1
|
Abd-Elhakim YM, Abu-Zeid EH, Ibrahim D, Alhallag KA, Wagih E, Abdelaty AI, Khamis T, Metwally MMM, Ismail TA, Eldoumani H. Moringa oleifera Leaves Powder Mitigates Imidacloprid-Induced Neurobehavioral Disorders and Neurotoxic Reactions in Broiler Chickens by Regulating the Caspase-3/Hsp70/PGC-1α Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8040-8053. [PMID: 40110847 DOI: 10.1021/acs.jafc.5c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
This study investigated the potential neuroprotective role of Moringa oleifera leaf powder (MOLP) dietary supplementation on imidacloprid (IMD)-induced neurobehavioral disturbances, oxidative stress, and apoptosis in broiler chicken brains. In a 6 week trial, 150 day-old commercial meat-type Ross 308 broiler chicks were randomly divided into five equal groups of 30 chicks each. The control and MOLP groups were fed a basal diet and a basal containing diet 25 g MOLP/kg, respectively, for 6 weeks. The IMD group was fed a basal diet for 2 weeks, followed by a basal diet containing 50 mg IMD/kg for 4 weeks. The IMD + MOLP combined group was fed a basal diet for 2 weeks, followed by a basal diet containing both IMD and MOLP for 4 weeks. The MOLP/IMD + MOLP prophylactic group was fed a MOLP-fortified diet for 2 weeks, followed by a basal diet containing both IMD and MOP for 4 weeks. MOLP supplementation effectively reversed IMD-induced reductions in feeding behavior and locomotor activity while decreasing crouching behavior and fearfulness. Dietary MOLP significantly restored the IMD-induced depletion of brain antioxidants while lessening lipid peroxidation, pathological alterations, and Caspase-3 immunoexpression. Yet, the brain AChE content did not change significantly among the experimental groups. However, dietary MOLP significantly reversed IMD-induced apoptotic-related genes (P21 and Caspase-3) upregulation and neuronal development-related genes (BDNF, GLP-1, PGC-1α, and PPARA) downregulation. Notably, the MOLP/IMD + MOLP prophylactic group showed more enhanced neuroprotection than the IMD + MOLP combined group. In conclusion, our study highlighted the IMD neurotoxic effects in broiler chickens and showed, for the first time, the neuroprotective potential of MOLP as a dietary supplement against IMD exposure.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Kholoud A Alhallag
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Eman Wagih
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa I Abdelaty
- Department of Behavior and Management of Animal, Poultry, and Aquatics, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Panova N, Gerasimova A, Tumbarski Y, Ivanov I, Todorova M, Dincheva I, Gentscheva G, Gledacheva V, Slavchev V, Stefanova I, Petkova N, Nikolova S, Nikolova K. Metabolic Profile, Antioxidant, Antimicrobial, Contractile, and Anti-Inflammatory Potential of Moringa oleifera Leaves (India). Life (Basel) 2025; 15:583. [PMID: 40283138 PMCID: PMC12028589 DOI: 10.3390/life15040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Moringa oleifera is one of the most famous plants used for medicinal purposes. Its leaf extracts have antimicrobial activity and antioxidant activities, and reduce swelling in ulcers. OBJECTIVES The present article aimed to determine the metabolic profile of Moringa oleifera leaf extracts from two samples originating from India and to evaluate in vitro and ex vivo their biological activities. METHODS The antioxidant properties of Moringa oleifera leaf extracts (methanol, 50% ethanol, and 70% ethanol) were studied in vitro for antimicrobial, anti-inflammatory, and antioxidant activities. The ex vivo contractile effects of the extracts were determined by assaying circularly isolated smooth muscle (SM) strips from a rat's stomach. RESULTS The obtained results indicated that one of the samples had amino acid and organic acid content approximately twice that of the second sample. In all the tests, the 50% ethanol extract of both samples showed better antioxidant activity (209 mM TE 100 g-1 for the DPPH method). The 70% ethanolic extract of Sample 1 exhibited the strongest antimicrobial activity, inhibiting Gram-positive Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus. The 50% ethanolic extract of both samples exhibited the highest anti-inflammatory activity, demonstrating a twice better effect than the reference drug diclofenac. Finally, the pre-incubation of SM preparations with both samples significantly enhanced the ACh-induced contractile response, increasing it by 134% and 111%, respectively. CONCLUSIONS The findings suggested potential applications of Moringa oleifera as a suitable candidate for antimicrobial, antioxidant, anti-inflammatory, and antispasmodic supplementation for alternative pharmaceutical and nutraceutical products.
Collapse
Affiliation(s)
- Natalina Panova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 84 Tzar Osvbod-Tel, 9000 Varna, Bulgaria;
| | - Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, 84 Tzar Osvoboditel, 9000 Varna, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology and Biotechnology, Technological Faculty, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (I.I.); (N.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University-Pleven, 1 Saint Kliment Ohridski Street, 5800 Pleven, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (V.S.); (I.S.)
| | - Valeri Slavchev
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (V.S.); (I.S.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (V.S.); (I.S.)
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (I.I.); (N.P.)
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 84 Tzar Osvbod-Tel, 9000 Varna, Bulgaria;
| |
Collapse
|
3
|
Arshad MT, Maqsood S, Ikram A, Gnedeka KT. Recent Perspectives on the Pharmacological, Nutraceutical, Functional, and Therapeutic Properties of Moringa oleifera Plant. Food Sci Nutr 2025; 13:e70134. [PMID: 40248126 PMCID: PMC12003216 DOI: 10.1002/fsn3.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/19/2025] Open
Abstract
The "miracle tree," Moringa oleifera, has gained so much attention because of its spectacular nutritional profile and potential health benefits, making it one of the candidates for functional food product creation. The health benefits of M. oleifera are presented here in this review alongside its antioxidant conformation, bioactive constituents, and macro- and micronutrient conformation. Moringa is rapidly becoming a key and effective component in formulating healthy foodstuffs because of its outstanding anti-inflammatory, antimicrobial, antidiabetic, antioxidant, and neuroprotective activities. Investigation into the usage of moringa products in functional foods like dairy substitutes, powders, supplements, drinks, and even snacks is also part of the review. Notwithstanding the auspicious benefits, there are also contests with product development such as issues with sensory perception, active ingredient constancy, and budget constraints. Maintainable plant-based and healthy food demand across the sphere is pushing the novelty in the moringa industry. To improve the current contests and the scalability and suitability of moringa-based functional foods, this review concludes with a call for additional investigation.
Collapse
Affiliation(s)
- Muhammad Tayyab Arshad
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Sammra Maqsood
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Ali Ikram
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Kodjo Théodore Gnedeka
- Togo Laboratory: Applied Agricultural Economics Research Team (ERE2A)University of LoméLoméTogo
| |
Collapse
|
4
|
Vafaeian A, Vafaei A, Parvizi MR, Chamanara M, Mehriardestani M, Hosseini Y. Molecular assessment of NMDAR subunits and neuronal apoptosis in the trigeminal ganglion in a model of male migraine-induced rats following Moringa oleifera alcoholic extract administration. BMC Neurosci 2025; 26:9. [PMID: 39905292 PMCID: PMC11796011 DOI: 10.1186/s12868-025-00928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION Migraine, a common disorder marked by severe and repetitive headaches, has been linked to the involvement of the NMDA receptor (NMDAR), a receptor responsible for glutamate signaling. Moringa oleifera (M. oleifera), recognized for its anti-inflammatory properties and therapeutic potential in various conditions, has been investigated. This study aims to assess the efficacy and precise mechanisms of M. oleifera for the treatment of migraine, for which evidence is limited. METHODS Rats were stratified into four distinct groups. The control group did not undergo the migraine-induction protocol. Post-induction, the "sumatriptan" group was administered sumatriptan injections, the "treatment" group received oral M. oleifera extract, and the "vehicle" group was provided with oral solvent treatment. Behavioral evaluations encompassing Von Frey's and hot plate assessments, in addition to qPCR analysis targeting Nr2a, Nr2b, Bax, Bcl-2, and Caspase-3, were conducted. RESULTS Von Fery's and hot plate tests revealed a notable decrease in triggering pressure and temperature within the vehicle group when compared to the other groups (both ps < 0.001). The Nr2a expression levels in both the vehicle and treatment cohorts exhibited significantly higher values than those observed in the control group (p < 0.001, p = 0.001) and the sumatriptan group (p < 0.001, p = 0.002). Conversely, no substantial alterations in Nr2b or Bcl-2 expression levels were observed across the study groups (p = 0.404, p = 0.976). Notably, heightened expressions of Caspase-3 and Bax were evident in the vehicle group relative to the other groups (p = 0.013, p = 0.010). CONCLUSIONS Moringa oleifera extract appears to mitigate symptoms of migraine by inhibiting apoptosis, suggesting potential efficacy in migraine treatment; however, additional research investigating a wider range of pathways is necessary. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Vafaei
- Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Parvizi
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mojgan Mehriardestani
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Cognitive and Behavioral Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kambuno NT, Putra AGA, Louisa M, Wuyung PE, Timan IS, Silaen OSM, Sukria HA, Supali T. Moringa oleifera Leaf Extract Improves Cognitive Function in Rat Offspring Born to Protein-Deficient Mothers. Biomedicines 2025; 13:346. [PMID: 40002759 PMCID: PMC11852579 DOI: 10.3390/biomedicines13020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Malnutrition during pregnancy and the first 1000 days of life can impair brain function and hippocampus development. Research has shown that protein deficiency (PD) in pregnant and lactating mothers can lead to neurocognitive issues from early life into adulthood. Moringa oleifera has been used as a dietary supplement for malnutrition; however, its neuroprotective effects on offspring with PD are unclear. Aims: This study aimed to investigate the effects of ethanol leaf extract of Moringa oleifera (EEMO) on rat offspring born to mothers who experienced protein deficiency during pregnancy and lactation. Methods: Female Sprague Dawley rats were given low (9% protein) or normal protein diets (18% protein) during pregnancy and lactation. Afterward, EEMO was administered to the offspring starting from the end of lactation for 5 weeks. Results: Offspring from mothers with protein deficiency showed low birth weight, slow weight gain, low BMI, low albumin levels, and anemia compared to those born with mothers fed with a standard protein diet. However, pups treated with EEMO showed higher cognitive improvement and a decrease in the ratio of abnormal to normal cells in the cornu ammoni (CA) CA1, CA2, CA3, and CA4 regions of the hippocampus. Conclusions: The present study suggests that EEMO supplementation could improve conditions of protein deficiency and cognitive function, making it a cost-effective dietary supplement for addressing these issues.
Collapse
Affiliation(s)
- Norma Tiku Kambuno
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (N.T.K.); (O.S.M.S.)
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Kupang, Kupang 85228, Indonesia
| | - Achmad Gigih Andy Putra
- Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
- Department of Biomedical Sciences and Traditional Medicine, Faculty of Dental Medicine, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri 64114, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Puspita Eka Wuyung
- Animal Research Facility, Indonesia Medical Education and Research Institute (IMERI), Jakarta 10430, Indonesia
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Ina Susianti Timan
- Human Genetic Research Center, Indonesian Medical Education and Research Institute (IMERI), Universitas Indonesia, Jakarta 10430, Indonesia
- Faculty of Medicine and Health Sciences, Krida Wacana Christian University (UKRIDA), Jakarta 11510, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (N.T.K.); (O.S.M.S.)
- Animal Health Diagnostic Unit, PT Media Satwa Laboratories, Bogor 16166, Indonesia
| | - Heri Ahmad Sukria
- Department of Nutrition and Food Technology, IPB University, Bogor 16680, Indonesia
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
6
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Moringa induces its beneficial effect via hormesis. Nutr Res Rev 2024; 37:239-248. [PMID: 37665130 DOI: 10.1017/s0954422423000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Moringa oleifera, a traditional Indian herb, is widely known for its capacity to induce antioxidant, anti-inflammatory and other chemoprotective effects in a broad range of biomedical models. These perspectives have led to an extensive number of studies using various moringa extracts to evaluate its capacity to protect biological systems from oxidative stress and to explore whether it could be used to slow the onset of numerous age-related conditions and diseases. Moringa extracts have also been applied to prevent damage to plants from oxidative and saline stresses, following hormetic dose–response patterns. The present paper provides the first integrated and mechanistically based assessment showing that moringa extracts commonly induce hormetic dose responses and that many, perhaps most, of the beneficial effects of moringa are due to its capacity to act as an hormetic agent.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA01003USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania; Via Santa Sofia 97, Catania95123, Italy
| |
Collapse
|
7
|
Divya S, Pandey VK, Dixit R, Rustagi S, Suthar T, Atuahene D, Nagy V, Ungai D, Ahmed AEM, Kovács B, Shaikh AM. Exploring the Phytochemical, Pharmacological and Nutritional Properties of Moringa oleifera: A Comprehensive Review. Nutrients 2024; 16:3423. [PMID: 39408388 PMCID: PMC11479159 DOI: 10.3390/nu16193423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Moringa oleifera is one of the most nutrient-packed species, commonly known as the drumstick tree or miracle tree, and has garnered substantial popularity for its health benefits, phytochemical profile, and therapeutic potential. Moringa oleifera is a plant that is native to the Indian subcontinent and has been used in traditional medicine for thousands of years owing to its nutritional and therapeutic properties. Methods: The leaves, seeds, pods, roots, and flowers of this plant are enriched with a wide range of bioactive compounds such as flavonoids, alkaloids, vitamins, minerals, and essential amino acids. Therefore, it is considered a reservoir crop for both nutritional and medicinal applications. Result: The recent rediscovery of the plant is at the forefront of changes in nutrition, medicine, and public health. Owing to its varied clinical applications, the plant is a potential candidate for research in new drug development and functional foods. Conclusions: Potential applications of Moringa compounds in the treatment of chronic diseases include antioxidant, anti-inflammatory, antimicrobial (bacterial or fungal), and anticancerous effects. In this review, various phytochemical extraction techniques, therapeutic properties, and applications are discussed.
Collapse
Affiliation(s)
- Surisetti Divya
- Department of Pharmacology, Kanpur Institute of Technology and Pharmacy, Kanpur 208001, Uttar Pradesh, India;
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad 121004, Haryana, India
| | - Ritik Dixit
- Department of Pharmaceutical Chemistry, Advance Institute of Biotech & Paramedical Sciences, Kanpur 209217, Uttar Pradesh, India;
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India;
| | | | - David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, I-10095 Turin, Italy;
| | - Vivien Nagy
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Technology, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
| | - Diána Ungai
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
- Faculty of Forestry, University of Khartoum, Khartoum North 13314, Sudan
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Béla Kovács
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
- World Food Forum, I-00100 Rome, Italy
| | - Ayaz Mukarram Shaikh
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
- World Food Forum, I-00100 Rome, Italy
| |
Collapse
|
8
|
Bagri P, Kumar V, Batra K. Assessment of cytoprotective and genoprotective effects of Moringa oleifera and Tinospora cordifolia extracts in vitro. Toxicol Res (Camb) 2024; 13:tfae133. [PMID: 39184218 PMCID: PMC11339162 DOI: 10.1093/toxres/tfae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Background Moringa oleifera and Tinospora cordifolia is extensively used as an ingredient of food and in traditional medicine for the management of a variety of diseases. Material and methods The extracts of leaf of Moringa oleifera and stem of Tinospora cordifolia were assessed to examine their ability to inhibit the oxidative DNA damage (by DNA protection assay), cytoprotective and genoprotective potential (by Comet assay) in V79 cells individually and in combinations. Result It was found that these extracts could significantly inhibit the OH-dependent damage of pUC18 plasmid DNA. M. oleifera extract (160 and 320 μg/mL) and Tinospora cordifolia extract (640, 1,280 and 2,560 μg/mL) individually showed higher DNA protection activity. M. oleifera (1,280 μg/mL) combined with Tinospora cordifolia (640 μg/mL) showed best cytoprotective and genoprotective activities among different concentration combinations and various concentrations of individual plants in V79 cell line against hydrogen peroxide induced cytotoxicity and genotoxicity. Conclusion This study demonstrates the cytoprotective and genoprotective activity of M. oleifera and Tinospora cordifolia individually or in combination.
Collapse
Affiliation(s)
- Preeti Bagri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| | - Kanisht Batra
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| |
Collapse
|
9
|
Sameem S, Dwivedi V, Kumar V, Dwivedi AR, Pathak P, Singh B, Bhat MA, Verma A. Phyto-Fabrication of Moringa Oleifera Peel-Sourced Silver Nanoparticles: A Promising Approach for Combating Hepatic Cancer by Targeting Proinflammatory Cytokines and Mitigating Cytokine Storms. Chem Biodivers 2024; 21:e202400059. [PMID: 38584309 DOI: 10.1002/cbdv.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Hepatocellular carcinoma (HCC) arises from precancerous nodules, leading to liver damage and inflammation, which triggers the release of proinflammatory cytokines. Dysregulation of these cytokines can escalate into a cytokine storm, causing severe organ damage. Interestingly, Moringa oleifera (M. oleifera) fruit peel, previously discarded as waste, contains an abundance of essential biomolecules and high nutritional value. This study focuses on the eco-friendly synthesis of silver nanoparticles infused with M. oleifera peel extract biomolecules and their impact on regulating proinflammatory cytokines, as well as their potential anticancer effects against Wistar rats. The freshly synthesized nanoformulation underwent comprehensive characterization, followed by antihepatic cancer evaluation using a diethyl nitrosamine-induced model (at a dose of 200 mg kg-1 BW). The study demonstrates a significant reduction in proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, interleukin-1β, and nuclear factor kappa beta (NF-κB). Furthermore, it confirms that the newly biosynthesized silver nanoparticles exhibit additional potential against hepatic cancer due to their capped biomolecules.
Collapse
Affiliation(s)
- Shahnawaz Sameem
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vivek Dwivedi
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Ashish R Dwivedi
- Department of Medicinal Chemistry, School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
- Department of Pharmacy, S. N. Medical College, Agra, 282002, India
| | - Mashooq Ahmad Bhat
- Deptartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| |
Collapse
|
10
|
Balit T, Thonabulsombat C, Dharmasaroja P. Moringa oleifera leaf extract suppresses TIMM23 and NDUFS3 expression and alleviates oxidative stress induced by Aβ1-42 in neuronal cells via activation of Akt. Res Pharm Sci 2024; 19:105-120. [PMID: 39006971 PMCID: PMC11244708 DOI: 10.4103/1735-5362.394825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/16/2023] [Accepted: 12/04/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Oxidative stress plays an important role in Alzheimer's disease (AD) pathogenesis. Moringa oleifera leaf (MOL) extract has been shown to have antioxidant activities. Here, we studied the antioxidative and anti-apoptotic effects of water-soluble MOL extract in an amyloid beta (Aβ)-induced oxidative stress model of AD. Experimental approach The effect of amyloid beta (Aβ)1-42 and MOL extract on differentiated SH-SY5Y cell viability was assessed by MTT assay. Cells were treated with Aβ1-42, MOL extract, or MOL extract followed by Aβ1-42. The mitochondrial membrane potential (ΔΨm) and the reactive oxygen species (ROS) were evaluated by flow cytometry and dihydroethidium (DHE) assay, respectively. Western blotting was used to assess the expression of mitochondrial proteins TIMM23 and NDUFS3, apoptosis-related proteins Bax, Bcl-2, and cleaved caspase-3 along with fluorescence analysis of caspase-3/7, and Akt phosphorylation. Findings/Results MOL extract pretreatment at 25, 50, and 100 μg/mL prevented ΔΨm reduction. At 100-μg/mL, MOL extract decreased TIMM23 and NDUFS3 proteins and DHE signals in Aβ1-42-treated cells. MOL extract pretreatment (25, 50, and 100 μg/mL) also alleviated the apoptosis indicators, including Bax, caspase-3/7 intensity, and cleaved caspase-3, and increased Bcl-2 levels in Aβ1-42-treated cells, consistent with a reduction in the number of apoptotic cells. The protective effects of MOL extract were possibly mediated through Akt activation, evidenced by increased Akt phosphorylation. Conclusion and implications The neuroprotective effect of MOL extract could be mediated via the activation of Akt, leading to the suppression of oxidative stress and apoptosis in an Aβ1-42 model of AD.
Collapse
Affiliation(s)
- Tatcha Balit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Permphan Dharmasaroja
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| |
Collapse
|
11
|
Shaji D, Nagura Y, Sabishiro H, Suzuki R, Kurita N. In Silico Design of Natural Inhibitors of ApoE4 from the Plant Moringa oleifera: Molecular Docking and Ab Initio Fragment Molecular Orbital Calculations. Molecules 2023; 28:8035. [PMID: 38138525 PMCID: PMC10745539 DOI: 10.3390/molecules28248035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological disease, and its signs and symptoms appear slowly over time. Although current Alzheimer's disease treatments can alleviate symptoms, they cannot prevent the disease from progressing. To accurately diagnose and treat Alzheimer's disease, it is therefore necessary to establish effective methods for diagnosis. Apolipoprotein E4 (ApoE4), the most frequent genetic risk factor for AD, is expressed in more than half of patients with AD, making it an attractive target for AD therapy. We used molecular docking simulations, classical molecular mechanics optimizations, and ab initio fragment molecular orbital (FMO) calculations to investigate the specific interactions between ApoE4 and the naturally occurring compounds found in the plant Moringa Oleifera. According to the FMO calculations, quercetin had the highest binding affinity to ApoE4 among the sixteen compounds because its hydroxyl groups generated strong hydrogen bonds with the ApoE4 residues Trp11, Asp12, Arg15, and Asp130. As a result, we proposed various quercetin derivatives by introducing a hydroxyl group into quercetin and studied their ApoE4 binding properties. The FMO data clearly showed that adding a hydroxyl group to quercetin improved its binding capacity to ApoE4. Furthermore, ApoE4 Trp11, Asp12, Arg15, and Asp130 residues were discovered to be required for significant interactions between ApoE4 and quercetin derivatives. They had a higher ApoE4 binding affinity than our previously proposed epicatechin derivatives. Accordingly, the current results evaluated using the ab initio FMO method will be useful for designing potent ApoE4 inhibitors that can be used as a candidate agent for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Noriyuki Kurita
- Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan
| |
Collapse
|
12
|
Khan F, Joshi A, Devkota HP, Subramaniyan V, Kumarasamy V, Arora J. Dietary glucosinolates derived isothiocyanates: chemical properties, metabolism and their potential in prevention of Alzheimer's disease. Front Pharmacol 2023; 14:1214881. [PMID: 37554984 PMCID: PMC10404612 DOI: 10.3389/fphar.2023.1214881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia affecting millions of people worldwide. It is a progressive, irreversible, and incurable neurodegenerative disorder that disrupts the synaptic communication between millions of neurons, resulting in neuronal death and functional loss due to the abnormal accumulation of two naturally occurring proteins, amyloid β (Aβ) and tau. According to the 2018 World Alzheimer's Report, there is no single case of an Alzheimer's survivor; even 1 in 3 people die from Alzheimer's disease, and it is a growing epidemic across the globe fruits and vegetables rich in glucosinolates (GLCs), the precursors of isothiocyanates (ITCs), have long been known for their pharmacological properties and recently attracted increased interest for the possible prevention and treatment of neurodegenerative diseases. Epidemiological evidence from systematic research findings and clinical trials suggests that nutritional and functional dietary isothiocyanates interfere with the molecular cascades of Alzheimer's disease pathogenesis and prevent neurons from functional loss. The aim of this review is to explore the role of glucosinolates derived isothiocyanates in various molecular mechanisms involved in the progression of Alzheimer's disease and their potential in the prevention and treatment of Alzheimer's disease. It also covers the chemical diversity of isothiocyanates and their detailed mechanisms of action as reported by various in vitro and in vivo studies. Further clinical studies are necessary to evaluate their pharmacokinetic parameters and effectiveness in humans.
Collapse
Affiliation(s)
- Farhana Khan
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Abhishek Joshi
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Arora
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
13
|
Cuschieri A, Camilleri E, Blundell R. Cerebroprotective effects of Moringa oleifera derivatives extracts against MCAO ischemic stroke: A systematic review and meta-analysis. Heliyon 2023; 9:e16622. [PMID: 37303567 PMCID: PMC10248124 DOI: 10.1016/j.heliyon.2023.e16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Moringa oleifera (MO), has been studied extensively, and has numerous medicinal and socioeconomic benefits. Emerging research has investigated the efficacy of MO extract and/or its phytochemical derivatives against ischemic stroke in-vivo. To date, no studies comprehensively reviewing the effects of MO extract and/or its phytochemical derivatives against ischemic stroke have been published. A systematic review and meta-analysis was conducted to assess the effects of MO extract and/or its phytochemical derivatives against focal ischemic stroke, modeled in-vivo. Compared with control groups, significant reduction in infarct volume and malondialdehyde levels, and signficant increase in antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase. The primary mechanism of action of MO extract and its phytochemical derivatives which confers neuroprotection is reduction in oxidative stress by increasing antioxidant enzymes. On the whole, the present systematic review critically assessed evidence which demonstrated that MO extract may confer protective effect on experimental ischemic stroke. Although effect size may have been overestimated due to the limited number of included studies, small sample sizes and possible publication bias, results generated in this meta-analysis dmeonstrate that MO extract may be a promising neuroprotective agent against human ischemic stroke.
Collapse
|
14
|
Timalsina B, Haque MN, Dash R, Choi HJ, Ghimire N, Moon IS. Neuronal Differentiation and Outgrowth Effect of Thymol in Trachyspermum ammi Seed Extract via BDNF/TrkB Signaling Pathway in Prenatal Maternal Supplementation and Primary Hippocampal Culture. Int J Mol Sci 2023; 24:ijms24108565. [PMID: 37239909 DOI: 10.3390/ijms24108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Reviving the neuronal functions in neurodegenerative disorders requires the promotion of neurite outgrowth. Thymol, which is a principal component of Trachyspermum ammi seed extract (TASE), is reported to have neuroprotective effects. However, the effects of thymol and TASE on neuronal differentiation and outgrowth are yet to be studied. This study is the first report investigating the neuronal growth and maturation effects of TASE and thymol. Pregnant mice were orally supplemented with TASE (250 and 500 mg/kg), thymol (50 and 100 mg/kg), vehicle, and positive controls. The supplementation significantly upregulated the expression of brain-derived neurotrophic factor (BDNF) and early neuritogenesis markers in the pups' brains at post-natal day 1 (P1). Similarly, the BDNF level was significantly upregulated in the P12 pups' brains. Furthermore, TASE (75 and 100 µg/mL) and thymol (10 and 20 µM) enhanced the neuronal polarity, early neurite arborization, and maturation of hippocampal neurons in a dose-dependent manner in primary hippocampal cultures. The stimulatory activities of TASE and thymol on neurite extension involved TrkB signaling, as evidenced by attenuation via ANA-12 (5 µM), which is a specific TrkB inhibitor. Moreover, TASE and thymol rescued the nocodazole-induced blunted neurite extension in primary hippocampal cultures, suggesting their role as a potent microtubule stabilizing agent. These findings demonstrate the potent capacities of TASE and thymol in promoting neuronal development and reconstruction of neuronal circuitry, which are often compromised in neurodegenerative diseases and acute brain injuries.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
15
|
Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, Pareek A, Chuturgoon AA. Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects. Int J Mol Sci 2023; 24:ijms24032098. [PMID: 36768420 PMCID: PMC9916933 DOI: 10.3390/ijms24032098] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Moringa oleifera, also known as the "tree of life" or "miracle tree," is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
- Correspondence: (A.P.); (A.A.C.)
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Pushpa Kashania
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (A.P.); (A.A.C.)
| |
Collapse
|
16
|
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, Yanagisawa D, Tooyama I, Wan Ngah WZ, Jantan I, Hamezah HS. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 2023; 13:1035220. [PMID: 36686668 PMCID: PMC9849397 DOI: 10.3389/fphar.2022.1035220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
Collapse
Affiliation(s)
- Ummi Kalthum Azlan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Ahmed Mediani
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Xiaohui Tong
- 3School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Daijiro Yanagisawa
- 4Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Wan Zurinah Wan Ngah
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ibrahim Jantan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,*Correspondence: Hamizah Shahirah Hamezah,
| |
Collapse
|
17
|
Mundkar M, Bijalwan A, Soni D, Kumar P. Neuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review. J Food Biochem 2022; 46:e14451. [PMID: 36206551 DOI: 10.1111/jfbc.14451] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Moringa oleifera is a traditional Indian herb belonging to the Moringaceae family, it is commonly known as the horse-radish tree, drumstick, or sahajna. In developing countries, Moringa is used as feed for both humans and animals due to its well-known antioxidant, anti-inflammatory, and anti-apoptotic properties owing to its several phytoconstituents including β-carotene, quercetin, kaempferol, ascorbic acid, flavonoids, phenolic acid, rhamnose, glycosylates, glucomoringin, and isothiocyanates. These constituents help to maintain the brain antioxidant enzyme levels, mitochondrial functions, and neurogenesis, showing neuroprotective effects in several neurodegenerative disorders including Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, and Amyotrophic lateral sclerosis. This review discusses various phytoconstituent of moringa and their therapeutic potential in various neurological disorders. Additionally, we also concise the safety and toxicity profile, of different molecular pathways involved in the neuroprotective effect of M. oleifera including M. oleifera nanoparticles for better therapeutic value. PRACTICAL APPLICATIONS: Several clinical and preclinical studies on Moringa oleifera have been conducted, and the outcomes indicate moringa could be used in the treatment of brain disorders. As a result, we conclude that moringa and its nanoformulations could be employed to treat neurological problems. In the future, M. oleifera phytoconstituents could be evaluated against specific signaling pathways, which could aid researchers in discovering their mechanism of action. Furthermore, the use of moringa as a nutraceutical owing to its myriad pharmacological potential will go a long way in boosting the economy of countries that grow moringa on a large scale.
Collapse
Affiliation(s)
- Maroti Mundkar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Anjali Bijalwan
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
18
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Patil SV, Mohite BV, Marathe KR, Salunkhe NS, Marathe V, Patil VS. Moringa Tree, Gift of Nature: a Review on Nutritional and Industrial Potential. CURRENT PHARMACOLOGY REPORTS 2022; 8:262-280. [PMID: 35600137 PMCID: PMC9108141 DOI: 10.1007/s40495-022-00288-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Satish V. Patil
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | - Bhavana V. Mohite
- Department of Microbiology, Bajaj College of Science, Wardha, MH India
| | - Kiran R. Marathe
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | | | | | - Vikas S. Patil
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, MH India
| |
Collapse
|
20
|
Gao Q, Wei Z, Liu Y, Wang F, Zhang S, Serrano C, Li L, Sun B. Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030678. [PMID: 35163945 PMCID: PMC8840448 DOI: 10.3390/molecules27030678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves.
Collapse
Affiliation(s)
- Qian Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Zongmin Wei
- School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang 110016, China;
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222069, China
| | - Yun Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Carmo Serrano
- Unidade de Tecnologia e Inovação, Instituto National de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal;
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| |
Collapse
|
21
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
22
|
Kamble DB, Bashir K, Singh R, Rani S. Effect of
Moringa oleífera
pod addition on the digestibility, cooking quality, and structural attributes of functional pasta. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dinkar B. Kamble
- Department of Food Technology Vignan's Foundation for Science Technology and Research Guntur India
| | - Khalid Bashir
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Rakhi Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship & Management Kundli India
| | - Savita Rani
- Department of Life Science Sharda University Greater Noida India
| |
Collapse
|
23
|
Ghimire S, Subedi L, Acharya N, Gaire BP. Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14358-14371. [PMID: 34843254 DOI: 10.1021/acs.jafc.1c04581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Moringa oleifera, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of M. oleifera indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, M. oleifera is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties. Recently, a few experimental studies reported the neuroprotective effects of M. oleifera against Alzheimer's disease, dementia, Parkinson's disease, stroke, and neurotoxicity-related symptoms. In addition, several neuroprotective phytochemicals have been isolated from M. oleifera, which signifies that it can have promising neuroprotective effects. Therefore, this review aimed to explore the current updates and future prospective of neuroprotective efficacies of M. oleifera.
Collapse
Affiliation(s)
- Saurav Ghimire
- Department of Neuroscience, Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, 33076 Bordeaux, France
| | - Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Namrata Acharya
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
24
|
Amina M, Bhat RS, Al-Dbass AM, Musayeib NM, Fahmy R, Alhadlaq L, El-Ansary A. The protective effect of Moringa oleifera plant extract against glutamate-induced DNA damage and reduced cell viability in a primary retinal ganglion cell line. PeerJ 2021; 9:e11569. [PMID: 34221717 PMCID: PMC8231317 DOI: 10.7717/peerj.11569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Glutamate excitotoxicity can cause DNA damage and is linked to many retinal and neurological disorders. In mammals, the visual signal from the eyes to the brain is conducted only by retinal ganglion cells (RGCs), which can be damaged by overstimulation of glutamate receptors. Methodology We examined the protective effects of Moringa oleifera seed extract against glutamate-induced DNA damage in RGCs. RGCs cells were treated with 5, 10, 50, or 100 µg/ml of M. oleifera seed extract and glutamate separately and then assessed for DNA damage using the comet assay. We also evaluated the viability of the RGCs after both treatments using the MTT test. Additionally, RGCs were pretreated with M. oleifera seed extract (50 or 100 µg/ml) for 2 h before glutamate treatment (100 µg/ml) to determine the potential protective effects of M. oleifera. We performed a phytochemical analysis of the M. oleifera seed extract using standard reactions. Results The M. oleifera seed extract was found to be rich in many phytochemicals. We observed a significant dose-dependent elevation in all comet assay variables in glutamate-treated RGCs, whereas M. oleifera seed extract treatments did not show any significant change in DNA integrity. Conclusion M. oleifera seed extract demonstrates neuroprotective effects, which suggests it may help to prevent the development of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M Al-Dbass
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nawal M Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rania Fahmy
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, r, Saudi Arabia.,Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Leen Alhadlaq
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Adebayo OG, Wopara I, Aduema W, Ebo OT, Umoren EB. Long-term consumption of Moringa oleifera-supplemented diet enhanced neurocognition, suppressed oxidative stress, acetylcholinesterase activity and neuronal degeneration in rat's hippocampus. Drug Metab Pers Ther 2021; 0:dmdi-2020-0189. [PMID: 33770830 DOI: 10.1515/dmdi-2020-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study investigates protection against oxidative stress and memory enhancing potential of long-term consumption of Moringa oleifera leaves. METHODS Male Wistar rat were fed with mixture of M. oleifera-supplemented diets (MOSD) partitioned in 1, 5, 10, and 20% continuously for 12 weeks. Object recognition test (ORT) and Morris water maze (MWM) was used for assessing neurocognition. Changes in body weight, Lipid peroxidation (MDA), Glutathione (GSH), Catalase (CAT) and Acetylcholinesterase (AChE) activity was assayed in the brain tissue. Histomorphometric of the hippocampus was also examined. RESULTS The diets progressively increase the body weigh after the 12 weeks, improved spatial (MWM) and non-spatial (ORT) memory performance, protect against oxidative stress, inhibit AChE activity and suppresses neuronal degeneration in the hippocampus when stained with Cresyl violent stain. CONCLUSIONS Conclusively, long-term consumption of MOSD shows strong protection against oxidative stress and hippocampal degeneration and improves neurocognition with dose dependent effect.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| |
Collapse
|
26
|
Adebayo OG, Wopara I, Aduema W, Ebo OT, Umoren EB. Long-term consumption of Moringa oleifera-supplemented diet enhanced neurocognition, suppressed oxidative stress, acetylcholinesterase activity and neuronal degeneration in rat's hippocampus. Drug Metab Pers Ther 2021; 36:223-231. [PMID: 34412171 DOI: 10.1515/dmpt-2020-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study investigates protection against oxidative stress and memory enhancing potential of long-term consumption of Moringa oleifera leaves. METHODS Male Wistar rat were fed with mixture of M. oleifera-supplemented diets (MOSD) partitioned in 1, 5, 10, and 20% continuously for 12 weeks. Object recognition test (ORT) and Morris water maze (MWM) was used for assessing neurocognition. Changes in body weight, Lipid peroxidation (MDA), Glutathione (GSH), Catalase (CAT) and Acetylcholinesterase (AChE) activity was assayed in the brain tissue. Histomorphometric of the hippocampus was also examined. RESULTS The diets progressively increase the body weigh after the 12 weeks, improved spatial (MWM) and non-spatial (ORT) memory performance, protect against oxidative stress, inhibit AChE activity and suppresses neuronal degeneration in the hippocampus when stained with Cresyl violent stain. CONCLUSIONS Conclusively, long-term consumption of MOSD shows strong protection against oxidative stress and hippocampal degeneration and improves neurocognition with dose dependent effect.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| |
Collapse
|
27
|
Hannan MA, Haque MN, Munni YA, Oktaviani DF, Timalsina B, Dash R, Afrin T, Moon IS. Centella asiatica promotes early differentiation, axodendritic maturation and synaptic formation in primary hippocampal neurons. Neurochem Int 2021; 144:104957. [PMID: 33444677 DOI: 10.1016/j.neuint.2021.104957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Centella asiatica is a 'medhya-rasayana (nootrophic or memory booster)' herb that has been indicated in Ayurveda for improving memory function and treating dementia disorders. Although the neuroprotective effects of C. asiatica have been reported in earlier studies, the information on whether this nootropic herb could promote early differentiation and development of axon and dendrites in primary hippocampal neurons is currently limited. THE AIM OF THE STUDY To investigate the effects of C. asiatica and asiatic acid, one of the principal active constituents of C. asiatica, on the various stages of neuronal polarity, including early neuronal differentiation, axonal outgrowth, dendritic arborization, axonal maturation, and synaptic formation. MATERIALS AND METHODS Embryonic rat hippocampal neurons were incubated with C. asiatica leaf extract (CAE) or asiatic acid. After an indicated time, neurons were fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for early neuronal differentiation, axonal and dendritic maturation and synaptogenesis were performed using Image J software. Neuronal viability was determined using trypan blue exclusion assay. RESULTS CAE at varying concentrations ranging from 3.75 to 15 μg/mL enhanced neurite outgrowth with the highest optimal concentration of 7.5 μg/mL. The effects of CAE commenced immediately after cell seeding, as indicated by its accelerating effect on neuronal differentiation. Subsequently, CAE significantly elaborated dendritic and axonal morphology and facilitated synapse formation. Asiatic acid also facilitated neurite outgrowth, but to a lesser extent than CAE. CONCLUSION These findings revealed that CAE exerted its modulatory effects in every stage of neuronal development, supporting its previously claimed neurotrophic function and suggest that this natural nootropic and its active component asiatic acid can be further investigated to explore a promising solution for degenerative brain disorders and injuries.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
28
|
Ahmad SS, Khalid M, Kamal MA, Younis K. Study of Nutraceuticals and Phytochemicals for the Management of Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:1884-1895. [PMID: 33588732 PMCID: PMC9185787 DOI: 10.2174/1570159x19666210215122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects several people worldwide and has devastating impacts on society with a limited number of approaches for its pharmacological treatment. The main causes of AD are not clear yet. However, the formation of senile plaques, neurofibrillary tangles, hyper-phosphorylation of tau protein, and disruption of redox homeostasis may cause AD. These causes have a positive correlation with oxidative stress, producing reactive ions, which are responsible for altering the physiological condition of the body. CONCLUSION Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.
Collapse
Affiliation(s)
| | | | - Mohammad A. Kamal
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | - Kaiser Younis
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| |
Collapse
|
29
|
Caicedo-Lopez LH, Cuellar-Nuñez ML, Luzardo-Ocampo I, Campos-Vega R, Lóarca-Piña G. Colonic metabolites from digested Moringa oleifera leaves induced HT-29 cell death via apoptosis, necrosis, and autophagy. Int J Food Sci Nutr 2020; 72:485-498. [PMID: 33302731 DOI: 10.1080/09637486.2020.1849039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Colorectal cancer is an important concern in modern society. Risk factors such as the diet indicate the need to find healthy food products displaying additional health benefits. This study aimed to characterise and evaluate the impact of the colonic metabolites from the fermented non-digestible fraction of Moringa oleifera (MO) leaves (FNFM) on cell death mechanisms from HT-29 cells. MO leaves were digested in vitro, and the 12 h-colonic extract was obtained. FNFM mainly contained morin and chlorogenic acids (41.97 and 25.33 µg/g sample). Butyric acid was ranked as the most important metabolite of FNFM. The FNFM exerted antiproliferative effect against HT-29 colorectal cancer cells (half lethal concentration, LC50: 5.9 mL/100 mL). Compared to untreated control, LC50 increased H2O2 production (149.43%); induced apoptosis (119.02%), autophagy (75.60%), and necrosis (87.72%). These results suggested that digested MO colonic metabolites exert antiproliferative effect against HT-29 cells, providing additional health benefits associated with MO consumption.
Collapse
Affiliation(s)
- Laura H Caicedo-Lopez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico.,Biosystems Engineering Group, School of Engineering, Universidad Autonoma de Queretaro, Qro, Mexico
| | | | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Rocio Campos-Vega
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Guadalupe Lóarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| |
Collapse
|
30
|
Mehwish HM, Riaz Rajoka MS, Xiong Y, Zheng K, Xiao H, Anjin T, Liu Z, Zhu Q, He Z. Moringa oleifera – A Functional Food and Its Potential Immunomodulatory Effects. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1825479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hafiza Mahreen Mehwish
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yongai Xiong
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Tao Anjin
- Department of Pharmacy, Hybio Pharmaceutical Co., Ltd., Shenzhen, 518057, PR China
| | - Zhigang Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen Technology University., Shenzhen, 518060, PR China
| |
Collapse
|
31
|
Razzaq A, Ahmad Malik S, Saeed F, Imran A, Rasul A, Qasim M, Zafar S, Kamran SKS, Maqbool J, Imran M, Hussain G, Hussain M. Moringa oleifera Lam.ameliorates the muscles function recovery following an induced insult to the Sciatic nerve in a mouse model. Food Sci Nutr 2020; 8:4009-4016. [PMID: 32884682 PMCID: PMC7455924 DOI: 10.1002/fsn3.1620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve injury (PNI) is an incapacitating situation and has no effective therapy until now. We examined the possible role of crude leaves of Moringa oleifera Lam. at 200 mg/kg body weight in accelerating the functional regain in the sciatic nerve lesion induced mouse model (Adult male albino mice (BALB/c). Motor functions were evaluated by using the sciatic functional index, muscle mass, and muscle grip strength measurement, whereas the sensory functions were evaluated by using the hot plate test. Blood glucose levels and blood cell composition were also analyzed. We found that the Moringa oleifera crude leaves endorse the sensory and motor functions reclamation following the PNI with a statistically significant difference (p < .05). It also revitalizes the gastrocnemius muscle by mass restoration with glycemic management perspective. Conclusively, the crude powder of Moringa oleifera leaves exhibited a function restoration boosting property and further detailed studies for its application as a therapeutic agent are strongly recommended.
Collapse
Affiliation(s)
- Aroona Razzaq
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Shoaib Ahmad Malik
- Department of BiochemistrySargodha Medical CollegeUniversity of SargodhaSargodhaPakistan
| | - Farhan Saeed
- Institute of Home and Food SciencesFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Institute of Home and Food SciencesFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Qasim
- Department of Bioinformatics and BiotechnologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Syed Kashif Shahid Kamran
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
32
|
The ameliorative effects of a phenolic derivative of Moringa oleifera leave against vanadium-induced neurotoxicity in mice. IBRO Rep 2020; 9:164-182. [PMID: 32803016 PMCID: PMC7417907 DOI: 10.1016/j.ibror.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022] Open
Abstract
Vanadium, a transition series metal released during some industrial activities, induces oxidative stress and lipid peroxidation. Ameliorative effect of a pure compound from the methanolic extract of Moringa oleifera leaves, code-named MIMO2, in 14-day old mice administered with vanadium (as sodium metavanadate 3 mg/kg) for 2 weeks was assessed. Results from body weight monitoring, muscular strength, and open field showed slight reduction in body weight and locomotion deficit in vanadium-exposed mice, ameliorated with MIMO2 co-administration. Degeneration of the Purkinje cell layer and neuronal death in the hippocampal CA1 region were observed in vanadium-exposed mice and both appeared significantly reduced with MIMO2 co-administration. Demyelination involving the midline of the corpus callosum, somatosensory and retrosplenial cortices was also reduced with MIMO2. Microglia activation and astrogliosis observed through immunohistochemistry were also alleviated. Immunohistochemistry for myelin, axons and oligodendrocyte lineage cells were also carried out and showed that in vanadium-treated mice brains, oligodendrocyte progenitor cells increased NG2 immunolabelling with hypertrophy and bushy, ramified appearance of their processes. MIMO2 displayed ameliorative and antioxidative effects in vanadium-induced neurotoxicity in experimental murine species. This is likely the first time MIMO2 is being used in vivo in an animal model.
Collapse
|
33
|
Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS. Neuroprotection Against Oxidative Stress: Phytochemicals Targeting TrkB Signaling and the Nrf2-ARE Antioxidant System. Front Mol Neurosci 2020; 13:116. [PMID: 32714148 PMCID: PMC7346762 DOI: 10.3389/fnmol.2020.00116] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) plays a critical role in the pathophysiology of several brain-related disorders, including neurodegenerative diseases and ischemic stroke, which are the major causes of dementia. The Nrf2-ARE (nuclear factor erythroid 2-related factor 2/antioxidant responsive element antioxidant) system, the primary cellular defense against OS, plays an essential role in neuroprotection by regulating the expressions of antioxidant molecules and enzymes. However, simultaneous events resulting in the overproduction of reactive oxygen species (ROS) and deregulation of the Nrf2-ARE system damage essential cell components and cause loss of neuron structural and functional integrity. On the other hand, TrkB (tropomyosin-related kinase B) signaling, a classical neurotrophin signaling pathway, regulates neuronal survival and synaptic plasticity, which play pivotal roles in memory and cognition. Also, TrkB signaling, specifically the TrkB/PI3K/Akt (TrkB/phosphatidylinositol 3 kinase/protein kinase B) pathway promotes the activation and nuclear translocation of Nrf2, and thus, confers neuroprotection against OS. However, the TrkB signaling pathway is also known to be downregulated in brain disorders due to lack of neurotrophin support. Therefore, activations of TrkB and the Nrf2-ARE signaling system offer a potential approach to the design of novel therapeutic agents for brain disorders. Here, we briefly overview the development of OS and the association between OS and the pathogenesis of neurodegenerative diseases and brain injury. We propose the cellular antioxidant defense and TrkB signaling-mediated cell survival systems be considered pharmacological targets for the treatment of neurodegenerative diseases, and review the literature on the neuroprotective effects of phytochemicals that can co-activate these neuronal defense systems.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| |
Collapse
|
34
|
Fombang EN, Nobossé P, Mbofung CMF, Singh D. Optimising extraction of antioxidants from roasted
Moringa oleifera
Lam. leaves using response surface methodology. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edith N. Fombang
- Department of Food Science and Nutrition National School of Agro‐Industrial Sciences, ENSAI University of Ngaoundere Ngaoundere Cameroon
| | - Pierre Nobossé
- Department of Food Science and Nutrition National School of Agro‐Industrial Sciences, ENSAI University of Ngaoundere Ngaoundere Cameroon
- Pharmacology and Toxicology Laboratory CSIR‐Institute of Himalayan Bioresource Technology Palampur176061 Himachal Pradesh India
| | - Carl M. F. Mbofung
- Department of Food Science and Nutrition National School of Agro‐Industrial Sciences, ENSAI University of Ngaoundere Ngaoundere Cameroon
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory CSIR‐Institute of Himalayan Bioresource Technology Palampur176061 Himachal Pradesh India
| |
Collapse
|
35
|
Popoola JO, Aworunse OS, Oyesola OL, Akinnola OO, Obembe OO. A systematic review of pharmacological activities and safety of Moringa oleifera. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, Moringa oleifera, a multipurpose medicinal plant (MMP) has received increased research attention and commercial interest for its nutritional, therapeutic and pharmacological properties. Rigorous approaches including biological assays, animal and clinical trials are required towards safe usage as herbal therapy. We conducted a systematic review of the known pharmacological activities, toxicity, and safety of M. oleifera, usually used locally in the treatment and prevention of myriads of illnesses. Five major bibliographic databases (SCOPUS, Web of Science, Science Direct, PubMed, and Mendeley) were searched for studies reported on pharmacological activities, toxicity, and safety assessment of M. oleifera in the last 29 years (1990 – 2019). Studies on animals and humans involving aqueous leaf extracts and different preparations from M. oleifera seed and bark were also considered. All articles retained, and data collected were evaluated based on the period of the article, country where such studies were conducted and the document type. Our search results identified and analyzed 165 articles while 63 studies were eventually retained. Diverse pharmacological activities including neuroprotective, antimicrobial, antiasthmatic, anti-malaria, cardioprotective, antidiabetic, antiobesity, hepatoprotective and cytotoxic effects, amongst others, were recorded. Toxicity studies in animal models and few human studies showed that M. oleifera is safe with no adverse effect reported. The importance of the plant is highlighted in the search for new bioactive compounds to explore its therapeutic potentials towards drug discovery and development in the pharmaceutical and allied industries.
Collapse
Affiliation(s)
- Jacob O. Popoola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | | | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olayemi O. Akinnola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
36
|
3β, 6β-dichloro-5-hydroxy-5α-cholestane facilitates neuronal development through modulating TrkA signaling regulated proteins in primary hippocampal neuron. Sci Rep 2019; 9:18919. [PMID: 31831796 PMCID: PMC6908615 DOI: 10.1038/s41598-019-55364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.
Collapse
|
37
|
Chiricosta L, Silvestro S, Pizzicannella J, Diomede F, Bramanti P, Trubiani O, Mazzon E. Transcriptomic Analysis of Stem Cells Treated with Moringin or Cannabidiol: Analogies and Differences in Inflammation Pathways. Int J Mol Sci 2019; 20:ijms20236039. [PMID: 31801206 PMCID: PMC6929002 DOI: 10.3390/ijms20236039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation is a common feature of many neurodegenerative diseases. The treatment of stem cells as a therapeutic approach to repair damage in the central nervous system represents a valid alternative. In this study, using Next-Generation Sequencing (NGS) technology, we analyzed the transcriptomic profile of human Gingival Mesenchymal Stem Cells (hGMSCs) treated with Moringin [4-(α-l-ramanosyloxy)-benzyl isothiocyanate] (hGMSCs-MOR) or with Cannabidiol (hGMSCs-CBD) at dose of 0.5 or 5 µM, respectively. Moreover, we compared their transcriptomic profiles in order to evaluate analogies and differences in pro- and anti-inflammatory pathways. The hGMSCs-MOR selectively downregulate TNF-α signaling from the beginning, reducing the expression of TNF-α receptor while hGMSCs-CBD limit its activity after the process started. The treatment with CBD downregulates the pro-inflammatory pathway mediated by the IL-1 family, including its receptor while MOR is less efficient. Furthermore, both the treatments are efficient in the IL-6 signaling. In particular, CBD reduces the effect of the pro-inflammatory JAK/STAT pathway while MOR enhances the pro-survival PI3K/AKT/mTOR. In addition, both hGMSCs-MOR and hGMSCs-CBD improve the anti-inflammatory activity enhancing the TGF-β pathway.
Collapse
Affiliation(s)
- Luigi Chiricosta
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
| | - Serena Silvestro
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
| | - Jacopo Pizzicannella
- Azienda Sanitaria Locale 02 Lanciano-Vasto-Chieti, “Ss. Annunziata” Hospital, 66100 Chieti, Italy
| | - Francesca Diomede
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Placido Bramanti
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
| | - Oriana Trubiani
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Emanuela Mazzon
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
- Correspondence: ; Tel.: +39-090-60-12-8172
| |
Collapse
|
38
|
Dhakad AK, Ikram M, Sharma S, Khan S, Pandey VV, Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother Res 2019; 33:2870-2903. [PMID: 31453658 DOI: 10.1002/ptr.6475] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
The genus Moringa Adans. comprises 13 species, of which Moringa oleifera Lam. native to India and cultivated across the world owing to its drought and frost resistance habit is widely used in traditional phytomedicine and as rich source of essential nutrients. Wide spectrum of phytochemical ingredients among leaf, flower, fruit, seed, seed oil, bark, and root depend on cultivar, season, and locality. The scientific studies provide insights on the use of M. oleifera with different aqueous, hydroalcoholic, alcoholic, and other organic solvent preparations of different parts for therapeutic activities, that is, antibiocidal, antitumor, antioxidant, anti-inflammatory, cardio-protective, hepato-protective, neuro-protective, tissue-protective, and other biological activities with a high degree of safety. A wide variety of alkaloid and sterol, polyphenols and phenolic acids, fatty acids, flavanoids and flavanol glycosides, glucosinolate and isothiocyanate, terpene, anthocyanins etc. are believed to be responsible for the pragmatic effects. Seeds are used with a view of low-cost biosorbent and coagulant agent for the removal of metals and microbial contamination from waste water. Thus, the present review explores the use of M. oleifera across disciplines for its prominent bioactive ingredients, nutraceutical, therapeutic uses and deals with agricultural, veterinarian, biosorbent, coagulation, biodiesel, and other industrial properties of this "Miracle Tree."
Collapse
Affiliation(s)
- Ashok K Dhakad
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| | - Mohsin Ikram
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Salman Khan
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Vijay V Pandey
- Forest Pathology Division, Forest Research Institute, Dehradun, India
| | - Avtar Singh
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
39
|
Zeng K, Li Y, Yang W, Ge Y, Xu L, Ren T, Zhang H, Zhuo R, Peng L, Chen C, Zhou Y, Zhao Y, Li WJ, Jin X, Yang L. Moringa oleifera seed extract protects against brain damage in both the acute and delayed stages of ischemic stroke. Exp Gerontol 2019; 122:99-108. [DOI: 10.1016/j.exger.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
40
|
Nobossé P, Fombang EN, Mbofung CMF. Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci Nutr 2018; 6:2188-2198. [PMID: 30510720 PMCID: PMC6261213 DOI: 10.1002/fsn3.783] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Antioxidant activity (AOA) and phytochemical content of Moringa oleifera Lam leaves were determined as a function of their age and extraction solvent. Fresh Moringa leaves aged 30, 45, and 60 days were harvested and extracted with three solvents; methanol, ethanol, and water. AOA of leaf extracts was measured using radical scavenging assays (DPPH, ABTS, antiperoxide activity [APA]) and reducing assays (FRAP and total antioxidant capacity [TAC]), and these were correlated with total polyphenols (TPC), total flavonoids (TFC), and chlorophyll contents of leaves. Significant variability (p < 0.05) in TPC and AOA of Moringa leaf extracts was observed with age and extraction solvent as well as their interaction. TPC and TFC increased with maturity, except in aqueous extract. The 60-day-old leaves showed highest TPC, TFC, and tocopherol contents with highest DPPH activity. On their part, 30-day-old leaves recorded better vitamin C, chlorophyll, and carotenoids with highest ABTS activity and APA. Methanol was best extraction solvent for TPC (4.6 g GAE/100 g DM) while ethanol was for flavonoids (1.8 g CE/100 g DM). Ethanol extracts exhibited the highest DPPH activity (53.3%-71.1%), while both ethanolic and methanolic extracts had similar and higher ABTS + activity (3.83-3.86 g AAE/100 g DM). Strong positive correlations (r ≥ 0.8; p < 0.05) were observed between chlorophyll content and DPPH, ABTS, and APA, suggesting that chlorophyll was the major contributor to AOA. TAC was highest in aqueous solvent. Free radical scavenging activity in Moringa leaves is positively correlated to chlorophyll, TFC, and TPC while reducing power is positively correlated to chlorophyll and TPC. AOA of fresh Moringa leaf extract is a function of its phytochemical content and is influenced by both the age of the leaves and the extraction solvent used. Methanolic and ethanolic extracts of 45-day-old Moringa leaves exhibited best antioxidant potentials.
Collapse
Affiliation(s)
- Pierre Nobossé
- Food Biophysics, Biochemistry and Nutrition LaboratoryDepartment of Food Science and NutritionNational School of Agro‐Industrial Sciences (ENSAI)University of NgaoundereNgaoundereCameroon
| | - Edith N. Fombang
- Food Biophysics, Biochemistry and Nutrition LaboratoryDepartment of Food Science and NutritionNational School of Agro‐Industrial Sciences (ENSAI)University of NgaoundereNgaoundereCameroon
| | - Carl M. F. Mbofung
- Food Biophysics, Biochemistry and Nutrition LaboratoryDepartment of Food Science and NutritionNational School of Agro‐Industrial Sciences (ENSAI)University of NgaoundereNgaoundereCameroon
| |
Collapse
|
41
|
In Vitro Anti-Cholinesterase and Antioxidant Activity of Extracts of Moringa oleifera Plants from Rivers State, Niger Delta, Nigeria. MEDICINES 2018; 5:medicines5030071. [PMID: 29976887 PMCID: PMC6164601 DOI: 10.3390/medicines5030071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023]
Abstract
This study evaluated Moringa oleifera extracts from two locations in Niger Delta for in vitro anti-cholinesterase and antioxidant activities. Methanolic, aqueous and ethanolic extracts of Moringa oleifera were evaluated for inhibition of acetylcholinesterase (AChE) activity, antioxidant properties, and total phenolic and flavonoid contents using standard procedures. M. oleifera extracts possessed significant and concentration dependent AChE inhibitory activity for methanolic, aqueous, and ethanolic extracts. For the most potent extracts, the percentage AChE inhibition/IC50 (µg/mL) values were Moringa oleifera root methanolic extracts (MORME): ~80%/0.00845; Moringa oleifera root ethanolic extract 1 (MOREE1): ~90%/0.0563; Moringa oleifera root ethanolic extract 2 (MOREE2): ~70%/0.00175; and Moringa oleifera bark ethanolic extract (MOBEE): ~70%/0.0173. The descending order of AChE inhibitory potency of plant parts were: root > bark > leaf > flowers > seed. All M. oleifera methanolic extracts at a concentration of 1000 µg/mL displayed significant (p < 0.05–0.001) DPPH radical scavenging activity, with values of ~20–50% of that of ascorbic acid. The total phenolic content and total flavonoid content (TPC/TFC) of MORME, Moringa Oju bark methanolic extract (MOBME), MOREE1, MOREE2 and Moringa leaf ethanolic leaf extract (MLEE) were (287/254), (212/113), (223/185), (203/343) and (201/102) mg gallic acid equivalents/g and quercetin equivalents/g, respectively. There was an inverse correlation between plant extract AChE inhibition and total phenolic (p < 0.0001) and total flavonoid contents (p < 0.0012). In summary, this study revealed 5 of 19 extracts of M. oleifera that have potent in vitro anti-cholinesterase and antioxidant activities.
Collapse
|
42
|
Romeo L, Diomede F, Gugliandolo A, Scionti D, Lo Giudice F, Lanza Cariccio V, Iori R, Bramanti P, Trubiani O, Mazzon E. Moringin Induces Neural Differentiation in the Stem Cell of the Human Periodontal Ligament. Sci Rep 2018; 8:9153. [PMID: 29904155 PMCID: PMC6002387 DOI: 10.1038/s41598-018-27492-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022] Open
Abstract
The therapeutic strategies for neurodegenerative diseases still represent a vast research field because of the lack of targeted, effective and resolutive treatment for neurodegenerative diseases. The use of stem cell-based therapy is an alternative approach that could lead to the replacement of damaged neuronal tissue. For this purpose, adult mesenchymal stem cells (MSC), including periodontal ligament stem cells (PDLSCs), could be very useful for their differentiation capacity, easy isolation and the ability to perform an autologous implant. The aim of this work was to test whether the Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate; GMG-ITC], an isothiocyanate extracted from Moringa oleifera seeds, was able to induce PDLSCs toward neural progenitor differentiation. Next-generation transcriptomics sequencing showed that moringin treatment increased the expression of genes involved in neuron cortical development and in particular in neuron belonging to upper and deep cortical layers. Moreover, moringin treatment upregulated genes involved in osteogenesis and adipogenesis although with a lower fold change compared to upregulated genes involved in neuronal differentiation. Finally, moringin did not induce the expression of oncogenes resulting in a safe treatment.
Collapse
Affiliation(s)
- Letizia Romeo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Francesca Diomede
- Department of medical, oral and biotechnological sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Fabrizio Lo Giudice
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Veronica Lanza Cariccio
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Oriana Trubiani
- Department of medical, oral and biotechnological sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
43
|
Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam. Nutrients 2018; 10:E343. [PMID: 29534518 PMCID: PMC5872761 DOI: 10.3390/nu10030343] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023] Open
Abstract
Moringa oleifera Lam. (M. oleifera), which belongs to the Moringaceae family, is a perennial deciduous tropical tree, and native to the south of the Himalayan Mountains in northern India. M. oleifera is rich in proteins, vitamin A, minerals, essential amino acids, antioxidants, and flavonoids, as well as isothiocyanates. The extracts from M. oleifera exhibit multiple nutraceutical or pharmacological functions including anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, neuroprotective, hypoglycemic, and blood lipid-reducing functions. The beneficial functions of M. oleifera are strongly associated with its phytochemicals such as flavonoids or isothiocyanates with bioactivity. In this review, we summarize the research progress related to the bioactivity and pharmacological mechanisms of M. oleifera in the prevention and treatment of a series of chronic diseases-including inflammatory diseases, neuro-dysfunctional diseases, diabetes, and cancers-which will provide a reference for its potential application in the prevention and treatment of chronic diseases or health promotion.
Collapse
Affiliation(s)
- Xianjuan Kou
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| | - Biao Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| | - Julia B Olayanju
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | - Justin M Drake
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
44
|
Gupta S, Jain R, Kachhwaha S, Kothari S. Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. J Herb Med 2018. [DOI: 10.1016/j.hermed.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Heng Li S, Wang LT, Deng X, NanJiao Y, Kong L, Fu M, Jia LQ, Yang JX, Ren L. Electroacupuncture Rescued the Impairment of Hippocampal Neurons in Perimenopausal Depression Rats via Activating the CREB/BDNF Pathway. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.164.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
González-Trujano ME, Martínez-González CL, Flores-Carrillo M, Luna-Nophal SI, Contreras-Murillo G, Magdaleno-Madrigal VM. Behavioral and electroencephalographic evaluation of the anticonvulsive activity of Moringa oleifera leaf non-polar extracts and one metabolite in PTZ-induced seizures. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 39:1-9. [PMID: 29433669 DOI: 10.1016/j.phymed.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/28/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
BACKGORUND Moringa oleifera Lamarck is a species that has long been used in high demand in folk medicine, including for the treatment of epilepsy. Nevertheless, scientific studies demonstrating its anticonvulsant properties and the nature of the bioactive constituents are lacking. HYPOTHESIS/AIM The aim of this study was to evaluate the anticonvulsant activities of the Moringa oleifera leaves in non-polar vs. polar extracts using behavioral and electroencephalographic (EEG) analyses in rodents. METHODS First, PTZ (80 mg/kg, i.p.)-induced tonic-clonic seizures were assayed via a dose-response (100, 200 and 300 mg/kg, i.p.) evaluation in mice. Then, a dosage of the extracts (100 or 300 mg/kg) and one metabolite (30 mg/kg, i.p.) was selected to evaluate its effect on PTZ (35 mg/kg, i.p.)-induced EEG paroxystic activities in rats compared to the effects of ethosuximide (reference anticonvulsant drug, 100 mg/kg, i.p.). Latent onset of the first paroxystic spike, first seizure and frequency as well as seizure severity, were determined using Racine's scale. RESULTS Moringa oleifera ethanol and hexane extracts produced a delay in the seizure latency in mice and rats; this effect was improved in the presence of the hexane extract containing the active metabolite hexadecanoic acid. The anticonvulsant effects were corroborated in the spectral analysis by the potency of the EEG due to a reduction in the spike frequency and amplitude, as well as in the duration and severity of the seizures. The effects of the hexane extract resembled those observed in the reference antiepileptic drug ethosuximide. CONCLUSION Moringa oleifera leaves possess anticonvulsant activities due to the complementary of the non-polar and polar constituents. However, the non-polar constituents appear to exert an important influence via the partial participation of fatty acids, providing evidence of the effects of this plant in epilepsy therapy.
Collapse
Affiliation(s)
- María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco No. 101 Col. San Lorenzo Huipulco, Ciudad de México 14370, México
| | - Claudia Lizbeth Martínez-González
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingenieria Mecánica y Eléctrica (ESIME) Zacatenco. Instituto Politécnico Nacional, Ciudad de México 07738, México
| | - Maricela Flores-Carrillo
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco No. 101 Col. San Lorenzo Huipulco, Ciudad de México 14370, México
| | - Sara Ibeth Luna-Nophal
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco No. 101 Col. San Lorenzo Huipulco, Ciudad de México 14370, México
| | - Gerardo Contreras-Murillo
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco No. 101 Col. San Lorenzo Huipulco, Ciudad de México 14370, México
| | - Víctor Manuel Magdaleno-Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco No. 101 Col. San Lorenzo Huipulco, Ciudad de México 14370, México.
| |
Collapse
|
47
|
Falowo AB, Mukumbo FE, Idamokoro EM, Lorenzo JM, Afolayan AJ, Muchenje V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res Int 2018; 106:317-334. [PMID: 29579932 DOI: 10.1016/j.foodres.2017.12.079] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 11/25/2022]
Abstract
Research on the use of various parts of the Moringa oleifera Lam. plant (M. oleifera) as a nutritional and neutraceutical resource for human and animal diets has increased in recent years, emanating from the widespread use of the plant in traditional cuisines and medicinal remedies in several regions of the world. Analytical studies have identified M. oleifera as an important source of essential nutrients; rich in protein, essential amino acids, minerals, and vitamins, with a relatively low amount of antinutrients. It is also a rich source of other bio active compounds including flavonoids and phenolic compounds; with several studies detailing demonstrated in vitro and in vivo functional properties, most substantially, antioxidant activities. Moringa oleifera consumption has been reported to improve the health status, feed conversion efficiency, growth performance and product quality of several livestock species, at dietary inclusion rates generally not exceeding 5% of total dry matter intake. Fortification of processed foods with M. oleifera has been reported to increase nutritional value, some organoleptic properties, oxidative stability and product shelf life; with a notable need for further analytical and consumer studies in the development of these products. There is a paucity of literature detailing clinical studies, nutrient bioavailability, toxicity and the mode of action of the bioactive compounds to which the health claims associated with M. oleifera consumption are attributed. Many of these are not yet fully understood; therefore more research in these areas is required in order to fully utilize the potential benefits of this plant in human and livestock nutrition.
Collapse
Affiliation(s)
- Andrew B Falowo
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Felicitas E Mukumbo
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Emrobowansan M Idamokoro
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa; MPED Research Center, Department of Botany, University of Fort Hare, Alice 5700, South Africa
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibwdrao das Viñas, 32900 Ourense, Spain
| | - Anthony J Afolayan
- MPED Research Center, Department of Botany, University of Fort Hare, Alice 5700, South Africa
| | - Voster Muchenje
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
48
|
Al-Abri M, Ashique M, Ramkumar A, Nemmar A, Ali BH. Motor and Behavioral Effects of Moringa oleifera Leaf Extract. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Moringa oleifera is a medicinal plant widely used in many parts of the world for hypertension, pain and epilepsy. The aim of this study was to determine the effect of M. oleifera aqueous leaf extract on motor and behavioral activities of healthy mice. Male mice were randomly divided into a control group (given 0.9% NaCl orally) and three groups treated with the extract at doses of 100, 200, and 400 mg/kg/day for 14 consecutive days. Motor and behavioral activity were evaluated by quantifying motor activity, exploration (hole-board), neuro-muscular coordination (rota rod treadmill), pain (hot plate, cold-water tail flick, and acetic acid-induced abdominal constriction), and depression (forced swimming test, FST). Administration of M. oleifera extract had a significant and dose-dependent antinociceptive action in both thermal and chemical tests ( p < 0.05). The extract (400 mg/kg) caused a reduction in exploration activity and neuro-muscular coordination, and decreased the mobility time in the FST, suggesting an antidepressant-like action. Motor activity was not significantly affected by any of the doses used. The results suggest that the plant aqueous extract may have a dose-dependent central nervous system (CNS) depressant action.
Collapse
Affiliation(s)
- Mohammed Al-Abri
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mohammed Ashique
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Aishwarya Ramkumar
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
49
|
Brilhante RSN, Sales JA, Pereira VS, Castelo-Branco DDSCM, Cordeiro RDA, de Souza Sampaio CM, de Araújo Neto Paiva M, Santos JBFD, Sidrim JJC, Rocha MFG. Research advances on the multiple uses of Moringa oleifera : A sustainable alternative for socially neglected population. ASIAN PAC J TROP MED 2017; 10:621-630. [DOI: 10.1016/j.apjtm.2017.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/15/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022] Open
|
50
|
Elsayed EA, Sharaf-Eldin MA, Wadaan M. In vitro Evaluation of Cytotoxic Activities of Essential Oil from Moringa oleifera Seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 Cell Lines. Asian Pac J Cancer Prev 2016; 16:4671-5. [PMID: 26107222 DOI: 10.7314/apjcp.2015.16.11.4671] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Moringa oleifera Lam. (Moringaceae) is widely consumed in tropical and subtropical regions for their valuable nutritional and medicinal characteristics. Recently, extensive research has been conducted on leaf extracts of M. oleifera to evaluate their potential cytotoxic effects. However, with the exception of antimicrobial and antioxidant activities, little information is present on the cytotoxic activity of the essential oil obtained from M. oleifera seeds. Therefore, the present investigation was designed to investigate the potential cytotoxic activity of seed essential oil obtained from M. oleifera on HeLa, HepG2, MCF-7, CACO-2 and L929 cell lines. The different cell lines were subjected to increasing oil concentrations ranging from 0.15 to 1 mg/mL for 24h, and the cytotoxicity was assessed using MTT assay. All treated cell lines showed a significant reduction in cell viability in response to the increasing oil concentration. Moreover, the reduction depended on the cell line as well as the oil concentration applied. Additionally, HeLa cells were the most affected cells followed by HepG2, MCF-7, L929 and CACO-2, where the percentages of cell toxicity recorded were 76.1, 65.1, 59.5, 57.0 and 49.7%, respectively. Furthermore, the IC50 values obtained for MCF-7, HeLa and HepG2 cells were 226.1, 422.8 and 751.9 μg/mL, respectively. Conclusively, the present investigation provides preliminary results which suggest that seed essential oil from M. oleifera has potent cytotoxic activities against cancer cell lines.
Collapse
Affiliation(s)
- Elsayed Ahmed Elsayed
- Department of Zoology, Bioproducts Research Chair, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia E-mail :
| | | | | |
Collapse
|