: 10.1007/s00210-008-0335-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 07/06/2008] [Indexed: 11/28/2022]
Abstract
Ethanol-induced hepatocyte necrosis and apoptosis are valid in vitro models to investigate the modulatory effects of hepatoprotective/toxic agents such as curcumin. In this study, suspension and monolayer cultures of isolated rat hepatocytes were used. Levels of trypan blue uptake, reduced glutathione, and lipid peroxidation were quantified. Chromatin condensation, caspase-3 activity, and cytochrome c extramitochondrial translocation were also evaluated. Results revealed that curcumin did not protect against either ethanol-induced necrosis or glutathione depletion. Neither did curcumin reduce caspase-3 activation nor chromatin condensation. In contrast, curcumin induced glutathione depletion, caspase-3 activation, necrosis, and apoptosis. Fortunately, all tested curcumin concentrations (1 microM-10 mM) diminished the ethanol-induced lipid peroxidation. In addition, 1 microM curcumin decreased cytochrome c translocation in hepatocyte monolayers. In conclusion, low concentrations of curcumin may protect hepatocytes by reducing lipid peroxidation and cytochrome c release. Conversely, higher concentrations provoke glutathione depletion, caspase-3 activation, and hepatocytotoxicity.
Collapse
Affiliation(s)
- Asser I Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
50
|
Roselló DM, Balestrasse K, Coll C, Coll S, Tallis S, Gurni A, Tomaro ML, Lemberg A, Perazzo JC. Oxidative stress and hippocampus in a low-grade hepatic encephalopathy model: protective effects of curcumin. Hepatol Res 2008; 38:1148-1153. [PMID: 19000058 DOI: 10.1111/j.1872-034x.2008.00377.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM The present study was performed on prehepatic portal hypertensive rats, a model of low-grade hepatic encephalopathy, designed to evaluate whether oxidative stress was a possible pathway implicated in hippocampal damage and if so, the effect of an anti-oxidant to prevent it. METHODS Prehepatic portal hypertension was induced by a regulated portal vein stricture. Oxidative stress was investigated by assessing related biochemical parameters in rat hippocampus. The effect of the anti-oxidant curcumin, administered in a single i.p. dose of 100 mg/kg on the seventh, ninth and eleventh days after surgery, was evaluated. RESULTS Oxidative stress in the rat hippocampal area was documented. Curcumin significantly decreased tissue malondialdehyde levels and significantly increased glutathione peroxidase, catalase and superoxide dismutase activities in the hippocampal tissue of portal hypertensive rats. CONCLUSION Oxidative stress was found to be implicated in the hippocampal damage and curcumin protected against this oxidative stress in low-grade hepatic encephalopathic rats. These protective effects may be attributed to its anti-oxidant properties.
Collapse
Affiliation(s)
- Diego Martín Roselló
- Laboratory of Portal Hypertension, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|