1
|
Khairy T, Amin DH, Salama HM, Elkholy IMA, Elnakib M, Gebreel HM, Sayed HAE. Pioneering study of Egyptian Neem and Jojoba extracts with molecular docking combat hospital multidrug resistant bacteria. Braz J Microbiol 2025; 56:425-445. [PMID: 39775688 PMCID: PMC11885210 DOI: 10.1007/s42770-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Hospital surfaces are often contaminated with multidrug-resistant pathogenic bacteria that cause healthcare-associated infections and lead to increased mortality and morbidity. There is a need for new alternative antibacterial agents to overcome antibiotic resistance. Azadirachta indica and Simmondsia chinensis have been found to possess antibacterial activity and medicinal value. The antibacterial activity of these plant extracts against clinical isolates was investigated using the agar disc diffusion method. These clinical isolates included E. coli, Pseudomonas aeruginosa, Acinetobacter spp., Klebsiella pneumoniae, Stenotrophomonas maltophilia, and methicillin-resistant Staphylococcus aureus (MRSA), which were identified by the vitek-2 system, and resistance genes of selected bacterial strains were identified by using the bioFire FilmArray test. The most potent extract of these plants was the ethanolic extract, where the inhibition percentage of ethanolic Jojoba and Neem extracts was 90.9% and 74.5%, respectively against all the tested pathogens. On the other hand, the methanolic extracts of Neem and Jojoba have different degrees of antibacterial activity against the tested pathogens. The phytochemical components of the most potent extracts (ethanolic extracts) were investigated by gas chromatography‒mass spectrometry (GC\MS), which revealed that the ethanolic extracts were enriched in phenolics, flavonoids, and sugars. FTIR analyses of the plant extracts confirmed the presence of alcoholic, carboxylic, and aldehydic moieties. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity of the ethanolic extracts of Neem and Jojoba increased in a dose-dependent manner, with average IC50 values of 98.17 ± 0.85, 4.95 ± 0.06, and 4.17 ± 0.04 mg/mL, respectively, for the ethanolic Neem extract, the ethanolic Jojoba extract, and ascorbic acid (standard). Furthermore, increased cytotoxicity was demonstrated in the HFB4 cell line in a dose-dependent manner. The average IC50s of the ethanolic Neem extract and the ethanolic Jojoba extract were 18.18 ± 0.15 and 76.16 ± 1.49 mg/mL, respectively. Moreover, the results for the antibiofilm activity of the ethanolic Neem extract showed that 99.5% of the biofilms formed at 25 mg/ml. In addition, 50 mg/ml of the ethanolic extract of Jojoba had a suppressive effect of 98.2%. The significant components Nonanoic acid (21.9405%) and Palmitic Acid (16.0869%) from Neem and pinitol from Jojoba (82.85%) were selected throughout the molecular docking investigation, by which the chosen constituents inhibited the crystal structure of penicillin-binding protein 4 (PBP4) from Staphylococcus aureus (PDB ID: 1TVF) and the crystal structure of the OXA-48 beta-lactamase (PDB ID: 7AUX) from K. pneumoniae. Overall, our study reveals the effectiveness of antimicrobial plant extracts as therapeutic solutions for antibiotic resistance in Egypt and worldwide with some modifications to decrease their cytotoxicity.
Collapse
Affiliation(s)
- Toka Khairy
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt.
| | - Dina Hatem Amin
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hanaa Mohamed Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| | - Iman Mohamed Amin Elkholy
- Ain Shams Specialized Hospital, Ain Shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Mostafa Elnakib
- Military Medical Academy, Ehsan abdelkodos Street, Manshyt Elbakry, Ciro, Egypt
| | - Hassan Mahmoud Gebreel
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hayam Abd Elnabi Sayed
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| |
Collapse
|
2
|
Israni DK, Raghani NR, Soni J, Shah M, Prajapati BG, Chorawala MR, Mangmool S, Singh S, Chittasupho C. Harnessing Cannabis sativa Oil for Enhanced Skin Wound Healing: The Role of Reactive Oxygen Species Regulation. Pharmaceutics 2024; 16:1277. [PMID: 39458608 PMCID: PMC11510192 DOI: 10.3390/pharmaceutics16101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa emerges as a noteworthy candidate for its medicinal potential, particularly in wound healing. This review article explores the efficacy of cannabis oil in reducing reactive oxygen species (ROS) during the healing of acute and chronic wounds, comparing it to the standard treatments. ROS, produced from various internal and external sources, play a crucial role in wound development by causing cell and tissue damage. Understanding the role of ROS on skin wounds is essential, as they act both as signaling molecules and contributors to oxidative damage. Cannabis oil, recognized for its antioxidant properties, may help mitigate oxidative damage by scavenging ROS and upregulating antioxidative mechanisms, potentially enhancing wound healing. This review emphasizes ongoing research and the future potential of cannabis oil in dermatological treatments, highlighted through clinical studies and patent updates. Despite its promising benefits, optimizing cannabis oil formulations for therapeutic applications remains a challenge, underscoring the need for further research to realize its medicinal capabilities in wounds.
Collapse
Affiliation(s)
- Dipa K. Israni
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Neha R. Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India;
| | - Jhanvi Soni
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University, Waghodia, Vadodara 391760, Gujarat, India;
| | - Mansi Shah
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Mehul R. Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India;
| | | | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
3
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
El-Hady NAAA, ElSayed AI, Wadan KM, El-Saadany SS, El-Sayed ASA. Bioprocessing of camptothecin from Alternaria brassicicola, an endophyte of Catharanthus roseus, with a strong antiproliferative activity and inhibition to Topoisomerases. Microb Cell Fact 2024; 23:214. [PMID: 39060918 PMCID: PMC11282713 DOI: 10.1186/s12934-024-02471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Suppression of fungal camptothecin (CPT) biosynthesis with the preservation and successive subculturing is the challenge that impedes fungi from the industrial application, so, screening for a novel fungal isolate with a conceivable stable producing potency of CPT was the main objective of this work. Catharanthus roseus with diverse contents of bioactive metabolites could have a plethora of novel endophytes with unique metabolic properties. Among the endophytes of C. roseus, Alternaria brassicicola EFBL-NV OR131587.1 was the highest CPT producer (96.5 μg/L). The structural identity of the putative CPT was verified by HPLC, FTIR, HNMR and LC-MS/MS, with a molecular mass 349 m/z, and molecular fragmentation patterns that typically identical to the authentic one. The purified A. brassicicola CPT has a strong antiproliferative activity towards UO-31 (0.75 μM) and MCF7 (3.2 μM), with selectivity index 30.8, and 7.1, respectively, in addition to resilient activity to inhibit Topo II (IC50 value 0.26 nM) than Topo 1 (IC50 value 3.2 nM). The purified CPT combat the wound healing of UO-31 cells by ~ 52%, stops their matrix formation, cell migration and metastasis. The purified CPT arrest the cellular division of the UO-31 at the S-phase, and inducing their cellular apoptosis by ~ 20.4 folds, compared to the control cells. Upon bioprocessing with the surface response methodology, the CPT yield by A. brassicicola was improved by ~ 3.3 folds, compared to control. The metabolic potency of synthesis of CPT by A. brassicicola was attenuated with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by the 6th month of storage and 6th generation. Practically, the CPT productivity of the attenuated A. brassicicola was restored by addition of 1% surface sterilized leaves of C. roseus, ensuring the eliciting of cryptic gene cluster of A. brassicicola CPT via the plant microbiome-A. brassicicola interactions. So, for the first time, a novel endophytic isolate A. brassicicola, from C. roseus, was explored to have a relatively stable CPT biosynthetic machinery, with an affordable feasibility to restore their CPT productivity using C. roseus microbiome, in addition to the unique affinity of the extracted CPT to inhibit Topoisomerase I and II.
Collapse
Affiliation(s)
- Nouran A A Abd El-Hady
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Abdelaleim I ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khalid M Wadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Sayed S El-Saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
5
|
Tietel Z, Melamed S, Galilov I, Ben-Gal A, Dag A, Yermiyahu U. Elevated nitrogen fertilization differentially affects jojoba wax phytochemicals, fatty acids and fatty alcohols. FRONTIERS IN PLANT SCIENCE 2024; 15:1425733. [PMID: 39129760 PMCID: PMC11310937 DOI: 10.3389/fpls.2024.1425733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024]
Abstract
Jojoba wax is gaining popularity among cosmetics consumers for its skin wound healing and rejuvenation bioactivities, attributed to collagen and hyaluronic acid synthesis. However, information regarding wax phytochemical composition and quality parameters, as well as effect of cultivation practices, and fertilization in particular, on wax quality is limited. The aim of the current work was to study the effect of nitrogen (N) availability to jojoba plants on wax phytochemical composition and beneficial skin-related contents. For this, wax quality from a six-year fertilization experiment with five N application levels was evaluated. The chemical parameters included antioxidant activity, free fatty acid, total tocopherol, total phytosterol and oxidative stability, as well as fatty acid and fatty alcohol profile. Our results reveal that the majority of wax quality traits were affected by N fertilization level, either positively or negatively. Interestingly, while fatty acids were unaffected, fatty alcohol composition was significantly altered by N level. Additionally, fruit load also largely affected wax quality, and, due to jojoba's biennial alternate bearing cycles, harvest year significantly affected all measured parameters. Results shed light on the effects of N application on various biochemical constituents of jojoba wax, and imply that N availability should be considered part of the entire agricultural management plan to enhance wax quality. Some traits are also suggested as possible chemical quality parameters for jojoba wax.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Sarit Melamed
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Izabella Galilov
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Alon Ben-Gal
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Uri Yermiyahu
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| |
Collapse
|
6
|
Yalshetti S, Thokchom B, Bhavi SM, Singh SR, Patil SR, Harini BP, Sillanpää M, Manjunatha JG, Srinath BS, Yarajarla RB. Microwave-assisted synthesis, characterization and in vitro biomedical applications of Hibiscus rosa-sinensis Linn.-mediated carbon quantum dots. Sci Rep 2024; 14:9915. [PMID: 38689005 PMCID: PMC11061284 DOI: 10.1038/s41598-024-60726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
In recent years, carbon quantum dots (CQDs) have garnered considerable attention as a promising material for biomedical applications because of their unique optical and biological properties. In this study, CQDs were derived from the leaves of Hibiscus rosa-sinensis Linn. via microwave-assisted technique and characterized using different techniques such as ultraviolet-visible, Fourier transform infrared, fluorescence spectrometry, X-ray diffraction, dynamic light scattering, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Subsequently, their potential for biomedical applications was investigated through in vitro assays assessing scratch healing, anti-inflammatory, antibacterial, and cytotoxicity properties. It was found that the CQDs were fluorescent, polycrystalline, quasi-spherical, ~ 12 nm in size with presence of -OH and -COOH groups on their negatively charged surfaces, and demonstrated good anti-inflammatory by inhibiting protein denaturation, cyclooxygenase-2 and regulating inflammatory cytokines. The CQDs also exhibited antimicrobial activity against Klebsiella pneumoniae and Bacillus cereus, good biocompatibility, along with excellent promotion of cell proliferation in vitro, indicating their potential as a anti-inflammatory and wound healing material. The properties were more enhanced than their precursor, H. rosa-sinensis leaf extract. Hence, the CQDs synthesized from the leaves of H. rosa-sinensis can serve as a potential biomedical agent.
Collapse
Affiliation(s)
- Shweta Yalshetti
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Bothe Thokchom
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Santosh Mallikarjun Bhavi
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sapam Riches Singh
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sneha R Patil
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - B P Harini
- Department of Zoology, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000, Aarhus C, Denmark
| | - J G Manjunatha
- Department of Chemistry, FMKMC College, Mangalore University Constituent College, Madikeri, Karnataka, 571201, India
| | - B S Srinath
- Department of Microbiology and Biotechnology, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Ramesh Babu Yarajarla
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
7
|
El-Sayed ASA, ElSayed AI, Wadan KM, El-Saadany SS, Abd El-Hady NAA. Camptothecin bioprocessing from Aspergillus terreus, an endophyte of Catharanthus roseus: antiproliferative activity, topoisomerase inhibition and cell cycle analysis. Microb Cell Fact 2024; 23:15. [PMID: 38183118 PMCID: PMC10768243 DOI: 10.1186/s12934-023-02270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Attenuation of camptothecin (CPT) productivity by fungi with preservation and subculturing is the challenge that halts fungi to be an industrial platform of CPT production. Thus, screening for novel endophytic fungal isolates with metabolic stability for CPT production was the objective. Catharanthus roseus is one of the medicinal plants with diverse bioactive metabolites that could have a plethora of novel endophytes with unique metabolites. Among the endophytes of C. roseus, Aspergillus terreus EFBL-NV OR131583.1 had the most CPT producing potency (90.2 μg/l), the chemical identity of the putative CPT was verified by HPLC, FT-IR, NMR and LC-MS/MS. The putative A. terreus CPT had the same molecular mass (349 m/z), and molecular fragmentation patterns of the authentic one, as revealed from the MS/MS analyses. The purified CPT had a strong activity against MCF7 (5.27 μM) and UO-31 (2.2 μM), with a potential inhibition to Topo II (IC50 value 0.52 nM) than Topo 1 (IC50 value 6.9 nM). The CPT displayed a high wound healing activity to UO-31 cells, stopping their metastasis, matrix formation and cell immigration. The purified CPT had a potential inducing activity to the cellular apoptosis of UO-31 by ~ 17 folds, as well as, arresting their cellular division at the S-phase, compared to the control cells. Upon Plackett-Burman design, the yield of CPT by A. terreus was increased by ~ 2.6 folds, compared to control. The yield of CPT by A. terreus was sequentially suppressed with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by 3rd month and 5th generation. However, the productivity of the attenuated A. terreus culture was completely restored by adding 1% surface sterilized leaves of C. roseus, and the CPT yield was increased over-the-first culture by ~ 3.2 folds (315.2 μg/l). The restoring of CPT productivity of A. terreus in response to indigenous microbiome of C. roseus, ensures the A. terreus-microbiome interactions, releasing a chemical signal that triggers the CPT productivity of A. terreus. This is the first reports exploring the potency of A. terreus, endophyte of C. roseus" to be a platform for industrial production of CPT, with an affordable sustainability with addition of C. roseus microbiome.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Abdelaleim I ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khalid M Wadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Sayed S El-Saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Nouran A A Abd El-Hady
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
8
|
Salhi N, El Guourrami O, Balahbib A, Rouas L, Moussaid S, Moutawalli A, Benkhouili FZ, Ameggouz M, Ullah R, Alotaibi A, Bouyahya A, Tan CS, Ming LC, El Abbes Faouzi M, Cherrah Y. Application of Aleppo pine extract for skin burn treatment. J Appl Biomater Funct Mater 2024; 22:22808000241236020. [PMID: 38462785 DOI: 10.1177/22808000241236020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
OBJECTIVE To investigate the Pinus halepensis extracts and determine its healing and antibacterial effects, and to evaluate the treatment of skin burns. METHODS Aqueous and ethanolic extracts and topical based on Aleppo pine plant extracts were prepared. Thirty male and female Wistar rats were used to study the cutaneous toxicity of extracts from the bark of P. halepensis. The extracts' healing potential for burn wounds were also assessed by evaluating the clinical and macroscopic aspects of the wounds. The antibacterial activity of crude extracts of P. halepensis as well as its wound healing abilities was verified in this investigation. RESULTS In animals with acute dermal toxicity, there were no signs of treatment-related toxicity or death. The extracts of these plants could be transformed into phytomedicines for the treatment of infected wounds. The results demonstrated that formulated ointments are successful in treating second-degree burns in rats and may be suitable for the short-term therapeutic treatment of second-degree burns. CONCLUSION This study successfully answered our problem, regarding the efficacy of our extract for treating second-degree burns in rats. Further studies are needed to confirm these results by identifying the molecules responsible for these activities and examining their mechanism of action.
Collapse
Affiliation(s)
- Najoua Salhi
- Pharmacoepidemiology and Pharmacoeconomics Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Otman El Guourrami
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Lamiae Rouas
- Laboratory of Anatomy Cytology, Faculty of Medicine and Pharmacy, Children's Hospital, Mohammed V University in Rabat, Rabat, Morocco
| | - Siham Moussaid
- Laboratory of Plant, Animal and Agro Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, Kenitra, Morocco
| | - Amina Moutawalli
- Department of Drug Sciences, Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Fatima Zahra Benkhouili
- Department of Drug Sciences, Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mouna Ameggouz
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Morocco
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - My El Abbes Faouzi
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Yahya Cherrah
- Pharmacoepidemiology and Pharmacoeconomics Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
9
|
Januszewski J, Forma A, Zembala J, Flieger M, Tyczyńska M, Dring JC, Dudek I, Świątek K, Baj J. Nutritional Supplements for Skin Health-A Review of What Should Be Chosen and Why. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:68. [PMID: 38256329 PMCID: PMC10820017 DOI: 10.3390/medicina60010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Supplementation of micronutrients is considered to be crucial in the reinforcement of the skin's barrier. In this paper, 14 nutritional compounds commonly used in food or pharmaceutic industries were analyzed in terms of influencing skin conditions. The major objective of this paper was to provide a narrative review of the available literature regarding several chosen compounds that are currently widely recommended as supplements that aim to maintain proper and healthy skin conditions. We conducted a review of the literature from PubMed, Scopus, and Web of Science until September 2023 without any other restrictions regarding the year of the publication. Ultimately, we reviewed 238 articles, including them in this review. Each of the reviewed compounds, including vitamin A, vitamin C, vitamin D, vitamin E, curcumin, chlorella, Omega-3, biotin,Ppolypodium leucotomos, Simmondsia chinesis, gamma oryzanol, olive leaf extract, spirulina, and astaxanthin, was observed to present some possible effects with promising benefits for a skin condition, i.e., photoprotective radiation. Adding them to the diet or daily routine might have a positive influence on some skin inflammatory diseases such as atopic dermatitis or psoriasis. Further, UV radiation protection facilitated by some supplements and their impact on human cells might be helpful during chemotherapy or in preventing melanoma development. Further research is needed because of the lack of clear consensus regarding the doses of the described compounds that could provide desirable effects on the skin.
Collapse
Affiliation(s)
- Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-004 Warsaw, Poland;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Magdalena Tyczyńska
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - James Curtis Dring
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Kamila Świątek
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| |
Collapse
|
10
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
11
|
El Sherif F, AlDayel M, Ismail MB, Alrajeh HS, Younis NS, Khattab S. Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3311. [PMID: 37765475 PMCID: PMC10536608 DOI: 10.3390/plants12183311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Simmondsia chinensis is a dioecious, long-lived perennial shrub. Its leaves contain several antioxidant flavonoids that have numerous pharmacological effects. Various strategies have been explored to propagate jojoba with enhanced pharmacological values. This research evaluates the bio-stimulatory impacts of He-Ne laser seed irradiation on seed germination, plantlet growth, and alteration of the composition and bioactivities of phytochemicals in jojoba plants. Jojoba seeds were irradiated for 5, 10, and 15 min before in vitro germination. Germination, growth, and multiplication parameters were recorded during germination, multiple-shoot induction, and rooting stages. The wound healing and antimicrobial activities of methanolic extracts from plant lines obtained from the non-irradiated (control) and 10 min irradiated seeds were compared by excision wound model in Wistar male rats and zone of inhibition assay. Our study revealed that laser irradiation increased seed germination, with the highest percentage observed in seeds irradiated for 10 min. Plant lines from the 10 min irradiated seeds produced more explants with higher explant heights and numbers of leaves, more roots, and higher photosynthetic pigment contents than those of control and other laser testings. By comparing plant extracts from the control and 10 min treatments, we observed that extracts from the 10 min treatment exhibited higher percentages of wound contraction and shorter epithelialization periods. In addition, these extracts also resulted in higher levels of angiogenesis elements (VEGF, TGF-β1, and HIF-1α) and reduced the inflammation regulators (IL-1β, IL-6, TNF-α, and NFκB) in the experimental rats. In concordance, extracts from the 10 min treatment also explained raised antibacterial activities towards Staphylococcus aureus and Escherichia coli. Our findings show that pre-sowing seed treatment with a He-Ne laser (632.8 nm) could be a good technique for stimulating S. chinensis plant growth and increasing the impact compound levels and biological activities.
Collapse
Affiliation(s)
- Fadia El Sherif
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.E.S.); (M.A.); (S.K.)
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismalia 41522, Egypt
| | - Munirah AlDayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.E.S.); (M.A.); (S.K.)
| | - Mohammad Bani Ismail
- Department of Basic Medical Sciences, School of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan;
| | - Hind Salih Alrajeh
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.E.S.); (M.A.); (S.K.)
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt
| | - Salah Khattab
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.E.S.); (M.A.); (S.K.)
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismalia 41522, Egypt
| |
Collapse
|
12
|
Salhi N, El Guourrami O, Rouas L, Moussaid S, Moutawalli A, Benkhouili FZ, Ameggouz M, Alshahrani MM, Al Awadh AA, Bouyahya A, Faouzi MEA, Cherrah Y. Evaluation of the Wound Healing Potential of Cynara humilis Extracts in the Treatment of Skin Burns. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5855948. [PMID: 37114146 PMCID: PMC10129424 DOI: 10.1155/2023/5855948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Cynara humilis is traditionally used to treat skin burns and microbial infections. However, experimental studies on this plant are rare. Furthermore, the aim of this study was to investigate the effects of Cynara humilis, a Moroccan herbal remedy, on the healing of deep second-degree burns in rats with a silver sulfadiazine group. This research was also carried out to confirm if C. humilis had antibacterial capabilities. Under typical burn procedures, each rat received a deep second-degree burn on the upper back. The burns were treated regularly with control groups (control and control VH), silver sulfadiazine (SDD) in group 3, C. humilis ethanolic extract (CHEE) in group 4, and C. humilis aqueous extract (CHAE) in group 5. Throughout the treatment, digital photography was used to measure rat responses to the treatment until day 18. After the scar biopsy at the end of the study, histological parameters (inflammatory cells, collagen, epithelialization, fibrosis, and granulation tissue) were assessed. Using the well technique, the antibacterial activity of the extracts was tested against Staphylococcus aureus CIP 483, Bacillus subtilis CIP 5262, Escherichia coli CIP 53126, Pseudomonas aeruginosa CIP 82118, and Salmonella enterica CIP 8039, and the results showed important activities of the ethanolic and aqueous extracts against the five species tested with MICs of 2 and 4 mg/mL, respectively. In the aqueous extract group, the wound healed faster. In addition, the healing rate in the C. humilis extracts (CHEA and CHEE) group was faster than in the silver sulfadiazine and control groups. In the C. humilis group, maximum wound surface recovery was observed at the same time, as it was not noted in the silver sulfadiazine group. Pathologically, epithelialization was more marked in wounds treated with C. humilis extracts (CHE). Angiogenesis and inflammatory cells were considerably lower in the CHE group than in the silver and other control groups. However, elastic fibers were considerable in the CHE-treated group. In histological examination, the C. humilis group had a low incidence of angiogenesis and inflammation, indicating that this group had less wound scarring. Collagen and burn wound healing were both faster in the C. humilis group. The findings of this study suggest that C. humilis, as indicated by traditional medicine, is a promising natural source for the management of wound healing.
Collapse
Affiliation(s)
- Najoua Salhi
- Pharmacoepidemiology and Pharmacoeconomics Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Otman El Guourrami
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Lamiae Rouas
- Laboratory of Anatomy Cytology, Faculty of Medicine and Pharmacy, Children's Hospital, Mohammed V University in Rabat, Rabat, Morocco
| | - Siham Moussaid
- Laboratory of Plant, Animal and Agro Industry Productions, Faculty of Science, Ibn Tofail University, B.P 133, Kenitra 1400, Morocco
| | - Amina Moutawalli
- Department of Drug Sciences, Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Fatima Zahra Benkhouili
- Department of Drug Sciences, Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mouna Ameggouz
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Yahya Cherrah
- Pharmacoepidemiology and Pharmacoeconomics Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
13
|
Gruber JV, Terpak N, Massard S, Schwartz A, Bojanowski K. Passive Enhancement of Retinol Skin Penetration by Jojoba Oil Measured Using the Skin Parallel Artificial Membrane Permeation Assay (Skin-PAMPA): A Pilot Study. Clin Cosmet Investig Dermatol 2023; 16:317-324. [PMID: 36756221 PMCID: PMC9901458 DOI: 10.2147/ccid.s391667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023]
Abstract
Introduction Retinol is known to have positive benefits on the skin including enhancements in barrier function, increased epidermal thickness, reductions in fine lines and wrinkles and reductions in hyperpigmentation. Improved methods to enhance the penetration of retinol are desirable. Methods A study was conducted to examine if addition of natural jojoba (Simmondsia chinensis) oil might help passively enhance the penetration of retinol through the skin's lipid barrier. The model used to examine the passive penetration of the retinol is the skin parallel artificial membrane permeation assay (Skin-PAMPA). In this study, three formulations were examined. The formulations included two control blends: a moisturizing emulsion without retinol and the same product containing 1.0% retinol without jojoba oil. The remaining formulation contained similar concentrations of retinol with 10% jojoba oil. The studies were conducted by applying the products to the Skin-PAMPA models at 37°C/5% CO2 for 16 hours and then extraction of the acceptor reservoir with cyclohexane (ratio 1:5 acceptor fluid to cyclohexane). The resulting acceptor reservoir cyclohexane solutions were analyzed for retinol by High Performance Liquid Chromatography (HPLC). Results The formulations without retinol showed no indications of retinol penetration by HPLC. The control formulation with 1.0% retinol demonstrated that retinol had permeated the membrane in the 16-hour timeframe with a measured Area Under the Curve (AUC) of 7 units. Analysis of the formulation containing 1.0% retinol and 10% jojoba oil indicated retinol had permeated with a AUC of 285 units, a nearly 40-fold increase in active retinol permeation. Discussion The ability for jojoba oil to directly act to help skin permeation of a key skin care active like retinol has not been previously demonstrated. This potential for jojoba oil to enhance passive skin penetration of critical skin actives, like retinol, can help to improve the performance of skin care products employing active topical ingredients.
Collapse
Affiliation(s)
- James V Gruber
- Research, Vantage Specialties, Fairfield, NJ, USA,Correspondence: James V Gruber, Email
| | | | | | | | | |
Collapse
|
14
|
The Therapeutic Wound Healing Bioactivities of Various Medicinal Plants. Life (Basel) 2023; 13:life13020317. [PMID: 36836674 PMCID: PMC9960863 DOI: 10.3390/life13020317] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The skin serves as the body's first line of defense, guarding against mechanical, chemical, and thermal damage to the interior organs. It includes a highly developed immune response that serves as a barrier against pathogenic infections. Wound healing is a dynamic process underpinned by numerous cellular activities, including homeostasis, inflammation, proliferation, and remodeling, that require proper harmonious integration to effectively repair the damaged tissue. Following cutaneous damage, microorganisms can quickly enter the tissues beneath the skin, which can result in chronic wounds and fatal infections. Natural phytomedicines that possess considerable pharmacological properties have been widely and effectively employed forwound treatment and infection prevention. Since ancient times, phytotherapy has been able to efficiently treat cutaneous wounds, reduce the onset of infections, and minimize the usage of antibiotics that cause critical antibiotic resistance. There are a remarkable number of wound-healing botanicals that have been widely used in the Northern Hemisphere, including Achiella millefolium, Aloe vera, Althaea officinalis, Calendula officinalis, Matricaria chamomilla, Curcuma longa, Eucalyptus, Jojoba, plantain, pine, green tea, pomegranate, and Inula. This review addresses the most often used medicinal plants from the Northern Hemisphere that facilitate the treatment of wounds, and also suggests viable natural alternatives that can be used in the field of wound care.
Collapse
|
15
|
Feki F, Mahmoudi A, Denev P, Feki I, Ognyanov M, Georgiev Y, Choura S, Chamkha M, Trendafilova A, Sayadi S. A jojoba (Simmondsia chinensis) seed cake extracts express hepatoprotective activity against paracetamol-induced toxicity in rats. Biomed Pharmacother 2022; 153:113371. [DOI: 10.1016/j.biopha.2022.113371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
|
16
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Hormesis: Wound healing and keratinocytes. Pharmacol Res 2022; 183:106393. [PMID: 35961478 DOI: 10.1016/j.phrs.2022.106393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022]
Abstract
Hormetic dose responses (i.e., a biphasic dose/concentration response characterized by a low dose stimulation and a high dose inhibition) are shown herein to be commonly reported in the dermal wound healing process, with the particular focus on cell viability, proliferation, and migration of human keratinocytes in in vitro studies. Hormetic responses are induced by a wide range of substances, including endogenous agents, numerous drug and nanoparticle preparations and especially plant derived extracts, including many well-known dietary supplements as well as physical stressor agents, such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings suggest that the concept of hormesis plays a fundamental role in wound healing, with important potential implications for agent screening and evaluation, as well as clinical strategies.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology; School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
17
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
18
|
Gwatimba A, Rosenow T, Stick SM, Kicic A, Iosifidis T, Karpievitch YV. AI-Driven Cell Tracking to Enable High-Throughput Drug Screening Targeting Airway Epithelial Repair for Children with Asthma. J Pers Med 2022; 12:jpm12050809. [PMID: 35629232 PMCID: PMC9146422 DOI: 10.3390/jpm12050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The airway epithelium of children with asthma is characterized by aberrant repair that may be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance airway repair could provide a novel treatment avenue for childhood asthma. Drug discovery efforts utilizing high-throughput live cell imaging of patient-derived airway epithelial culture-based wound repair assays can be used to identify compounds that modulate airway repair in childhood asthma. Manual cell tracking has been used to determine cell trajectories and wound closure rates, but is time consuming, subject to bias, and infeasible for high-throughput experiments. We therefore developed software, EPIC, that automatically tracks low-resolution low-framerate cells using artificial intelligence, analyzes high-throughput drug screening experiments and produces multiple wound repair metrics and publication-ready figures. Additionally, unlike available cell trackers that perform cell segmentation, EPIC tracks cells using bounding boxes and thus has simpler and faster training data generation requirements for researchers working with other cell types. EPIC outperformed publicly available software in our wound repair datasets by achieving human-level cell tracking accuracy in a fraction of the time. We also showed that EPIC is not limited to airway epithelial repair for children with asthma but can be applied in other cellular contexts by outperforming the same software in the Cell Tracking with Mitosis Detection Challenge (CTMC) dataset. The CTMC is the only established cell tracking benchmark dataset that is designed for cell trackers utilizing bounding boxes. We expect our open-source and easy-to-use software to enable high-throughput drug screening targeting airway epithelial repair for children with asthma.
Collapse
Affiliation(s)
- Alphons Gwatimba
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- School of Computer Science and Software Engineering, University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence:
| | - Tim Rosenow
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Nedlands, WA 6009, Australia
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Division of Paediatrics, Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Division of Paediatrics, Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | - Thomas Iosifidis
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | - Yuliya V. Karpievitch
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (T.R.); (S.M.S.); (A.K.); (T.I.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
19
|
Extracts of Eucalyptus alba Promote Diabetic Wound Healing by Inhibiting α-Glucosidase and Stimulating Cell Proliferation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4953105. [PMID: 35463094 PMCID: PMC9033357 DOI: 10.1155/2022/4953105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Treatment of diabetic wounds has always been a challenge for primary and acute health care. Eucalyptus alba has been reported to be used for the treatment of wounds and oxidative stress. Effects of using different temperatures and solvents for the extraction of Eucalyptus alba leaves were investigated in terms of diabetic wound healing activity. Leaves of E. alba were dried at 10°C, 30°C, 50°C, and 100°C, and dissolved in ethanol, methanol, and acetone to obtain a total of 12 extracts. All the extracts have remarkable antidiabetic, antioxidant, and cell proliferation activities. Among the tested extracts, highest activities were observed with leaves dried at 10°C and 30°C, whereas drying at 100°C resulted in the lowest activities. Ethanol-based extracts exhibited significantly increased cell proliferation compared with methanol- and acetone-based extract. The present study suggests that leaves of E. alba should be dried at temperature not more than 30°C and extracted in ethanol for optimum results. However, further studies should focus on the identification of specific bioactive compounds in E. alba leaves.
Collapse
|
20
|
Abdel-Fatah SS, El-Sherbiny GM, khalaf M, Baz AFE, El-Sayed ASA, El-Batal AI. Boosting the Anticancer Activity of Aspergillus flavus "endophyte of Jojoba" Taxol via Conjugation with Gold Nanoparticles Mediated by γ-Irradiation. Appl Biochem Biotechnol 2022; 194:3558-3581. [PMID: 35438406 PMCID: PMC9270289 DOI: 10.1007/s12010-022-03906-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Taxol production by fungi is one of the promising alternative approaches, regarding to the natural and semisynthetic sources; however, the lower yield and rapid loss of Taxol productivity by fungi are the major challenges that halt their further industrial implementation. Thus, searching for fungal isolates with affordable Taxol-production stability, in addition to enhance its anticancer activity via conjugation with gold nanoparticles, is the main objectives of this study. Twenty-four endophytic fungal isolates were recovered from the barks, twigs, and leaves of jojoba plant, among these fungi, Aspergillus flavus MW485934.1 was the most potent Taxol producer (88.6 µg/l). The chemical identity of the extracted Taxol of A. flavus was verified by the TLC, HPLC, HNMR, and FTIR analyses. The yield of Taxol produced by A. flavus was optimized by the response surface methodology (RSM) using Plackett-Burman (PBD) and faced central composite designs (FCCD). The yield of Taxol by A. flavus was increased by about 3.2 folds comparing to the control cultures (from 96.5 into 302.7 µg/l). The highest Taxol yield by was obtained growing A. flavus on a modified malt extract medium (g/l) (malt extract 20.0, peptone 2.0, sucrose 20.0, soytone 2.0, cysteine 0.5, glutamine 0.5, and beef extract 1.0 adjusted to pH 6.0) and incubated at 30 °C for 16 days. From the FCCD design, the significant variables affecting Taxol production by A. flavus were cysteine, pH, and incubation time. Upon A. flavus γ-irradiation at 1.0 kGy, the Taxol yield was increased by about 1.25 fold (375.9 µg/l). To boost its anticancer activity, the purified Taxol was conjugated with gold nanoparticles (AuNPs) mediated by γ-rays irradiation (0.5 kGy), and the physicochemical properties of Taxol-AuNPs composite were evaluated by UV-Vis, DLS, XRD, and TEM analyses. The IC50 values of the native-Taxol and Taxol-AuNPs conjugates towards HEPG-2 cells were 4.06 and 2.1 µg/ml, while the IC50 values against MCF-7 were 6.07 and 3.3 µg/ml, respectively. Thus, the anticancer activity of Taxol-AuNPs composite was increased by 2 folds comparing to the native Taxol towards HEPG-2 and MCF-7 cell lines. Also, the antimicrobial activity of Taxol against the multidrug resistant bacteria was dramatically increased upon conjugation with AuNPs comparing to authentic AuNPs and Taxol, ensuring the higher solubility, targetability, and efficiency of Taxol upon AuNPs conjugation.
Collapse
Affiliation(s)
- Sobhy S. Abdel-Fatah
- grid.429648.50000 0000 9052 0245Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gamal M. El-Sherbiny
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud khalaf
- grid.429648.50000 0000 9052 0245Microbiology Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ashraf F. El Baz
- Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat University City, Sadat City, Egypt
| | - Ashraf S. A. El-Sayed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Ahmed I. El-Batal
- grid.429648.50000 0000 9052 0245Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
21
|
Blaak J, Staib P. An updated review on efficacy and benefits of sweet almond, evening primrose and jojoba oils in skin care applications. Int J Cosmet Sci 2021; 44:1-9. [PMID: 34957578 DOI: 10.1111/ics.12758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Renewed consumer and industry interest in natural ingredients has led to a large growth of natural cosmetics. This has put pressure on formulation skills and product claims when it comes to using natural compounds. Taking a strategic and comprehensive approach in viewing natural ingredients, including natural oils, as 'active' ingredients rather than just providing for so-called 'natural' claims, aids both innovation and development. Given the ever-increasing consumer demand for natural ingredients, and more importantly the demand for effective natural ingredients including plant oils, it is important for the cosmetic industry to re-evaluate them in this context. The objectives of this review are to provide an update of three popular cosmetic plant oils - Sweet Almond, Evening Primrose, and Jojoba - in terms of their cosmetic applications as 'active' ingredients. This review highlights the activity of these oils, in the management of dry skin, ageing skin, juvenile skin, atopic dermatitis, scalp conditions, and their wider potential. Attention is given to formulation considerations where the content of these oils impacts product oxidation, skin penetration and stratum corneum homeostasis. Benefits of these oils have been well documented both pre-clinically and clinically. Historically, they have been used for hundreds if not thousands of years for their management and treatment of various skin and other ailments. Given the discrepancies in some clinical data presented for a variety of dermatoses, the importance of the choice of oil and how to formulate with them within the context of the epidermal barrier function, skin penetration, and toxicity, cannot be underestimated. Care should be taken in terms of the quality and stability of theses oils, as well as ensuring best formulation type, if the reported activities of these oils are to be achieved with consistency. Despite discrepancies in the literature and questionable study designs, it is clear, that Sweet Almond, Evening Primrose and Jojoba oils, do have skin care benefits for both adult and juvenile applications. They are effective ingredients for skin care preparations to strengthen stratum corneum integrity, recovery, and lipid ratio. Nevertheless, further experimental data are required concerning the impact on stratum corneum physiology and structure.
Collapse
Affiliation(s)
- J Blaak
- Research & Development and Regulatory Affairs, Kneipp GmbH, Würzburg, Germany
| | - P Staib
- Research & Development and Regulatory Affairs, Kneipp GmbH, Würzburg, Germany
| |
Collapse
|
22
|
Speer S, Amin S. Sustainable thermoresponsive whey protein- and chitosan-based oil-in-water emulsions for cosmetic applications. Int J Cosmet Sci 2021; 44:30-41. [PMID: 34800296 DOI: 10.1111/ics.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE In this study, the biopolymers whey protein and chitosan were used to create a thermoresponsive emulsion. The impact of the inclusion of chitosan and inclusion of specific oils on the rheological properties and response to temperature were investigated by a stepwise build-up from simple solutions to oil-in-water (O/W) emulsions. Whey protein (WP) concentration and chitosan concentration were varied. The results may help develop strategies for incorporating thermoresponsive materials in stable and high-performing formulations for use in cosmetics. METHODS Solutions of whey protein concentrate (WPC) by itself, chitosan by itself and the combination of the two at various concentrations were tested with flow sweeps, temperature sweeps and frequency sweeps. Then, three different oils of jojoba, avocado and silicone were included to form emulsions and the tests were repeated to determine flow behaviour, response to temperature and structure. RESULTS By comparing 15 wt. % and 20 wt. % WP solutions, it was found that 15 wt. % WP could provide good viscosities and modulus at a lower amount of material used. The solution composed of 15 wt. % WP, and 0.5 wt. % chitosan was found to have the greatest structural response to temperature compared to solutions with 1.0 wt. % and 1.5 wt. % chitosan. Compared to the addition of 10 wt. % silicone and 10 wt. % avocado oil to form emulsions, the addition of 10 wt. % jojoba oil further strengthened the gel network the most. The final emulsion with pigment added had improved viscosity and thermoresponsive behaviour. The WP and chitosan emulsions were shear thinning, elastically dominated and behaved as classical gels. The behaviour of the emulsions was dependent upon the hydrophobic interactions between the protein and the oil and the electrostatic interactions between the protein and the chitosan. CONCLUSION An emulsion composed of 15 wt. % WP, 10 wt. % jojoba oil and 0.5 wt. % chitosan solution was found to have the greatest structural response to temperature. This study of an O/W emulsion containing whey protein concentrate and chitosan demonstrated that different oils and conditions can be used to tune thermoresponsive and rheological behaviour.
Collapse
Affiliation(s)
- Sarah Speer
- Department of Chemical Engineering, Manhattan College, Riverdale, New York, USA
| | - Samiul Amin
- Department of Chemical Engineering, Manhattan College, Riverdale, New York, USA
| |
Collapse
|
23
|
Abdallah MH, Elsewedy HS, AbuLila AS, Almansour K, Unissa R, Elghamry HA, Soliman MS. Quality by Design for Optimizing a Novel Liposomal Jojoba Oil-Based Emulgel to Ameliorate the Anti-Inflammatory Effect of Brucine. Gels 2021; 7:gels7040219. [PMID: 34842709 PMCID: PMC8628777 DOI: 10.3390/gels7040219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
One of the recent advancements in research is the application of natural products in developing newly effective formulations that have few drawbacks and that boost therapeutic effects. The goal of the current exploration is to investigate the effect of jojoba oil in augmenting the anti-inflammatory effect of Brucine natural alkaloid. This is first development of a formulation that applies Brucine and jojoba oil int a PEGylated liposomal emulgel proposed for topical application. Initially, various PEGylated Brucine liposomal formulations were fabricated using a thin-film hydration method. (22) Factorial design was assembled using two factors (egg Phosphatidylcholine and cholesterol concentrations) and three responses (particle size, encapsulation efficiency and in vitro release). The optimized formula was incorporated within jojoba oil emulgel. The PEGylated liposomal emulgel was inspected for its characteristics, in vitro, ex vivo and anti-inflammatory behaviors. Liposomal emulgel showed a pH of 6.63, a spreadability of 48.8 mm and a viscosity of 9310 cP. As much as 40.57% of Brucine was released after 6 h, and drug permeability exhibited a flux of 0.47 µg/cm2·h. Lastly, % of inflammation was lowered to 47.7, which was significant effect compared to other formulations. In conclusion, the anti-inflammatory influence of jojoba oil and Brucine was confirmed, supporting their integration into liposomal emulgel as a potential nanocarrier.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.S.A.); (K.A.); (R.U.); (M.S.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Correspondence:
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Saudi Arabia;
| | - Amr S. AbuLila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.S.A.); (K.A.); (R.U.); (M.S.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.S.A.); (K.A.); (R.U.); (M.S.S.)
| | - Rahamat Unissa
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.S.A.); (K.A.); (R.U.); (M.S.S.)
| | - Hanaa A. Elghamry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud S. Soliman
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.S.A.); (K.A.); (R.U.); (M.S.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
24
|
Choi SH, Won KJ, Lee R, Cho HS, Hwang SH, Nah SY. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes. Int J Mol Sci 2021; 22:10155. [PMID: 34576317 PMCID: PMC8467330 DOI: 10.3390/ijms221810155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Kyung-Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| |
Collapse
|
25
|
Repellin RL, Pitt KA, Lu M, Welker J, Noland EL, Stanley BJ. The effects of a proprietary Manuka honey and essential oil hydrogel on the healing of acute full-thickness wounds in dogs. Vet Surg 2021; 50:1634-1643. [PMID: 34468038 DOI: 10.1111/vsu.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the effect of a proprietary Manuka honey essential oil hydrogel on the healing of acute, full-thickness wounds in dogs. STUDY DESIGN Prospective, controlled, randomized, experimental study. ANIMALS Purpose-bred, adult, female beagles (n = 10). METHODS Two 2 × 2 cm surgical wounds were created bilaterally on the trunk of each dog; each side was randomized to receive HoneyCure® (HOC) or standard-of-care (CON) dressings. Cranial wounds were for histopathological analysis and the caudal wounds for culture and planimetry. Total and open wound areas were measured with digital image planimetry at 15 time points. From these data, percent contraction and percent epithelialization were calculated. Tissue biopsies were obtained at 7 time points and histologic features scored. Cultures were obtained at 2 time points. RESULTS Epithelialization was 11.7, 10.4, and 10.1 percentage points higher in HOC wounds compared to CON wounds at days 16, 18, and 21 respectively. Wound contraction and histological scores did not differ between groups. Cultures were positive in 7/40 (17.5%) wounds, with Staphylococcus pseudintermedius and Staphylococcus epidermidis isolated evenly. There was no difference of infection rate between the two groups; all infections were superficial and did not require treatment. CONCLUSION This study did not provide evidence to support the application of HoneyCure® in small, acute wounds in healthy dogs. However, application may be beneficial in the early proliferative stage of wound healing and in wounds that would benefit from early, robust epithelialization.
Collapse
Affiliation(s)
- Raphael L Repellin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Kathryn A Pitt
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ming Lu
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jamie Welker
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Erica L Noland
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Bryden J Stanley
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
Chu CC, Nyam KL. Application of seed oils and its bioactive compounds in sunscreen formulations. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chee Chin Chu
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Kar Lin Nyam
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| |
Collapse
|
27
|
Jojoba Oil: An Updated Comprehensive Review on Chemistry, Pharmaceutical Uses, and Toxicity. Polymers (Basel) 2021; 13:polym13111711. [PMID: 34073772 PMCID: PMC8197201 DOI: 10.3390/polym13111711] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Jojoba is a widely used medicinal plant that is cultivated worldwide. Its seeds and oil have a long history of use in folklore to treat various ailments, such as skin and scalp disorders, superficial wounds, sore throat, obesity, and cancer; for improvement of liver functions, enhancement of immunity, and promotion of hair growth. Extensive studies on Jojoba oil showed a wide range of pharmacological applications, including antioxidant, anti-acne and antipsoriasis, anti-inflammatory, antifungal, antipyretic, analgesic, antimicrobial, and anti-hyperglycemia activities. In addition, Jojoba oil is widely used in the pharmaceutical industry, especially in cosmetics for topical, transdermal, and parenteral preparations. Jojoba oil also holds value in the industry as an anti-rodent, insecticides, lubricant, surfactant, and a source for the production of bioenergy. Jojoba oil is considered among the top-ranked oils due to its wax, which constitutes about 98% (mainly wax esters, few free fatty acids, alcohols, and hydrocarbons). In addition, sterols and vitamins with few triglyceride esters, flavonoids, phenolic and cyanogenic compounds are also present. The present review represents an updated literature survey about the chemical composition of jojoba oil, its physical properties, pharmacological activities, pharmaceutical and industrial applications, and toxicity.
Collapse
|
28
|
Inhalable Jojoba Oil Dry Nanoemulsion Powders for the Treatment of Lipopolysaccharide- or H 2O 2-Induced Acute Lung Injury. Pharmaceutics 2021; 13:pharmaceutics13040486. [PMID: 33918471 PMCID: PMC8065502 DOI: 10.3390/pharmaceutics13040486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 01/11/2023] Open
Abstract
Jojoba (Simmondsia chinensis (Link) C.K. Schneid) is a dioecious plant in desert and semi-desert areas, e.g., the Ismailia Desert in Egypt. Jojoba oil (JJBO) is a natural slight yellow oil with the functions of skin barrier repairing and wound healing, which is dermally applied as a traditional medication or cosmetic in the Middle East. The objective of this study was to prepare JJBO dry nanoemulsion powders (JNDs) and investigate their anti-acute lung injury effects. JJBO nanoemulsions (JNEs) were prepared and then lyophilized to JNDs and the properties and simulated lung deposition were measured. Rat acute lung injury (ALI) models were established after intratracheal (i.t.) administration of lipopolysaccharide (LPS) or hydrogen peroxide (H2O2). JNDs and dexamethasone (DXM) solutions were also i.t. administered to the rats. The pathological states of lung tissues were checked. Inflammatory and oxidative factors in the lung tissues were determined using ELISA methods. NF-κB p65 and caspase-3 were measured with a Western blotting method and an immunohistochemical method, respectively. JNDs had an appropriate mass median aerodynamic diameter (MMAD) of 4.17 µm and a fine particle fraction (FPF) of 39.11%. JNDs showed higher anti-inflammatory effect on LPS-induced ALI than DXM with a decrease in total protein content and down-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and NF-κB p65. JNDs also showed higher anti-inflammatory and anti-oxidation effect on H2O2-induced ALI than DXM with elimination of reactive oxygen species (ROS), increasing of superoxide dismutase (SOD), decrease in of lipid peroxide malondialdehyde (MDA) and glutathione (GSH), and inhibition of caspase-3 expression. Moreover, i.t. JNDs attenuated bleeding and infiltrations of the inflammatory cells in the two ALI models. JNDs are a promising natural oil-contained inhalable medication for the treatment of LPS- or H2O2-induced ALI.
Collapse
|
29
|
Miletto I, Gionco C, Paganini MC, Martinotti S, Ranzato E, Giamello E, Marchese L, Gianotti E. Vis-NIR luminescent lanthanide-doped core-shell nanoparticles for imaging and photodynamic therapy. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Bobadilla AVP, Arévalo J, Sarró E, Byrne HM, Maini PK, Carraro T, Balocco S, Meseguer A, Alarcón T. In vitro cell migration quantification method for scratch assays. J R Soc Interface 2020; 16:20180709. [PMID: 30958186 DOI: 10.1098/rsif.2018.0709] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The scratch assay is an in vitro technique used to assess the contribution of molecular and cellular mechanisms to cell migration. The assay can also be used to evaluate therapeutic compounds before clinical use. Current quantification methods of scratch assays deal poorly with irregular cell-free areas and crooked leading edges which are features typically present in the experimental data. We introduce a new migration quantification method, called 'monolayer edge velocimetry', that permits analysis of low-quality experimental data and better statistical classification of migration rates than standard quantification methods. The new method relies on quantifying the horizontal component of the cell monolayer velocity across the leading edge. By performing a classification test on in silico data, we show that the method exhibits significantly lower statistical errors than standard methods. When applied to in vitro data, our method outperforms standard methods by detecting differences in the migration rates between different cell groups that the other methods could not detect. Application of this new method will enable quantification of migration rates from in vitro scratch assay data that cannot be analysed using existing methods.
Collapse
Affiliation(s)
- Ana Victoria Ponce Bobadilla
- 1 Institute for Applied Mathematics, Heidelberg University , 69120 Heidelberg , Germany.,2 Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , 69120 Heidelberg , Germany
| | - Jazmine Arévalo
- 3 Renal Physiopathology Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute , Barcelona , Spain
| | - Eduard Sarró
- 3 Renal Physiopathology Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute , Barcelona , Spain
| | - Helen M Byrne
- 4 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford , Oxford OX2 6GG , UK
| | - Philip K Maini
- 4 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford , Oxford OX2 6GG , UK
| | - Thomas Carraro
- 1 Institute for Applied Mathematics, Heidelberg University , 69120 Heidelberg , Germany.,2 Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , 69120 Heidelberg , Germany
| | - Simone Balocco
- 5 Department of Mathematics and Informatics , University of Barcelona , Gran Via 585, 08007 Barcelona , Spain.,6 Computer Vision Center , 08193 Bellaterra , Spain
| | - Anna Meseguer
- 3 Renal Physiopathology Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute , Barcelona , Spain.,7 Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona , Bellaterra , Spain.,8 Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER , Madrid , Spain
| | - Tomás Alarcón
- 9 ICREA , Pg. Lluís Companys 23, 08010 Barcelona , Spain.,10 Centre de Recerca Matemàtica, Edifici C , Campus de Bellaterra, 08193 Bellaterra (Barcelona) , Spain.,11 Departament de Matemàtiques, Universitat Autònoma de Barcelona , 08193 Bellaterra (Barcelona) , Spain.,12 Barcelona Graduate School of Mathematics (BGSMath) , Barcelona , Spain
| |
Collapse
|
31
|
Sturtevant D, Lu S, Zhou ZW, Shen Y, Wang S, Song JM, Zhong J, Burks DJ, Yang ZQ, Yang QY, Cannon AE, Herrfurth C, Feussner I, Borisjuk L, Munz E, Verbeck GF, Wang X, Azad RK, Singleton B, Dyer JM, Chen LL, Chapman KD, Guo L. The genome of jojoba ( Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds. SCIENCE ADVANCES 2020; 6:eaay3240. [PMID: 32195345 PMCID: PMC7065883 DOI: 10.1126/sciadv.aay3240] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 12/16/2019] [Indexed: 05/10/2023]
Abstract
Seeds of the desert shrub, jojoba (Simmondsia chinensis), are an abundant, renewable source of liquid wax esters, which are valued additives in cosmetic products and industrial lubricants. Jojoba is relegated to its own taxonomic family, and there is little genetic information available to elucidate its phylogeny. Here, we report the high-quality, 887-Mb genome of jojoba assembled into 26 chromosomes with 23,490 protein-coding genes. The jojoba genome has only the whole-genome triplication (γ) shared among eudicots and no recent duplications. These genomic resources coupled with extensive transcriptome, proteome, and lipidome data helped to define heterogeneous pathways and machinery for lipid synthesis and storage, provided missing evolutionary history information for this taxonomically segregated dioecious plant species, and will support efforts to improve the agronomic properties of jojoba.
Collapse
Affiliation(s)
- Drew Sturtevant
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yin Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shuo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jinshun Zhong
- Institute for Plant Genetics, Heinrich Heine University, Dusseldorf, NRW, Germany
| | - David J. Burks
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Zhi-Quan Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ashley E. Cannon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Cornelia Herrfurth
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Eberhard Munz
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Guido F. Verbeck
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Xuexia Wang
- Department of Mathematics, University of North Texas, Denton, TX, USA
| | - Rajeev K. Azad
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
- Department of Mathematics, University of North Texas, Denton, TX, USA
| | - Brenda Singleton
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - John M. Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
- Corresponding author. (L.-L.C.); (K.D.C.); (L.G.)
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Corresponding author. (L.-L.C.); (K.D.C.); (L.G.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Corresponding author. (L.-L.C.); (K.D.C.); (L.G.)
| |
Collapse
|
32
|
Matsumoto Y, Ma S, Tominaga T, Yokoyama K, Kitatani K, Horikawa K, Suzuki K. Acute Effects of Transdermal Administration of Jojoba Oil on Lipid Metabolism in Mice. ACTA ACUST UNITED AC 2019; 55:medicina55090594. [PMID: 31540183 PMCID: PMC6780807 DOI: 10.3390/medicina55090594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Background and objectives: Aroma therapy is a complementary therapy using essential oils diluted with carrier oils. Jojoba oils have been widely used as carrier oils. However, limited information is available regarding their effects on blood biochemical parameters. This study aimed to investigate the effect of transdermal administration of jojoba oil on blood biochemical parameters in mice. Materials and Methods: Eight-week-old male hairless mice were randomly divided into naïve control and treatment groups. In the treatment group, mice were topically administered 4 μL of jojoba oil, per gram of body weight, on the dorsa 30 min before euthanasia. Thereafter, serum biochemical parameters were assayed, and gene expression was analyzed in various tissues via a real-time polymerase chain reaction. Results: Serum non-esterified fatty acid (NEFA) levels increased significantly 30 min after topical application of jojoba oil (p < 0.05). Atgl was significantly upregulated in the liver (p < 0.05), and Atgl upregulation in the liver was positively correlated with serum NEFA levels (r = 0.592, p < 0.05). Furthermore, a trend of decreasing fatty acid trafficking-related gene (FABPpm, FATP-1, FATP-3, and FATP-4) expression in the skin after topical application of jojoba oil (p = 0.067, 0.074, 0.076, and 0.082, respectively) was observed. Conclusions: Serum NEFA levels were elevated 30 min after transdermal administration of jojoba oil. The mechanisms of elevated serum NEFA levels might be related to both enhanced lipolysis in the liver and reduced fatty acid trafficking in the skin.
Collapse
Affiliation(s)
- Yutaka Matsumoto
- Faculty of Nursing, Tokai University School of Medicine, Isehara, Kanagawa 259-1292, Japan.
- Graduate School of Sports Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| | - Sihui Ma
- Graduate School of Sports Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| | - Takaki Tominaga
- Graduate School of Sports Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| | - Keiko Yokoyama
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259-1292, Japan.
| | - Kanae Kitatani
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259-1292, Japan.
| | - Kazumasa Horikawa
- Faculty of Nursing, Tokai University School of Medicine, Isehara, Kanagawa 259-1292, Japan.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
33
|
Orchard A, van Vuuren SF. Carrier oils in dermatology. Arch Dermatol Res 2019; 311:653-672. [PMID: 31321504 DOI: 10.1007/s00403-019-01951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Wounds are a common medical infliction. With the increase in microbial resistance and a shift of interest towards complementary medicines, essential oils have been shown to be beneficial in suppressing microbial growth. However, in practice, essential oils are more often diluted into a base due to the risk of topical adverse effects, such as dermatitis. There is a lack of collated evidence-based information on toxicity and efficacy of carrier oils. The current information on the subject matter is restricted to generic, aroma-therapeutic books and pamphlets, based on anecdotal evidence rather than an experimental approach. Therefore, this review aimed at identifying the recommended carrier oils used in dermatology and thereafter collating the scientific evidence to support the use of carrier oils together with essential oils recommended for dermatological use. Aloe vera gel had multiple studies demonstrating the ability to enhance wound healing; however, several other carrier oils have been largely neglected. It was observed that the extracts for certain plant species had been used to justify the use of the carrier oils of the same plant species. This is an inaccurate cross assumption due to the difference in chemical composition and biological activities. Lastly, despite these carrier oils being recommended as a base for essential oils, very little data was found on the interactive profile of the carrier oil with the essential oil. This review provides a platform for further studies, especially if essential oils are to receive credence in the scientific field.
Collapse
Affiliation(s)
- Ané Orchard
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Sandy F van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
34
|
Marquele-Oliveira F, da Silva Barud H, Torres EC, Machado RTA, Caetano GF, Leite MN, Frade MAC, Ribeiro SJL, Berretta AA. Development, characterization and pre-clinical trials of an innovative wound healing dressing based on propolis (EPP-AF®)-containing self-microemulsifying formulation incorporated in biocellulose membranes. Int J Biol Macromol 2019; 136:570-578. [PMID: 31226369 DOI: 10.1016/j.ijbiomac.2019.05.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022]
Abstract
The considerable role of pristine bacterial cellulose membranes (BC) as ideal dressings have been widely demonstrated to treat wounds and burns. Nevertheless, drawbacks regarding antimicrobial spectrum and frequent dressing replacement are still present. Based on this, the present work proposes an innovative dressing by incorporating a technological self-microemulsifying formulation (SMEF) encapsulating propolis (BC/PP). BC/PP was fully chemically and biologically characterized employing in vitro and in vivo models. Antimicrobial studies demonstrated BC/PP high efficiency against both gran-negative and gran-positive bacteria. Release studies evidenced propolis markers sustained release for up to 7 days. In vivo wound healing activity was assessed by wound healing rate, anti-inflammatory and tissue formation events and the results evidenced the pro-inflammatory activity of BC/PP, which could promote improved healing results. To conclude, BC/PP presented an outstanding antibacterial activity in vitro with weekly replacement and promotion of healing, offering, for the first time, a broad-spectrum biomembrane potential to treat infected wounds.
Collapse
Affiliation(s)
- Franciane Marquele-Oliveira
- Laboratório de Pesquisa, Desenvolvimento e Inovação (P, D & I), Apis Flora Industrial e Comercial Ltda., Rua Triunfo 945, 14020-670 Ribeirão Preto, SP, Brazil
| | - Hernane da Silva Barud
- Laboratório de Biopolímeros e Biomateriais (BioPolMat), Universidade de Araraquara- Uniara, Araraquara, SP, Brazil; Instituto de Química, Universidade Estadual Paulista (UNESP) CP 355, 14800-900 Araraquara, SP, Brazil
| | - Elina Cassia Torres
- Laboratório de Pesquisa, Desenvolvimento e Inovação (P, D & I), Apis Flora Industrial e Comercial Ltda., Rua Triunfo 945, 14020-670 Ribeirão Preto, SP, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | | | - Guilherme Ferreira Caetano
- Departamento de Clínica Médica, Divisão de Dermatologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Marcel Nani Leite
- Departamento de Clínica Médica, Divisão de Dermatologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Marco Andrey Cipriani Frade
- Departamento de Clínica Médica, Divisão de Dermatologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Sidney J L Ribeiro
- Laboratório de Biopolímeros e Biomateriais (BioPolMat), Universidade de Araraquara- Uniara, Araraquara, SP, Brazil
| | - Andresa Aparecida Berretta
- Laboratório de Pesquisa, Desenvolvimento e Inovação (P, D & I), Apis Flora Industrial e Comercial Ltda., Rua Triunfo 945, 14020-670 Ribeirão Preto, SP, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
35
|
Chou HL, Shueng PW, Liao LJ, Hsu CX, Kuo DY, Lo WC, Hou PY, Wang LY, Chou SF, Hsieh CH. Prophylactic NS-21 maintains the skin moisture but does not reduce the severity of radiation dermatitis in patients with head and neck cancer: a randomized control trial. Radiat Oncol 2019; 14:90. [PMID: 31146741 PMCID: PMC6543645 DOI: 10.1186/s13014-019-1302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background To evaluate the practicality of NS-21 cream with regard to its skin-related toxicity in patients with head and neck cancer (HNC) who are undergoing concurrent chemoradiation therapy (CCRT) or radiotherapy (RT). Methods Between July 2015 and November 2017, 30 HNC patients who underwent RT or CCRT were randomly allocated to receive either NS-21 or control treatment on their irradiated skin three times per day, starting at the initiation of RT or CCRT and ending 2 weeks after the completion of RT or until the appearance of grade 3 acute radiation dermatitis (ARD). Dermatitis was recorded weekly according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Skin humidity was monitored by a digital moisture meter. The generalized estimating equation (GEE) and logit link function method were used for statistical analysis. Results No serious adverse events were observed in either group. Itching dermatitis occurred on the right lower neck in one patient of the NS-21 group during the 3rd week of CCRT, but the severity was mild. The median skin moisture value at the time of the final treatment was significantly different between the study and control groups (30.6 vs. 27.3, p = 0.013). Additionally, there was an inverse relationship between skin moisture and ARD grade (B = -0.04, p = 0.005). The incidence of ARD at the time of the last treatment was not significantly different between the study and control groups (6.7% vs 26.7%, p = 0.165). The risk of grade 3 ARD for skin that had received an irradiation dose of 47–70 Gy was higher than that of skin that had received an irradiation dose ≤46 Gy (OR = 31.06, 95% CI =5.95–162.21, p < 0.001). Nevertheless, the risk of ARD was not significantly different between the groups (OR = 0.38, 95% CI = 0.08–1.74, p = 0.212). Conclusions NS-21 was well tolerated and effective for the maintenance of skin moisture; however, there was no statistically significant reduction in the risk of ARD in HNC patients undergoing RT or CCRT when compared with HNC patients in the control group. Trial registration The study was approved by the Institutional Review Board of Far Eastern Memorial Hospital (FEMH-IRB, 104048-F), Registered 1st June 2015,
Collapse
Affiliation(s)
- Hsiu-Ling Chou
- Department of Nursing, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,School of Nursing, National Yang-Ming University, Taipei, Taiwan.,Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 21 Sec 2, Nanya S Road, Banciao District, New Taipei City, 220, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Jen Liao
- Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan.,Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Chen-Xiong Hsu
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 21 Sec 2, Nanya S Road, Banciao District, New Taipei City, 220, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 21 Sec 2, Nanya S Road, Banciao District, New Taipei City, 220, Taiwan
| | - Wu-Chia Lo
- Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Pei-Yu Hou
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 21 Sec 2, Nanya S Road, Banciao District, New Taipei City, 220, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - San-Fang Chou
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsi Hsieh
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 21 Sec 2, Nanya S Road, Banciao District, New Taipei City, 220, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
36
|
Propolis Induces AQP3 Expression: A Possible Way of Action in Wound Healing. Molecules 2019; 24:molecules24081544. [PMID: 31010117 PMCID: PMC6515181 DOI: 10.3390/molecules24081544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/20/2023] Open
Abstract
Propolis is the generic name of a complex of resinous compound collected by honeybees and it has been utilized for many years in folk medicine. As other products generated by honeybees (such as royal jelly, pollen, honey), propolis has great therapeutic properties, but very little scientific information is available. Therefore, this study was aimed at exploring the potential wound healing properties of propolis. To that end, we utilized an in vitro scratch wound healing model consisting of human immortalized keratinocytes. Our scratch wound data clearly demonstrated that propolis induced a pronounced increase in the wound repair abilities of keratinocytes. A cell migration assay showed that propolis stimulated keratinocytes to close the wound. We revealed the role of H2O2 as the main mediator of propolis regenerative properties. We showed that this extracellularly released H2O2 could pass across the plasma membrane through a specific aquaporin (i.e., AQP3) modulating intracellular responses. The data offer a biological characterization of propolis positive effects suggesting that propolis could also be utilized in wound treatment within clinical settings.
Collapse
|
37
|
Abstract
Cell migration is a crucial step for wound healing. Assays able to evaluate cell migration are very useful to evaluate in vitro wound healing. Scratch wound assay creates a gap in confluent monolayer of keratinocytes to mimic a wound. The protocol of scratch wound is based on few steps: cell culture preparation, scratch wound assay, data acquisition, and data analysis.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Vercelli, Italy
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
38
|
Massa N, Cantamessa S, Novello G, Ranzato E, Martinotti S, Pavan M, Rocchetti A, Berta G, Gamalero E, Bona E. Antifungal activity of essential oils against azole-resistant and azole-susceptible vaginal Candida glabrata strains. Can J Microbiol 2018; 64:647-663. [DOI: 10.1139/cjm-2018-0082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida glabrata is an opportunistic pathogen, associated with endocarditis, meningitis, and disseminated disease, and also with complicated vaginitis. Essential oils derived from aromatic plants are known in traditional medicine as antimicrobial agents and have antifungal properties. The aim of this work was to evaluate whether 12 tested essential oils (tea tree, laurel, anise, basil, bergamot, lavender, mint, oregano, grapefruit, rosemary, winter savory, and ginger) could have a transverse effect on C. glabrata sensitive strains but above all on strains resistant to the three main azole antifungals used (clotrimazole, fluconazole, itraconazole). For this reason, different strains of C. glabrata, vaginal isolated, were characterized (disk diffusion assay, minimal inhibitory concentration) with respect to their response to such antifungals. Electron microscopy analyses were performed to examine cellular damages in depth. Subsequently, we wanted to evaluate the effect of the oils on human cells to estimate their potential cytotoxicity. Oregano and winter savory were the two most effective essential oils, inducing growth inhibition, cell damage of C. glabrata strains (both sensitive and resistant to azole antifungal drugs), and medium–high level of toxicity against human keratinocytes. The results of this work support the research for new alternatives or complementary therapies against vaginal candidiasis.
Collapse
Affiliation(s)
- N. Massa
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - S. Cantamessa
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - G. Novello
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - E. Ranzato
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Piazza San Eusebio 5, 13100 Vercelli, Italy
| | - S. Martinotti
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - M. Pavan
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - A. Rocchetti
- Azienda Sanitaria Santi Antonio, Biagio e Cesare Arrigo, Via Venezia 16, 15121 Alessandria, Italy
| | - G. Berta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - E. Gamalero
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - E. Bona
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Piazza San Eusebio 5, 13100 Vercelli, Italy
| |
Collapse
|
39
|
Huang CY, Wu TC, Hong YH, Hsieh SL, Guo HR, Huang RH. Enhancement of Cell Adhesion, Cell Growth, Wound Healing, and Oxidative Protection by Gelatins Extracted from Extrusion-Pretreated Tilapia ( Oreochromis sp.) Fish Scale. Molecules 2018; 23:molecules23102406. [PMID: 30241285 PMCID: PMC6222921 DOI: 10.3390/molecules23102406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Gelatin has been broadly utilized in the food, pharmaceutical, photographic, cosmetic and packaging industries, and there is also huge potential for novel applications of gelatin in the fields of biotechnology and biomedicine. In the present study, we extracted gelatin from fish processing waste, i.e., scale of tilapia, by a combined method of extrusion-pretreatment and hot water extraction. The extrusion-pretreatment process increases the extraction yield of gelatin. Three gelatins (FS2: preconditioning with double-distilled water (ddH2O) before extrusion; FS12: preconditioning with citric acid solution before extrusion; FS14: preconditioning with acetic acid solution before extrusion) were obtained and all of them enhanced cell adhesion, cell growth, and wound healing in HaCaT cells and protected HaCaT cells from H2O2-induced cellular damage. Among FS2, FS12, and FS14, FS12 exhibited the most pronounced enhancement of cell adhesion, cell growth, and wound healing in HaCaT cells, and thus it may have potential as an effective natural raw material in cell therapies for cutaneous wounds and for reducing H2O2-induced oxidative damage of cells. In additional experiments, it was found that phosphorylations of Akt and mTOR are involved in the signaling pathway activated by FS2, FS12, and FS14 in HaCaT cells.
Collapse
Affiliation(s)
- Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Tien-Chou Wu
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Rd., Sanmin District, Kaohsiung City 80708, Taiwan.
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University (Yanchao Campus), No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan.
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Hui-Ru Guo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Ren-Han Huang
- Department of Nursing, Mackay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi District, New Taipei City 25245, Taiwan.
| |
Collapse
|
40
|
Belhadj S, Hentati O, Hamdaoui G, Fakhreddine K, Maillard E, Dal S, Sigrist S. Beneficial Effect of Jojoba Seed Extracts on Hyperglycemia-Induced Oxidative Stress in RINm5f Beta Cells. Nutrients 2018; 10:nu10030384. [PMID: 29558444 PMCID: PMC5872802 DOI: 10.3390/nu10030384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Hyperglycemia occurs during diabetes and insulin resistance. It causes oxidative stress by increasing reactive oxygen species (ROS) levels, leading to cellular damage. Polyphenols play a central role in defense against oxidative stress. In our study, we investigated the antioxidant properties of simmondsin, a pure molecule present in jojoba seeds, and of the aqueous extract of jojoba seeds on fructose-induced oxidative stress in RINm5f beta cells. The exposure of RINm5f beta cells to fructose triggered the loss of cell viability (-48%, p < 0.001) and disruption of insulin secretion (p < 0.001) associated with of reactive oxygen species (ROS) production and a modulation of pro-oxidant and antioxidant signaling pathway. Cell pre-treatments with extracts considerably increased cell viability (+86% p < 0.001) for simmondsin and +74% (p < 0.001) for aqueous extract and insulin secretion. The extracts also markedly decreased ROS (-69% (p < 0.001) for simmondsin and -59% (p < 0.001) for aqueous extract) and caspase-3 activation and improved antioxidant defense, inhibiting p22phox and increasing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) levels (+70%, p < 0.001) for aqueous extract. Simmondsin had no impact on Nrf2 levels. The richness and diversity of molecules present in jojoba seed extract makes jojoba a powerful agent to prevent the destruction of RINm5f beta cells induced by hyperglycemia.
Collapse
Affiliation(s)
- Sahla Belhadj
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| | - Olfa Hentati
- Institut Supérieur de Biotechnologie de Sfax (ISBS), Road of Soukra Km 4, PO Box, Sfax 1175, Tunisia.
| | - Ghaith Hamdaoui
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cédria, BP 901, Hammam-lif 2050, Tunisia.
| | | | - Elisa Maillard
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| | - Stéphanie Dal
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| | - Séverine Sigrist
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| |
Collapse
|
41
|
Vaughn AR, Clark AK, Sivamani RK, Shi VY. Natural Oils for Skin-Barrier Repair: Ancient Compounds Now Backed by Modern Science. Am J Clin Dermatol 2018; 19:103-117. [PMID: 28707186 DOI: 10.1007/s40257-017-0301-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural plant oils are commonly used as topical therapy worldwide. They are usually easily accessible and are relatively inexpensive options for skin care. Many natural oils possess specific compounds with antimicrobial, antioxidant, anti-inflammatory, and anti-itch properties, making them attractive alternative and complementary treatments for xerotic and inflammatory dermatoses associated with skin-barrier disruption. Unique characteristics of various oils are important when considering their use for topical skin care. Differing ratios of essential fatty acids are major determinants of the barrier repair benefits of natural oils. Oils with a higher linoleic acid to oleic acid ratio have better barrier repair potential, whereas oils with higher amounts of irritating oleic acid may be detrimental to skin-barrier function. Various extraction methods for oils exist, including cold pressing to make unrefined oils, heat and chemical distillation to make essential oils, and the addition of various chemicals to simulate a specific scent to make fragranced oils. The method of oil processing and refinement is an important component of selecting oil for skin care, and cold pressing is the preferred method of oil extraction as the heat- and chemical-free process preserves beneficial lipids and limits irritating byproducts. This review summarizes evidence on utility of natural plant-based oils in dermatology, particularly in repairing the natural skin-barrier function, with the focus on natural oils, including Olea europaea (olive oil), Helianthus annus (sunflower seed oil), Cocos nucifera (coconut oil), Simmondsia chinesis (jojoba oil), Avena sativa (oat oil), and Argania spinosa (argan oil).
Collapse
|
42
|
Koga AY, Pereira AV, Lipinski LC, Oliveira MRP. Evaluation of wound healing effect of alginate films containing Aloe vera (Aloe barbadensis Miller) gel. J Biomater Appl 2018; 32:1212-1221. [DOI: 10.1177/0885328218754615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adriana Y Koga
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Airton V Pereira
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Leandro C Lipinski
- Department of Medicine, State University of Ponta Grossa, Paraná, Brazil
| | - Marcia RP Oliveira
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Paraná, Brazil
| |
Collapse
|
43
|
Bigon JP, Montoro FE, Lona LMF. Vegetable Oils Acting as Encapsulated Bioactives and Costabilizers in Miniemulsion Polymerization Reactions. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joice P. Bigon
- Department of Materials Engineering and Bioprocess, School of Chemical EngineeringUniversity of Campinas − UNICAMPCampinasSão PauloBrazil
| | - Fabiano E. Montoro
- Brazilian National Nanotechnology Laboratory − LNNanoCampinasSão PauloBrazil
| | - Liliane M. F. Lona
- Department of Materials Engineering and Bioprocess, School of Chemical EngineeringUniversity of Campinas − UNICAMPCampinasSão PauloBrazil
| |
Collapse
|
44
|
Lin TK, Zhong L, Santiago JL. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int J Mol Sci 2017; 19:E70. [PMID: 29280987 PMCID: PMC5796020 DOI: 10.3390/ijms19010070] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Lily Zhong
- California State University, Los Angeles, School of Nursing, 5151 State University Dr, Los Angeles, CA 90032, USA.
| | - Juan Luis Santiago
- Dermatology Service & Translational Research Unit (UIT), Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain.
| |
Collapse
|
45
|
Al-Obaidi JR, Halabi MF, AlKhalifah NS, Asanar S, Al-Soqeer AA, Attia MF. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant. Biol Res 2017; 50:25. [PMID: 28838321 PMCID: PMC5571488 DOI: 10.1186/s40659-017-0131-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/16/2017] [Indexed: 01/05/2023] Open
Abstract
Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant's cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research.
Collapse
Affiliation(s)
- Jameel R. Al-Obaidi
- Agro-Biotechnology Institute Malaysia (ABI), c/o MARDI Headquarters, 43400 Serdang, Selangor Malaysia
| | - Mohammed Farouq Halabi
- Department of Biology, Faculty of Science and Art, Taibah University, Al-Ula, 43522 Saudi Arabia
| | - Nasser S. AlKhalifah
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, Saudi Arabia
| | - Shanavaskhan Asanar
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Soqeer
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452 Saudi Arabia
| | - M. F. Attia
- Soil Fertility and Microbiology Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
46
|
Martinotti S, Calabrese G, Ranzato E. Honeydew honey: biological effects on skin cells. Mol Cell Biochem 2017; 435:185-192. [DOI: 10.1007/s11010-017-3067-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
|
47
|
Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4517971. [PMID: 28546822 PMCID: PMC5435909 DOI: 10.1155/2017/4517971] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/09/2016] [Indexed: 01/22/2023]
Abstract
Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils.
Collapse
|
48
|
Wenning L, Yu T, David F, Nielsen J, Siewers V. Establishing very long-chain fatty alcohol and wax ester biosynthesis inSaccharomyces cerevisiae. Biotechnol Bioeng 2016; 114:1025-1035. [DOI: 10.1002/bit.26220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Leonie Wenning
- Department of Biology and Biological Engineering, Systems and Synthetic Biology; Chalmers University of Technology; Kemivägen 10 Göteborg SE-412 96 Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Kemivägen Göteborg Sweden
| | - Tao Yu
- Department of Biology and Biological Engineering, Systems and Synthetic Biology; Chalmers University of Technology; Kemivägen 10 Göteborg SE-412 96 Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Kemivägen Göteborg Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Systems and Synthetic Biology; Chalmers University of Technology; Kemivägen 10 Göteborg SE-412 96 Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Kemivägen Göteborg Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology; Chalmers University of Technology; Kemivägen 10 Göteborg SE-412 96 Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Kemivägen Göteborg Sweden
- Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet Lyngby Denmark
| | - Verena Siewers
- Department of Biology and Biological Engineering, Systems and Synthetic Biology; Chalmers University of Technology; Kemivägen 10 Göteborg SE-412 96 Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Kemivägen Göteborg Sweden
| |
Collapse
|
49
|
Caetano GF, Fronza M, Leite MN, Gomes A, Frade MAC. Comparison of collagen content in skin wounds evaluated by biochemical assay and by computer-aided histomorphometric analysis. PHARMACEUTICAL BIOLOGY 2016; 54:2555-2559. [PMID: 27180834 DOI: 10.3109/13880209.2016.1170861] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT The quantification of total collagen is of major importance in a wide range of research areas, including the study of cutaneous wound healing and new drugs trials. OBJECTIVE The total collagen content in skin biopsies was compared by biochemical hydroxyproline assay and by two computer-aided histomorphometric analyses of histological sections. MATERIALS AND METHODS Two methods were used to evaluate collagen formation: the hydroxyproline assay, as the gold standard and histomorphometric image analysis of the filled areas by corresponding stained collagen fibres, using picrosirius and Gomori's trichrome staining. The image analyses were determined by digital densitometry recognition using computer-aided ImageJ software. One-way ANOVA, simple linear regression and ANCOVA were applied for the statistical analysis and correlation. RESULTS In a simple linear regression analysis carried out on the 14th day period after the induction of skin injury, three techniques, picrosirius red (F = 33.57, p = 0.00), Gomori's trichrome (F = 81.61, p = 0.00) and hydroxyproline content (F = 16.85, p = 0.00) were able to detect collagen production. After scale adjustment, there were no significant differences among either the slopes (F = 1.17, p = 0.32) or the intercepts (F = 0.69, p = 0.51) of the estimated regression lines. It seems that a highly significant correlation exists between the histomorphometrical analysis and hydroxyproline assay. DISCUSSION AND CONCLUSION The morphometric analysis proved to be adequate and can be used as a simple, rapid, low-cost technology for evaluating total collagen in cutaneous wound specimens, compared with the gold standard hydroxyproline assay.
Collapse
Affiliation(s)
- Guilherme F Caetano
- a Division of Dermatology, Department of Internal Medicine, Ribeirão Preto School of Medicine , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - Marcio Fronza
- b Department of Pharmacy , University of Vila Velha , Vila Velha , Espirito Santo , Brazil
| | - Marcel N Leite
- a Division of Dermatology, Department of Internal Medicine, Ribeirão Preto School of Medicine , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - Ary Gomes
- c Department of Biology , University of Vila Velha , Vila Velha , Espirito Santo , Brazil
| | - Marco Andrey Cipriani Frade
- a Division of Dermatology, Department of Internal Medicine, Ribeirão Preto School of Medicine , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| |
Collapse
|
50
|
Zhang X, Cheng Y, Yang Y, Liu S, Shi H, Lu C, Li S, Nie L, Su D, Deng X, Ding K, Hao L. Polypeptides from the Skin of Rana chensinensis Exert the Antioxidant and Antiapoptotic Activities on HaCaT Cells. Anim Biotechnol 2016; 28:1-10. [DOI: 10.1080/10495398.2016.1188825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Zhang
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Hui Shi
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Chao Lu
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Siming Li
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Linyan Nie
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Dan Su
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Xuming Deng
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| | - Kexiang Ding
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, Guangzhou Province, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|