1
|
Fan J, Li Y, Yang S, Yang J, Jin H, Wang Y, Wei F, Ma S. Two polysaccharides from Polygonum multiflorum Thunb. exert anti-aging by regulating P53/P21 pathway and amino acid metabolism. Int J Biol Macromol 2025; 306:141573. [PMID: 40023426 DOI: 10.1016/j.ijbiomac.2025.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Polygonum multiflorum Thunb (PM) is known for its potential to extend lifespan. Although the polysaccharides, the primary constituents of PM, remain largely unexplored in terms of their anti-aging effects and underlying mechanisms, this study investigates them in detail. The anti-aging effects of two purified polysaccharides from PM were evaluated: neutral polysaccharide (RPMP-N, weight average molecular weight 245.30 kDa) and acidic polysaccharide (RPMP-A, weight average molecular weight 28.45 kDa), using a D-Galactose-induced (D-Gal) aging mouse model. In the experimental group, RPMP-N and RPMP-A were administered at doses of 50 (low) and 150 mg/kg/day (high). The activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), which are essential for scavenging free radicals and form a key part of the body's antioxidant defense system, was measured in aging mice. The results showed significant improvements following treatment with RPMP-N and RPMP-A. Additionally, both polysaccharides demonstrated the ability to repair and protect against liver and brain injuries. The expression of P16, P21, and P53 proteins, which regulate cellular senescence through distinct mechanisms, was significantly reduced in liver and brain tissues after treatment. Notably, untargeted metabolomics revealed that RPMP-N and RPMP-A exerted significant anti-aging effects in the D-Gal aging mouse model, primarily influencing metabolism pathways related to lysine, sphingolipids, cysteine, and methionine. In conclusion, these findings provide important insights into the anti-aging mechanisms of PM polysaccharides, supporting their potential for clinical applications, drug development, and regulatory science.
Collapse
Affiliation(s)
- Jing Fan
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Li W, Wang Y, Qiu C, Li J, Bao J, Yang J, Jin H. Processing-induced reduction in dianthrones content and toxicity of Polygonum multiflorum: Insights from ultra-high performance liquid chromatography triple quadrupole mass spectrometry analysis and toxicological assessment. Animal Model Exp Med 2025; 8:685-695. [PMID: 39439047 PMCID: PMC12008448 DOI: 10.1002/ame2.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Polygonum multiflorum-induced liver injury (PM-DILI) has significantly hindered its clinical application and development. METHODS This study investigates the variation in content and toxicity of dianthrones, the toxic components of P. multiflorum, during different processing cycles. We employed the ultra-high-performance liquid chromatography triple quadrupole mass spectrometry method to quantify six dianthrones in raw P. multiflorum and formulations processed with a method called nine cycles of steaming and sunning. Additionally, toxicity assessments were conducted using human normal liver cell line L02 and zebrafish embryos. RESULTS Results indicate a gradual reduction in dianthrones content with increasing processing cycles. Processed formulations exhibited significantly reduced cytotoxicity in L02 cells and hepatotoxicity in zebrafish embryos. CONCLUSIONS Our findings elucidate the relationship between processing cycles and P. multiflorum toxicity, providing theoretical support for its safe use.
Collapse
Affiliation(s)
- Wan‐Fang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Beijing Union‐Genius Pharmaceutical Technology Development Co., Ltd.BeijingChina
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative DrugBeijingChina
| | - Ying Wang
- National Institutes for Food and Drug ControlBeijingChina
| | - Cai‐Xia Qiu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Beijing Union‐Genius Pharmaceutical Technology Development Co., Ltd.BeijingChina
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative DrugBeijingChina
| | - Jian‐Bo Yang
- National Institutes for Food and Drug ControlBeijingChina
| | - Hong‐Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Beijing Union‐Genius Pharmaceutical Technology Development Co., Ltd.BeijingChina
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative DrugBeijingChina
| |
Collapse
|
3
|
Gao D, Yi WW, Liu B, Zhang CE, Yang CC, Zeng L, Li L, Luo G, Zhang L, Ju ZY, Wang JB. Tetrahydroxy stilbene glucoside rejuvenates aging hematopoietic stem cells with predilection for lymphoid differentiation via AMPK and Tet2. J Adv Res 2025; 70:515-529. [PMID: 38704089 PMCID: PMC11976424 DOI: 10.1016/j.jare.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Aging of hematopoietic stem cells (HSCs) has emerged as an important challenge to human health. Recent advances have raised the prospect of rejuvenating aging HSCs via specific medical interventions, including pharmacological treatments. Nonetheless, efforts to develop such drugs are still in infancy until now. OBJECTIVES We aimed to screen the prospective agents that can rejuvenate aging HSCs and explore the potential mechanisms. METHODS We screened a set of natural anti-aging compounds through oral administration to sub-lethally irradiated mice, and identified 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) as a potent rejuvenating agent for aging HSCs. Then naturally aged mice were used for the follow-up assessment to determine the HSC rejuvenating potential of TSG. Finally, based on the transcriptome and DNA methylation analysis, we validated the role of the AMP-activated protein kinase (AMPK)-ten-eleven-translocation 2 (Tet2) axis (the AMPK-Tet2 axis) as the underlying mechanisms of TSG for ameliorating HSCs aging. RESULTS TSG treatment not only significantly increased the absolute number of common lymphoid progenitors (CLPs) along with B lymphocytes, but also boosted the HSCs/CLPs repopulation potential of aging mice. Further elaborated mechanism research demonstrated that TSG supplementation restored the stemness of aging HSCs, as well as promoted an epigenetic reprograming that was associated with an improved regenerative capacity and an increased rate of lymphopoiesis. Such effects were diminished when the mice were co-treated with an AMPK inhibitor, or when it was performed in Tet2 knockout mice as well as senescent cells assay. CONCLUSION TSG is effective in rejuvenating aging HSCs by modulating the AMPK- Tet2 axis and thus represents a potential candidate for developing effective HSC rejuvenating therapies.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Wei-Wei Yi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bo Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Cong-En Zhang
- Department of Pharmacy, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Guangbin Luo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-1712, USA; Centre for Translational Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518101, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Zhen-Yu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Jia-Bo Wang
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Karakas H, Cagman Z, Kizilarslan-Hancer C, Erol E. Isolation and Characterization of Secondary Metabolites from Endemic and Edible Polygonum sivasicum with In Vitro Antioxidant and Cytotoxic Activities. ACS OMEGA 2025; 10:9756-9767. [PMID: 40092762 PMCID: PMC11904701 DOI: 10.1021/acsomega.5c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Polygonum sivasicum Kit Tan and Yildiz, one of the eight endemic Polygonum species in Türkiye, belongs to the Polygonaceae family. Preliminary phytochemical investigation of methanol and hexane extracts of P. sivasicum resulted in four compounds, namely, annphenone (1), hyperoside (2), daucosterol (3), and β-sitosterol (4). Their structures were elucidated by 1D-, 2D-NMR, and HRESIMS analyses. This study signifies the first isolation of annphenone from the Polygonum genus. Antioxidant capabilities of different extracts of P. sivasicum were carried out using DPPH·, ABTS·+, CUPRAC, metal chelating, and β-carotene linoleic acid bleaching assays, and their effectiveness was quantified through IC50 values. Furthermore, 27 phenolic compounds were identified using LC-HRESIMS from methanol extract, which has the highest antioxidant activity among the P. sivasicum extracts. The major phenolic constituents identified were hyperoside (4535.0 μg/g extract), rutin (4387.4 μg/g extract), and chlorogenic acid (3306.6 μg/g extract). GC-MS analysis determined palmitic acid, α-linolenic acid, and 8,11-octadecadieonic acid as major fatty acids in the hexane extract. The cell viability profile of P. sivasicum methanol extract and its isolates hyperoside, annphenone, and daucosterol was evaluated on fibroblast (CCD-1079Sk), breast carcinoma (MCF-7) and lung carcinoma (A549) cell lines. Annphenone exhibited IC50 values of 0.25 ± 0.01 mg/mL against the A549 cell line and 0.36 ± 0.02 mg/mL against the MCF-7 cell line. The selective cytotoxicity observed for daucosterol against the A549 cell line, with a high selectivity index of 1.44, underscores its potential as a promising candidate for drug development. The study establishes a framework integrating phytochemical profiling with biological assays to identify therapeutic agents from endemic plants.
Collapse
Affiliation(s)
- Humeyra Karakas
- Department
of Pharmacognosy and Natural Products Chemistry, Health Sciences Institute, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Zeynep Cagman
- Department
of Biochemistry, Faculty of Pharmacy, Bezmialem
Vakif University, 34093 Istanbul, Turkey
| | - Cagla Kizilarslan-Hancer
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Ebru Erol
- Department
of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| |
Collapse
|
5
|
Lei K, Zhou L, Dan M, Yang F, Jian T, Xin J, Yu Z, Wang Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025; 17:280. [PMID: 40142943 PMCID: PMC11945504 DOI: 10.3390/pharmaceutics17030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Central nervous system (CNS) diseases, such as brain tumors, Alzheimer's disease, and Parkinson's disease, significantly impact patients' quality of life and impose substantial economic burdens on society. The blood-brain barrier (BBB) limits the effective delivery of most therapeutic drugs, especially natural products, despite their potential therapeutic effects. The Trojan Horse strategy, using nanotechnology to disguise drugs as "cargo", enables them to bypass the BBB, enhancing targeting and therapeutic efficacy. This review explores the applications of natural products in the treatment of CNS diseases, discusses the challenges posed by the BBB, and analyzes the advantages and limitations of the Trojan Horse strategy. Despite the existing technical challenges, future research is expected to enhance the application of natural drugs in CNS treatment by integrating nanotechnology, improving delivery mechanisms, and optimizing targeting characteristics.
Collapse
Affiliation(s)
- Kelu Lei
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Dan
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Fei Yang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Tiantian Jian
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Juan Xin
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Zhigang Yu
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Yue Wang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| |
Collapse
|
6
|
Jiang J, Wang Q, Wu Q, Deng B, Guo C, Chen J, Zeng J, Guo Y, Ma X. Angel or devil: the dual roles of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside in the development of liver injury based on integrating pharmacological techniques: a systematic review. Front Pharmacol 2025; 16:1523713. [PMID: 39963244 PMCID: PMC11830817 DOI: 10.3389/fphar.2025.1523713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Background and purpose 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) exhibits a dualistic pharmacological profile, acting as both a hepatoprotective and hepatotoxic agent, which is intricately linked to its interaction with multiple signaling pathways and its stereoisomeric forms, namely, cis-SG and trans-SG. The purpose of this study is to evaluate both the hepatoprotective and hepatotoxic effects of TSG and give therapeutic guidance. Methods This study performed a systematic search of eight databases to identify preclinical literature up until March 2024. The CAMARADES system evaluated evidence quality and bias. STATA and Python were used for statistical analysis, including dose-effect maps, 3D maps and radar charts to show the dose-time-effect relationship of TSG on hepatoprotection and hepatotoxicity. Results After a rigorous screening process, a total of 24 studies encompassing 564 rodents were selected for inclusion in this study. The findings revealed that TSG exhibited bidirectional effects on the levels of ALT and AST, while also regulating the levels of ALT, AST, TNF-α, IL-6, serum TG, serum TC, SOD, MDA, IFN-γ, and apoptosis rate. The histological analysis of liver tissue confirmed the regulatory effects of TSG, and a comprehensive analysis revealed the optimal protective dosage range was 27.27-38.81 mg/kg/d and the optimal toxic dosage range was 51.93-76.07 mg/kg/d. TSG exerts the dual effects on liver injury (LI) through the network of Keap1/Nrf2/HO-1/NQO1, NF-κB, PPAR, PI3K/Akt, JAK/STAT and TGF-β pathways. Conclusion TSG could mediate the pathways of oxidation, inflammation, and metabolism to result in hepatoprotection (27.27-38.81 mg/kg/d) and hepatotoxicity (51.93-76.07 mg/kg/d).
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiu Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qiang Wu
- Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Bobin Deng
- School of Pharmacy, Xian Medical University, Xi’an, China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Zhi H, Fu H, Zhang Y, Fan N, Zhao C, Li Y, Sun Y, Li Y. Progress of cGAS-STING signaling pathway-based modulation of immune response by traditional Chinese medicine in clinical diseases. Front Immunol 2024; 15:1510628. [PMID: 39737190 PMCID: PMC11683013 DOI: 10.3389/fimmu.2024.1510628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The cGAS-STING signaling pathway is a critical component of the innate immune response, playing a significant role in various diseases. As a central element of this pathway, STING responds to both endogenous and exogenous DNA stimuli, triggering the production of interferons and pro-inflammatory cytokines to enhance immune defenses against tumors and pathogens. However, dysregulated activation of the STING pathway is implicated in the pathogenesis of multiple diseases, including autoinflammation, viral infections, and cancer. Traditional Chinese Medicines (TCMs), which have a long history of use, have been associated with positive effects in disease prevention and treatment. TCM formulations (e.g., Lingguizhugan Decoction, Yi-Shen-Xie-Zhuo formula) and active compounds (e.g., Glabridin, Ginsenoside Rd) can modulate the cGAS-STING signaling pathway, thereby influencing the progression of inflammatory, infectious, or oncological diseases. This review explores the mechanisms by which TCMs interact with the cGAS-STING pathway to regulate immunity, focusing on their roles in infectious diseases, malignancies, and autoimmune disorders.
Collapse
Affiliation(s)
- Hui Zhi
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunxin Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ni Fan
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Xue H, Nie H, Huang Z, Lu B, Wei M, Xu H, Ji L. 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside promotes liver regeneration after partial hepatectomy in mice: The potential involvement of PPARα-mediated fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118513. [PMID: 38969151 DOI: 10.1016/j.jep.2024.118513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the principal bioactive compound contained in Polygonum multiflorum Thunb. (PMT), which is traditionally recorded to possess tonic and anti-aging efficacy. AIM OF THE STUDY To identify the TSG-provided promotion on liver regeneration (LR) following partial hepatectomy (PHx) in mice and to explicate its involved mechanism. MATERIALS AND METHODS The promotion of TSG on LR was evaluated by hematoxylin and eosin (H&E), 5-bromodeoxyuridinc (BrdU) and Ki-67 staining, and measuring the level of proliferating cell nuclear antigen (PCNA) and Cyclin D1 in mice with PHx at different time points. Gene Expression Omnibus (GEO, GSE15239) database and the label-free quantitative proteomics from liver of mice at 24 h after PHx were integrated to identify potential involved critical proteins, which were verified by Western-blot, Real-time polymerase chain reaction (RT-PCR), molecular docking and luciferase activity assay. Primary hepatocytes isolated from mice were used to investigate the TSG-provided promotion on proliferation in vitro. RESULTS TSG (20 mg/kg) promoted LR in mice after PHx. Results from RNA expression data from clinical samples and proteomic analysis from liver tissues indicated that peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid metabolism pathway were crucially associated with the TSG-provided promotion on LR. TSG enhanced the nuclear translocation of PPARα and the mRNA expression of a series of PPARα-regulated downstream genes. In addition, TSG lowered hepatic triglyceride (TG) and non-esterified fatty acid (NEFA) amounts and increased hepatic adenosine triphosphate (ATP) level in mice after PHx. TSG up-regulated the transcriptional activity of PPARα in vitro. Next results displayed that TSG promoted cell proliferation as well as ATP level in mice primary hepatocytes, which were abolished when PPARα was suppressed. Meanwhile, the cell viability was also elevated in mice primary hepatocytes treated with ATP. CONCLUSION Activating PPARα-mediated fatty acid β-oxidation (FAO) pathway led to the production of ATP, which contributed to the TSG-provided promotion on LR after PHx in mice.
Collapse
Affiliation(s)
- Haoyu Xue
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huizhong Nie
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
10
|
Martin-Biggers J, Barbosa Bueno de Campos ME. A Randomized, Placebo-controlled Clinical Study Evaluating a Dietary Supplement for Hair Growth. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:34-38. [PMID: 39758217 PMCID: PMC11694638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Objective The desire for improved hair appearance, hair growth and strength are common drivers of supplementation for women experiencing thinning hair. This study examined the effect and safety of a gummy supplement containing B vitamins, zinc and botanical ingredients to improve hair growth, strength and perceived hair quality outcomes. Methods Healthy females (n=65) ages 18 to 60 with thinning hair were enrolled. After obtaining consent, subjects were evaluated for hair density and tensile strength, then randomized to either a placebo or test product. The test product consisted of two gummies consumed daily. Subjects returned after six months and were again evaluated using phototrichogram for hair density and tensile strength assessment and completed a Self-Assessment Questionnaire reporting hair quality outcomes. Results Subjects who consumed the test product showed increased hair density between baseline and 6 months (10.1% increase, p<0.001) as well as compared to placebo (2% decrease) (p<0.001). Hair strength tensile measurements were improved in the test group from baseline (10.2% improvement, p<0.002) compared to placebo (9.3% improvement), yet the difference was not statistically significant between groups. Self-assessed improvements in shedding, strength, breakage and brightness were noted compared to the placebo group (p<0.05). There were no adverse events or reactions. Limitations This study did not assess hair for longer than a six-month period and utilized subject perception for outcomes that differ from clinical assessments. Conclusion Daily use of a dietary supplement gummy was associated with significant improvement in hair growth as well as self-assessed improvements in hair strength, shedding, and appearance.
Collapse
|
11
|
Remali J, Aizat WM. Medicinal plants and plant-based traditional medicine: Alternative treatments for depression and their potential mechanisms of action. Heliyon 2024; 10:e38986. [PMID: 39640650 PMCID: PMC11620067 DOI: 10.1016/j.heliyon.2024.e38986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Background Clinical depression is a serious public health issue that affects 4.7 % of the world's population and can lead to suicide tendencies. Although drug medications are available, only 60 % of the depressed patients respond positively to the treatments, while the rest experience side effects that resulted in the discontinuation of their medication. Thus, there is an urgent need for developing a new anti-depressant with a distinct mode of action and manageable side effects. One of the options is using medicinal plants or plant-based traditional medicine as alternative therapies for psychiatric disorders. Objectives Therefore, the objective of this review was twofold; to identify and critically evaluate anti-depressant properties of medicinal plants or those incorporated in traditional medicine; and to discuss their possible mechanism of action as well as challenges and way forward for this alternative treatment approach. Methods Relevant research articles were retrieved from various databases, including Scopus, PubMed, and Web of Science, for the period from 2018 to 2020, and the search was updated in September 2024. The inclusion criterion was relevance to antidepressants, while the exclusion criteria included duplicates, lack of full-text availability, and non-English publications. Results Through an extensive literature review, more than 40 medicinal plant species with antidepressant effects were identified, some of which are part of traditional medicine. The list of the said plant species included Albizia zygia (DC.) J.F.Macbr., Calculus bovis Sativus, Celastrus paniculatus Willd., Cinnamomum sp., Erythrina velutina Willd., Ficus platyphylla Delile, Garcinia mangostana Linn., Hyptis martiusii Benth, and Polygonum multiflorum Thunb. Anti-depressant mechanisms associated with those plants were further characterised based on their modes of action such as anti-oxidation system, anti-inflammation action, modulation of various neurotransmitters, neuroprotective effect, the regulation of hypothalamic-pituitary-adrenal (HPA) axis and anti-depressant mechanism. The challenges and future outlook of this alternative and complementary medicine are also explored and discussed. Conclusion This pool of identified plant species is hoped to offer health care professionals the best possible alternatives of anti-depressants from natural phytocompounds that are efficacious, safe and affordable for applications in future clinical settings.
Collapse
Affiliation(s)
- Juwairiah Remali
- Department of Pathology, Hospital Pulau Pinang, Jalan Residensi, 10450, George Town, Pulau Pinang, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
Nasir A, Yabalak E. Exploring natural herbs: their role in treating male infertility, enhancing sexual desire and addressing urological disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-27. [PMID: 39360362 DOI: 10.1080/09603123.2024.2408417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Infertility affects 8-12% of couples globally, with male factors contributing to around 40% of cases. Common male infertility issues include erectile dysfunction (ED) and low sperm count or quality, which account for over 90% of cases. These problems often result from anatomical, hormonal, or genetic abnormalities. This review focuses on natural aphrodisiac herbs commonly used to address ED, providing detailed information on their botanical characteristics, metabolic pathways, recommended dosages, phytochemical properties, side effects, origins, and traditional uses. It also reviews recent studies on medicinal herbs that boost sexual desire and treat urological conditions. By compiling reliable findings from the past decade, the study aims to serve as a comprehensive resource for individuals dealing with sexual health issues. Through careful evaluation of each herb, it offers insights into their effectiveness and limitations, emphasizing the potential of natural treatments as complementary alternatives to conventional therapies for male infertility and related conditions.
Collapse
Affiliation(s)
- Abir Nasir
- Faculty of Science, Department of Chemistry, Mersin University, Mersin, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin, Turkey
| |
Collapse
|
13
|
Wang H, Wang Y, Liu Y, Xie J, Zhang Y, Jin H, Wei F, Ma S. Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa. Foods 2024; 13:3011. [PMID: 39335939 PMCID: PMC11431481 DOI: 10.3390/foods13183011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to analyze the structure of polysaccharides from eight different Dendrobium species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the contents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of acetylation ranged from 0.17 ± 0.03 to 0.48 ± 0.03. High-performance liquid chromatography (HPLC) results showed that these polysaccharides were mainly composed of mannose (Man) and glucose (Glc) with a small amount of galactose (Gal) and arabinose (Ara), and the monosaccharide ratios of different Dendrobium species were different. High-performance size exclusion chromatography-multi angle light scattering-refractive index detector (HPSEC-MALS-RID) showed that the molecular weight (Mw) of all Dendrobium polysaccharides was >1 × 105 Da; D. huoshanense had the lowest molecular weight. Subsequently, an ethanol injured GES-1 cell model was constructed to evaluate the gastric mucosal protective potential of polysaccharides from eight different Dendrobium species. The results showed that the protective effect of the low concentration 50 μg/mL DHP treatment group was similar to that of the control group (p > 0.05), and the cell viability could reach 97.32% of that of the control group. Based on the polysaccharide composition, different kinds of Dendrobium have different degrees of migration and repair effects on GES-1 damaged cells, and the effect of DHP is slightly better than that of other varieties (83.13 ± 1.05%). Additionally, Dendrobium polysaccharides alleviated ethanol-induced oxidative stress and inflammatory response in gastric mucosal cells by enhancing the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) and reducing the levels of malondialdehyde and reactive oxygen species. Overall, DHP can most effectively protect gastric mucosa. These findings enhance our understanding of the relationship between the structure and biological activity of Dendrobium polysaccharides, providing a foundation for the quality control of Dendrobium. Furthermore, these findings offer theoretical support for the development of Dendrobium polysaccharides as nutraceuticals to treat digestive system diseases.
Collapse
Affiliation(s)
- Haonan Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Yuanxi Liu
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Jinxin Xie
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Yazhong Zhang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Anhui Institutes for Food and Drug Control, Hefei 230051, China;
| | - Hongyu Jin
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Feng Wei
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; (H.W.); (Y.W.); (Y.L.); (J.X.); (H.J.)
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
14
|
Ngo TH, Lee YJ, Choi H, Song KS, Lee KJ, Nam JW. Evaluating the anticancer potential of Polygonum multiflorum root-derived stilbenes against H2452 malignant pleural mesothelioma cells. Fitoterapia 2024; 177:106135. [PMID: 39047845 DOI: 10.1016/j.fitote.2024.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
A naturally occurring stilbene, resveratrol, shows promising effects in the treatment of malignant pleural mesothelioma (MPM) both as a single agent and in combination with chemotherapeutic drugs. To discover new anticancer agents targeting MPM, stilbene-targeted isolation was performed on the roots of Polygonum multiflorum Thunb., an herbal medicine rich in stilbene compounds. In this study, seven stilbene glycosides (1-7) were isolated, along with four non-stilbenes (8-11), of which compounds 4 and 9-11 have not previously been isolated from this species. Stiquinoside A (1) is a previously undescribed stilbene glycoside, and its structure was elucidated as (E)-2,3,5,4'-tetrahydroxystilbene 2-O-β-d-quinovopyranoside based on 1D and 2D-NMR, HR-ESI-MS, and acid hydrolysis experiments. Compounds 1, 4, 6, and 8 significantly inhibit the growth of MPM cancer cells H2452. These results demonstrate the potential utility of stilbenes in new strategies for the treatment of MPM.
Collapse
Affiliation(s)
- Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyu Joon Lee
- Department of Tropical Medicine, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
15
|
Gong L, Shen X, Huang N, Wu K, Li R, Liu Y, Zhang H, Chen S, Sun R. Research progress on hepatotoxicity mechanism of polygonum multiflorum and its main components. Toxicon 2024; 248:108040. [PMID: 39038664 DOI: 10.1016/j.toxicon.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
As a traditional tonic Chinese medicine, Polygonum multiflorum is widely used in clinical practice. However, with the deepening of modern pharmacological research, its drug toxicity, especially hepatotoxicity, has become increasingly prominent. Based on a large number of clinical and experimental evidence, it has been confirmed that Polygonum multiflorum and its main active ingredients such as anthraquinones and diphenylethylene glucoside can cause different degrees of hepatotoxicity. Further studies have shown that the toxicological mechanisms involved in the hepatotoxicity of different extracts and components of Polygonum multiflorum may include oxidative phosphorylation, bile acid excretion, different metabolic pathways, genetic and metabolic factors, immune homeostasis, etc. By sorting out and summarizing the literature related to hepatotoxicity of Polygonum multiflorum in recent years, this paper discussed the hepatotoxicity mechanism of Polygonum multiflorum and its main components and some contradictions in related reports.
Collapse
Affiliation(s)
- Liping Gong
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xianhui Shen
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan, 250033, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kaiyi Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rongrong Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ying Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Huijie Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Siyi Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan, 250033, China; Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
| |
Collapse
|
16
|
Ouabane M, Zaki K, Zaki H, Guendouzi A, Sbai A, Sekkate C, Lakhlifi T, Bouachrine M. Inhibition of the Janus kinase protein (JAK1) by the A. Pyrethrum Root Extract for the treatment of Vitiligo pathology. Design, Molecular Docking, ADME-Tox, MD Simulation, and in-silico investigation. Comput Biol Med 2024; 179:108816. [PMID: 38955123 DOI: 10.1016/j.compbiomed.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
This study delves into the therapeutic efficacy of A. pyrethrum in addressing vitiligo, a chronic inflammatory disorder known for inducing psychological distress and elevating susceptibility to autoimmune diseases. Notably, JAK inhibitors have emerged as promising candidates for treating immune dermatoses, including vitiligo. Our investigation primarily focuses on the anti-vitiligo potential of A. pyrethrum root extract, specifically targeting N-alkyl-amides, utilizing computational methodologies. Density Functional Theory (DFT) is deployed to meticulously scrutinize molecular properties, while comprehensive evaluations of ADME-Tox properties for each molecule contribute to a nuanced understanding of their therapeutic viability, showcasing remarkable drug-like characteristics. Molecular docking analysis probes ligand interactions with pivotal site JAK1, with all compounds demonstrating significant interactions; notably, molecule 6 exhibits the most interactions with crucial inhibition residues. Molecular dynamics simulations over 500ns further validate the importance and sustainability of these interactions observed in molecular docking, favoring energetically both molecules 6 and 1; however, in terms of stability, the complex with molecule 6 outperforms others. DFT analyses elucidate the distribution of electron-rich oxygen atoms and electron-poor regions within heteroatoms-linked hydrogens. Remarkably, N-alkyl-amides extracted from A. pyrethrum roots exhibit similar compositions, yielding comparable DFT and Electrostatic Potential (ESP) results with subtle distinctions. These findings underscore the considerable potential of A. pyrethrum root extracts as a natural remedy for vitiligo.
Collapse
Affiliation(s)
- Mohamed Ouabane
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco; Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Khadija Zaki
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Hanane Zaki
- Biotechnology, Bioresources, And Bioinformatics Laboratory at the Higher School of Technology, 54000, Khenifra, Morocco
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Algeria
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Chakib Sekkate
- Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco.
| |
Collapse
|
17
|
Huang X, Li L, Zheng C, Li J, Chen G, Chen Y. Xuanbi Yuyang Decoction Ameliorates DSS-Induced Colitis by Inhibiting Pyroptosis via Blocking of IL-17 Pathway Activation. J Inflamm Res 2024; 17:5235-5249. [PMID: 39131209 PMCID: PMC11313599 DOI: 10.2147/jir.s472812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Background Ulcerative colitis (UC), a highly relapsing non-specific disease, is difficult to cure completely. The investigation aims to determine the protective effect and potential action mechanism of Xuanbi yuyang decoction (XBD) on UC. Methods The chemical composition of XBD was determined through non-targeted metabolomics analysis. Subsequently, experimental mice were orally given 3% DSS for 6 days, followed by XBD treatment (0.3 mL, 0.4 mL). In vitro, the human colon epithelial cells were co-treated with DSS and medicated serum. The therapeutic effects of XBD on UC were evaluated in vivo and vitro. The mechanisms of XBD against UC were determined by detecting hallmarks related to pyroptosis and Interleukin (IL)-17 pathways using Western blot and ELISA. The recombinant human interleukin 17A (rhIL17A) and was applied for further verifying the effect of XBD on IL-17 pathway in UC cells. Results XBD supplementation restored DSS-induced weight loss, colon shortening and tissue damage, and reduced DAI. Moreover, XBD enhanced viability, repaired the intestinal mucosal barrier of colitis, decreased pro-inflammatory cytokines levels, and inhibited pyroptosis. Additionally, DSS increased the expression of IL-17 pathway was and cytokines (IL-17A, IL-6), which were blocked by XBD treatment. The rhIL17A treatment attenuated protective effect against DSS-induced colitis and could also enhance pyroptosis. Conclusion XBD has a favorable protective effect against DSS-induced colitis through restraining pyroptosis via inhibition of IL-17 signaling pathway activation, suggesting XBD may be a new and effective treatment therapy for UC.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Liqun Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chaowei Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jianfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Guangwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yalu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
18
|
de Matos RC, Bitencourt AFA, de Oliveira ADM, Prado VR, Machado RR, Scopel M. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118137. [PMID: 38574778 DOI: 10.1016/j.jep.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.
Collapse
Affiliation(s)
- Rafael C de Matos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| | - Ana F A Bitencourt
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alexsandro D M de Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Vanessa R Prado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Marina Scopel
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Cha J, Yun JH, Choi JH, Lee JH, Choi BT, Shin HK. Preclinical Evidence and Underlying Mechanisms of Polygonum multiflorum and Its Chemical Constituents Against Cognitive Impairments and Alzheimer's Disease. J Pharmacopuncture 2024; 27:70-81. [PMID: 38948308 PMCID: PMC11194523 DOI: 10.3831/kpi.2024.27.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Cognitive impairments, ranging from mild to severe, adversely affect daily functioning, quality of life, and work capacity. Despite significant efforts in the past decade, more than 200 promising drug candidates have failed in clinical trials. Herbal remedies are gaining interest as potential treatments for dementia due to their long history and safety, making them valuable for drug development. This review aimed to examine the mechanisms behind the effect of Polygonum multiflorum on cognitive function. Methods This study focused primarily on the effects of Polygonum multiflorum and its chemical constituents on cognitive behavioral outcomes including the Morris water maze, the passive avoidance test, and the Y maze, as well as pathogenic targets of cognitive impairment and Alzheimer's disease (AD) like amyloid deposition, amyloid precursor protein, tau hyperphosphorylation, and cognitive decline. Additionally, a thorough evaluation of the mechanisms behind Polygonum multiflorum's impact on cognitive function was conducted. We reviewed the most recent data from preclinical research done on experimental models, particularly looking at Polygonum multiflorum's effects on cognitive decline and AD. Results According to recent research, Poligonum multiflorum and its bioactive components, stilbene, and emodin, influence cognitive behavioral results and regulate the pathological target of cognitive impairment and AD. Their mechanisms of action include reducing oxidative and mitochondrial damage, regulating neuroinflammation, halting apoptosis, and promoting increased neurogenesis and synaptogenesis. Conclusion This review serves as a comprehensive compilation of current experiments on AD and other cognitive impairment models related to the therapeutic effects of Polygonum multiflorum. We believe that these findings can serve as a basis for future clinical trials and have potential applications in the treatment of human neurological disorders.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hwan Yun
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hye Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jae Ho Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
20
|
Qian J, Feng C, Wu Z, Yang Y, Gao X, Zhu L, Liu Y, Gao Y. Phytochemistry, pharmacology, toxicology and detoxification of Polygonum multiflorum Thunb.: a comprehensive review. Front Pharmacol 2024; 15:1427019. [PMID: 38953108 PMCID: PMC11215120 DOI: 10.3389/fphar.2024.1427019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Background Polygonum multiflorum Thunb. (PM), a kind of perennial plant, belongs to the genus Polygonum of the family polygonaceae.The dry root of PM (also called Heshouwu), is a traditional Chinese medicine, which has a series of functions and is widely used in clinic for hair lossing, aging, and insomnia. While, PM also has some toxicity, its clinical drug safety has been concerned. In this paper, the chemical components, toxic mechanisms and detoxification strategies of PM were reviewed in order to provide evidence for its clinical application. Materials and methods We conducted a systematic review of published literature of PM, including English and Chinese databases, such as PubMed, Web of Science, CNKI, and Wanfang. Results PM contains a variety of chemical compounds, including stilbenes, quinones, flavonoids, phospholipids, and has many pharmacological activities such as anti-aging, wound healing, antioxidant, and anti-inflammatory properties. The PE has certain therapeutic effect, and it has certain toxicity like hepatotoxicity, nephrotoxicity, and embryotoxicity at the same time, but.these toxic effects could be effectively reduced by processing and compatibility. Conclusion It is necessary to further explore the pharmacological and toxicological mechanisms of the main active compounds of PE.This article provides scientific basis for the safe clinical application of PM.
Collapse
Affiliation(s)
- Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuanmei Yang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lingyan Zhu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
21
|
Li SG, Zou ZR, Zheng XF, Sun Y, Wang SM. A new flavonostilbene glycoside and four new stilbene derivatives from the roots of Polygonum multiflorum. Nat Prod Res 2024:1-8. [PMID: 38838282 DOI: 10.1080/14786419.2024.2354850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
One new flavonostilbene glycoside, polygonflavanol C (1), two new dimeric stilbene glycosides, multiflorumiside M and multiflorumiside N (2-3), one new diphenyl ethanol glycoside, (R)-2,3,5,4'-tetrahydroxy-diphenylethanol 2-O-β-D-glucopyranoside (4), and one new deoxybenzoin glycoside, 2,4,3',5'-tetrahydroxy-6-methyl-deoxybenzoin 2-O-β-D-glucopyranoside (5), together with six known ones (6-11), were isolated from the roots of Polygonum multiflorum. Their structures were elucidated by the comprehensive spectroscopic analyses. In addition, compounds 1 and 7 showed significantly in vitro anti-inflammatory activity.
Collapse
Affiliation(s)
- Shuo-Guo Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Zheng-Ran Zou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Xiao-Feng Zheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| |
Collapse
|
22
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
23
|
Huang C, Jiang Y, Bao Q, Wang L, Tang L, Liu Y, Yang L. Study on the differential hepatotoxicity of raw polygonum multiflorum and polygonum multiflorum praeparata and its mechanism. BMC Complement Med Ther 2024; 24:161. [PMID: 38632548 PMCID: PMC11022370 DOI: 10.1186/s12906-024-04463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Polygonum multiflorum (PM), a widely used traditional Chinese medicine herb, is divided into two forms, namely raw polygonum multiflorum (RPM) and polygonum multiflorum praeparata (PMP), according to the processing procedure. Emerging data has revealed the differential hepatotoxicity of RPM and PMP, however, its potential mechanism is still unclear. METHODS In our study, we investigated the differential hepatotoxicity of RPM and PMP exerted in C57BL/6 mice. First, sera were collected for biochemical analysis and HE staining was applied to examine the morphological alternation of the liver. Then we treated L02 cells with 5 mg / mL of RPM or PMP. The CCK8 and EdU assays were utilized to observe the viability and proliferation of L02 cells. RNA sequencing was performed to explore the expression profile of L02 cells. Western blotting was performed to detect the expression level of ferroptosis-related protein. Flow cytometry was used to evaluate ROS accumulation. RESULTS In our study, a significant elevation in serum ALT, AST and TBIL levels was investigated in the RMP group, while no significant differences were observed in the PMP group, compared to that of the CON group. HE staining showed punctate necrosis, inflammatory cell infiltration and structural destruction can be observed in the RPM group, which can be significantly attenuated after processing. In addition, we also found RPM could decrease the viability and proliferation capacity of L02 cells, which can be reversed by ferroptosis inhibitor. RNA sequencing data revealed the adverse effect of PM exerted on the liver is closely associated with ferroptosis. Western blotting assay uncovered the protein level of GPX4, HO-1 and FTL was sharply decreased, while the ROS content was dramatically elevated in L02 cells treated with RPM, which can be partially restored after processing. CONCLUSIONS The hepatotoxicity induced by RPM was significantly lower than the PMP, and its potential mechanism is associated with ferroptosis.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
- Institute of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 69 Jiefang Western Road, Changsha City, 410000, Hunan, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 69 Jiefang Western Road, Changsha City, 410000, Hunan, China
| | - Qing Bao
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
| | - Lu Wang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
| | - Lin Tang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
| | - Yanjuan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 69 Jiefang Western Road, Changsha City, 410000, Hunan, China.
| | - Lei Yang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China.
| |
Collapse
|
24
|
Liu Y, Zhou M, Wang R, Liang Y, Zhuang G, Chen X, Luo S, Cai Y, Song C, Liu L, Ma L, Yao W, Liu Y, Cui L. Alleviation of Glucocorticoid-Induced Osteoporosis in Rats by Ethanolic Reynoutria multiflora (Thunb.) Moldenke Extract. J Med Food 2024; 27:287-300. [PMID: 38442325 DOI: 10.1089/jmf.2023.k.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Secondary osteoporosis is frequently due to the use of high-dose glucocorticoids (GCs). The existing strategy for managing glucocorticoid-induced osteoporosis (GIOP) is considered insufficient and remains in a state of ongoing evolution. Therefore, it is crucial to develop more precise and effective agents for the treatment of GIOP. The constituents of Reynoutria multiflora (Thunb.) Moldenke, specifically Polygonum multiflorum (PM) Thunb, have previously shown promise in mitigating osteopenia. This study aimed to investigate the therapeutic effects of an ethanolic PM extract (PMR30) against GIOP in male rats. Prednisone (6 mg/kg/day, GC) was continuously administered to rats to induce GIOP, and they were subjected to treatment with or without ethanolic PMR30 for a duration of 120 days. Serum was collected for biochemical marker analysis. Bone histomorphometric, histological, and TUNEL analyses were performed on tibia samples. The protein expressions of LC3, Agt5, and Beclin 1 in the femur underwent examination through western blotting. Prolonged and excessive GC treatment significantly impeded bone formation, concomitant with reduced bone mass and body weight. It also suppressed OCN and OPG/RANKL in serum, and decreased Beclin 1 and LC3 in bone. Simultaneously, there was an elevation in bone resorption markers and apoptosis. Treatments with both high dose and low dose of PMR30 alleviated GIOP, stimulated bone formation, and upregulated OCN and OPG/RANKL, while suppressing TRACP-5b, CTX-I, and apoptosis. The impact of PMR30 possibly involves the enhancement of autophagy proteins (LC3, Agt5, and Beclin 1) and the inhibition of apoptosis within the bone. PMR30 holds promise as a prospective therapeutic agent for preventing and treating GIOP.
Collapse
Affiliation(s)
- Yuyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Manru Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
- Guangdong Vocational Institute of Public Administration, Guangzhou, China
| | - Rui Wang
- Chemistry and Pharmacy Experimental Teaching Center, Guangdong Medical University, Zhanjiang, China
| | - Yuyu Liang
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Guangjie Zhuang
- The First School of Clinical Medical, Guangdong Medical University, Zhanjiang, China
| | - Xuelin Chen
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Shiying Luo
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yuliang Cai
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuge Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lingna Liu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Luoyang Ma
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Weimin Yao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
25
|
Zou T, Xie R, Huang S, Lu D, Liu J. Potential role of modulating autophagy levels in sensorineural hearing loss. Biochem Pharmacol 2024; 222:116115. [PMID: 38460910 DOI: 10.1016/j.bcp.2024.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.
Collapse
Affiliation(s)
- Ting Zou
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renwei Xie
- Department of Otorhinolaryngology, Renhe Hospital, Baoshan District, Shanghai, China
| | - Sihan Huang
- Department of Otorhinolaryngology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dingkun Lu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Zhang Q, Wang F, Liu J, Li J, Zhang W, Na S, Lu J, Wang Y. Integration of transcriptomics and metabolomics reveals toxicological mechanisms of ZhuRiHeng drop pill in the 180-day repeated oral toxicity study. Front Pharmacol 2024; 15:1333167. [PMID: 38560353 PMCID: PMC10978746 DOI: 10.3389/fphar.2024.1333167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Background: ZhuRiHeng Drop Pill (ZRH) is a traditional Mongolian medicinal preparation. Despite its long history of use for the treatment of coronary heart disease, there have been few toxicological studies of the safety profile of ZRH. Purpose: In order to comprehensively elucidate the underlying mechanisms behind the observed toxicity of ZRH on rat livers in the 180-day repeated oral toxicity study, we conducted a comprehensive analysis by integrating transcriptomic and metabolomic data. Methods: High-resolution mass spectrometry was conducted to evaluate the constituents of ZRH. For the acute oral toxicity study, mice were administered a dose of 32 g/(kg·d) of ZRH, while rats were instead orally administered 0.934, 1.868, or 3.736 g/(kg·d) of ZRH over a 180-day period in a 180-day repeated oral toxicity study. Conventional index and organ weights/histology were then monitored to detect any potential ZRH treatment-related toxicity. To identify key genes and metabolites involved in ZRH toxicological processes, we performed transcriptomic and metabolomic analyses of liver tissue upon ZRH treatment using RNA-seq techniques, qPCR and liquid chromatography-mass spectrometry analyses. Results: A total of 60 compounds in ZRH were identified and speculated in positive and negative ion modes. Mice in the acute toxicity study exhibited no signs of ZRH-related toxicity. In a protracted oral toxicity investigation spanning 180 days, discernible elevations in liver ratios were noted in both male and female rats across all three dose cohorts, relative to the control group (p < 0.05 or p < 0.01). Upon subjecting to ZRH treatment, our transcriptomic and qPCR analyses unveiled notable upregulation of crucial genes, exemplified by Abcb1b and Cyp2b2, known for theirs involvement in liver drug transport and metabolism function. Furthermore, our untargeted metabolomic analysis provided supplementary insights, revealing significant regulation in pyrimidine metabolism, as well as alanine, aspartate, and glutamate metabolism pathways. Conclusion: Our study unveils a panoramic understanding of the temporal, dosage-specific, and gene dimensions surrounding the metabolic and transcriptional shifts induced by ZRH exposure. As we peer into the future, recommendations emerge for further exploration, encompassing aspects such as time dynamics, dosage considerations, and gene-centric avenues to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Qian Zhang
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fang Wang
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Shengsang Na
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jingkun Lu
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yuewu Wang
- Inner Mongolia Key Laboratory of Chinese and Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
27
|
Park YJ, Seo DW, Gil TY, Kim HJ, Jin JS, Cha YY, An HJ. Sipyimigwanjung-tang, a traditional herbal medication, alleviates weight gain in a high-fat diet-induced obese mice model. Heliyon 2024; 10:e27463. [PMID: 38495187 PMCID: PMC10943437 DOI: 10.1016/j.heliyon.2024.e27463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Obesity leads to the development of metabolic syndrome and comorbidities. Overweight and obesity continue to be a relentless global issue. Sipyimigwanjung-tang (SGT), a traditional herbal medication, was first mentioned in Dongui Sasang Shinpyun and has been used to treat edema, meteorism, and jaundice, which are common findings associated with obesity. The main physiological feature of obesity is expanded adipose tissue, which causes several impairments in liver metabolism. Therefore, this study aimed to investigate the anti-obesity effects of SGT in the epididymal white adipose tissue (eWAT) and livers of high-fat diet (HFD)-induced obese mice. SGT significantly blocked HFD-induced weight gain in C57BL/6N mice. In addition, SGT effectively reduced the increased weight and adipocyte size in eWAT of HFD-induced obese C57BL/6 N mice. Moreover, SGT significantly decreased the elevated gene expression of Peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and Sterol regulatory element-binding protein 1 in the eWAT of HFD-induced obese mice. Furthermore, SGT significantly decreased lipid accumulation in the livers of HFD-induced obese mice and differentiated 3T3-L1 adipocytes. Hence, the present study provides substantial evidence that SGT has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Yea-Jin Park
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dong-Wook Seo
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae-Young Gil
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Yun-Yeop Cha
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
28
|
Xu Y, Liu X, Gao Y, Liu Y, Chen S, Chen C, Cheng J, Guo C, Xu Q, Di J, Zhang J, Liu A, Jiang J. Metabolomic analysis revealed the edible and extended-application potential of specific Polygonum multiflorum tissues. Heliyon 2024; 10:e25990. [PMID: 38404795 PMCID: PMC10884814 DOI: 10.1016/j.heliyon.2024.e25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
The diverse applications of various tissues of Polygonum Multiflorum (PM) encompass the use of its leaf and bud as tea and vegetables, as well as the utilization of its expanded root tubers and caulis as medicinal substances. However, previous studies in the field of metabolomics have primarily focused on the medicinal properties of PM. In order to investigate the potential for broader applications of other tissues within PM, a metabolomic analysis was conducted for the first time using UPLC-Q-TOF-MS/MS on 15 fresh PM tissues. A total of 231 compounds, including newly discovered compounds such as torosachrysone and dihydro-trihydroxystilbene acid derivatives, were identified within PM. Through clustering analysis, the PM tissues were categorized into edible and medicinal parts, with edible tissues exhibiting higher levels of phenolic acids, organic acids, and flavonoids, while the accumulation of quinones, dianthrones, stilbenes, and xanthones was observed in medicinal tissues. Comparative analysis demonstrated the potential application of discarded tissues, such as unexpanded root tuber (an industrial alternative to expanded root tuber) and young caulis (with edible potential). Moreover, the quantification of representative metabolites indicated that flowers and buds contained significant amounts of flavonoids or phenolic acids, suggesting their potential as functional food. Additionally, the edible portion of PM exhibited a high content of quercitrin, ranging from 0.59 to 10.37 mg/g. These findings serve as a valuable point of reference for the expanded utilization of PM tissues, thereby mitigating resource waste in this plant.
Collapse
Affiliation(s)
- Yudi Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianju Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jintang Cheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingxia Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jipeng Di
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - An Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinzhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
29
|
Bai J, Zou Q, Su H, Liao B, Wang P, Huang J, Zhang D, Gong L, Xu W, Zhang J, Huang Z, Qiu X. Processing of Reynoutria multiflora: transformation of catechin and gallic acid derivatives and their identification. Front Pharmacol 2024; 15:1356876. [PMID: 38469408 PMCID: PMC10926517 DOI: 10.3389/fphar.2024.1356876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction: The root of Reynoutria multiflora (Thunb.) Moldenke (RM) has been used widely in formulations of herbal medicines in China for centuries. Raw R. multiflora (RRM) should be processed before use to reduce toxicity and increase efficacy. However, detailed regulation of the processing endpoint is lacking, and the duration of processing can vary considerably. We conducted in-depth research on stilbene glycosides in RM at different processing times. Previously, we discovered that 219 stilbene glycosides changed markedly in quantity and content. Therefore, we proposed that processing causes changes in various chemical groups. Methods: To better explain the mechanism of RM processing for toxicity reduction and efficacy enhancement, we used a method of tandem mass spectrometry described previously to research gallic acid based and catechin based metabolites. Results: A total of 259 metabolites based on gallic acid and 112 metabolites based on catechins were identified. Among these, the peak areas of 157 gallic acid and 81 catechins gradually decreased, those of another 71 gallic acid and 30 catechins first increased and then decreased, those of 14 gallic acid and 1 catechin gradually increased. However, 17 of the gallic acids showed no significant changes. We speculate that many gallic acid metabolites hydrolyze to produce gallic acid; moreover, the dimers/trimers of catechins, after being cleaved into catechins, epicatechin, gallic acid catechins, and epicatechin monomers, are cleaved into gallic acid and protocatechualdehyde under high temperature and high humidity, subsequently participating in the Maillard reaction and browning reactions. Discussion: We showed that processing led to changes in chemical groups, clarification of the groups of secondary metabolites could provide a basis for research on the pharmacological and toxic mechanisms of RM, as well as the screening of related markers.
Collapse
Affiliation(s)
- Junqi Bai
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyu Zou
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Su
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baosheng Liao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Wang
- Shanghai Dehua Traditional Chinese Medicine Co., Ltd., Shanghai, China
| | - Juan Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Gong
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Xu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Fan J, Wang Y, Yang J, Gu D, Kang S, Liu Y, Jin H, Wei F, Ma S. Anti-aging activities of neutral and acidic polysaccharides from Polygonum multiflorum Thunb in Caenorhabditis elegans. Int J Biol Macromol 2024; 257:128724. [PMID: 38103673 DOI: 10.1016/j.ijbiomac.2023.128724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Polygonum multiflorum Thunb (PM) is used to slow the aging process. Although polysaccharides are a major constituent of PM, their anti-aging properties have not been thoroughly investigated. Therefore, this study aimed to examine the anti-aging effects of polysaccharides extracted from PM using the Caenorhabditis elegans (C. elegans) model. Two types of water-soluble heteropolysaccharides, namely a neutral polysaccharide (RPMP-N) and an acidic polysaccharide (RPMP-A), were obtained from PM. Their structures were elucidated by various methods. The effects of these polysaccharides on the lifespan, levels of antioxidants, and activities of antioxidant-related enzymes in C. elegans were also evaluated. The results showed that RPMP-A had higher GalA content compared with RPMP-N. The average molecular weights of RPMP-N and RPMP-A were 245.30 and 28.45 kDa, respectively. RPMP-N is a α-1,4-linked dextran as the main chain, and contains a small amount of branched dextran with O-6 as the branched linkage site;RPMP-A may be a complex of α-1,4-linked dextran, HG and RG-I. Treatment with RPMP-N and RPMP-A increased the mean lifespan of C. elegans, and significantly regulated oxidative stress. RPMP-A exhibited stronger anti-aging effects compared with RPMP-N. These findings suggest that RPMP-A may be a potent antioxidant and anti-aging component that can be used for developing functional food products and effective dietary supplements.
Collapse
Affiliation(s)
- Jing Fan
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Donglin Gu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
31
|
Ding Y, Zhao D, Wang T, Xu Z, Fu Y, Tao L. Medicinal patterns of vines used in Chinese herbal medicine: a quantitative study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117184. [PMID: 37827301 DOI: 10.1016/j.jep.2023.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The botanical characteristics of twinning, climbing vine plants conceptually take shape to interlink the meridians and collaterals system throughout the human body by expelling climatic evils (e.g., wind, dampness). Thus, vines have displayed great medicinal properties in traditional Chinese medicine (TCM). AIM OF THE STUDY Although some popular vine species have been intensively investigated, the comparable features and medicinal specifications among a vast collection of taxonomic groups based on data visualization methods are relatively lacking in attention. Moreover, the translatability of vines from ancient ethnomedical evidence to modern medical system has not been well established. This review tends to quantitatively summarize the strength of vines in healthcare from the perspectives of medicinal part, traditional function, clinical spectrum, phytochemistry divergence, pharmacological attributes, toxicity as well as the progress of proprietary drug development. MATERIALS AND METHODS Medicinal vines were retrieved from databases of drug standards and curated catalogues. Synonyms of plant origin across different datasets were normalized by accepted scientific names in the World Flora Online. The distribution patterns and rank of plant origin, medicinal parts, traditional functions and target conditions, as well as the correlation between phytochemical composition and clinical applications were analyzed and visualized. RESULTS A total of 121 crude drugs from 36 families, 77 genera, 133 species of vines were obtained and analyzed. The Fabaceae, Menispermaceae and Rubiaceae were the highest ranked families of medicinal vines. Not surprisingly, stem was the most dominant medical part. Moreover, "eliminate wind" displayed a hub node in the traditional function co-occurrence network. In addition to joint impediment disorders, these vines particularly displayed a wide range of therapeutic modalities toward conditions from various organ systems. Chemotaxonomic properties-oriented phytochemical analysis was performed and the chemical diversity among medicinal vines complementarily determined a certain group of therapeutic domains. Particularly, the anti-inflammatory effect and antiarthritic effect were highlighted for treating rheumatic diseases. Using integral animal models and cultured cells, modern pharmacological actions of medicinal vines have been largely observed and validated according to their traditional ethnopharmacology. Furthermore, a small proportion of vine species are well-known toxic plants. Successful drug development pipelines in rheumatic, cardiovascular, liver, malignant and infectious diseases have offered the capacity to generate new treatment options that are being sought out from vine plants. CONCLUSIONS Medicinal vines are rich sources of Chinese Material Medica (CMM) and good fit for a variety of clinical manifestations beyond arthritis and rheumatic diseases. In addition to stem, other parts are also popular for both medicines and dietary supplements. Vine plants provide extensive biologically relevant chemical space for developing value-creating drugs. Thus, our analysis can be useful for further motivating and strengthening the preclinical and clinical research of vine-derived remedies.
Collapse
Affiliation(s)
- Yanlin Ding
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dingping Zhao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tingye Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhenyu Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuxuan Fu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
32
|
Wu Y, Leng F, Liao M, Yu Y, Chen Z, Wei S, Yang Z, Wu Q. Characterization of the physiological parameters, effective components, and transcriptional profiles of Polygonum multiflorum Thunb. Under pH stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108279. [PMID: 38128226 DOI: 10.1016/j.plaphy.2023.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-β-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.
Collapse
Affiliation(s)
- Yichao Wu
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Fen Leng
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Mingli Liao
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Yan Yu
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Zhenyong Chen
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Shuhong Wei
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Zaijun Yang
- College of Life Science, China West Normal University, Nanchong 637002, PR China.
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
33
|
Jamshidi S, Rostami A, Shojaei S, Taherkhani A, Taherkhani H. Exploring natural anthraquinones as potential MMP2 inhibitors: A computational study. Biosystems 2024; 235:105103. [PMID: 38123060 DOI: 10.1016/j.biosystems.2023.105103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Matrix metalloproteinase-2 (MMP2) plays a significant role in cleaving extracellular matrix components, leading to many cancer cells' progression and invasion behavior. Therefore, MMP2 inhibition may hold promise for cancer treatment. Anthraquinones have shown antineoplastic effects, some of which have been used in clinical practice as anticancer drugs. This study used a computational drug discovery approach to assess the possible inhibitory effects of selected anthraquinones on MMP2. The results were then compared with that of Captopril, which was considered a standard drug. METHODS This study used the AutoDock 4.0 tool to evaluate the binding affinity of 21 anthraquinones to the MMP2 catalytic domain. The most favorable scores based on the Gibbs free binding energy scores were given to the highest-ranked ligands. The Discovery Studio Visualizer tool illustrated interactions between MMP2 residues and top-ranked anthraquinones. RESULTS A total of 12 anthraquinones were identified with ΔGbinding scores less than - 10 kcal/mol. Pulmatin (Chrysophanol-8-glucoside) was the most potent MMP2 inhibitor, with a ΔGbinding score of - 12.91 kcal/mol. This anthraquinone was able to restrict MMP2 activity within a picomolar range. CONCLUSION MMP2 inhibition by anthraquinones, notably Pulmatin, may be a useful therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Rostami
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Heshmatollah Taherkhani
- Department of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
34
|
Zhao L, Zheng L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules 2023; 28:8139. [PMID: 38138627 PMCID: PMC10745977 DOI: 10.3390/molecules28248139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Anthraquinones are bioactive natural products, which are often found in medicinal herbs. These compounds exert antioxidant-related pharmacological actions including neuroprotective effects, anti-inflammation, anticancer, hepatoprotective effects and anti-aging, etc. Considering the benefits from their pharmacological use, recently, there was an upsurge in the development and utilization of anthraquinones as reactive oxygen species (ROS) regulators. In this review, a deep discussion was carried out on their antioxidant activities and the structure-activity relationships. The antioxidant mechanisms and the chemistry behind the antioxidant activities of both natural and synthesized compounds were furtherly explored and demonstrated. Due to the specific chemical activity of ROS, antioxidants are essential for human health. Therefore, the development of reagents that regulate the imbalance between ROS formation and elimination should be more extensive and rational, and the exploration of antioxidant mechanisms of anthraquinones may provide new therapeutic tools and ideas for various diseases mediated by ROS.
Collapse
Affiliation(s)
- Lihua Zhao
- Tianjin Renai College, Tianjin 301636, China;
| | - Lin Zheng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
35
|
Qian J, Li Y, Wang Y, Ye Q, Luo H. Effects of tetrahydroxy stilbene glycoside derivatives on free radical damage and apoptosis in APP695V717I transgenic mice. Redox Rep 2023; 28:2259246. [PMID: 37728223 PMCID: PMC10512761 DOI: 10.1080/13510002.2023.2259246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Mitochondrial dysfunction leading to overproduction of oxygen free radicals is an important event in the development of Alzheimer's disease. Tetrahydroxy stilbene glycoside (TSG) is one of the main effective components of Polygonum multiflorum and has a certain free radical scavenging effect. We synthesized tetrahydroxy stilbene glycoside derivatives (Mito-TSGs) that can cross the mitochondrial membrane and may provide effective protection against Alzheimer's disease. This experiment investigates the protective mechanism of tetrahydroxy stilbene glycoside derivatives against mitochondrial free radical damage and apoptosis in APP695V717I transgenic model mice. The experimental subjects were healthy 3-month-old APP695V717I transgenic model mice, while C57BL/6J mice of the same age and genetic background served as controls. The results demonstrated that the tetrahydroxy stilbene glycoside derivatives significantly improved mouse behavioral performance. It also led to a decrease in the levels of H2O2, NO, MDA, and LD, along with an increase in LDH activity and in the antioxidant enzyme activity of SOD, CAT, and GSH-Px. Moreover, it elevated the mitochondrial membrane potential, decreased the gene and protein expression of Caspase-3 and Bax, and increased the gene and protein expression of Bcl-2. Notably, the effectiveness of tetrahydroxy stilbene glycoside derivatives was superior to that of traditional tetrahydroxy stilbene glycoside.
Collapse
Affiliation(s)
- Jun Qian
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People’s Republic of China
| | - Yun Li
- Department of Nephrology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People’s Republic of China
| | - Yanyun Wang
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People’s Republic of China
| | - Qunying Ye
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People’s Republic of China
| | - Hongbo Luo
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People’s Republic of China
| |
Collapse
|
36
|
Yang B, Yu N. Traditional Chinese medicine alleviating neuropathic pain targeting purinergic receptor P2 in purinergic signaling: A review. Brain Res Bull 2023; 204:110800. [PMID: 37913850 DOI: 10.1016/j.brainresbull.2023.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.
Collapse
Affiliation(s)
- Bo Yang
- Department of Center for Psychosomatic Medicine,Sichuan Provincial Center for Mental Health,Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611135, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
37
|
Yu L, Zhao Y, Zhao Y. Advances in the pharmacological effects and molecular mechanisms of emodin in the treatment of metabolic diseases. Front Pharmacol 2023; 14:1240820. [PMID: 38027005 PMCID: PMC10644045 DOI: 10.3389/fphar.2023.1240820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. are traditional Chinese medicines that have been used for thousands of years. They are formulated into various preparations and are widely used. Emodin is a traditional Chinese medicine monomer and the main active ingredient in Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. Modern research shows that it has a variety of pharmacological effects, including promoting lipid and glucose metabolism, osteogenesis, and anti-inflammatory and anti-autophagy effects. Research on the toxicity and pharmacokinetics of emodin can promote its clinical application. This review aims to provide a basis for further development and clinical research of emodin in the treatment of metabolic diseases. We performed a comprehensive summary of the pharmacology and molecular mechanisms of emodin in treating metabolic diseases by searching databases such as Web of Science, PubMed, ScienceDirect, and CNKI up to 2023. In addition, this review also analyzes the toxicity and pharmacokinetics of emodin. The results show that emodin mainly regulates AMPK, PPAR, and inflammation-related signaling pathways, and has a good therapeutic effect on obesity, hyperlipidemia, non-alcoholic fatty liver disease, diabetes and its complications, and osteoporosis. In addition, controlling toxic factors and improving bioavailability are of great significance for its clinical application.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
- Department of Pharmacy, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yongliang Zhao
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongli Zhao
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| |
Collapse
|
38
|
Li Y, Deng X, Xiong H, Hu Q, Chen Y, Zhang W, Ma X, Zhao Y. Deciphering the toxicity-effect relationship and action patterns of traditional Chinese medicines from a smart data perspective: a comprehensive review. Front Pharmacol 2023; 14:1278014. [PMID: 37915415 PMCID: PMC10617680 DOI: 10.3389/fphar.2023.1278014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
In Chinese medicine, the primary considerations revolve around toxicity and effect. The clinical goal is to achieve maximize effect while minimizing toxicity. Nevertheless, both clinical and experimental research has revealed a distinct relationship between these two patterns of action in toxic Traditional Chinese Medicines (TCM). These TCM often exhibit characteristic "double-sided" or "multi-faceted" features under varying pathological conditions, transitioning between effective and toxic roles. This complexity adds a layer of challenge to unraveling the ultimate objectives of Traditional Chinese medicine. To address this complexity, various hypotheses have been proposed to explain the toxicity and effect of Traditional Chinese Medicines. These hypotheses encompass the magic shrapnel theory for effect, the adverse outcome pathway framework, and the indirect toxic theory for toxicity. This review primarily focuses on high-, medium-, and low-toxicity Traditional Chinese Medicines as listed in Chinese Pharmacopoeia. It aims to elucidate the essential intrinsic mechanisms and elements contributing to their toxicity and effectiveness. The critical factors influencing the mechanisms of toxicity and effect are the optimal dosage and duration of TCM administration. However, unraveling the toxic-effect relationships in TCM presents a formidable challenge due to its multi-target and multi-pathway mechanisms of action. We propose the integration of multi-omics technology to comprehensively analyze the fundamental metabolites, mechanisms of action, and toxic effects of TCM. This comprehensive approach can provide valuable insights into the intricate relationship between the effect and toxicity of these TCM.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Zhang JF, Wang YD, Lin P, Li JC, Guo CQ, Zhai JB, Zhang Y. Efficacy and safety of Runzao Zhiyang capsule for chronic urticaria: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1200252. [PMID: 37693898 PMCID: PMC10491456 DOI: 10.3389/fphar.2023.1200252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Background: Chronic urticaria (CU) is a commonly seen skin disorder featured by recurring wheals, with or without angioedema, lasting for at least 6 weeks. Runzao Zhiyang capsule (RZC) has been widely applied to treat patients with CU. This study is aimed at systematically evaluating the efficacy and safety of RZC in treating CU. Materials and Methods: Randomized controlled trials (RCTs) of RZC on treating CU from Chinese and English databases were searched. Data were collected by two independent researchers. The Cochrane Collaboration tool was adopted for evaluating the risk of bias. The meta-analysis was performed with Review Manager 5.3 software. Sensitivity analysis and publication bias assessment were conducted by Stata 14.0 software. Results: Totally 27 studies were included in the analysis, involving 2,703 patients. The pooled results showed that compared with second-generation H1-antihistamines (sgAHs) therapy alone, RZC combined with sgAHs is more effective in improving the total effective rate (RR = 1.32, 95% CI: 1.25 to 1.39, p < 0.00001), the quality of life measured by Dermatology Life Quality Index (DLQI) (MD = -2.63, 95% CI: -3.68 to -1.58, p < 0.00001) and the serum IFN-γ level (SMD = 3.10, 95% CI: 1.58 to 4.62, p < 0.0001), and reducing the recurrence rate (RR = 0.39, 95% CI: 0.27 to 0.55, p < 0.00001), the serum total IgE level (SMD = -2.44, 95% CI: -3.51 to -1.38, p < 0.00001), the serum IL-4 level (SMD = -2.96, 95% CI: -4.10 to -1.83, p < 0.00001), and the incidence of adverse events including dizziness, fatigue, dry mouth, and constipation (RR = 0.53, 95% CI: 0.33 to 0.85, p = 0.009; RR = 0.46, 95% CI: 0.26 to 0.84, p = 0.01; RR = 0.57, 95% CI: 0.34 to 0.95, p = 0.03; RR = 0.24, 95% CI: 0.07 to 0.85, p = 0.03). Conclusion: The current evidence indicates that RZC may be an efficient therapeutic regimen in patients with CU. Nevertheless, owing to the suboptimal quality of the included studies, more large-scale, well-designed RCTs are required to verify the obtained findings. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/; Identifier: CRD42022313177.
Collapse
Affiliation(s)
- Jian-Feng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying-Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun-Chen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Qi Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing-Bo Zhai
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
40
|
Pan L, Wang Y, Yue L, Wang N, Xu W, Liao X, Wang H, Xiu Y. Review on Processing Methods of Toxic Chinese Materia Medica and the Related Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1385-1412. [PMID: 37545180 DOI: 10.1142/s0192415x23500635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Toxic Chinese materia medica (CMM) has both pharmacological activities and toxic effects. Based on thousands of years of experience in the application of CMMs, people have explored many practical processing methods of CMMs, also known as "Pao Zhi", to reduce/control toxicity and preserve/enhance efficacy. Toxic CMMs have been used throughout China's hospitals. Yet, the production and use of toxic CMM should be carried out in accordance with the Chinese pharmacopoeia (ChP) and the processing regulations formulated by the health administrative departments of provinces, autonomous regions, and municipalities directly under the Central Government. This paper summarizes the current understanding and awareness of toxicity and 45 toxic CMMs, the commonly used processing methods of toxic CMMs recorded in the 2020 edition of ChP, and the changes in the chemical component, toxicity, or efficacy profiles after processing. This review may provide useful information for the processing methods of toxic CMMs worldwide. We believe that with an in-depth study and understanding of toxic CMMs combined with a standardized application, the toxicity of CMMs will be predictable and controllable in the future.
Collapse
Affiliation(s)
- Lingyun Pan
- Experiment Center for Science and Technology, Shanghai 201203, P. R. China
| | - Yingshu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Nan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Wen Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xue Liao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Haiying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
41
|
ZHOU J, WANG J, LI X, WAN C, LI F, Lü Y, CHEN H, SUN M. Efficacy of Heshouwu () on gut mircobiota in mice with autoimmune encephalomyelitis. J TRADIT CHIN MED 2023; 43:676-685. [PMID: 37454252 PMCID: PMC10320446 DOI: 10.19852/j.cnki.jtcm.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/04/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To learn the mechanisms between gut microbiome and the autoimmunity benefits on Traditional Chinese Medicine (TCM) in central nervous system (CNS), we investigated the neuro-protection effects and gut mircobiota changes of Heshouwu () on experimental autoimmune encepha-lomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODS Mice were randomly divided into four groups: EAE mice (control phosphate-buffered saline group), 50 mg·kg·d Heshouwu ()-treated EAE mice, 100 mg·kg·d Heshouwu ()-treated EAE mice, and 200 mg·kg·d Heshouwu ()-treated EAE mice. The spinal cords were stained with hematoxylin and eosin (HE) and luxol fast blue for evaluating inflammatory infiltration and demyelination. The percentages of granulocyte macrophage-colony stimulating factor (GM-CSF)+CD4+, interleukin 17 (IL-17)+CD4+, Foxp3 CD4+, and interferon-γ (IFN-γ)+CD4+ T cells in the inguinal lymph nodes (LNs) and brain were determined by flow cytometry analysis. 16S rRNA gene sequencing was employed to analyze the changes in gut microbiota. RESULTS We found that Heshouwu () alleviated the disease severity and neuropathology of EAE as evaluated by clinical and histopathologyical scores. Heshouwu () increased the diversity and abundance of the gut microbiota, and decreased / ratio (F/B ratio). Heshouwu () also decreased the concentrations of IL-10, and IL-21 and increase the levels of GM-CSF, IL-17A, IL-17F and IL-22 in serum of EAE mice. Moreover, Heshouwu () modulated the T cell responses by inhibiting Th17 cells and restoring Treg cells in the small intestine lymphoid tissues and inguinal lymph nodes. Microbiota-depleted mice receiving Heshouwu ()-treated fecal microbiota trans-plantation had lower disease severity, neuropathology scores and alleviation of Th17/Treg imbalance compared to ad libitum group. CONCLUSIONS Our findings suggested that the vital neuro-protection role of Heshouwu () (TCM) in immunomodulation effects partly by regulations of gut microbiome.
Collapse
Affiliation(s)
- Jun ZHOU
- 1 Department of Chinese Medicine, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Junhua WANG
- 2 Department of Neurology, Gaoxin branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiaobing LI
- 2 Department of Neurology, Gaoxin branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Chenyi WAN
- 2 Department of Neurology, Gaoxin branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Fangjun LI
- 2 Department of Neurology, Gaoxin branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yanni Lü
- 3 Department of Pharmacy, Gaoxin branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Hao CHEN
- 2 Department of Neurology, Gaoxin branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Meiying SUN
- 2 Department of Neurology, Gaoxin branch of the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
42
|
Long M, Pei X, Lu Z, Xu D, Zheng N, Li Y, Ge H, Cao W, Osire T, Xia X. Effective degradation of anthraquinones in Folium Sennae with Monascus fermentation for toxicity reduce and efficacy enhancement. Heliyon 2023; 9:e18735. [PMID: 37560635 PMCID: PMC10407211 DOI: 10.1016/j.heliyon.2023.e18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Folium Sennae are widely used around the world, mainly in purging and removal of endogenous active substances, such as anthraquinone and its derivatives. However, the potential toxicity of anthraquinones to the liver, kidney, and intestinal limits the application of Folium Sennae. In this study, we aimed at safe regulation of Folium Sennae to degrade anthraquinones, boosting medicinal properties and reducing toxicity and potency with Monascus fermentation. Monascus strains H1102 for Folium Sennae fermentation were selected as the initial strain which was capable of producing high yields of functional pigment and low yields of hazardous citrinin. The anthraquinone degradation rate reached 41.2%, with 212.2 U mL-1 of the pigment and approximately 0.038 mg L-1 of the citrinin under optimal fermentation conditions followed by response surface streamlining, which met the requirements of reducing toxicity, increasing efficiency of Monascus fermented Folium Sennae. Furthermore, the Monascus/Folium Sennae culture had no observable toxic effect on HK-2 and L-02 cells in vitro and further inhibited cell apoptosis and necrosis. Overall, our results showed that Monascus fermentation could provide an alternative strategy for toxicity reduction of herbal medicines as well as efficacy enhancement.
Collapse
Affiliation(s)
- Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaomei Pei
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhi Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Infinitus (China) Co. Ltd., Guangzhou, 510665, China
| | - Duo Xu
- Wuxi Dipont School of Arts and Science, Wuxi, 214122, China
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxian Li
- Infinitus (China) Co. Ltd., Guangzhou, 510665, China
| | - Hanxiao Ge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wentao Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
43
|
Hussain H, Siddiqui H, Gerothanassis IP. Editorial: Re-emergence of natural products for drug discovery in honor of Prof. Dr. M. Iqbal Choudhary. Front Pharmacol 2023; 14:1227732. [PMID: 37475715 PMCID: PMC10354788 DOI: 10.3389/fphar.2023.1227732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
44
|
Sharma A, Sharma C, Shah OP, Chigurupati S, Ashokan B, Meerasa SS, Rashid S, Behl T, Bungau SG. Understanding the mechanistic potential of plant based phytochemicals in management of postmenopausal osteoporosis. Biomed Pharmacother 2023; 163:114850. [PMID: 37172332 DOI: 10.1016/j.biopha.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Postmenopausal osteoporosis, an epidemic disorder is defined as a loss in bone mineral density and a greater possibility of fractures in older women. It is a multifactorial disease under the control of various genetic, hormonal, and environmental factors. Insufficiency of estrogen hormone, leads to postmenopausal osteoporosis. Hormone replacement therapy (HRT), despite being the most effective treatment, it is associated with the risk of breast cancer and cardiovascular disorders. This review seeks to compile the most recent information on medicinal plants and natural compounds used to treat and prevent postmenopausal osteoporosis. Furthermore, the origin, chemical constituents and the molecular mechanisms responsible for this therapeutic and preventive effect are also discussed. Literature research was conducted using PubMed, Science direct, Scopus, Web of Science, and Google Scholar. Different plant extracts and pure compounds exerts their antiosteoporotic activity by inhibition of RANKL and upregulation of OPG. RANKL signaling regulates osteoclast formation, characterized by increased bone turnover and osteoprotegrin is a decoy receptor for RANKL thereby preventing bone loss from excessive resorption. In addition, this review also includes the chemical structure of bioactive compounds acting on NFκB, TNF α, RUNX2. In conclusion, we propose that postmenopausal osteoporosis could be prevented or treated with herbal products.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Om Praksah Shah
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai, 602105 India
| | - Bhaskaran Ashokan
- Department of Surgery, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Semmal Syed Meerasa
- Department of Physiology, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India.
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| |
Collapse
|
45
|
Gao D, Hao JP, Li BY, Zheng CC, Miao BB, Zhang L, Li YL, Li L, Li XJ, Zhang L. Tetrahydroxy stilbene glycoside ameliorates neuroinflammation for Alzheimer's disease via cGAS-STING. Eur J Pharmacol 2023:175809. [PMID: 37328043 DOI: 10.1016/j.ejphar.2023.175809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD), also known as senile dementia, is the most common degenerative disease of the central nervous system. Neuroinflammation is currently believed to be a crucial factor in the progression of AD, while its exact mechanism remains unclear. In this study, we demonstrated that AD transgenic mice exhibited cognitive deficits accompanied by the elevated serum and brain inflammation. Treating with a natural active ingredient tetrahydroxy stilbene glucoside (TSG) from the Chinese herb Polygonum multiflorum that has been well known for its unique anti-aging effect, learning-memory ability of AD mice was distinctly improved. Meanwhile, it was observed that the expressions of serum inflammatory cytokines and the activation of microglia in cerebral cortex and hippocampus were suppressed after TSG treatment, which was probably attributable to the decrease of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) triggered immune response and NLRP3 inflammasome activation. Furthermore, cell culture experiments employing LPS combined with IFN-γ induced microglia activation showed that TSG reversed the polarization status of M1-type microglia to restore the quiescence, and cGAS-STING elevation was observed in the activated microglia and normalized by TSG incubation. In addition, TSG suppressed the production of inflammatory cytokines such as IL-1β, IL-6, TNF-α, IFN-α and IFN-β, as well as the expression of IFN regulatory proteins such as IFIT1 and IRF7 in the LPS/IFN-γ-stimulated inflammatory response in BV2 cell. Finally, it was also verified that TSG are, in part, through a cGAS-STING dependent pathway and triggered NLRP3 inflammasome activation to inhibit neuroinflammation through interfering with cGAS-STING inhibitors. Taken together, our findings highlight the health benefits of TSG and its potential application in preventing cognitive disorders by inhibiting neuroinflammation through cGAS-STING signaling pathway in AD.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Jin-Ping Hao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Bo-Ya Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Ceng-Ceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Bei-Bei Miao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Ya-Li Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Xing-Jie Li
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
46
|
Zhu C, Wang XY, Zhao J, Long B, Xiao X, Pan LY, Yuan TF, Chen JH. Effect of transdermal drug delivery therapy on anxiety symptoms in schizophrenic patients. Front Neurosci 2023; 17:1177214. [PMID: 37360162 PMCID: PMC10289061 DOI: 10.3389/fnins.2023.1177214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To evaluate the efficacy and safety of transdermal drug delivery therapy for schizophrenia with anxiety symptoms. Methods A total of 80 schizophrenic patients (34 males and 56 females) with comorbid anxiety disorders were randomly assigned to the treatment group (n = 40) and the control group (n = 40) with 6 weeks of follow-up. The patients in the treatment group received the standard antipsychotic drug treatment along with transdermal drug delivery therapy. The evaluation of the patients included the Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD-17), and treatment emergent symptom scale (TESS) at baseline, 3 weeks, and 6 weeks after transdermal drug delivery therapy. The Positive and Negative Symptom Scale (PANSS) was assessed at baseline and after 6 weeks of treatment. Results After 3 and 6 weeks of treatment, the HAMA scale scores in the treatment group were lower than those in the control group (p < 0.001). However, there were no significant differences in the HAMD-17 scale scores, PANSS total scores, and subscale scores between the two groups (p > 0.05). Additionally, no significant differences in adverse effects were observed between the two groups during the intervention period (p > 0.05). After 6 weeks of penetration therapy, there was a low negative correlation between total disease duration and the change in HAMA scale score (pretreatment-posttreatment) in the treatment group. Conclusion Combined traditional Chinese medicine directed penetration therapy can improve the anxiety symptoms of patients with schizophrenia and has a safe profile.
Collapse
Affiliation(s)
- Cuifang Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Xin-Yue Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Bin Long
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Xudong Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Ling-Yi Pan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| |
Collapse
|
47
|
Zhang W, Huang Q, Kang Y, Li H, Tan G. Which Factors Influence Healthy Aging? A Lesson from the Longevity Village of Bama in China. Aging Dis 2023; 14:825-839. [PMID: 37191421 PMCID: PMC10187713 DOI: 10.14336/ad.2022.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
A growing aging population is associated with increasing incidences of aging-related diseases and socioeconomic burdens. Hence, research into healthy longevity and aging is urgently needed. Longevity is an important phenomenon in healthy aging. The present review summarizes the characteristics of longevity in the elderly population in Bama, China, where the proportion of centenarians is 5.7-fold greater than the international standard. We examined the impact of genetic and environmental factors on longevity from multiple perspectives. We proposed that the phenomenon of longevity in this region is of high value for future investigations in healthy aging and aging-related disease and may provide guidance for fostering the establishment and maintenance of a healthy aging society.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Qingyun Huang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Yongxin Kang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Hao Li
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Guohe Tan
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| |
Collapse
|
48
|
Wang X, Zhao G, Ju C, Dong L, Liu Y, Ding Z, Li W, Peng Y, Zheng J. Reduction of emodin-8-O-ß-D-glucoside content participates in processing-based detoxification of polygoni multiflori radix. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154750. [PMID: 36990007 DOI: 10.1016/j.phymed.2023.154750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The occurrence of severe liver injury by the herbal medicine Polygoni Multiflori Radix (PMR) has drawn significant attention. The fact that processing attenuates PMR-induced hepatotoxicity has been well accepted, but the mechanisms are still ambiguous. PURPOSE This study aimed to illuminate the mechanism of processing-based attenuation of PMR hepatotoxicity. METHODS The contents of emodin-8-O-β-d-glucoside (EG) and emodin (EMD) in raw and processed PMR were quantified. The difference in toxicokinetic behaviors of EG and EMD was determined in vivo, and the disposition properties of EG were investigated in vitro and in vivo. RESULTS Decreased EG content was found in processed (black bean) PMR. Processed PMR showed reduced adverse effects relative to raw PMR. In addition, less hepatic protein adduction derived from EMD was produced in mice after exposure to processed PMR than that in animals receiving raw PMR. Glucose transporters SGLT1 and GLUT2 participated in the absorption of EG, and effective hydrolysis of EG to EMD took place in the intestinal epithelial cells during the process of absorption. Cytosolic broad-specificity β-glucosidase and lactase phlorizin hydrolase, as well as intestinal flora, participated in the hydrolysis of EG. The circulated EMD resulting from the deglycosylation of EG executed the hepatotoxic action. CONCLUSION EG is a pre-toxin and can be metabolically activated to EMD participating in the hepatotoxic event. The reduction of EG content due to processing is a key mechanistic factor that initiates the detoxification of PMR.
Collapse
Affiliation(s)
- Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Chengguo Ju
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, PR China
| | - Lingwen Dong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Yuyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004 Guizhou, PR China.
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
49
|
Yang JB, Yang CS, Li J, Su GZ, Tian JY, Wang Y, Liu Y, Wei F, Li Y, Ye F, Ma SC. Dianthrone derivatives from Polygonum multiflorum Thunb: Anti-diabetic activity, structure-activity relationships (SARs), and mode of action. Bioorg Chem 2023; 135:106491. [PMID: 37011521 DOI: 10.1016/j.bioorg.2023.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
PTP1B plays an important role as a key negative regulator of tyrosine phosphorylation associated with insulin receptor signaling in the therapy for diabetes and obesity. In this study, the anti-diabetic activity of dianthrone derivatives from Polygonum multiflorum Thunb., as well as the structure-activity relationships, mechanism, and molecular docking were explored. Among these analogs, trans-emodin dianthrone (compound 1) enhances insulin sensitivity by upregulating the insulin signaling pathway in HepG2 cells and displays considerable anti-diabetic activity in db/db mice. By using photoaffinity labeling and mass spectrometry-based proteomics, we discovered that trans-emodin dianthrone (compound 1) may bind to PTP1B allosteric pocket at helix α6/α7, which provides fresh insight into the identification of novel anti-diabetic agents.
Collapse
Affiliation(s)
- Jian-Bo Yang
- National Institutes for Food and Drug Control, Beijing 100050, China; Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumqi 830054, China
| | - Cheng-Shuo Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Ying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
50
|
Li Y, Zhang J, Zhang C, Dang W, Xue L, Liu H, Cheng H, Yan X. Facile and selective separation of anthraquinones by alizarin-modified iron oxide magnetic nanoparticles. J Chromatogr A 2023; 1702:464088. [PMID: 37230053 DOI: 10.1016/j.chroma.2023.464088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Anthraquinones are widely distributed in higher plants and possess broad biological activities. The conventional separation procedures for isolating anthraquinones from the plant crude extracts require multiple extraction, concentration, and column chromatography steps. In this study, we synthesized three alizarin (AZ)-modified Fe3O4 nanoparticles (Fe3O4@AZ, Fe3O4@SiO2-AZ, and Fe3O4@SiO2-PEI-AZ) by thermal solubilization method. Fe3O4@SiO2-PEI-AZ showed strong magnetic responsiveness, high methanol/water dispersion, good recyclability, and high loading capacity for anthraquinones. To evaluate the feasibility of using Fe3O4@SiO2-PEI-AZ for separating various aromatic compounds, we employed molecular dynamics simulations to predict the adsorption/desorption effects of PEI-AZ for various aromatic compounds in different methanol concentrations. The results showed that the anthraquinones could be efficiently separated from the monocyclic and bicyclic aromatic compounds by adjusting the methanol/water ratio. The Fe3O4@SiO2-PEI-AZ nanoparticles were then used to separate the anthraquinones from the rhubarb extract. At 5% methanol, all the anthraquinones were adsorbed by the nanoparticles, thus allowing their separation from other components in the crude extract. Compared with the conventional separation methods, this adsorption method has the advantages of high adsorption specificity, simple operation, and solvent saving. This method sheds light on the future application of functionalized Fe3O4 magnetic nanoparticles to selectively separate desired components from complex plant and microbial crude extracts.
Collapse
Affiliation(s)
- Yuexuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|